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The nonlinear reflection of a finite-width plane internal gravity wave incident onto a10

uniform slope is addressed, relying on the inviscid theory of Thorpe (1987, 1997) for

pure plane waves. The aim of this theory is to determine the conditions under which

the incident and the reflected waves form a resonant triad with the second harmonic

wave resulting from their interaction. Thorpe’s theory leads to an indeterminacy of the

second-order amplitude at resonance. In waiving this indeterminacy, we show that the15

second-order amplitude has a finite behavior at resonance, increasing linearly from the

slope. We investigate the influence of background rotation and find similar results with

a weaker growth rate. We then adapt the theory to the case of an incident plane wave

of finite-width. In this case, nonlinear interactions are confined to the area where the

incident and reflected finite-width waves superpose implying that the amplitude of the20

second-order wave is bounded at resonance. We find good agreement with the results of

numerical simulations in a vertical plane as long as the dissipated power of the incident

and reflected waves remain smaller than the power transferred to the second harmonic.

This is the case for small slope angles. As the slope angle increases, the focusing of

the reflected wave enhances viscous effects and dissipation eventually dominates over25

nonlinear transfer. We finally discuss the relevance of laboratory experiments to assess

the validity of these theoretical results.

1. Introduction

When a plane internal gravity wave impinges on topography, energy transfer to small

scales occurs even in a linear regime, as accounted for by a simple geometrical argument30

proposed by Phillips (1966). In a stratified rotating fluid, the dispersion relation of

internal gravity waves is:

ω2 = N2 sin2 β + f2 cos2 β, (1.1)

† Email address for correspondence: chantal.staquet@univ-grenoble-alpes.fr
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2 M. Leclair, K. Raja and C. Staquet

where ω is the wave frequency, N is the Brunt-Väisälä frequency of the fluid, assumed to

be constant, β is the angle that the group velocity makes with the horizontal and f is the

Coriolis parameter (f.i. Gill 1982). For an incident plane wave propagating against the35

slope, conservation of frequency upon reflexion implies that the reflected wave is focused

whatever the slope angle α of the topography at the reflexion location. Conservation

of along-slope wavenumber and energy at reflexion imply that the wavenumber and

amplitude of the reflected wave are larger than those of the incident wave, by a factor

sin(β + α)/ sin |β − α|. If β > α, the reflected wave propagates (away from and) against40

the slope and reflection is said sub-critical (see figure 1); for β < α, the reflected wave

propagates along the slope and the reflection is super-critical. For β close to α, referred to

as critical incidence, focusing leads to strongly nonlinear processes close to the boundary

(f.i. McPhee-Shaw & Kunze 2002; Chalamalla et al. 2013) and organized vortex structures

sometimes called bores are then observed (f.i. Hosegood & van Haren 2004).45

Away from critical incidence, the interaction between the incident and the reflected

waves leads to the generation of higher harmonic motions of frequencies nω such that

2 6 n < ω/N and amplitude An, where A is the incident wave amplitude, with a

much weaker impact on the fluid. However, as Thorpe (1987) (hereafter referred to as

TH87) showed it theoretically, the incident and the reflected plane waves can form a50

resonant triad with a second harmonic wave resulting from their interaction, opening the

possibility of breaking and mixing away from the slope. This result is valid only when

the slope is inclined (α 6= 0) as no harmonic motion is produced when the incident plane

wave reflects on a flat surface (Thorpe 1968). In Thorpe (1997), the computation of the

resonance condition is extended to a rotating fluid.55

However, in natural flows, internal gravity waves do not propagate as pure plane waves.

This is the case for the internal tide, which propagates as beams from a submarine

mountain or a continental shelf. (The internal tide is the internal wave field resulting

from the interaction of the barotropic tide with submarine topography.) This is also the

case, to some extent, for lee waves, which propagate in the lee of a mountain and most60

often, above it. In laboratory experiments as well, the generation of internal gravity

waves always leads to wave packets of finite widths, for practical reasons. Even the

wave generator originally designed by Gostiaux et al. (2007) to model pure plane waves

produces a wave packet containing a finite number of wavelengths in the direction normal

to the propagation of the packet. For a large number of wavelengths, say four and above,65

the incident wave structure may be assumed to be close to that of a pure plane wave, at

least away from the boundaries of the packet; when the packet contains one wavelength,

the wave structure is closer to that of a beam. The wave packet produced by this wave

generator will be referred to as a finite-width plane wave hereafter.

When a beam incident on a surface interacts with the reflected beam, harmonic motions70

are produced, whether the surface is flat or not (Tabaei et al. 2005). A single beam is

indeed a solution of the inviscid Boussinesq equations (Tabaei & Akylas 2003) while the

superposition of two beams is not. This accounts for harmonics to be generated close
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 3

to the boundary, where the beams interact, and this result holds for finite-width plane

waves. The generation of higher harmonics by beams (or by finite-width plane waves)75

reflecting either on a flat surface or on an inclined boundary has been addressed in

several numerical and experimental works performed in a two-dimensional (or quasi-

two-dimensional) vertical geometry. Gostiaux et al. (2006) studied from laboratory

experiments the structure of the higher harmonics resulting from the reflexion of a finite-

width plane wave on a flat surface. In Pairaud et al. (2010), the structure and evolution80

of an internal tide beam emitted from a two-dimensional topography is analysed from

laboratory experiments and numerical simulations. It is shown that the reflection of

the wave beam on the flat boundary at the foot of the slope leads to the generation of

harmonic beams, consisting of free and trapped waves. Rodenborn et al. (2011) considered

a beam reflecting on a simple slope and investigated empirically the conditions that lead85

to the largest amplitude of the second harmonic wave.

The purpose of the present paper is to examine the validity of the theory by TH87

when the conditions of a resonant triad involving an incident and a reflected wave of

finite width and their second-order harmonic wave are satisfied. In a first part, we revisit

TH87 theory for the case of a pure plane wave reflecting on a uniform slope. It is indeed90

unclear whether this theory predicts a finite amplitude of the second harmonic wave

at resonance because the expression of this amplitude involves an indeterminacy (the

numerator and denominator both vanish), which leads to the common inference in the

literature that this amplitude is unbounded at resonance. In the second part, predictions

of the theory of TH87 are determined for the case of an incident plane wave of finite95

width. The theoretical predictions are compared to the results of numerical simulations in

a vertical plane, consistent with the resonant triad geometry, for parameters of laboratory

experiments.

The plan of the paper is as follows. In section 2, the inviscid theory of TH87 for a pure

plane wave incident onto a uniform slope is presented and extended; we show that, at100

resonance, the amplitude of the second harmonic plane wave actually grows linearly with

distance from the slope. The predictions of the theory when the incident plane wave is of

finite width are presented in section 3. We performed numerical simulations to estimate

the validity of these predictions and the results are discussed in section 4. In section 5,

the theoretical model is used again, in which viscous and diffusive effects are introduced105

in order to compare the transfer of energy from the incident and reflected waves to the

second harmonic wave with the energy dissipated by molecular effects. A summary and

conclusions are given in section 6.
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4 M. Leclair, K. Raja and C. Staquet

2. Nonlinear reflection of a pure plane wave

2.1. Governing equations110

The governing equations are the Navier-Stokes equations in the Boussinesq approxi-

mation for a rotating fluid with uniform stratification:

∂

∂t
u + (u ·∇)u = − 1

ρ0
∇p− fez × u + b ez , (2.1a)

∂

∂t
b+ u ·∇b+N2w = 0 , (2.1b)

∇ ·u = 0 , (2.1c)
115

u ·n|slope = 0 . (2.1d)

u = (u, v, w) is the velocity vector, w being the vertical velocity component, p is the

non-hydrostatic pressure and b is the buoyancy; ρ0 is a reference density and ez and

n are unit vectors along the vertical axis pointing upward and normal to the slope,

respectively. The parameters f and N have been defined in the Introduction. The last

equation expresses the impermeability condition at the boundary.120

We shall assume that wave propagation occurs in the vertical (x, z) plane and that

the problem is invariant in the y−direction. Therefore all three velocity components

depend on x and z (and on time) only and the incompressibility condition (2.1c) reduces

to ∂u/∂x+ ∂w/∂z = 0. As usual, this condition is automatically satisfied if a stream

function ψ is introduced. Expressing the velocity vector as u = (∂ψ/∂z, v,−∂ψ/∂x) and125

combining the equations for u and w into a single equation for the vorticity ∂w/∂x −
∂u/∂z = −∇2ψ, equations (2.1) become

∂

∂t
∇2ψ +

∂

∂x
b− f ∂

∂z
v = J(ψ,∇2ψ) , (2.2a)

∂

∂t
v + f

∂

∂z
ψ = J(ψ, v) , (2.2b)

∂

∂t
b−N2 ∂

∂x
ψ = J(ψ, b) , (2.2c)

130

u ·n|slope = 0 , (2.2d)

where J designates the Jacobian operator. Equation (2.2a) is rewritten by taking the

time derivative and by replacing the fields ∂v/∂t and ∂b/∂t by their expression from

equations (2.2b) and (2.2c), respectively. This yields

∂2

∂t2
∇2ψ +N2 ∂

2

∂x2
ψ + f2

∂2

∂z2
ψ =

∂

∂t
J(ψ,∇2ψ)− ∂

∂x
J(ψ, b) + f

∂

∂z
J(ψ, v) . (2.3)

The set of equations (2.2b), (2.2c), (2.2d) and (2.3) will be referred to as equations (E)

hereafter.135

Let us rewrite this set of equations in a rotated coordinate system (x′, z′) with x′ and

z′ being the along- and normal-slope coordinates respectively. Following TH87, we use

the convenient abbreviations cα, sα, cβ and sβ , standing for cosα, sinα, cosβ and sinβ,

respectively. Thus (x′, z′) = (xcα + zsα, zcα − xsα), α being the slope angle. In this
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 5

coordinate system, for a pure plane wave with frequency ω and along- and normal-slope140

wavenumbers k and nk, respectively, the dispersion relation (1.1) becomes

ω2 = N2s2β + f2c2β = N2 (nsα − cα)
2

1 + n2
+ f2

(sα + ncα)
2

1 + n2
. (2.4)

Solving this equation for n yields two roots

nI =
sβcβ − sαcα
s2β − s2α

, and nR = −sβcβ + sαcα
s2β − s2α

, (2.5)

which are associated with the incident and reflected wave, respectively. Note that these

roots are no longer defined as in TH87 as we have chosen to scale the normal-slope wave

number by the along-slope wave number k. This turns out being handier for some further145

calculations as k is conserved through the reflection process.

Equations (E) are made nondimensional using the amplitude of the incident wave

velocity, denoted U , as a velocity scale, its wavelength λ as a length scale and 1/N as

a time scale. These scales come into play in the nondimensional equations of motions

through a Froude number Fr = U/λN and through the parameter f/N . This Froude150

number is related to the wave steepness s (defined such that s = 1 when overturning

occurs) by

s = 2πFr/ tanβ. (2.6)

Both Fr and s can be interpreted as a non dimensional amplitude of the incident wave

field.

When expressed in the rotated coordinate system and made nondimensional, equations

(E) become, keeping the same notations for the nondimensional variables as well as for

the nondimensional parameters N and f , to keep track of the Brunt-Väisälä frequency

(otherwise equal to 1) in the equations:

∂2

∂t2
∇2ψ +N2

(
cα

∂

∂x′
− sα

∂

∂z′

)2

ψ + f2
(
sα

∂

∂x′
+ cα

∂

∂z′

)2

ψ =

Fr

[
∂

∂t
J(ψ,∇2ψ)−

(
cα

∂

∂x′
− sα

∂

∂z′

)
J(ψ, b) + f

(
sα

∂

∂x′
+ cα

∂

∂z′

)
J(ψ, v)

]
, (2.7a)

155

∂

∂t
v + f

(
sα

∂

∂x′
+ cα

∂

∂z′

)
ψ = FrJ(ψ, v) , (2.7b)

∂

∂t
b−N2

(
cα

∂

∂x′
− sα

∂

∂z′

)
ψ = FrJ(ψ, b) , (2.7c)

∂ψ

∂x′

∣∣∣∣
z′=0

= 0 . (2.7d)

In the following, Fr is considered as a small parameter (i.e. Fr � 1), namely the

wave dynamics are weakly nonlinear. The ψ, b and v fields can thus be decomposed into

a multiple scale expansion as ψ = ψ1 + Fr ψ2 + o(Fr2), b = b1 + Fr b2 + o(Fr2) and160

v = v1 + Fr v2 + o(Fr2). Introducing these expansions in the equations of motion (2.7),

the resulting equations can be solved order by order, by matching terms multiplied by
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6 M. Leclair, K. Raja and C. Staquet

the same power of Fr. At each order the solution satisfies the same linear operator with a

right hand side determined by lower order nonlinear terms. Identifying terms multiplied

by Fr0, the first-order fields ψ1, v1 and b1 are thus found to satisfy the homogeneous linear165

wave equations. Matching terms multiplied by Fr1 shows that the second-order fields ψ2,

v2 and b2 are solutions of the same linear operator forced by nonlinear terms solely

involving the first-order fields. The detailed calculations associated with this general

principle are now presented.

2.2. First order solution170

The linear equation satisfied by ψ1 is given by

∂2

∂t2
∇2ψ1 +N2

(
cα

∂

∂x′
− sα

∂

∂z′

)2

ψ1 + f2
(
sα

∂

∂x′
+ cα

∂

∂z′

)2

ψ1 = 0 (2.8a)

with the boundary condition

∂ψ1

∂x′

∣∣∣∣
z′=0

= 0. (2.8b)

Looking for a pure plane wave solution with wavenumbers (k, nk) and frequency ω, the

wave parameters are found to satisfy the dispersion relation (2.4), implying that the

solution ψ1 is a linear superposition of waves with wavenumbers (k, nRk) and (k, nIk),175

with nI and nR given by (2.5). Imposing the boundary condition (2.8b) yields (Phillips

1966):

ψ1 = a1 [sin (kx′ + nIkz
′ − ωt)− sin (kx′ + nRkz

′ − ωt)] . (2.9)

The first-order stream function is therefore the sum of a wave incident onto the slope,

which we denote for simplicity as (k, nIk, ω), and of its reflected counterpart (k, nRk, ω).

The wave amplitude a1 is arbitrary. The stream function ψ1 is also defined up to a180

constant additional phase, chosen to be 0 in the present case, which does not imply any

loss of generality.

Once ψ1 is known, v1 and b1 are inferred from the equations

∂

∂t
v1 + f

(
sα

∂

∂x′
+ cα

∂

∂z′

)
ψ1 = 0 (2.10)

and

∂

∂t
b1 −N2

(
cα

∂

∂x′
− sα

∂

∂z′

)
ψ1 = 0 (2.11)

which yields185

v1 =
a1fk

ω
[(sα + cαnI) sin (kx′ + nIkz

′ − ωt)− (sα + cαnR) sin (kx′ + nRkz
′ − ωt)]

(2.12)

and

b1 =
a1N

2k

ω
[(cα − sαnR) sin (kx′ + nRkz

′ − ωt)− (cα − sαnI) sin (kx′ + nIkz
′ − ωt)] .

(2.13)
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 7

2.3. Second order solution

Matching terms proportional to Fr in (2.7) gives the equations for the second-order

component. The equation for ψ2 is

∂2

∂t2
∇2ψ2 +N2

(
cα

∂

∂x′
− sα

∂

∂z′

)2

ψ2 + f2
(
sα

∂

∂x′
+ cα

∂

∂z′

)2

ψ2 =

∂

∂t
J(ψ1,∇2ψ1)−

(
cα

∂

∂x′
− sα

∂

∂z′

)
J(ψ1, b1) + f

(
sα

∂

∂x′
+ cα

∂

∂z′

)
J(ψ1, v1)

(2.14a)

with the boundary condition190

∂ψ2

∂x′

∣∣∣∣
z′=0

= 0. (2.14b)

The solution of equations (2.14), which generalizes TH87 solution to a rotating fluid, is:

ψ2 =3a21k
2ω

s2βc
2
βsαcα

(s2β − s2α)D

[
sin
(
2kx′ +m2kz

′ − 2ωt
)
− sin

(
2kx′ + (nI + nR)kz′ − 2ωt

)]
− a21k

2

ω

sβcβ
s2β − s2α

sin
(
(nI − nR)kz′

)
(2.15)

with

D = N2s2β
(
4s4β − 7s2βs

2
α + 4s2α − s2β

)
+ f2c2β

(
4s4β − 7s2βs

2
α + 3s2α

)
(2.16)

and

m2 =
−2sαcα(N2 − f2) + 2

√
4s2βN

4(1− 4s2β) + 4c2βf
4(1− 4c2β) +N2f2(3− 32s2βc

2
β)

N2(4s2β − s2α) + f2(4c2β − c2α)
.

(2.17)

Details of this calculation can be found in appendix A.1 where the full second order

solution is derived.195

The second-order stream function (2.15) is the sum of an oscillatory component

(for α 6= 0) and a steady component. The oscillatory component, referred to as the

second harmonic wave in the introduction, is made of two terms, associated with the

waves (2k,m2k, 2ω) and (2k, (nI + nR)k, 2ω). The former term is the solution of the

homogeneous equation associated with equation (2.14a) so that the wave (2k,m2k, 2ω)200

satisfies the dispersion relation and radiates energy away from the boundary. This term is

called a “free wave” by TH87. As detailed in appendix A.1, (2.15) is obtained by adding

to this homogeneous solution a particular solution of the complete equation, referred to

as a “forced” wave by TH87, and by prescribing the homogeneous solution parameters

through the boundary condition (2.14b). The forced wave becomes a free wave when205

(2k, (nI + nR)k, 2ω) satisfies the dispersion relation, namely when nI + nR = m2; in

this case, the incident, reflected and second harmonic waves form a resonant triad. A

sketch of the interaction between the incident and reflected waves for conditions away

from resonance is displayed in figure 1.

The steady component of (2.15) is an Eulerian mean current opposing the Stokes210
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Figure 1. Sketch of the interaction between the incident and reflected waves in the (x, z) plane.

The incident wave propagates in a vertical plane and has a finite width in the direction normal

to propagation. This finite width contains four wavelengths in the sketch. The wave vector and

group velocity of the incident wave are denoted ki = (k, nIk) and Cgi. Those for the reflected

wave are kr = (k, nRk) and Cgr. The blue and green solid lines represent phase lines of the

incident and the reflected waves, respectively, and the interaction area between these waves is

highlighted by a yellow triangle. The red solid lines in the interaction area represent phase lines

of the second harmonic ”forced wave” (2k, (nI + nR)k, 2ω) and red dashed lines correspond to

the second harmonic ”free wave” (2k,m2 k, 2ω) able to propagate outside the interaction area

(at resonance the red solid and dashed lines coincide, namely the forced wave becomes a free

wave). The slope angle is α and β is the angle of incidence. The coordinates (x′, z′) refer to the

rotated frame of reference such that x′ lies along the slope. The domain dimensions, expressed

in meters, are those used in the numerical simulations.

drift associated with the first-order solution ((2.9),(2.12),(2.13)), as stated by TH87 and

Thorpe (1997). Hence the total Lagrangian mean flow, which is the sum of the Eulerian

mean flow and of the Stokes drift (Longuet-Higgins 1969), is zero (see appendix A.3).

Indeed, because of the sloping boundary, there cannot be any horizontal mass transport

in the present two-dimensional configuration, implying that the Lagrangian mean flow215

must vanish.

We now consider the oscillatory component, denoted ψh2 . The denominator of its

amplitude goes to 0 for values of (α, β) satisfying D = 0. For f = 0, these values span

the intervals [0, 8.21◦] for α and [0, 30◦] for β, these ranges shrinking to empty intervals

as f/N increases and reaches 0.5. As stated in TH87 and detailed in appendix A.2, the220

condition D = 0 also corresponds to the case of a resonant triad between the primary

incident and reflected waves and the second harmonic free wave. Since m2 = nI + nR in

this case, as just discussed, the oscillatory component in (2.15) is an indeterminate form

0/0 as D → 0. One aim of the present paper is to remove this indeterminacy to clarify

the behavior of the oscillatory component at resonance. For this purpose, we rewrite the225

oscillatory component of ψ2 as

ψh2 = 6a21k
2ω

s2βc
2
βsαcα

s2β − s2α
sin(δkz′)

D
cos
(
2kx′ + (m2 − δ)kz′ − 2ωt

)
(2.18)
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 9

where δ = 1
2 (m2 − (nI + nR)). For α 6= 0, one can show that

δ ∼
D→0

D

6sαcα

(
s2β − s2α

)
ω2
, (2.19)

so that
sin(δkz′)

D
→
D→0

kz′

6sαcα

(
s2β − s2α

)
ω2

(2.20)

(see appendix A.2 for details). Hence, as D → 0, the second harmonic wave becomes

ψh2 =
a21k

2

ω

s2βc
2
β

(s2β − s2α)2
kz′ cos

(
2kx′ + (nI + nR)kz′ − 2ωt

)
. (2.21)

The amplitude of the second harmonic wave is thus a periodic function of the distance230

from the slope z′ whose period 2π/δk goes to infinity as (α, β) approaches the resonance

condition D = 0. In this case, the amplitude grows linearly from the slope and is therefore

unbounded. This linear growth is consistent with the behavior of a resonantly forced

harmonic oscillator, whose amplitude grows linearly with time.

This unbounded amplitude is not physical and is due to the weakly nonlinear character235

of the theory: the first-order solution is supposed to be not modified by the transfer of

energy to the second-order solution. Hence, at resonance, the second harmonic wave is

continuously fed during its propagation by the unaltered primary wave.

3. Nonlinear reflection of a plane wave of finite width

The results presented in section 2.3 have been obtained for a pure plane wave. As240

discussed in the Introduction, this type of wave is commonly modelled in laboratory

experiments by a wave generator, which creates in practice a wave packet containing a

finite number of wavelengths in the direction normal to the propagation of the packet. The

interaction area between the incident and the reflected waves is now spatially bounded

and is represented by the yellow triangle in figure 1. In the present section, we compute245

the amplitude of the second-order wave amplitude when resonant conditions are met for

this generation method. The incident wave field is modelled theoretically as a plane wave

with a finite number of wavelengths in the direction normal to wave propagation, with no

envelop. In section 4, we compare the theoretical predictions with numerical simulations

for an incident wave with various widths.250

We recall that, to be valid, the theory requires the amplitude of Fr ψ2 to stay small

with respect to the amplitude of ψ1. Since we focus on the oscillatory component of ψ2,

namely ψh2 , we scale the amplitude of Fr ψh2 with that of ψ1. More precisely, we scale

Fr‖ψh2 ‖ by ‖ψ1‖ where norm ‖.‖ is the infinity norm in space and time. This norm is

defined by ‖ψ‖ = max
(x,t)∈Ω×R+

|ψ|, where Ω is the interaction area between the incident255

and reflected waves. We thus compute the ratio

Rth =
Fr‖ψh2 ‖
‖ψ1‖

, (3.1)
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10 M. Leclair, K. Raja and C. Staquet

the th superscript standing for theoretical. At resonance, the amplitude of ψh2 should

reach a maximum value at the largest distance from the slope in the interaction area,

which coincides with the top of the yellow triangle. Our purpose here is (i) to compute

Rth as a function of the parameters of the incident wave and (ii) to investigate the260

conditions under which the theory is strictly valid (namely Rth � 1).

Let us compute ‖ψ1‖ and ‖ψh2 ‖. If one rewrites ψ1 in the same way as ψh2 , i.e.

ψ1 = 2a1 sin

(
nI − nR

2
kz′
)

cos

(
kx′ +

nI + nR
2

kz′ − ωt
)
, (3.2)

the expressions of ‖ψ1‖ and ‖ψh2 ‖ are given by

‖ψ1‖ = 2a1 max
06kz′6kh

{
sin

(
nI − nR

2
kz′
)}

(3.3a)

and ‖ψh2 ‖ = 6a21k
2ω
s2βc

2
βsαcα

s2β − s2α
max

06kz′6kh

{
sin(δkz′)

D

}
, (3.3b)

where h is the height of the interaction triangle normal to the slope. Introducing nλ, the

number of wavelengths contained in the primary wave, and thanks to simple trigonometric

calculations, one can show that265

kh = 2π
sin(β − α) sin(β + α)

sin(2β)
nλ = 2π

(s2β − s2α)

sin(2β)
nλ =

2π

nI − nR
nλ. (3.4)

This result implies that 0.5 (nI − nR) kz′ 6 πnλ for 0 6 kz′ 6 kh. Since nλ > 1, it

ensures that max
06kz′6kh

{sin (0.5 (nI − nR) kz′)} = 1 and leads to ‖ψ1‖ = 2a1. Note that

the first equality of (3.4) is in agreement with Thorpe (2001).

The expression of ‖ψh2 ‖ cannot be simplified in the same way, especially when consid-

ering the situation of (α, β) close to the resonant triad case where δ → 0. For simplicity,270

we introduce

M = max
06kz′6kh

{
sin(δkz′)

D

}
=


kh/(6sαcα(s2β − s2α)ω2) if D = 0

1/D if D 6= 0 and δkh > π/2

sin(δkh)/D if D 6= 0 and δkh 6 π/2,

(3.5)

assuming α 6= 0. A measure of the ratio between the second harmonic wave and the

first-order solution is thus given by

Rth = 3Fr a1k
2ω
s2βc

2
βsαcα

s2β − s2α
M. (3.6)

For the sake of completeness, we provide the expressions of the nondimensional quan-

tities a1, k and ω with the scaling defined in section 2.1:275

a1 = 1/2π, k = 2π sin(α+ β), ω =
√
s2β + (f/N)2c2β , (3.7)

while N and f become equal to 1 and f/N , respectively. In the following, the parameter
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 11

f/N is denoted as γ. With this scaling, the expression of Rth becomes:

Rth = 6πFr

√
s2β + γ2c2β sin (β + α) s2βc

2
βsαcα

sin (β − α)
M. (3.8)

Rth is proportional to Fr and, at resonance (D = 0), to the number of wavelengths nλ

as well (through M and equation (3.4)). This implies that, as nλ → ∞, this ratio may

well become much larger than 1 since Fr and nλ are independent parameters. Hence the280

internal wave reflection problem is highly nonlinear at resonance, which figures 2 and 3

below attest.

Figure 2 displays Rth in a (α, β) diagram for γ = 0 (no rotation), Fr = 0.005 and for

four different values of nλ equal to 1, 2, 4 and 8. These values, except for nλ = 8, are those

of the numerical simulations reported in section 4. The counterpart diagram for γ = 0.2285

is displayed in figure 3. Both figures show that, even if the Froude number is quite low

and nλ is at most equal to 8, Rth reaches in all cases values close to unity at resonance.

Figure 2 also shows that, for small values of nλ, the location of resonant triads (marked

with a dashed curve) differs from the location where Rth reaches a maximum value, both

locations superimposing as nλ grows. In other words, we recover TH87 prediction in the290

limit of pure plane waves. The latter statement is confirmed in figure 8, further discussed

in section 4, where Rth (blue curve) is plotted versus α for nλ = 1, 2 and 4 and for

β = 18.9◦: for nλ > 2, Rth displays a maximum which is all the more pronounced nλ is

larger; this maximum is reached for a value of α that approaches the theoretical value,

equal to 7.848◦, at which resonance occurs when nλ increases. Thus, the second harmonic295

resonance in the sense of a pronounced local maximum for Rth in the (α, β) plane only

arises for high values of nλ which are not likely to occur in reality.

Figure 3 shows that rotation does not qualitatively modify the resonance process,

only making this maximum lower than in the non-rotating case. This behavior can be

explained with equation (2.21): the influence of rotation effects in the second-order stream300

function amplitude at resonance only comes into play through the frequency ω in the

denominator of the expression of ψh2 . All parameters being kept the same, adding rotation

increases ω and therefore lowers the second-order amplitude.

4. Comparison with numerical simulations

In order to estimate the validity of the theoretical predictions exposed in the previous305

section, two-dimensional numerical simulations have been performed. As just discussed,

including rotation does not qualitatively change the results so that the non-rotating case

is considered in the present section. All quantities below are dimensional but we keep the

same notation as before for the variables and parameters, for simplicity. In the following,

the term first harmonic wave refers to the superposition of the incident and reflected310

waves.
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12 M. Leclair, K. Raja and C. Staquet

Figure 2. Second-order to first-order stream function norms Rth, defined by (3.8), as a function

of the slope angle α and incidence angle β, for increasing width of the incident wave defined

by the number of wavelengths nλ it contains. For all panels, the Froude number Fr = 0.005

and f = 0 (no rotation). The dashed curve corresponds to the resonance condition D = 0

for a pure plane wave (nλ → +∞), with D defined by equation (2.16). The crosses refer to

numerical simulations reported in section 4. The domain is limited to β 6 30◦ because the

second harmonic free wave becomes evanescent above this range. Values of Rth are also not

plotted when approaching the critical case α = β which is beyond the scope of this article.

4.1. Numerical configuration

The simulations were performed with the numerical model NHOES (Non Hydrostatic

Ocean model for Earth Simulator) which solves the free-surface non-hydrostatic Boussi-

nesq equations in a Cartesian coordinate system (Aiki & Yamagata 2004). For the present315

study, equations (2.1) were solved with a viscous term ν∇2u added to the right-hand-side

of equation (2.1a) and a diffusive term κ∇2b to that of equation (2.1b); ν and κ are the

kinematic viscosity and the diffusivity of buoyancy, respectively. The equation of state

is linear and only depends on salinity. The choice of salinity rather than temperature

is dictated by laboratory experiments conducted in parallel to the present study on320
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Nonlinear reflection of a finite-width internal gravity wave onto a slope 13

Figure 3. Same as figure 2, for a ratio of the Coriolis frequency to the Brunt-Väisälä

frequency equal to 0.2.

the Coriolis platform at Grenoble in which density variations are created by a vertical

profile of salt concentration. The viscosity is thus equal to ν = 10−6 m2s−1, namely

that of water, while the diffusivity is set to 1.49 10−9 m2s−1 since the Prandtl number

of salt dissolved in water is about 700. No sub-grid scale parametrisation is used. The

background stratification is linear, with a value of the Brunt-Väisälä frequency equal325

to 0.46 s−1 and, as said above, the Coriolis frequency f is set to 0. These values and

all values of the physical and geometrical parameters below are those of the laboratory

experiments.

The numerical setup is sketched in figure 1. The domain dimensions are 3 m in the

horizontal direction and 0.8 m in the vertical direction. The bottom boundary condition330

is of the free-slip type and an implicit free-surface boundary condition is imposed at the

top of the domain. The origin of the vertical axis, oriented positively upwards, is taken

at the free surface.

An internal gravity wave of finite vertical width is continuously forced at the left
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14 M. Leclair, K. Raja and C. Staquet

boundary of the numerical domain (x = 0) by adding a forcing function to the right-335

hand-side of the momentum equation for the u-component (see figure 4):

Fx(0, z, t) = UE(z)

(
(1− e− 5t

T )ω sin(kzz − ωt) +

(
5t

T

)
e−

5t
T cos(kzz − ωt)

)
(4.1a)

with E(z) =
1

2

(
1 + tanh

(
3

2
tan

(
− π

2
+

1

2
min(2π,max(0, π(nλ + 1)− kz|z − z0|))

)))
(4.1b)

where U is the velocity amplitude of the forcing, ω the wave frequency (and T the wave

period) and kz is the vertical wave number. This forcing generates the u-component of

the incident plane wave. The smooth envelope in the z-direction E(z) is centered at340

z0 = −0.42 m. The value of the frequency is equal to 0.149 rad s−1 implying that the

propagation angle of the incident wave β = 18.9◦. The value of the vertical wavelength

λz is 0.125 m implying that the wavelength λ is equal to 0.118 m; four wavelengths are

therefore permitted at most in the incident wave. The slope angle α varies from 0◦ to 12◦.

The value of α at which resonance theoretically occurs in this case, referred to as αres,345

is equal to 7.848◦. The horizontal velocity amplitude is set to U = 3 10−4 m s−1. With

these values, the Froude number of the incident wave Fr = 5 10−3 � 1 which satisfies

the condition for resonant interaction to occur. The corresponding value of the incident

wave steepness is s = 0.09, using equation (2.6).

A sponge layer of width 0.5 m is added at the right boundary in order to prevent350

wave reflection. The horizontal and vertical resolutions are equal to 1.25 10−3 m and

0.625 10−3 m, respectively. The latter value has been chosen so that the height h of

the interaction triangle between the incident and reflected waves, which decreases as α

increases, contains about 20 grid points for the largest value of α we consider (equal to

12◦). This vertical resolution implies that the vertical wavelength λz is described by 200355

grid points.

4.2. Results of the numerical simulations

As indicated by the crosses in figure 2, numerical simulations have been performed for

three different widths of the incident wave (nλ = 1, 2 and 4) and 7 slope angles, equal

to 0◦, 2◦, 4◦, 6◦, αres = 7.848◦, 10◦ and 12◦. Each simulation has been carried out over360

40 wave periods.

The off-slope velocity (normal to the slope) w′ = −∂ψ/∂x′, filtered at either the

incident wave frequency, denoted w′1, or twice this frequency, denoted w′2, is displayed

for nλ = 2 and nλ = 4 in figures 5 and 6, respectively. The harmonic filtering has been

performed over the last 8 periods of the simulations. The choice of the w′ variable is365

dictated by the forthcoming comparison with the theoretical predictions presented in the

previous section.

4.2.1. First harmonic wave

We first consider the incident wave component w′1 displayed in figures 5a and 6a. Note

that w′1 is proportional to k by definition, namely to |~k| sin(α+ β).370
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Figure 4. Envelop function E(z) given by (4.1b). The vertical width of the incident wave is

equal to nλλz where λz is the vertical wavelength. The width of the wave is defined by the

number of wavelengths nλ contained in the envelope.

Before entering the interaction area, the amplitude of w′1 grows with α, since |~k| and

β are kept fixed in all simulations. Figures 5b and 6b show that very weak amplitude

second-order harmonic waves are radiated from the forcing boundary of the incident wave

due to the modulation of this wave by the envelope function (4.1b).

The incident and reflected waves superpose in the interaction area and the resulting375

stream function is given by equation (3.2). This equation implies that the ω−filtered

interaction pattern does not vary along x′ and has a sinusoidal dependency in z′, as

confirmed by figures 5a and 6a, with wavenumber k(nI − nR)/2.

Figures 5a and 6a however display a major feature, which is not accounted for in the

theory. The theory assumes indeed that the off-slope velocity amplitude of the reflected380

wave is uniform and equal to that of the incident wave to satisfy the impermeability

condition at the sloping boundary. While this is the case in the interaction area, at least

close to the sloping boundary, the figures actually show that this amplitude is much

weaker than that of the incident wave outside the interaction area, all the more so the

slope angle is larger.385

This behavior has two origins. The main one arises from the focusing of the reflected

wave and is due to molecular effects. The wavelength of the reflected wave, equal to

λ sin(β − α)/ sin(β + α), is indeed smaller than the incident wavelength λ so that the

viscous (or diffusive) time scale is smaller for the reflected wave as well. When scaled by

the incident wave period, the viscous time scale decays from 16.8 to 0.9 as α increases from390

0◦ to 12◦. Dissipation thus becomes an important effect in the dynamics of the reflected

wave as α increases. The second effect is due to energy transfer to higher harmonic waves.

Figures 5b and 6b show that, as α increases, the amplitude of the second harmonic
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Figure 5. Amplitude of the off-slope velocity component in mm s−1 filtered at the first harmonic

frequency ω (right column) and at the second harmonic frequency 2ω (left column) for four

different slope angles α (the angle of incidence β is constant and equal to 18.9◦). The incident

and reflected waves are delineated with dashed lines. The unit of the horizontal and vertical

axes is in m. The envelop of the incident wave contains two wavelengths (nλ = 2).

wave becomes no longer small compared to the amplitude of the incident wave. There is

therefore a significant energy flux from the first harmonic wave to the second harmonic395

one which also reduces the amplitude of the reflected wave. Theoretical estimates of

the power of the first-harmonic wave lost by dissipation and by energy transfer to the

second-order harmonic are provided in section 5.

4.2.2. Second harmonic wave

As discussed in the Introduction, the interaction of a finite-width wave incident of a400

flat surface with the reflected wave generates harmonic waves nω < N . Figures 5b and
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Figure 6. Same as figure 5 for an incident wave envelop containing 4 wavelengths (nλ = 4).

6b show indeed that a (weak amplitude) second harmonic wave propagates from the

interaction area for α = 0. In the present case, only harmonics 2 and 3 can be generated

(with 3ω = 0.447 very close to N) so that energy is dominantly transferred to the second

harmonic wave.405

When α is non zero, the second-order wave field ψh2 is the sum of a forced and a

free wave, as discussed in section 2.3. The forced wave exists only in the interaction

area between the incident and reflected waves. While being also generated inside the

interaction area, the free wave can radiate away from this area. At resonance, the forced

and free waves coincide (namely m2 = nI + nR, see equation (2.15)) and the amplitude410

of ψh2 grows linearly with the normal to the slope z′, the maximum value being reached

at the top of the interaction area, for z′ = h.
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Figure 7. Amplitude of the second harmonic offslope velocity component at resonance as a

function of the coordinate normal to the slope (z′) in the interaction area for nλ = 4, α = αres,

for two different values of fluid viscosity (a) ν = 10−6 m2s−1, and (b) ν = 10−7 m2s−1. The

dashed line is the theoretical prediction.

Figures 5b and 6b show that, for α 6= 0, the second-order free wave is clearly visible

outside the interaction area, with amplitude equal to that at the boundary of this area.

This amplitude is largest for α = αres, as expected. It is damped by dissipative effects415

along its travel to the upper boundary where it reflects. Focusing now on the interaction

area, figures 5b and 6b show that the amplitude of w′2 does not vary along the slope, as

predicted by equation (2.18). This is visible for α = αres and α = 12◦, and not so clearly

for α = 4◦, consistent with figure 2 showing that the second-order amplitude is much

weaker for α = 4◦ than for the former angles. The behavior of w′2 normal to the slope at420

resonance is analysed in the next section.

4.3. Comparison with the theoretical predictions

According to equation (2.21), in the absence of fluid viscosity, the amplitude of ψh2
evolves linearly with z′ at resonance. To assess the validity of this theoretical prediction,

this linear law is compared to the behavior normal to the slope of the amplitude of w′2425

inside the interaction area (0 6 z′ 6 h) for the simulation with α = αres and nλ = 4 (see

figure 7a). A poor agreement is obtained. Since the height h is fairly well resolved in the

numerical simulation (by more than 100 grid points), this discrepancy may be due to

the inviscid character of the theory. The numerical simulation was therefore rerun with a

ten times lower viscosity, namely ν = 10−7 m2s−1. The comparison is displayed in figure430

7b: the agreement is much better, which confirms the prediction that the second-order

harmonic wave at resonance evolves linearly with z′ inside the interaction area in the

inviscid limit.

The validity of the theory can be further assessed by comparing the ratio Rth defined

by (3.1) with its numerical counterpart, denoted Rnum. Rewriting Rth as435

Rth =
Fr

2

2k‖ψh2 ‖
k‖ψ1‖

=
Fr

2

‖∂x′ψh2 ‖
‖∂x′ψ1‖

, (4.2)
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Rnum can be defined as, in dimensional form

Rnum =
1

2

‖w′2‖
‖w′1‖

. (4.3)

The norm of the first and second harmonic off-slope velocities ‖w′1‖ and ‖w′2‖ are defined

by the maximum of their respective amplitude over the interaction area.

Rth is displayed in figure 8 for nλ = 1, 2 and 4. As discussed in section 3, Rth displays

a local maximum for nλ > 2, which grows with nλ (while being upper-bounded) and is440

reached for a value of α approaching αres as nλ increases.

Rnum is compared to Rth in figure 8 (star symbols). For α = 0, as expected, their

values do not match since no harmonic wave is produced by the interaction of the plane

incident and reflected waves (so that Rth = 0) while a harmonic wave is generated when

these waves are of finite thickess (implying that Rnum 6= 0). When α has a non-zero445

value, figure 8 shows that the simulations are in good agreement with the theory for the

lowest angles only, up to α = αres for nλ = 1 and up to α = 4◦ for nλ = 2 and nλ = 4.

This can be explained as follows. The largest theoretical amplitude of the first harmonic

wave is always reached in the simulations, but in the bottom part of the interaction

area where the reflected wave has not been damped yet. The agreement with the theory450

(namely with Rth) therefore requires the theoretical maximum for the second harmonic

wave to be reached in the simulation. This theoretical maximum occurs at the top of

the interaction area. In the simulation, ‖w′2‖ will also be reached at that location if the

amplitude of the reflected wave has hardly decayed in the interaction area, namely if

the focusing effect on that wave is moderate enough. This occurs for small slope angles.455

For larger slope angles, the amplitude of the reflected wave has already weakened when

reaching the top of the interaction area, leading to a weaker amplitude of the second

harmonic wave at that location than predicted.

The major role of viscosity in damping the reflected wave inside the interaction area is

attested by comparing the results of the theoretical predictions with those of simulations460

with ν = 10−7 m2s−1, for nλ = 4 and α > 6◦. Results are plotted again in figure 8

(triangle symbols). The agreement with the theory strongly improves, confirming that

the dissipative damping of the focused reflected wave is responsible for the discrepancy

with the theory.

5. Theoretical estimate of the energy budget465

In order to estimate the relative importance of the damping processes of the first

harmonic wave, we determine in this section the power lost in the interaction area Ω by

that wave due either to energy transfer to the second harmonic wave or to dissipation

and compare both powers to the incident energy flux. All results are obtained from the

weakly nonlinear theory presented in section 2 in which dissipative effects are introduced,470

with primary and second-order wave solutions derived in section 3.

We start from the general governing equations (2.1a) and (2.1b), which we write in
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Figure 8. Comparison of the weakly nonlinear theory presented in section 3 with numerical

simulations. The Froude number of the incident wave is Fr = 5 10−3, the angle of incidence is

β = 18.9◦ and an incident wave with three different widths is considered: nλ = 1, 2 and 4. The

solid blue line is the theoretical ratio Rth defined by equation (3.1) (expression (3.8) is plotted

here). Its numerical counterpart Rnum defined by equation (4.3) is represented with symbols:

stars for simulations with ν = 10−6 m2s−1 and triangles for ν = 10−7 m2s−1. The dashed line

indicates the value of α for which resonance is predicted by the theory of TH87.

nondimensional form:

∂

∂t
u + ∇p+ fez × u− b ez = −Fr (u ·∇)u , (5.1a)

∂

∂t
b+N2w = −Fr u ·∇b . (5.1b)

At first order, equations (5.1) become475

∂

∂t
u1 + ∇p1 + fez × u1 − b1 ez = 0 , (5.2a)

∂

∂t
b1 +N2w1 = 0 . (5.2b)

These equations are analogous to equations (2.8a), (2.10) and (2.11) of section 2.2, now

written in terms of the full velocity and buoyancy fields.

The usual operation u1 · (5.2a) + (b1/N
2)(5.2b) yields the conservation equation for

the total energy of the first harmonic wave:480

∂

∂t
E1 + ∇ · (p1u1) = 0 , (5.3)

with E1 = 1
2

(
u2
1 + b21/N

2
)
.

Following the same steps at second order yields the energy equation

∂

∂t
E2 + ∇ · (p2u2) = −Fr2

[
((u1 ·∇)u1) ·u2 +

1

N2
(u1 ·∇b1)b2

]
. (5.4)

The right-hand-side of the equation is the transfer term from the first harmonic wave to

the second order solution. This second order solution contains the second harmonic wave

plus an Eulerian mean flow. This mean flow does not radiate any wave so that, when485

the transfer term from the first harmonic to the second harmonic wave power density is

seeked for, it does not come into play in this term. The latter term, denoted tp12, can

therefore be written as

tp12 = −Fr2
[
((u1 ·∇)u1)h ·uh

2 +
1

N2
(u1 ·∇b1)h bh2

]
, (5.5)

where the superscript h stands for the harmonic part. Note that for consistency, the
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nonlinear term involving the first harmonic wave is also written with the superscript h490

(despite it contains only wave components).

The transfer term of power involved in the energy budget of the second harmonic wave

over the interaction area Ω is

TP12 =

∫∫
Ω

〈tp12〉 dx′dz′ , (5.6)

where 〈.〉 designates the average operator over one wave period. We refer the reader to

appendix B for the expression of this term and detailed calculations.495

This transfer term has been determined in the weakly non-linear framework, hence

with the assumption that the first harmonic wave is negligibly influenced by the second

harmonic generation. In the same way, one can determine an estimate of the power of

the first harmonic wave lost by viscous dissipation (diffusive effects being very small)

by adding a viscous term to the RHS of equation (5.2a) and assuming that the inviscid500

first-order solution still holds. In this framework, the first harmonic power density lost

by dissipation is given by

dp1 =
Fr

Re
∇u1 : ∇u1 =

Fr

Re

[
|∇u1

2|+ |∇v1
2|+ |∇w1

2|
]
, (5.7)

where Re = Uλ/ν is the Reynolds number. As above, when the energy budget of the

primary wave over Ω is considered, an average operator over a primary wave period and

over Ω should be applied to dp1 leading to505

DP1 =

∫∫
Ω

〈dp1〉 dx′dz′ (5.8)

(see appendix B for the expression of this term and detailed calculations).

We finally need to compare the power of the primary wave lost into nonlinear transfer

TP12 and dissipation DP1 to the incident energy flux

PI =

∫
∂Ω

pIuI ·dn =

∫
∂Ω

EIcgI ·dn (5.9)

where the I subscript indicates the incident part of the first harmonic wave, cg is the

group velocity, ∂Ω designates the boundary of the interaction area and dn the outgoing510

unit normal vector on ∂Ω. The second equality in equation (5.9) holds only for a plane

monochromatic wave. The reader is again referred to the appendix for its expression.

The scaled powers TP12/PI , DP1/PI and their sum are shown in figure 9 for two

different values of fluid viscosity, ν = 10−6 m2s−1 and ν = 10−7 m2s−1. It should first

be noted that both TP12 and DP1 are overestimated as their expressions have been515

derived under the assumption that the first harmonic wave is not influenced by second

harmonic transfer and dissipation (in particular, the lower amplitude of the reflected

wave is not taken into account). The first harmonic wave therefore behaves as an infinite

energy source for the transfer and dissipation terms so that the scaled power ratios

can exceed 1. Figure 9 shows that, whatever the value of ν, the dissipated power of520

the primary wave increases with α because of the focusing of the reflected wave. For

ν = 10−6 m2s−1 (first row), the power lost by the first harmonic wave is dominated by
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dissipation whatever nλ, even when resonance occurs (at which the transfer term displays

a maximum). By contrast, when the value of fluid viscosity is lowered to ν = 10−7 m2s−1

(second row of figure 9), transfers to the second harmonic wave are much higher than525

power lost by dissipation, up to α ' 12◦ or so. For a larger angle, the nonlinear transfer

term decreases while the impact of focusing on the reflected primary wave increases,

promoting dissipation.

These power estimates confirm the previous statement that dissipation of the first

harmonic wave is the main process accounting for the discrepancy between Rth and530

Rnum for ν = 10−6 m2s−1, due to the focusing of the reflected wave.

These results also imply that two-dimensional laboratory experiments (with water)

cannot evaluate the validity of TH87 theory, for a finite-width incident wave for the

value of the primary wave Froude number we consider (Fr = 0.005). The reason is that

the Reynolds number of the primary wave Re = Uλ/ν, equal to 35 in the simulations, is535

too low. Decreasing ν by a factor 10 in the Reynolds number, as done in the simulations,

is equivalent to increasing U by a factor 10, suggesting that favorable conditions to

test TH87 theory could be achieved in the laboratory experiments. However, with Fr

increasing by a factor 10 as well, a strongly nonlinear regime is obtained since the incident

wave steepness becomes equal to 0.92. The conditions to test Thorpe’s theory for a finite-540

width wave are therefore not met either. (Increasing the wavelength by a factor 10 would

ensure both a higher Reynolds number and a lower Froude number but is not feasible in

practice.)

6. Summary and conclusion

The purpose of this paper is to address the nonlinear reflection of a finite-width545

internal gravity wave incident onto a uniform slope, away from critical incidence, in a two-

dimensional vertical plane. The incident wave propagates against the slope, leading to

focusing of the reflected wave. The paper has three objectives: (i) to revisit the inviscid

and weakly nonlinear theory of TH87 when resonant conditions between an incident

pure plane wave, the reflected wave and the second-order harmonic waves are met; at550

resonance indeed, the amplitude of the second-order stream function is expressed as an

indeterminate form leading to the common inference in the literature that this amplitude

diverges; (ii) to apply this theory to an incident wave of finite width in the direction

normal to wave propagation, as produced by the wave generator device commonly used

in laboratory experiments to model plane wave dynamics; (iii) to compare the latter555

theoretical predictions with results of two-dimensional numerical simulations of a wave

of finite width.

We show that the indeterminacy at resonance can be waived and that the amplitude

of the second-order stream function is a linear function of the distance from the slope.

This amplitude is therefore unbounded for a pure plane wave in the weakly nonlinear560

limit.

For an incident wave of finite width, which we model theoretically as a pure plane wave
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Figure 9. Energy budget for the first harmonic in the interaction area Ω (yellow triangle in

figure 1) as obtained from the weakly nonlinear theory in which dissipative effects have been

added. The molecular viscosity is equal to ν = 10−6 m2s−1 in the first row and to ν = 10−7 m2s−1

in the second row. The green and red curves represent the power averaged over one period

transferred to the second harmonic and dissipated by viscous effects, respectively, as a function

of the slope angle α; each power is scaled by the incident energy flux in Ω. The blue curve is the

sum of the scaled powers. The fixed parameters are the incidence angle β = 18.9◦, the Froude

number Fr = 5 10−3 and the Reynolds number Re = 35 used in the numerical simulations.

with a finite number of wavelengths, the generation of second-order harmonic waves is

limited to the area where the incident and reflected waves superpose. The amplitude of

the second-order stream function is therefore now bounded. At resonance, its maximum565

value scaled by that of the first-order wave increases with the number of wavelengths nλ

and becomes close to 1 for nλ > 4 even for a Froude number of the incident wave as

small as 0.005. This implies that the reflection problem at resonance is highly nonlinear.

We also showed that rotation does not qualitatively change the results, the second-order

amplitude being weaker when rotation is imposed. Numerical simulations of an incident570

wave of finite width were thus performed in the non-rotating case to estimate the validity

of the theoretical predictions, for parameters of laboratory experiments performed in

parallel to the present study. Various slope angles, still well below critical incidence, and

incident wave widths were considered in the numerical simulations.

The numerical simulations show that the amplitude of the reflected wave is damped575

for a sloping boundary, all the more as the slope angle is larger. For the highest

angle we consider (α = 12◦ with β = 18.9◦) almost no reflected wave leaves the
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interaction region. The reason lies in the focusing of that wave, which enhances viscous

dissipation. As a consequence, the numerical simulations show a good agreement with the

theoretical results for low slope angles only, well below critical incidence. This comparison580

is quantified by introducing dissipative effects in the weakly non linear theory. We show

that, as the slope angle increases, the dissipated power of the primary wave becomes larger

than the power transferred to the second harmonic wave, accounting for the discrepancy

with the theory. The agreement strongly improves when the viscosity is divided by a

factor 10, consistent with this discrepancy being due to the dissipative damping of the585

focused reflected wave.

These results imply that the validity of the theoretical predictions cannot be assessed

by (quasi-) two-dimensional laboratory experiments in a vertical plane, because of the

too low value of the incident wave Reynolds number (equal to 35 in the numerical

simulations). Decreasing the value of the viscosity by a factor 10 in the simulations590

is equivalent to increase the wave amplitude by the same factor in the laboratory

experiments to keep the same Reynolds number. However the now ten times larger

Froude number implies that the incident wave would no longer be of weak amplitude

in the experiments (its steepness being equal to 0.95), so that resonant conditions cannot

be met.595

The three-dimensional laboratory experiments conducted in parallel to the present

two-dimensional numerical simulations are not appropriate either to test the theoretical

predictions. Indeed a Lagrangian mean flow is induced in the interaction area as a result of

nonlinear and dissipative effects, whose amplitude can be as large as that of the incident

primary wave due to dissipative cumulative effect (Grisouard et al. 2013). As a result, the600

incident wave frequency is shifted through Doppler effect by the mean flow and refracted

(with the phase lines bending toward the horizontal), which deeply modify the incident

primary wave geometry. This mean flow does not occur in a two-dimensional vertical

plane because of the topography, which breaks the horizontal homogeneity required for

the mean flow to develop. (This mean flow results from the same generation process605

as that induced by a single wave beam, as observed by Bordes et al. (2012) in their

laboratory experiments, and theoretically modelled by Kataoka & Akylas (2015).) Three-

dimensional numerical simulations should therefore be performed for any comparison to

be performed with the laboratory experiments. This joint approach has been carried out

(Raja et al. 2019) and the analysis of the resulting nonlinear wave-topography interaction610

will be reported in a subsequent paper.
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Appendix A. Weakly nonlinear second-order calculations

A.1. Computing the second-order solution

In this section we solve the linear partial differential equation (2.14). Using (2.9), (2.12)

and (2.13), the right hand side of (2.14a) becomes

−12a21k
4ω

s2βc
2
βsαcα(

s2β − s2α
)3 sin(ϕI+ϕR)+4a21k

4N
2s2α + f2c2α

ω

s3βc
3
β(

s2β − s2α
)3 sin(ϕI−ϕR) . (A 1)

where the simplified notations ϕI = (kx′ + nIkz
′ − ωt) and ϕR = (kx′ + nRkz

′ − ωt)620

have been introduced. As expected, nonlinear terms computed for the first-order solution

result in an oscillatory term of frequency 2ω and a steady term. A particular solution of

(2.14a) is therefore sought in the form

ψpart2 = ah2 sin(ϕI + ϕR) + as2 sin(ϕI − ϕR) , (A 2)

the h and s superscripts standing for harmonic and steady, respectively. The first term

in (A 2) corresponds to the forced wave in TH87. Substituting expression (A 2) in (2.14a)625

yields

ah2 =
3a21k

2ω

D

s2βc
2
βsαcα

s2β − s2α
and as2 = −a

2
1k

2

ω

sβcβ
s2β − s2α

, (A 3)

where

D = N2s2β
(
4s4β − 7s2βs

2
α + 4s2α − s2β

)
+ f2c2β

(
4s4β − 7s2βs

2
α + 3s2α

)
. (A 4)

This expression is in agreement with Thorpe (1997) (equation (7)).

Since the frequency and along-slope wavenumber of the second-order harmonic motions

are 2ω and 2k, respectively, the solution of the homogeneous equation must be of the630

form

ψ0
2 = a02 sin

(
2kx′ +m2kz

′ − 2ωt+ ϕ0
2

)
, (A 5)

called the free wave in TH87. To ensure that this wave satisfies the dispersion relation

and radiates energy away from the boundary, m2 must be defined by

m2 =
−2sαcα(N2 − f2) + 2sβ

√
4s4βN

4(1− 4s2β) + 4c4βN
4(1− 4c2β) +N2f2(3− 32s2βc

2
β)

N2(4s2β − s2α) + f2(4c2β − c2α)
.

(A 6)

Combining the particular and homogeneous solutions (A 2) and (A 5), the final solution

of (2.14) is given by635

ψ2 =3a21k
2ω

s2βc
2
βsαcα

(s2β − s2α)D

[
sin
(
2kx′ +m2kz

′ − 2ωt
)
− sin

(
2kx′ + (nI + nR)kz′ − 2ωt

)]
− a21k

2

ω

sβcβ
s2β − s2α

sin
(
(nI − nR)kz′

)
.

(A 7)

where the constant parameters a02 = −ah2 and ϕ0
2 = 0 have been determined through the

boundary condition (2.14b).
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Using (2.2b) and (2.2c), one can then derive the expressions of the harmonic parts of

b2 and v2, namely

vh2 =
a21fk

3s2βc
2
βcα(

s2β − s2α
)2

(N2s2β + f2c2β)
sin
(
2kx′ + (nI + nR)kz′ − 2ωt

)

−
3a21fk

3s2βc
2
βs

2
αcα(

s2β − s2α
)
D

[
sin
(
2kx′ + (nI + nR)kz′ − 2ωt

)
− sin

(
2kx′ +m2kz

′ − 2ωt
)]

−
3a21fk

3s2βc
2
βsαc

2
α

2
(
s2β − s2α

)
D

[
(nI + nR) sin

(
2kx′ + (nI + nR)kz′ − 2ωt

)
−m2 sin

(
2kx′ +m2kz

′ − 2ωt
)]

(A 8)

and640

bh2 =
a21N

2k3s2βc
2
βsα(

s2β − s2α
)2

(N2s2β + f2c2β)
sin
(
2kx′ + (nI + nR)kz′ − 2ωt

)

−
3a21N

2k3s2βc
2
βsαc

2
α(

s2β − s2α
)
D

[
sin
(
2kx′ + (nI + nR)kz′ − 2ωt

)
− sin

(
2kx′ +m2kz

′ − 2ωt
)]

−
3a21N

2k3s2βc
2
βs

2
αcα

2
(
s2β − s2α

)
D

[
(nI + nR) sin

(
2kx′ + (nI + nR)kz′ − 2ωt

)
−m2 sin

(
2kx′ +m2kz

′ − 2ωt
)]

.

(A 9)

Interestingly, as noted by Wunsch (1971) in a similar weakly nonlinear study of internal

waves encountering a shoaling region, the system becomes degenerate when considering

the steady problem in the presence of background rotation. The fields vs2 and bs2 are

indeed linked through the equation

∂

∂x
bs2 − f

∂

∂z
vs2 = J(ψ1,∇2ψ1)s (A 10)

where the subscript s on the right-hand-side refers to the steady component, but remain645

undetermined.

A.2. Determining the behavior at resonance

In this section, we analyse the behaviour of ψ2 as D → 0. The point is that D appears

in the denominator of (2.15) and the numerator also vanishes when D → 0. One can

indeed show that650

m2 = nI + nR ⇔
[
N2(4s2β − s2α) + f2(4c2β − c2α)

]
D = 0 , (A 11)

so that D = 0 implies that the incident (k, nIk, ω), reflected (k, nRk, ω) waves and the

second harmonic free wave (2k,m2k, 2ω) form a resonant triad.

A way to remove this indeterminacy is to reformulate the expression of ψ2 as (2.18).

The following expression of δ = 1
2 (m2 − (nI + nR)) is then obtained (from where (A 11)
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is inferred):655

δ =
3s2βsαcα

(4s2β − s2α)(s2β − s2α)

1−

√
1−

4s2β − s2α
(3sβsαcα)2

D

 . (A 12)

This expression enables to find the behaviour of δ as D → 0

δ ∼
D→0

D

6sαcα

(
s2β − s2α

) (A 13)

and the expression of the second harmonic wave at resonance

ψ2,w =
a21k

2

ω

s2βc
2
β(

s2β − s2α
)2 kz′ cos

(
2kx′ + (m2 − δ)kz′ − 2ωt

)
. (A 14)

A.3. Lagrangian and Eulerian mean flows

In this section, we quickly demonstrate a statement of TH87, namely that there is no

mass transport associated with the along slope steady current660

us2 =
∂ψs2
∂z′

= −2a21k
3

ω

s2βc
2
β(

s2β − s2α
)2 cos

(
(nI − nR)kz′

)
(A 15)

appearing in (2.15). This Eulerian current is indeed found to be compensated by the

Stokes drift associated with the first harmonic wave (where the incident and reflected

waves superpose).

Let u1 = (u1, w1) = (∂ψ1/∂z
′,−∂ψ1/∂x

′) be the velocity field of this first harmonic

wave. Assuming that fluid parcel displacements are small compared with the length scale665

over which u1 varies, the Stokes drift is defined by (Longuet-Higgins 1969)

usd2 =

(∫ t

t0

u1(s)ds

)
∂u1
∂x′

+

(∫ t

t0

w1(s)ds

)
∂u1
∂z′

(A 16a)

and

wsd2 =

(∫ t

t0

u1(s)ds

)
∂w1

∂x′
+

(∫ t

t0

w1(s)ds

)
∂w1

∂z′
, (A 16b)

where the overbar designates the time average over one wave period. Using the expression

of ψ1 given by (2.9) yields

usd2 = −us2 and wsd2 = 0 . (A 17)

Appendix B. Energy budget in the interaction area670

In this appendix we establish the expressions of the different quantities used in the

energy budget in the interaction area presented in section 5.

As explained in that section, the power density transferred from the first harmonic to

the second one is given by

pt12 = Fr2
[
((u1 ·∇)u1)h ·uh

2 +
1

N2
(u1 ·∇b1)hbh2

]
, (B 1)
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where the h superscript stands for the harmonic component of the corresponding term675

as opposed to its constant one. This can be rewritten as

pt12 = Fr2
[
J(ψ1, ∂zψ1)h∂zψ

h
2 + J(ψ1, v1)hvh2 + J(ψ1, ∂xψ1)h∂xψ

h
2 +

1

N2
J(ψ1, b1)hbh2

]
.

(B 2)

Using the expressions of the first and second harmonic solutions determined in ap-

pendix A.1, one can show that the time averaged transfer power density is given by

〈pt12〉 =
3Fr2a41k

6

2ω

s4βc
4
βsαcα

(s2β − s2α)D[
2sαcα(N2 − f2)− (N2(2s2β + s2α) + f2(2c2β + c2α))m2

]
sin(2δkz′) . (B 3)

The transfer power density has been determined in the weakly non-linear framework,

hence with the implied hypothesis that the first harmonic wave is negligibly influenced

by the second harmonic generation. In the same way, one can determine an estimate of

the power density by viscous effects (diffusive ones being very small) by adding a viscous680

term to the RHS of equation (5.2a) but assuming that the inviscid first harmonic solution

(2.9), (2.12) and (2.13) still holds. Equation (5.2a) thus takes the form

∂

∂t
u1 = RHS + St−1∇2u1 , (B 4)

where St = Re/Fr is the Stokes number. Taking the dot product of eq. (B 4) by u1

the viscous term can be rewritten as the sum of an energy diffusion term and an energy

dissipation one using the identity685

∇2u1 ·u1 =
1

2
∇2‖u1‖ −∇u1 : ∇u1 , (B 5)

so that the dissipated power density is

pd1 = St−1∇u1 : ∇u1 = St−1
[
‖∇u1‖2 + ‖∇v1‖2 + ‖∇w1‖2

]
. (B 6)

Finally, using the original first harmonic solution yields the time averaged dissipated

power density

〈pd1〉 = St−1
a21k

4

2

[(
1 +

f2

ω2
c2β

)(
sin2(β + α)

sin2(β − α)
+

sin2(β − α)

sin2(β + α)

)

− 2(s2β − c2β)

(
s2β −

(
1 +

f2

ω2

)
c2β

)
cos ((nI − nR)kz′)

]
.

(B 7)

Having determined an expression of these power densities and in order to build the

energy budget, we now need to integrate them over the interaction area. Thanks to690

simple geometric considerations in the interaction triangle, one can calculate the integrals,
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namely ∫∫
Ω

dx′dz′ =
n2λπ

2

(nI − nR)k2
,∫∫

Ω

sin(2δkz′) dx′dz′ =
nλπ

δk2

(
1− sinc

(
4nλπ

δ

nI − nR

))
and∫∫

Ω

cos((nI − nR)kz′) dx′dz′ =
1− cos(nλπ)

(nI − nR)k2
.

(B 8)

Using these expressions and the non-dimensional parameters given by eq. (3.7), one can

express the transfer and dissipated powers in Ω as a function of the angles α and β and

the non-dimensional parameters Fr , St , γ and nλ:695

PT12 =

∫∫
Ω

〈pt12〉dx′dz′

=
3Fr2nλπ

2δ

s4βc
4
βsαcα sin(β + α)√

s2β + γ2c2β sin3(β − α)

2sαcα(1− γ2)− (2s2β + s2α + γ2(2c2β + c2α))m2

D

(
1− sinc

(
4nλπ

δ

nI − nR

))
(B 9)

and

PD1 =

∫∫
Ω

〈pd1〉dx′dz′

=
sin(β + α)

4Stsβcβ sin(β − α)

[
π2n2λ

(
1 +

γ2

γ2 + t2β

)(
sin2(β + α)

sin2(β − α)
+

sin2(β − α)

sin2(β + α)

)

− 2(1− cos(nλπ))(s2β − c2β)

(
s2β − c2β −

γ2

γ2 + t2β

)]
.

(B 10)

The transfer and dissipated powers within the interaction area need finally to be

compared to the incident energy flux. A well-known result of the linear internal wave

theory is that the energy flux can be expressed as Pu = Ecg. E and cg are respectively

the mechanical energy density and group velocity whose expressions for the incident wave700

are

EI =
a21‖k‖

2
and cgI =

(N2 − f2)s2βc
2
β

ω‖k‖

(
c2β

−s2β

)
. (B 11)

Using the non-dimensional parameters given by eq. (3.7), the incident energy flux in Ω

is thus

PI =

∫
∂Ω

EIcgI ·dn = EI‖cgI‖nλλ

=
(1− γ2)sβcβ

4π
√
s2β + γ2c2β

nλ .
(B 12)
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