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Kinematic analysis of magnetic continuum robots
using continuation method and bifurcation analysis

Q. Peyron1,2, Q. Boehler3, K. Rabenorosoa2, B. J. Nelson3, P. Renaud1, N. Andreff2

Abstract—Magnetic continuum robots (m-CR) have
grown interest in several applicative contexts that take
benefits from their high flexibility and remote control.
When submitted to external magnetic fields, m-CR
exhibit large elastic deformations, which may lead to
a highly non-linear and complex behavior that is yet
difficult to analyze. This paper aims to provide a tool
to improve the understanding of m-CR kinematics. To
do so, a numerical approach composed of continuation
methods and bifurcation analysis is proposed. The
numerical tool is first described. Qualitative and quan-
titative results are further introduced by computing
multiple equilibrium branches and bifurcations of m-
CR configurations within homogeneous and inhomoge-
neous magnetic fields. Our simulations are ultimately
compared to experimental data using a magnetic nav-
igation system.

Index Terms—Kinematics, flexible robots.

I. INTRODUCTION

MAGNETIC continuum robots (m-CR) have grown
interest in minimally invasive surgeries such

as catheter-based cardiac procedures [1], [2] and eye
surgery [3]. They are composed of flexible sections with
permanent magnets [1] or micro-coils [2] embedded at
their tip. Robot deflections are driven with magnetic
fields, which produce magnetic torques on the magnet.
This distal actuation allows m-CR to generate tip forces
while having a soft body, safe for interactions with human
tissues. Magnetic fields and gradients are produced with
a magnetic navigation system (MNS). Various architec-
tures have been considered for its implementation: MRI
systems [2], fixed coils controlled in current such as [4], [1],
and magnetic sources displaced with robot architectures
such as permanent magnets [5], [6] or coils [7].
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Figure 1: Representation of a one-magnet m-CR controlled
with the CardioMag MNS [1]. A desired magnetic field
of magnitude 0.08T is generated in [0, 0, 0]. The m-CR is
clamped at the center of the red square.

The use of m-CR is hampered by the existence of
unstable configurations which can be reached during ma-
nipulation, as observed and studied in [8] in the case
of a planar robot. The kinematic model has in addition
locally multiple solutions between which the robot may
snap dangerously. These phenomena are likely to appear
for m-CR evolving in space, which is the general situation
of main practical interest. This needs therefore to be
studied in order to improve the safety while exploiting
the full workspace of these robots. This is a difficult
task first because m-CR are expected to adopt complex
and non trivial 3D shapes due to magnetic and gravity
forces. Second, the magnetic field produced by a MNS is
intrinsically not homogeneous, i.e. it is not constant but
varies continuously within the MNS workspace [9]. These
inhomogeneities are depicted in term of magnetic field
magnitude in Fig. 1 where a specific m-CR and MNS have
been considered within the scope of this work. The impact
of corresponding perturbated magnetic torques and forces
is not yet assessed while the robot kinematics are directly
affected by these inhomogeneities.
In this paper, kinematic analysis is considered with a

numerical approach. The m-CR is analogous to an elastic
rod, with a highly non linear behavior due to spatial
deformations and external loadings, and with multiple
configurations for a given magnetic field. Establishing
the behavior of such system is a well known problem in
nonlinear elastic mechanics [10], which needs to be solved
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Figure 2: Spatial representation of the m-CR, with ref-
erence frame R0, local frame RB , and external magnetic
field B.

numerically in a general case. Continuation methods are
of particular interest to establish equilibrium configura-
tions of rods [11], [12] by determining connected sets of
equilibria called branches [13]. A prediction and correction
process is being used, so that complex solutions of a model
can be obtained without a priori knowledge on them. The
existence of multiple solutions appears as bifurcations be-
tween branches of solutions, which are commonly studied
to obtain information about the local behavior of rods [10].
Coupling of continuation method and bifurcation analysis
exists and was proven to be efficient for studying snapping
phenomena for concentric tube robots [14] and buckling of
planar rods subject to magnetic forces [15]. A combination
of these methods therefore appears of great interest for the
analysis of m-CR.

We propose in this paper to use continuation methods
and bifurcation analysis to give better understanding of
spatial m-CR kinematics considering the magnetic field
inhomogeneities commonly created by MNS in practice.
The interest of this proposition is demonstrated in four
steps, as follows. A kinematic model of m-CR is first
derived in section II and casted in a discrete form suitable
for numerical analysis with the selected numerical frame-
work. The use of continuation method and bifurcation
analysis is then described in section III. The ability of
the proposed approach to assess m-CR behavior is demon-
strated qualitatively in a third step, in section IV, on a m-
CR subject to homogeneous magnetic field. Additionally,
new insights about the m-CR kinematics in two complex
case studies are provided. Quantitative assessment of the
prediction capacity in the presence of inhomogeneous fields
is finally performed in the same situations in section V by
comparison with experimental data, before concluding.

II. KINEMATICS
The kinematic model aims to describe the evolution of

the m-CR configuration at the equilibrium according to
the magnetic field B used to control the robot. Several
kinematic models have been proposed in prior works to
describe the behavior of loaded continuum robots and
elastic rods. They are usually derived following two main

approaches: the balance between internal and external
forces and torques, on the one hand [16], and the first vari-
ation of the total potential energy, on the other hand [12].
In this paper, we use a kinematic model obtained essen-
tially by following the different steps presented in [12].
Additional and relevant assumptions specific to m-CR as
well as a different representation of m-CR configurations
are considered.

A. System description and assumptions
Without loss of generality, we consider here a m-CR

composed of a flexible section of length Lf at which tip a
rigid permanent magnet is fixed as previously introduced
in [8], [15], [1], [2]. The magnet constitutes a rigid section
of length Lr. The robot depicted in Fig. 2 exhibits a
bended shape in space due to the action of gravity and
the magnetic torques and forces acting on the magnet. In
addition to the assumption considered in [12], we assume
that no torsion occurs. This assumption is valid when
considering axial magnets as it is the case here. The m-CR
tip is then free to rotate about its axis, releasing torsional
stresses. We consider the magnetic torques and forces to be
induced by the magnetic field B evaluated at the magnet
center. Variations of the magnetic field within the magnet
are neglected.

B. m-CR configuration
The m-CR configuration is described by the robot back-

bone position, orientation and curvature, which vary along
the backbone that is parametrized with the arc length s.
Dependency on s is not mentioned in the following for
sake of compactness. The backbone position is denoted
p and is expressed in the MNS reference frame denoted
R0(O,x0,y0, z0). The robot orientation is parameterized
with a Bishop frame RB(p,xB,yB, zB) where zB is
tangent to the backbone. The rotation between R0 and
RB is represented with Euler angles arranged in a ZYX
sequence [17], and gathered in a vector a so that a =[
aX aY aZ

]T . This representation provides a minimal
state representation of the orientation and the result-
ing geometrical singularities are not encountered in the
analysis performed throughout this work. The backbone
curvature is represented with a Darboux vector expressed
in RB and is denoted uB. From construction of RB ,
the coordinate along zB of uB equals always 0, so that
uB =

[
uBx uBy 0

]
.

Position, orientation and curvature vectors constitute a
redundant representation of the robot configuration. They
are bound with the following geometric relations [17]:

a′ = MTuB with M =

1 0 −sY

0 cX sXcY

0 −sX cXcY

 (1)

p′ = BR0
[
0 0 1

]T (2)

where prime exponent denotes the derivation with respect
to s, cX and cY (sX and sY ) are respectively the cosine
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(sine) of aX and aY , and BR0 is the rotation matrix
transforming RB in R0.

C. Mechanical equilibrium
The actuation input B relates to the m-CR configura-

tion by equilibrium equations. These express the balance
between the magnetic forces fm and torques τm produced
by B, the gravity forces fg and the internal wrenches
due to elastic deformation. They respectively depend on
the magnetic dipole moment mB , the mass M and the
stiffness matrix KB expressed in RB , with kb and kt the
bending and torsional stiffnesses. These parameters are
assumed to differ between the flexible and rigid sections,
and are thus considered as piecewise constant functions
of s. External forces can therefore be seen as piecewise
constant distributed forces which are expressed in R0:

fg = L−1Mg

τm = L−1((BR0mB)×B)
fm = L−1∇((BR0mB).B)

(3)

where g is the gravitational constant and L = Lf ,∀s ∈
[0, Lf ] and L = Lr otherwise.
Following [12], the equilibrium equations are derived

through the formulation of the potential energy of the
whole robot, which first variation with respect to m-CR
configuration variables p, a and uB is then computed.
Accounting for the two geometric constraints (1) and (2),
two multiplier vectors denoted λa and λp respectively are
introduced. They represent the internal wrenches men-
tioned before, λp being homogeneous to internal forces
expressed in R0 and λa to internal moments expressed in
RB . The equilibrium equations are then written:


KBuB = λa

MTλ′a = −MT
(

BRT
0

) τm

L
− Sλa − Tλp

λ′p = − (fm + fg)
L

(4)

where

S = dMT

ds
−
[
∂Ma′

∂a

]T

and T =
[
∂BR0[0 0 1]T

∂a

]T

(5)

The m-CR proximal end is clamped at a position p0 and
with an orientation a0. Considering no other external
forces applied at the robot tip, the previous differential
equations are constrained by the following boundary con-
ditions: 

a(0) = a0

p(0) = p0

λa(Lf + Lr) = λp(Lf + Lr) = 0
(6)

The kinematic model of the m-CR forms a two-point
boundary value problem, composed of equations (1)-(4)
and of boundary conditions (6). Solutions of this model
are described by a vector composed of 14 state variables
which are a, p, uBx, uBy, λa and λp.

X0

X1

X2

X3

B(γ0)

B(γ1)

B(γ2)

B(γ3)

Branch

1©
2©

Figure 3: m-CR configurations for in plane variation of
the magnetic field. The corresponding branch of solutions
obtained using prediction 1© and correction 2© steps is
represented in blue. The m-CR is represented after dis-
cretization (here, nf = 7, nr=4).

III. NUMERICAL METHOD

A. Discretization of m-CR kinematic model

Application of the continuation method and bifurcation
analysis to m-CR requires a reformulation of the kinematic
model. Following the work described in [12] for elastic
rods, the robot is first discretized along its backbone.
As depicted on Fig. 3, the flexible and rigid sections are
represented with finite number of points denoted nf and
nr respectively, indexed from the proximal to the distal
ends. The state vector introduced in the previous section
is evaluated at each point k. The derivatives of Eq. (1), (2)
and (4) with respect to s are then expressed with forward
and backward finite differences, which gives the following
geometrical constraints and equilibrium equations at point
k: 

ak − ak−1

hk−1
−MT

k uB,k = 0

pk − pk−1

hk−1
− BR0

[
0 0 1

]T = 0
(7)



KkuB,k − λa,k = 0

−MT
k

λa,k+1 − λa,k

hk
−MT

k

(
BRT

0

) τm,k

L
− Skλa,k

−Tkλp,k = 0

− λp,k+1 − λp,k

hk
− (fm + fg)

L
= 0

(8)
where hk is the distance in arc length between point k+ 1
and point k.
The kinematic model of discrete m-CR consists

in 14(nf + nr) non-linear equations which must be solved
for a given actuation field B. During the manipulation
of a m-CR, B is assumed to follow a 1-dimensional
path. Its components are then functions of the vari-
able parameterizing this path, denoted γ, so that B =
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[
Bx(γ) By(γ) Bz(γ)

]
. The kinematic model is thus an

implicit function of the form:

G(X, γ) = 0 (9)

with X =
[
ak pk uBx,k uBy,k λa,k λp,k

]
, k =

1...nf +nr the vector that concatenates all discrete values
of the state vector, denoted in the following as the robot
configuration for sake of simplicity.

B. Analysis with continuation and bifurcation
The numerical approach used in this work is based

on the computation of branches of m-CR configurations
according to 1-D variations of the magnetic field. These
branches correspond to a set of solutions of Eq. (9)
obtained for given variations of γ. Continuation methods
allow for their computation starting from an initial con-
figuration of the robot, and applying successive variations
of γ as illustrated on Fig 3.
1) Determination of m-CR initial configuration: Find-

ing an initial configuration for the m-CR, denoted X0

on Fig. 3, is not a trivial problem to solve considering
the magnetic wrenches and the gravity forces applied on
the robot. We therefore propose as an initial step to use
dynamic relaxation to compute the initial configuration,
as it was implemented for elastic structures subject to
complex loadings in [18]. The robot is first set in an arbi-
trary shape. Induced internal constraints are then relaxed
during a virtual time evolution. The robot configuration
depends thus on a virtual time, with dynamics described
by the following set of second order differential equations:

JẌ +DẊ +G(X, γ) = 0 (10)

where dots denotes derivatives with respect to virtual
time, J and D are diagonal matrices of fictitious inertia
and damping coefficients chosen here for each equation
of (9) to ensure convergence. Initial configuration of the
robot is further obtained by integrating Eq. (10) with an
ODE solver such as ode45 as implemented in Matlab (The
Mathworks, USA) until the steady state is reached. In
the case the kinematic model has multiple solutions, X0

depends on the initial arbitrary shape chosen for dynamic
relaxation.
2) Continuation and bifurcation analysis: As a second

step, continuation is performed with bifurcation analy-
sis by considering the system (10) using Matcont [19].
MatCont is based on the work presented in [13] and
implements the Predictor Corrector Method (PCM) for
the computation of branches. Principle of the PCM is
illustrated on Fig. 3. Starting from the initial point of
the branch (γ0,X0), next point is predicted by stepping
along the branch tangent with a given continuation step
size 1©. This tangent depends on the Jacobian matrices
of Eq. (10) with respect to X and γ, which are evaluated
numerically with finite differences. The predicted solution
is then corrected using a Newton-Raphson algorithm 2©
until the point (γ1,X1) is found. Numerical stability of the

Table I: Properties of the m-CR and simulation conditions.
Section Flexible Rigid
L (m) 0.084 0.004
M (kg) 6.923.10−4 2.110.10−4

kb (N.m2) 1.818.10−5 0.487
mB (N.m/T)

[
0 0 0

] [
0 0 0.263.10−1

]
a0 (rad)

[
0 −π/2 0

]
p0 (m)

[
0.551.10−1 0.226.10−1 0.684.10−1

]
correction is ensured by a step size control algorithm [13],
which adapts the prediction step size when needed.
A major interest of Matcont is the integration of specific

functions for the detection and the localization of different
type of bifurcations, including bifurcations which indicate
appearance of multiple configurations such as the so-called
limit points or branch points (BP) defined in [13]. Matcont
is also able to automatically find the direction of a new
branch and follow it from a bifurcation indicating the
intersection of two branches, such as a BP [13].
Association of branches and detected bifurcation forms

a diagram usually denoted as a bifurcation diagram. Using
the m-CR discretized model previously described and Mat-
cont software, the m-CR behavior can be assessed through
the elaboration of bifurcation diagrams. The efficiency of
the method is investigated in the next two sections.

IV. PREDICTION OF M-CR BEHAVIOR
A. Simulation scenarios and parameters
The idealized situation where the m-CR is driven by

homogeneous magnetic fields is first considered to demon-
strate the interest of the method. Two case studies where
critical configurations with multiple solutions to the kine-
matic model may exist are selected in the scope of this
work. Such a situation has been identified in [8] where
a planar m-CR is driven with a magnetic field rotating
around an axis orthogonal to the robot. We consider
therefore two case studies where the magnetic field is
rotated around the two axes orthogonal to robot proximal
orientation. The field magnitude is fixed at a constant
value of 0.08 T which corresponds to a realistic value in
applications such as cardiac ablations [2]. The evolution
of the magnetic field is parameterized by the variable γ in
Eq. (9) that represents the in-plane field orientation.
The considered m-CR is composed of a 4 mm diameter

silicone tube with a cylindrical permanent magnet placed
at the tip, both components being previously used
in [1]. Calibrated parameters of the m-CR are gathered
in Table I. The mass and the length of the flexible
section are measured with a precision scale and a caliper
respectively. The bending modulus of the flexible section
is identified experimentally by fitting the kinematic model
to the robot shape. This latter is measured using three
visual markers equally spaced on the m-CR and the stereo
tracking system described in section V-A. Accounting
for the resolution of the tracking system of 1.10−3m, the
accuracy of the identification is less than 1.10−8N.m2. The
parameters of the rigid section are based on the values
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provided by the magnet manufacturer. The discretization
of m-CR geometry is performed using [nf , nr] = [20, 10].
The initial configuration is then determined using
dynamic relaxation with diagonal coefficients of J and
D respectively equal to 125 and 300. These parameters
are determined by a trial-and-error process, that showed
that a higher number of nodes does not significantly
impact the numerical results, and that the selection of
virtual inertia and damping matrices does not have a
strong influence on the convergence of dynamic relaxation.

B. Case Study #1
We consider the robot initially aligned with x0 (Fig. 4b).

In this first case, the magnetic field is rotated around z0.
Continuation is performed according to γ from the initial
configuration corresponding to the point 2 on the figure.
As a result, it is possible to plot the altitude of the m-CR
tip as a function of γ (Fig. 4a).
For values of γ close to 0 corresponding to points 1, 2,

and 3, the tip trajectory appears to move roughly in a
plane as suggested by the horizontal tangent in γ = 0 in
Fig. 4a. This means that the magnetic wrenches can then
balance the gravity and elastic forces.

When the field orientation increases, so do the internal
wrenches due to robot stiffness. As the magnitude of B
is constant, it cannot at some point balance the gravity
and internal forces. This situation is observed with the
simulation: the m-CR stops to bend and its tip moves pro-
gressively in the gravity direction, passing through point 4,
until it reaches a maximum displacement in γ = ±π at
point 5.

C. Case Study #2
The m-CR is in the same initial configuration. The

magnetic field is now rotated around y0 as depicted in

3 2 1

4

5
γ(rad)

z0(m)

(a)

1
2
3

4
5Bγ

x0(m) y0(m)

z0(m)

(b)

Figure 4: Results for case study #1. The magnetic field
rotates in the (x0,y0) plane represented in orange. a)
Bifurcation diagram: z0 tip coordinate according to γ. b)
3D trajectory of the robot tip.

1 2 3
4

5γ(rad)

y0(m)

(a)

1

2

3
4

5
B

γ

y0(m) x0(m)

z0(m)

(b)

Figure 5: Results for case study #2. The magnetic field
rotates in the (x0, z0) plane represented in orange. a)
Bifurcation diagram: y0 tip coordinate according to γ. b)
3D trajectory of the robot tip.

Fig. 5b, resulting in the bifurcation diagram illustrated in
Fig. 5a.
Starting from the initial configuration at point 2, branch

of planar configurations belonging to (x0, z0) are first
computed when modulating γ, as shown with points 1
and 3. In this second case study, a BP bifurcation is
encountered. The m-CR tip can follow two different paths
as represented in Fig. 5a. With the proposed numerical
approach, the new branch of solutions can be detected
and the m-CR tip positions corresponding to this branch
can be obtained. This is possible in spite of the vicinity
of complex spatial configurations (points 4 and 5) which
evolve with little variations of γ between −2.85 rad and
−2.69 rad. The appearance of a second branch is consistent
with the analysis of the external forces applied on the
robot. They belong to the same plane (x0, z0), and then
do not constrain the tip to move towards a determined
direction when they are balanced by the m-CR internal
wrenches. In this case, out-of-plane random perturbation
can then lead the m-CR to move along the second branch
in one direction or the other. The robot exhibit two pos-
sible configurations for the same field orientation, which
is visible at the BP on Fig. 5a. Such analysis of m-CR
behavior has never been investigated in prior works to the
best of our knowledge.
The results presented in this section clearly illustrate

our ability to assess 3D behavior of m-CR in the two
considered complex case studies with our numerical ap-
proach. New information about the robot kinematics are
obtained, which are consistent with the m-CR physics.
In addition, the combination of continuation method and
bifurcation analysis allows us to detect the appearance of
new branches of solutions automatically.

V. EXPERIMENTAL COMPARISON
The ability of our numerical tool to predict m-CR

behavior subject to the magnetic field inhomogeneities in-
duced by MNS is now assessed in two steps. The prediction
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Figure 6: Experimental setup. It comprises a 4mm diam-
eter m-CR, the MNS (CardioMag [9]) equipped with 8
fluid cooled electromagnets, and the stereo-vision tracking
system.

accuracy is first evaluated by comparing numerical results
with experimental data collected with the CardioMag [9],
using the two case studies considered in the previous
section. The tool is then used to evaluate the impact of
magnetic field inhomogeneities on the m-CR, and espe-
cially in case #2 where multiple equilibrium configurations
have been identified.

A. Modeling and experimental setup
The CardioMag is composed of eight fixed coils supplied

with independent controlled currents. It is thus able to
generate any magnetic field or field gradient at one point
of its workspace. Among the existing strategies to control
m-CR with this kind of MNS, the approach used in [20]
is interesting in order to highlight impact of field inhomo-
geneities on the robot kinematics. A reference magnetic
field Br and a null gradient are imposed at the MNS
workspace center O (Fig. 2) using the calibrated model
presented in [9] and the actuation matrix introduced in [4]
for coils current computation. This results in a different
magnetic field B and in field gradient applied at the
robot magnet. Errors between B and Br and gradients
are therefore present all along the robot manipulation, and
may have significant impact when the robot tip is far from
O. This situation is investigated in the following.
Experiments are conducted using the setup depicted

on Fig. 6. The robot proximal orientation is accurately
fixed with respect to the MNS frame axis using a drilled
breadboard. The proximal position is determined so that
the robot tip is close to the MNS workspace center. A
colored bead (6 mm diameter) is glued to the tip so that
its position can be measured with a stereo tracking system
composed of two Basler A602fc cameras (656×490 pixels,
15Hz), with an accuracy of 1mm. Green markers (5 mm
width) are also embedded at the m-CR proximal end to
register the base position. The rotating magnetic field
described in section IV is used here as reference field Br.
The field orientation angle γ is discretized in 72 steps of
5 s between 0 to 2π rad. The step duration is chosen high
enough for the robot to reach its equilibrium configuration.
The MNS is then controlled through a custom C++

γ(rad)

γ(rad)

γ(rad)

x
0(
m
)

y 0
(m

)
z 0
(m

)

x0(m)
y0(m)

z0(m)

Figure 7: Experimental confrontation for Br rotating in
(x0,y0) plane. Top: Comparison between numerical and
experimental results. Numerical results are in blue line
and experimental tip positions are presented with black
crosses. Bottom: Comparison of the robot tip trajectory
computed with homogeneous (dotted line) and inhomoge-
neous field (plain line).

Linux program running on a 2.8 GHz Intel Xeon W3530
processor with 12 GB RAM.
Kinematic analysis is performed using the calibrated

robot parameters in Table I. We consider the MNS model
parameters identified from external magnetic field mea-
sures in [9]. The bead is modeled by adding its mass at
the robot tip and by extending the position of this last one
by the bead radius once diagrams have been generated.

B. Accuracy assessment
The measured tip position of the m-CR for each rotation

step of Br is compared with the corresponding computed
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position. The accuracy is then computed in term of the
RMS value of the difference between the two tip positions
in the MNS frameR0. Errors are expressed as a percentage
of the m-CR total length which equals then 0.088m.Set
of measured and computed positions of m-CR tip are
superimposed on Fig. 7 and Fig. 8 for the two case studies.
The partial absence of experimental data on Fig. 7, for
γ between 1 and 2.25 rad, is due to occlusion of the
colored bead during the field rotation. The tip position
error value is for each coordinate [4.17; 4.61; 3.95] % for
case 1 and [12.27; 6.37; 7.58] % for case 2. Error increase
for the second case is mainly due to the S-shape region,
where γ ∈ [−2,−1.8] rad. Such branch shape is well
known in continuum robotics to present unstable equi-
librium configurations which cannot be followed experi-
mentally [21]. It induces a jump of the robot between two
stable configurations, which is illustrated in our case in the
accompanying video. As a consequence, the largest error
occurs on the x0 component where the S-region magnitude
is the largest. Outside the S-shape region, the error values
are [6.81; 3.96; 5.93] %. They are then consistent with the
errors obtained with existing models of loaded contin-
uum robot using measured and manufacturer parameters,
which are for instance within the same range to 4.47 %
of the robot length in [16]. These results demonstrate the
ability of the proposed numerical approach to capture the
robot behavior, even for the large spatial deformation of
the m-CR considered in the two case studies and in the
presence of magnetic field inhomogeneities.

C. Impact of inhomogeneous magnetic field
The numerical tool can be interestingly used to evaluate

the impact of the field inhomogeneity on the m-CR kine-
matics. This can be simply performed by comparing the
graphs obtained with and without considering the MNS
model described in [9]. For the first case, presented in
Fig. 7, the robot behavior exhibit some similarities with
the one predicted before. The z0 coordinate is almost
constant for |γ| < 1 and decreases dramatically until
reaching a minimum value at γ = ±π rad. The tip trajec-
tory is however severely distorted by field inhomogeneities,
especially on z0 coordinate where the difference reaches
22.0% of the total robot length for γ = 0 rad.
As introduced in section I, these distortions are due

to the m-CR tip position which does not correspond
to the point O where Br is generated. Depending on
their relative position, force and torque perturbations are
created at the tip and may be critical in the bending
direction of the robot in case study #2, as explained in
section IV-C. In particular, force and torque perturbations
in the y0 direction are likely to induce the expected out-
of-plane motion in the vicinity of the BP bifurcation.
They are induced by the y0 component of B which varies
depending on the m-CR tip position. We then propose
a numerical analysis of the impact of magnetic field in-
homogeneities in case study #2 by clamping the robot
at two different positions in the MNS workspace, p0 and
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m
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Figure 8: Experimental confrontation for Br rotating
in (x0, z0) plane. Top: Comparison between numerical
and experimental results in term of tip coordinate in
R0. Numerical results are represented in blue line and
experimental tip position coordinates with black crosses.
Bottom: Comparison of the robot tip trajectory computed
with homogeneous (dotted line) and inhomogeneous field
(plain line). Branches are computed for two proximal
position, p0 in blue and p0b in red.

p0b =
[
0.801.10−1 −0.537.10−1 0.707.10−1]m, and by

relating the observed behavior with the y0 component
of B.
The corresponding bifurcation diagrams generated with

our numerical tool are depicted in Fig. 8, where the
two clamping positions have been superimposed for the
comparison. In the diagram related to p0, the robot tip
stays roughly in a plane, as shown by points 1, 2, and 3.
Then, it moves out of the plane after point 3 and seems
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to converge towards the second branch predicted with
homogeneous field in the positive y0 direction, passing
through points 4 and 5 without encountering any bifur-
cation. The y0 component of B is equal to +3.25% of the
magnetic field magnitude at point 2. Similarly, the robot
which base is clamped at p0b bends in the −y0 direction
when following the second branch, and the component
of B is negative and equals -4.12% for the value of γ
corresponding to point 2. These results first highlight the
fact that the y0 component of B is decisive in the out
of plane branch after bifurcation followed by the m-CR.
They also show that little variations of magnetic field due
to the field inhomogeneity have a high impact on the robot
behavior during the field rotation.

VI. CONCLUSION
In this paper, we used continuation methods and bi-

furcation analysis in order to investigate the kinematics
of m-CR. Consistent prediction of the robot behavior are
obtained in two cases of spatial m-CR controlled under a
homogeneous magnetic field, leading to complex deformed
shape and multiple configurations. The numerical tool is
also able to deal with inhomogeneous fields produced by
a MNS in order to provide results as accurate as existing
kinematic model of continuum robots. Our approach thus
allows for an accurate and extensive analysis of m-CR
behavior in practical magnetic manipulation scenarios in
the presence of magnetic field inhomogeneities.

In future work, the numerical approach presented here
could be considered to investigate other scenarios of m-
CR manipulation where particular phenomena such as
snapping occurs. Since the introduced kinematic model
allows for arbitrary number of flexible and magnetic parts,
m-CR with two or three magnets could be considered as
well. From a numerical point of view, comparison between
the proposed framework and other implementations of
continuation could also be performed.
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