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ABSTRACT: 

 

Point cloud segmentation is an important first step in categorising a raw point cloud data. This step is necessary in order to better 

manage the data and generate other derivative products, e.g. 3D GIS or HBIM. The idea presented in this paper involves the use of 

2D GIS to help in the segmentation, classification, as well as (early) semantic annotation of the point cloud. This derives from the 

fact that in the case of heritage complex sites, often times the site has been previously documented in a 2D GIS often with attributes 

and entities. We used this 2D data to help in the segmentation of a 3D point cloud, with the added benefit of automatic extraction 

and annotation of the related semantic information directly to the segmented clusters. Results show that the developed algorithm 

performs well with TLS data of spread out heritage sites, with a median success rate of 93% and an average rate of 86%. While 

manual intervention is still inevitable in some parts of the workflow (e.g. creation of the base shapefiles and choice of object 

segmentation order), the developed algorithm has shown to significantly reduce overall processing time and resources required in 

terms of segmentation and semantic annotation of a point cloud in the case of heritage complexes.  
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1. INTRODUCTION 

The segmentation of unorganised point cloud data is a much 

studied research theme, which stems partly from the needs of 

the remote sensing community to classify aerial LIDAR data. 

The developments in photogrammetry and particularly dense 

matching meant that 3D aerial point cloud can now be obtained 

for larger scale objects via the use of UAVs (Chiabrando et al., 

2015; Murtiyoso et al., 2016). For heritage sites in the scale 

level of complexes with several objects spread out in a small 

area, documentation is often performed using a combination of 

aerial and terrestrial techniques (Grenzdörffer et al., 2015; 

Murtiyoso et al., 2018). This provides a better level of point 

cloud resolution than simple aerial data as well as coverage of 

more difficult angles. While this gives a winning solution to 

completely record a heritage site, it also adds to the complexity 

of the segmentation. This further increases the need for the 

automation of point cloud segmentation. Furthermore, while 

many in the literature focuses on the segmentation and 

classification of aerial point cloud into certain generic classes 

(e.g. ground, buildings, vegetation, etc), the field of heritage 

documentation often requires various different semantic 

attributes (e.g. historical information, architectural styles, etc.) 

to be stored (Drap et al., 2017). In many occasions these 

semantic attributes are often already stored in the form of 2D 

Geographical Information Systems (GIS). The idea behind this 

research is to use these pre-existing GIS data in helping the 

point cloud segmentation process, while in the same time 

performing the annotation of the attributes of each GIS layer 

field onto the segmented point cloud. This will facilitate further 

processes down the workflow pipeline, such as the creation of 

3D GIS and HBIM (Heritage Building Information Models). 

 

2. RELATED WORK 

The documentation of heritage objects has been addressed in a 

lot of literature. Nowadays, the use of image-based (e.g. 

photogrammetry) and range-based techniques is very common 

(Remondino, 2011) and may even be complementary to each 

other. Within the spatial scale of a heritage complex site, the use 

of (2D) GIS for site management is also common place, as is 

indicated in several publications (Fabbri et al., 2017; Fletcher et 

al., 2007; Seker et al., 2010). GIS enables the annotation of 

semantic aspect such as historical, social, and cultural 

information into the geometric data (Fletcher et al., 2007). This 

in turn enables GIS to become a powerful tool for heritage site 

management, where spatial analysis is made possible. One of 

the widely used format for GIS data is the ESRI shapefile (.shp) 

format (Bedford, 2017; Kastuari et al., 2016). 

The most natural approach when addressing geospatial data 

from a heritage complex site is the use of aerial data. As regards 

to the segmentation of aerial-based point cloud, the most basic 

segmentation involves the extraction of ground and non-ground 

points. This has been done, amongst others, by creating an 

approximate surface of the DEM (Digital Elevation Model) 

(Zhang et al., 2016) or by the use of deep learning technique in 

order to teach the algorithm to recognise ground characteristics 

(Rizaldy et al., 2018).  

To further segment the non-ground points, a region-growing 

segmentation may be implemented (Omidalizarandi and 

Saadatseresht, 2013). Another study performed normal analysis 

or tensor voting to determine man-made objects in an aerial 

point cloud (Kim and Medioni, 2011). These approaches have 

some limitations, especially when dealing with an object the 

scale of a heritage complex site with high resolution point cloud 

from heterogeneous sources. A naïve region-growing method 
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applied to such datasets would require enormous resources, 

while a normal analysis may encounter problems with 

heterogeneous objects. Another approach (Liu et al., 2018) 

suggested using 2D vectorial GIS data to aid the segmentation, 

but lacks the semantic annotation part and was performed on a 

projected 2.5D point cloud. A similar approach was also used in 

segmenting 2D aerial images (Kaiser et al., 2017).  

The region-growing algorithm may also be used to perform 

segmentation and classification in larger scale objects (Bassier 

et al., 2017a; Spina et al., 2011). Other approaches may also use 

machine learning in the image space (Grilli et al., 2018) or 3D 

object space (Bassier et al., 2017b). After the classification step 

is completed, semantic information still needs to be annotated to 

each segmented part in order to create a semantically rich point 

cloud (Poux et al., 2017).  

The objective of this paper is to benefit from the often pre-

existing 2D GIS data in the heritage documentation domain in 

aiding the segmentation, classification, and semantic annotation 

of 3D point cloud simultaneously. The existing shapefiles’ 

geometric data will be used to guide the segmentation, while 

annotation of the semantic data from the shapefile attribute will 

be performed concurrently. 

3. PROPOSED METHOD 

The proposed approach uses 2D GIS layers in the form of the 

commonly used ESRI shapefiles. These shapefiles contain 2D 

overhead vectorial representations of objects within the heritage 

complex, each with its own semantic attributes stored inside the 

file’s database part. In some cases, these shapefiles may already 

exist. In other cases where a 2D GIS of the site has not been 

developed, the shapefiles can be obtained from simple 

digitisation. This may be performed based on existing 

topographical maps, online maps, or from orthophotos 

generated by photogrammetry. The 3D point cloud may be 

obtained using any kind of tools; including laser scanning, 

photogrammetry, or a combination of these techniques. The 

point cloud should be georeferenced to the same system as the 

GIS, which often times translates into the common national 

projection coordinate system. This procedure is well integrated 

in the classical heritage documentation workflow. However, in 

the case of the impossibility of an absolute georeferencing, a 

preliminary 3D transformation may also be performed 

beforehand. The proposed approach is developed in MATLAB 

R2018a using its Computer Vision Toolbox. 

The first step in the workflow involves the extraction of the 

ground. This approach used the Cloth Simulation Filtering 

(CSF) method (Zhang et al., 2016) to extract the ground. Each 

polygonal vector in the shapefile was then used to segment the 

non-ground point cloud, using a “cookie-cutter” approach.  

function [Struct,remainPtCloud] = shapeseg(PtCloud,shpfile,... 

...,bufferSize) 

shapes=shpload(shpfile); 

for i=1:numObjects 

 CookieCutter=polybuffer(shapes.polyshape,bufferSize); 

 index=isinterior(CookieCutter,PtCloud); 

 if (index=='TRUE') 

  PtCloudIn=PtCloud(index,:); 

 else 

  PtCloudOut=PtCloud(index,:); 

 end 

 labels=pcsegdist(PtCloudIn) 

 PtCloudIn2=PtCloudIn(max(labels)); 

 PtCloudOut2=PtCloudIn(~max(labels)); 

 Struct.PtCloud=PtCloudIn2; 

 for l=1:nbAttributes 

Struct.(attributeList{l})=shapes.(attributeList{l}); 

 end 

 remainPtCloud = pcmerge(PtCloudOut,PtCloudOut2); 

end 

Figure 1. Pseudocode of the developed algorithm. 

Figure 1 displays the pseudocode of the proposed segmentation 

algorithm used at the aftermath of the ground extraction 

process, as written in the function shapeseg. Each shapefile 

represents one object class. Since both the GIS and the point 

cloud are already in the same coordinate system, this would 

effectively create a bounding box in the form of the shapefile 

vector for the object in the point cloud, from which a segmented 

portion is extracted. A buffer area threshold was introduced to 

the 2D vectors in order to provide a tolerance with regards to 

digitising or georeferencing precision. This ensures that the 

algorithm will still be able to extract the object even if the 

digitising was not very precise. Since the algorithm uses a 

“cookie-cutter” approach, all points of all altitude values within 

the bounding box were therefore segmented. This may cause 

some problems when some objects overlap or are stacked with 

each other. For example, the existence of a tree crown above a 

building roof would mean that the segmented point cloud also 

includes a part of the tree crown. This problem was addressed 

by performing another consequent segmentation algorithm on 

the previously segmented point cloud.  

A region growing algorithm was implemented in this case to 

extract the point cloud clusters. A filtering was then performed 

to exclude any remaining noise, and the largest cluster was 

taken as the most probable object of interest. The excluded 

points were, however, not deleted. Rather, they were remerged 

with the remaining unclassified point cloud, to be used in the 

next iteration of the algorithm. In this regard, overlapped or 

stacked point clouds may be extracted individually without 

losing parts of each object’s data. The next iteration will then 

use the remaining point cloud to perform the computation, 

thereby reducing the size of the processed data with each 

iteration count. Finally, as the 2D vector geometry was taken 

from the shapefile, the associated attribute fields may be 

annotated directly to the segmented point clouds. This ensures 

that all the attributes of the 3D object as recorded in the 2D GIS 

is stored within the structure of each segmented point cloud. 

The function will therefore generate, as an output, a structure 

for each class which consists of the different objects (records or 

instances in the shapefile database). These objects themselves 

are also structures in which the segmented point cloud and 

attributes are stored. The function also gives as an output the 

remaining unsegmented data, which can then be used as input 

for the further segmentation of other shapefile classes by 

reiterating the function. 

4. RESULTS AND DISCUSSIONS 

An experimental trial was conducted using the dataset from the 

Siti Inggil complex of the Kasepuhan Palace, Cirebon, 

Indonesia (Murtiyoso et al., 2018). This area dated to the 13th 

century and includes several historical pavilions within its 1,200 

m2 brick-walled perimeters. Heavy vegetation was also present 

within Siti Inggil, often overlapping with the buildings. The site 

was digitised in May 2018 using a combination of terrestrial 

laser scanner (TLS) and photogrammetry (both terrestrial and 

UAV), and was georeferenced to the Indonesian national 

projection system. As part of the preliminary data acquisition, a 

UAV flight was conducted to obtain the global view of the site. 

A rough 2D GIS was therefore acquired by digitising the 

resulting orthophoto map into three layers (buildings, walls, and 

gates) for the purpose of this experiment. The original point 

cloud dataset consisted of 10.4 million points (Figure 2), and 

were segmented into four classes (the three layers and the 

ground) and 13 different annotated objects in about 10 minutes 

using an Intel(R) Xeon(R) E5645 2.4 GHz CPU. 
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Figure 2. The unorganised and unclassified point cloud used as 

input for the algorithm. 

 

 
Figure 3. The GIS shapefile data used in aiding the 

segmentation process. Three classes of interest are shown here 

superposed on the orthophoto image. 

 

 

 
Figure 4. Result of the segmentation and semantic annotation process for each object for the class “WALLS”. 

 

 
Figure 5. Result of the segmentation and semantic annotation process for each object for the class “GATES”. 
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Figure 6. Result of the segmentation and semantic annotation process for each object for the class “BUILDINGS”. 

 

Object 
Number of Points Misclassified 

Manual Auto Overclassified Unclassified % Unclassified 

BUILDINGS1 703 500 680 386 10 592 33 706 4.79 

BUILDINGS2 643 350 633 897 6 630 16 083 2.50 

BUILDINGS3 317 459 300 283 9 873 27 049 8.52 

BUILDINGS4 58 532 60 838 8 296 5 990 10.23 

BUILDINGS5 52 026 58 047 7 415 1 394 2.68 

GATES1 101 196 95 754 4 017 9 459 9.35 

GATES2 151 040 146 133 4 955 9 862 6.53 

WALLS1 216 951 151 520 683 66 114 30.47 

WALLS2 417 768 351 818 3 168 69 118 16.54 

WALLS3 84 516 81 520 5 762 8 758 10.36 

WALLS4 64 877 56 804 4 595 12 668 19.53 

WALLS5 63 014 34 752 1 814 30 076 47.73 

WALLS6 177 399 175 862 13 371 14 908 8.40 

        Mean 13.66 

  Median 6.53 

Table 1. Segmentation statistics for the 13 object clusters of interest (trees are not included). 

 

The GIS shapefile data shown in Figure 3 was used to aid the 

segmentation process. The shapeseg function was then 

subsequently employed for each shapefile class, while taking 

into account the order of which shapefile is processed first. 

Generally speaking, lower objects were segmented first, moving 

towards higher objects (see Figure 7). In the case of Siti Inggil, 

after the classification of the ground using the CSF algorithm, 

the low brick walls were the first to be processed. This was then 

followed by the gates and finally the buildings. This ensures 

that vertically stacked objects (e.g. walls and building roofs or 

building roofs and trees) are segmented correctly and avoids 

ambiguity during the region growing step. Since the remaining 

point cloud from the previous processing is used in the next 

iteration, the combination of “cookie-cutter” style of 

segmentation and region growing was able to properly segment 

stacked parts of the input point cloud. This also results in a 

faster processing, since the input point cloud becomes smaller 

as the programme proceeds, instead of using the original point 

cloud as an input for all shapefile layer segmentation.  

Results show that the developed approach was successful in 

segmenting the Siti Inggil area and annotating each segmented 

portion with the relevant semantic information, even by using 

roughly digitised shapefiles (centimetric precision). The results 

for the first use of the algorithm on the walls class is shown in 

Figure 4. Most of the walls were segmented correctly, except 

for the object WALLS5 where a large part of it was considered 

by the algorithm as another object altogether. This may have 

been due to the low resolution of the TLS on this particular part 

of the wall, as the critical junction that caused the segmenting 

failure is found behind a tree. Only two objects are present 

within the gates class (Figure 5), and the algorithm seems to 

have been able to perform the segmentation correctly. Five 

buildings are included in the buildings class (Figure 6), all of 

which were segmented properly. BUILDINGS4 and 5 showed a 

small portion of ground point cloud still included in their 

respective clusters; this is due to the parameterising of the CSF 

algorithm. In general, smaller buildings yielded slightly worse 

result in the CSF ground classification, as seen here in the case 
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of BUILDINGS4 and 5. In addition the class ordering is shown 

to be important to avoid errors in stacked cases. In the case 

where the buildings are segmented before the lower walls, some 

parts of the walls were included in BUILDINGS1. Conversely, 

by segmenting first the lower objects (in this case the walls), the 

results in both the buildings and walls classes are correct. 

Although visually the algorithm seemed to have worked, a more 

quantitative analysis was also performed (Table 1) in order to 

determine the quality of the proposed method. In Table 1, the 

number of segmented points is used as a parameter of 

segmentation quality. Overall, the unclassified rate from all 13 

objects yielded an average value of 13.66% and a median value 

of 6.53%. While this value is seen to be good enough, the 

quality for each class differs. The buildings class fared the best, 

with an average unclassified rate of 5.74%. BUILDINGS4 

presented the largest error, which is caused by the remaining 

unfiltered ground around the structure. The gates class fared 

well enough with an average unclassified rate of 7.94%. The 

walls class presented the worst results with an average of 

22.17%. The poor performance of the algorithm for some 

objects in the walls class can be explained as cases of statistical 

outlier; in particular for WALLS5 where a rupture of point 

cloud resolution caused its division in two clusters where it 

should have been one. Likewise, WALLS1 was riddled with a 

lot of point cloud noise mainly at the exterior part. This is due 

to the presence of flower pots along the wall, which in turn 

became noises in the segmentation process of the said wall. 

 

Figure 7. A profile of Siti Inggil illustrating the segmented 

classes and the ordering of the use of the shapeseg function, 

starting from lower objects to higher ones. Note that the TREES 

class is not discussed in this paper. 

 
Figure 8. The final output of the algorithm, colour-coded for 

each segmented object cluster (regardless of class). 

Apart from the obvious reasons for outlier data, the walls class 

does indeed show a systematic trend in its error. The median 

value of its unclassified rate is 18.04%, which is quite high 

compared to similar values from the other classes (between 4%-

8%). Several aspects can play a role in this regard. First of all, it 

is quite noticeable that the result of the CSF ground filtering 

around the walls is quite noisy. This may be due to (i) the 

uneven ground around the walls, owing to the fact that many 

tree roots and tall grass are present; and (ii) the small surface 

area of the walls compared to the buildings. A similar albeit 

less-evident phenomenon can be seen in the buildings class, 

where as the object’s ground surface decreases, more unfiltered 

ground is present. A better parameterising for the CSF 

algorithm should be studied to try to reduce this error.  

Despite these problems, the developed algorithm has managed 

to segment the Siti Inggil heritage complex rapidly while 

generating relatively acceptable results. Apart from the shapefile 

digitising process, the tuning of several parameters, and the 

choice of the segmenting order, the process was largely 

automatic.  

5. CONCLUSIONS 

The approach demonstrated in this paper has shown to be able 

to perform well in segmenting the 3D point cloud of heritage 

complexes. The resulting segmented point clouds were 

relatively clean despite the dense vegetation around the objects 

of interest. Using this method, each object was segmented 

individually (Figure 8), but retains a classification according to 

the input shapefile. Another advantage is that the semantic 

attribute present in the shapefile database is not lost. This 

information is annotated automatically to each object cluster, 

therefore facilitating further work on site management in the 

form of 3D GIS and/or HBIM. 

Some shortcomings are still present, however. The fine tuning 

of segmentation parameters is important in order to extract the 

correct objects. This is particularly true for the region growing 

segmentation parameters for two different objects which 

superposed closely. The ordering of the class segmentation is 

also important to avoid clustering ambiguity. As can be seen in 

Figure 7, various elements of the input data were vertically 

stacked. The correct iteration ordering, in this case from lower 

to higher object heights, was essential in segmenting the data 

correctly. When the ordering is wrong, the region growing 

segment of the algorithm encounters ambiguities in determining 

which segmented cluster is part of the desired class. This 

remains as one of the aspects that require manual human 

interpretation and intervention. 

The ground extraction at the beginning of the algorithm is also 

an important factor influencing the final product. Indeed, when 

applying the algorithm to segment the trees class, some residual 

ground point cloud was still present in the end. This is due to 

problems such as irregularity of the ground near the trees 

(presence of grasses, roots, etc.). Although tree extraction is not 

the main objective of the research, this particular point still 

merits a further improvement of the algorithm as vegetations 

can sometimes also be important particularly for environmental 

analysis. Furthermore, some objects which didn’t have enough 

points were unpurposely filtered.  

Some improvements to the existing algorithm are envisaged, 

including the fine tuning of the ground filtering process and the 

inclusion of CAD files as inputs. The inclusion of CAD files is 

an interesting path to follow, as many heritage buildings also 

possess CAD files which may be used in this segmentation 
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method. This will mean that this approach can be used not only 

for heritage complexes, but also for buildings as long as a CAD 

file is available. The same objective still applies, however. The 

proposed method aims to segment a 3D point cloud and 

annotate semantic information at the same time in order to 

facilitate point cloud management for use further down the 

workflow pipeline. Another further ongoing work involves the 

3D modelling automation of each object of interest, with the 

objective to aid the creation of 3D GIS and HBIMs. 
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