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Abstract

The problem of compatibility of a stochastic control system and a set of constraints - the so called
viability property - has been widely investigated during the last three decades. Given a stochastic
control system, the question is to characterize sets A such that for any initial condition in A there exists
a control ensuring that the associated stochastic process remains forever almost surely in A (this is called
the viability property of A). When A is closed and the dynamics is continuous, the viability property
has been characterized in the literature through several equivalent geometric conditions involving A,
the drift and the diffusion of the control system. In this article we give a necessary and sufficient
condition involving the boundary of an open set A ensuring the viability property of A, whenever A
has a C2,1 boundary and the dynamics are Lipschitz. If moreover a classical convexity condition on the
con trol dynamics holds true, we show that the viability of an open set A is equivalent to the viability
of its closure. This last result is rather surprising, because several very elementary examples in the
deterministic framework show that, in general, there is no such equivalence for a general open set A. We
will also discuss examples illustrating that the above equivalence is wrong when either the boundary of
A does not have enough regularity, or the dynamics are not Lipschitz continuous.

Introduction
Let us consider a stochastic control system described by the following differential equation:

(1)

{
dX(s) = b(X(s), u(s))ds+ σ(X(s), u(s))dW (s), u(s) ∈ U, s ≥ 0,
X(0) = x,

where U is a compact metric space, b : Rn×U → Rn, σ : Rn×U → Rn×d, and W = (W (s), s ∈ [0,+∞)) is a
d-dimensional standard (Fs)-Brownian motion on some complete stochastic basis (Ω,F , (Fs), P ). We denote
by U = U(Ω, (Fs), P ) the set of all U -valued (Fs)-progressively measurable processes u(·) called admissible
controls. Let t 7→ Xx,u

t stand for the solution of (1) corresponding to a control u ∈ U (whose existence and
uniqueness is ensured by classical assumptions given later on).

∗This research benefited from the support of the ”FMJH Program Gaspard Monge in optimization and operation research”,
and from the support to this program from EDF under grant PGMO 2016-2832H and the AFSOR grant FA 9550-18-1-0254.
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A set K ⊂ Rn is said to be viable for (1) if and only if, for all x ∈ K, there exists a control u ∈ U such
that, P almost surely, Xx,u

t ∈ K for all t ≥ 0. This property has important applications in several fields (cf.
[3, 4] for many examples).

When K is closed, the viability property of K for (1) can be characterized by conditions involving only
b, σ and the geometry of K. It is worth pointing out that these conditions do not require any regularity
property of the closed set K. In [23, 5, 6] such a chararacterization of viability is given in terms of the
stochastic tangent cones to K, while in [11, 13] it is given through the distance function dK to K (cf also
[18] for smooth sets). Further, in [10] a characterization is obtained through the first and second derivatives
of real valued C2 functions having a local maximum in K. The viability property has been also studied for
random sets [6], for time dependent sets [13], for infinite dimensional systems [14], as well as for backward
stochastic differential equations [12] (see also [8, 24, 25]).

It is worth pointing out that the above viability property differs from the so-called invariance property:
A set K ⊂ Rn is said to be invariant for (1) whenever for all x ∈ K and for any control u ∈ U , Xx,u

t ∈ K for
all t ≥ 0, P almost surely. Of course, for stochastic uncontrolled differential equations enjoying the existence
and uniqueness of solutions, the invariance and the viability properties do coincide. The viability property
is weaker than invariance and also more difficult to investigate because the controller needs to construct for
every initial point a control such that the associate trajectory is viable, while for the invariance, controls are
given a priori and it remains only to check that the associated trajectories stay in K. The invariance property
can be characterized as well by conditions involving only b, σ and the geometry ofK (cf [1, 5, 7, 15, 17, 19, 28]).

When a set K is the closure of its interior Int(K), it may happen that K is viable but the set Int(K) is
not necessarily viable as shown by the following one dimensional example

dX(x) = 2
√
X(s)dW (s), s ≥ 0.

Here d = n = 1 and K = [0,+∞). In this case K is viable but Int(K) = (0,+∞) is not viable. This
example will be discussed in detail in the last section.

In the present paper, we restrict our attention to the sets K with C2,1 boundary and to stochastic control
systems with Lipschitz dynamics. Our main goal is to give a characterization of the viability property of the
interior Int(K) using a geometric condition. We also show that it is equivalent to the so-called ε−viability
introduced in [11]. The question if similar results can be obtained for the stochastic control systems with
less regular sets K remains open.

When the control system (1) reduces to an uncontrolled differential equation, in [16], some (weaker than
in the present paper) regularity assumptions were imposed on the closed set K and it was shown that
invariance of K is equivalent to the invariance of its interior. In the present paper we exhibit a deterministic
example illustrating that without sufficient regularity of boundary, the equivalence between the viability of
K and its interior may fail. This example, of course, does not satisfy assumptions of [16].

Even when K is sufficiently regular, an additional convexity assumption like in [22] has to be imposed
on the controlled stochastic system for us to prove the equivalence between the invariance of K and of its
interior. This convexity assumption is needed to show that the limit of stochastic processes solution to (1)
is still a solution to (1). This convexity condition, used to obtain the existence of optimal controls, cf. [22],
is very strong and is not satisfied even by diffusions depending on controls in a linear way. This is the
reason why the ε−viability seems to be a more convenient notion for this type of investigations. Under the
convexity assumption, it is known from [11] that viability and ε−viability coincide.

This paper can be considered as a first attempt to deal with viability of the interior of K for control
systems in the stochastic framework (while the invariance of the interior of K for uncontrolled systems
was studied in [16]). Once again the novelty of the results of the paper concerns the viability property, the
invariance property is somehow simpler because it requires to study the existence of a constrained solution of
the stochastic differential equation (1) for any fixed control, while the main difficulty of the viability property
consists in the construction of a control such that the corresponding solution to (1) satisfies the constraint.
Let us note that the viability property of the interior of a set has many important applications in optimal
control of the deterministic systems under state constraints: regularity of the value function, uniqueness
of solutions to Hamilton-Jacobi equations, maximum pri nciple and sensitivity relations were investigated
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with its help, cf. [9, 21]. Having in mind similar applications, it is of a crucial importance to have sufficient
conditions for the viability of the interior of K for the stochastic control systems as well.

Let us describe now how our paper is organized. After a section devoted to notations and preliminaries,
we state and prove our main result in section 2. Section 3 is devoted to the discussion of several examples
and counterexamples.

1 Preliminaries

We denote by B the closed unit ball of Rn and by Int(B) its interior. As usual, B(x, r) = x + rB. The
notation |x| stands for the Euclidean norm of x ∈ Rn. The set of continuous real valued function on Rn is
denoted by C(Rn), while C1(Rn) and C2(Rn) are the sets of continuously differentiable and twice continously
differentiable functions, respectively.

1.1 Assumptions on the dynamics

In what follows, we assume that the coefficients of the control system satisfy the following conditions:

(H1) b and σ are continuous in (x, v);

(H2) |σ(x, v)− σ(x′, v)| ≤ C0|x− x′| for all x, x′ ∈ Rn, for all v ∈ U ;

(H3) |b(x, v)− b(x′, v)| ≤ C0|x− x′| for all x, x′ ∈ Rn, for all v ∈ U ;

where C0 > 0 is a given constant.
It is well known that under (H1-H3), for every initial condition x and every admissible control u ∈ U

there exists a unique adapted continuous solution t 7→ Xx,u
t of (1) defined on [0,+∞).

Consider the second order Kolmogorov operator L associated with the stochastic control system (1),
defined for all φ ∈ C2(Rn) by

Lx,vφ := 〈b(x, v),∇φ(x)〉+
1

2
Tr
(
D2φ(x)σ(x, v)σ∗(x, v)

)
, (x, v) ∈ Rn × U.

1.2 Set of constraints

Let K ⊂ Rn be a nonempty closed set of state constraints. Its interior is denoted by Int(K), and its
boundary by ∂K. We introduce the distance function from K

dK(x) := inf
y∈K
|x− y|, x ∈ Rn,

d∂K is the distance to the boundary of K, and the oriented distance function from ∂K is defined by

δK(x) :=

{
d∂K(x) if x ∈ K,
−d∂K(x) else.

We also define the set of projections of x onto ∂K by Π∂K(x) := {y ∈ ∂K, d∂K(x) = |y − x| }. For any
ε > 0, Kε := K + εInt(B) is the ε-neighborhood of K.

We recall that A ⊂ Rn is a closed domain of class C2,1 if A it is a connected set such that for any x ∈ ∂A
there exists r > 0 and a C2,1 function (i.e. a twice differentiable function with locally Lipschitz second order
derivative) φ : B(x, r) 7→ R with nonvanishing gradient on ∂A ∩B(x, r) such that

A ∩B(x, r) = {y ∈ B(x, r), φ(y) ≤ 0}.
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Recall, cf [20], that A is a closed domain of class C2,1 with compact boundary if and only if ∂A is compact
and there exists r̄ > 0 such that the oriented distance function δA is of class C2,1 on ∂A+ r̄B. Then for all
x ∈ (∂A+ r̄B) ∩A,

(2)

{
there exists a unique x̄ ∈ ∂A such that δA(x) = |x− x̄|
and ∇δA(x) = ∇δA(x̄) = −nA(x̄),

where nA(x̄) denotes the outward unit normal to A at x̄.
We introduce the following smoothness assumption on K which will be needed to investigate the viability

of open sets.

(H4) The set K ⊂ Rn is a compact domain of class C2,1.

1.3 Viability and ε-viability of a closed set

We first recall some useful definition from [11].

Definition 1.1. Let K be a nonempty subset of Rn.
The set K is viable for (1), if and only if for all x ∈ K, there is an admissible control v(·) ∈ U such that

the solution Xx,v(·) to (1) satisfies

P
[
Xx,v(·)
s ∈ K, ∀s ∈ [0,∞)

]
= 1.

The set K is ε-viable if and only if for some λ > 0 and for all x ∈ K and for all ε > 0, there is an
admissible control v(·) ∈ U such that

E[

∫ +∞

0

e−λsd2
K(Xx,v(·)

s )ds] ≤ ε..

Remark 1.2. Observe that the ε-viability of K is equivalent to the fact that the following value function

W (x) := inf
u∈U

E[

∫ ∞
0

e−λsd2
K(Xx,u

s )ds], x ∈ Rn.(3)

vanishes on K.

We recall the following characterization of the viability property of a closed set.

Proposition 1.3. (cf [10] Theorem A.1, and [11]) Let K be a nonempty closed subset of Rn. Let us
assume that the conditions (H1)−(H3) are satisfied by the stochastic control system (1). Then the following
statements are equivalent:

(i) The set K is ε-viable for (1).

(ii) For all x ∈ ∂K and any C2 function ϕ : Rn → R with a local maximum on K at x, there exists v ∈ U
with

σ(x, v)∗Dϕ(x) = 0, and (Lx,vϕ) ≤ 0.

Moreover if the following condition

(H5) The set
{(

1
2σσ

∗(x, v), b(x, v)
)
, v ∈ U

}
is convex for all x ∈ Rn,

holds true, then i) and ii) are also equivalent to the viability of K.
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2 Viability of the interior of K

We now state our main result:

Theorem 2.1. Let K ⊂ Rn be a nonempty compact set. Assume (H1)-(H4). Then the following statements
are equivalent:

(i) For all x ∈ ∂K there exists some v ∈ U such that

σ(x, v)∗D
(
δK
)
(x) = 0, and Lx,v(δK) ≥ 0 .

(ii) The set Int(K) is viable for (1), i.e., for all x ∈ Int(K), there is an admissible control v(·) ∈ U such
that the solution Xx,v(·) to (1) satisfies, P -a.s.,

Xx,v(·)
s ∈ Int(K), ∀s ≥ 0.

The above theorem is a direct consequence of the following proposition having an extra (but more heavy)
equivalence relation.

Proposition 2.2. Let K ⊂ Rn be a nonempty compact set. Assume (H1)-(H4). Then the following state-
ments are equivalent:

(a) The set K is ε-viable for (1).

(b) For all x ∈ ∂K there exists some v ∈ U such that

σ(x, v)∗D
(
δK
)
(x) = 0, and Lx,v(δK) ≥ 0 .

(c) The set Int(K) is viable for (1).

Proof : We proceed by proving (a) ⇒ (b) ⇒ (c) ⇒ (a).
From our assumptions on the set K, one can find (cf [20]) r1 > 0 small enough and a function g : Rn 7→ R

of class C2,1 with

(4)


0 ≤ g(x) ≤ 1 for x ∈ K
0 < g(x) for x ∈ Int(K)
g(x) = δK(x) for x ∈ K ∩ (∂K + r1B)
g(x) < 0 for x /∈ K.

We first prove that (a) implies (b). Fix x ∈ ∂K. Then clearly the C2 function y 7→ ϕ(y) := −g(y) has a
local maximum on K at x. So from Proposition 1.3-(ii) we deduce the desired conclusion (b).

Let us prove now that (b) implies (c). Suppose that (b) holds true, and define the function

V (x) = − ln g(x), for x ∈ Int(K).

Clearly 0 < V (x) < +∞ for any x ∈ Int(K).
Observe that for any x ∈ Int(K) and u ∈ U

(5) (Lx,uV ) = − 1

g(x)
(Lx,ug) +

1

2

1

g2(x)
|σ?(x, u)∇g(x)|2.

We claim that there exists a constant L > 0 such that for all x ∈ Int(K) there is u ∈ U satisfying

(6) − 1

g(x)
(Lx,ug) +

1

2

1

g2(x)
|σ?(x, u)∇g(x)|2 ≤ L.

Fix ε1 > 0 small enough. The above relation is clear when g(x) ≥ ε1 because g does not vanish on Int(K).
So we need only to prove the claim when x ∈ Int(K) and g(x) < ε1.
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Consider such a point x ∈ Int(K) and let x̄ ∈ Π∂K(x). By (b), there exists u ∈ U with σ(x̄, u)∗∇g(x̄) = 0
and (Lx̄,ug) ≥ 0. Thus,

|σ?(x, u)∇g(x)| = |σ?(x, u)∇g(x)− σ?(x̄, u)∇g(x̄)| ≤ C|x− x̄| = Cd∂K(x) = Cg(x),

where C is a Lipschitz constant of the map y 7→ σ?(y, u)∇g(y) on K. Hence

(7)
1

2

1

g(x)2
|σ?(x, u)∇g(x)|2 ≤ C2.

Moreover since the function y 7→ (Ly,ug) is Lipschitz continuous on K with some constant c > 0, we have

− (Lx,ug) ≤ (Lx̄,ug)− (Lx,ug) ≤ c|x− x̄| = cd∂K(x) = cg(x).

Hence

(8) − 1

g(x)
(Lx,uig) ≤ c for x ∈ Int(K) such that g(x) < ε1.

Since c and C in the estimates (7) and (8) do not depend on x ∈ Int(K) with g(x) ≤ ε1, we obtain our
claim (6).

Consequently, there exists some constant L > 0 such that

(9) inf
u∈U

(Lx,uV ) ≤ L, for all x ∈ Int(K).

We claim that there exists a Borel measurable function ū : Int(K) 7→ U such that

inf
u∈U

(Lx,uV ) =
(
Lx,ū(x)V

)
, ∀x ∈ Int(K).

Les us prove this claim. Denote by L(x) := infu∈U (Lx,uV ) ( which is continuous on Int(K)) and define

F (x) := {u ∈ U, (Lx,uV ) = L(x)}

which is a closed nonempty set. We claim that F is weakly Borel measurable in the sense that, for any open
set O ⊂ U , the set

R := {x ∈ Int(K), F (x) ∩O 6= ∅ }

is a Borel set. Indeed, fix an open subset O ⊂ U , and consider an increasing sequence of closed subsubsets
On ⊂ O, n ≥ 1, such that O = ∪n≥1 ↑ On. Then the complement of R in Int(K) is

Rc = {x ∈ Int(K), F (x) ∩O = ∅ }
= {x ∈ Int(K), (Lx,uV ) > L(x), ∀u ∈ O } = ∩n≥1 ↓ R′n,

with
R′n := {x ∈ Int(K), inf

u∈On
(Lx,uV ) > L(x)}, n ≥ 1.

However, as the functions x 7→ infu∈On (Lx,uV ) and x 7→ L(x) are both continuous in Int(K), R′n is a Borel
set, for all n ≥ 1, and consequently, so are Rc and R.

Therefore, denoting by B the set of all Borel subsets of Int(K), the Kuratowski and Ryll-Nardzeski
measurable selection theorem [29] applied to the measurable space (Int(K),B), yields that there exists a
Borel measurable selection ū : Int(K) 7→ U such that

ū(x) ∈ F (x), ∀x ∈ Int(K).

This proves our claim.
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Now we consider an increasing sequence of compact subsets Qi ⊂ Int(K) with
⋃
Qi = Int(K) and

dist(Qi, ∂K) ≥ ρi > 0. Since the function (x, u) 7→ (Lx,uV ) is uniformly continuous on the compact set
Qi × U , there exist ε1 ≥ ε2 . . . ≥ εi . . . > 0 satisfying the following relation:

(10) ∀u ∈ U, ∀x, y ∈ Qi, with |x− y| < εi, | (Lx,uV )− (Ly,uV ) | ≤ 1.

Let x ∈ Int(K) and i > 0 be such that x ∈ Int(Qi). We set ξi,0 = ū(x) and ui,0 = ξi,0I[0,∞) ∈ U .
Step I: construction of a suitable control ui for Qi. Let us define the following stopping times

τi,0 = 0,

τi,1 = inf{s ≥ τi,0, Xx,ui,0

s /∈ Qi or |Xx,ui,0

s −Xx,ui,0

τi,0 | ≥ εi}.

We set ξi,1 = ū(Xx,ui,0

τi,1 )I{τi,1<∞} + ξi,0I{τi,1=∞} and ui,1 = ξi,0I[0,τi,1) + ξi,1I[τi,1,+∞) ∈ U , and we define the
new stopping time

τi,2 = inf{s ≥ τi,1, Xx,ui,1

s /∈ Qi or |Xx,ui,1

s −Xx,ui,1

τi,1 | ≥ εi}.
Similarly, by iteration, we define a nondecreasing sequence of stopping times (τi,k)k≥0 and a sequence of
random variables (ξi,k)k≥0. Now for an arbitrary u0 ∈ U define

Θi := lim
k↑+∞

↑ τi,k, ui :=
∑
k≥0

ξi,kI[τi,k,τi,k+1) + u0I[Θi,+∞) ∈ U .

We claim that

(11) Θi = inf{s ≥ 0, Xx,ui

s /∈ Qi}.

From the very definition of Θi and of the sequence (τi,k)k≥0, to prove our claim it is enough to show that
the sequence (τl)l≥0 defined below satisfies liml τl = +∞. To prove (11), fix u ∈ U and an arbitrary ε > 0.
Let us introduce the (auxiliary) stopping times

τ0 = 0
τl+1 = inf{s ≥ τl, |Xx,u

s −Xx,u
τl
| ≥ ε}, for l ≥ 0 .

Observe that for the particular choice u = ui we have τi,k = τk ∧Θi. Thus to prove (11), it suffices to show
that τk ↑ +∞ as k →∞.

Let T > 0 be arbitrarily chosen. Then for all t ∈ [0, T ∧ 1], we deduce from the (conditional) Chebychev
inequality and from standard estimates on the trajectory t 7→ Xx,u

t that

P [τl+1 − τl ≤ t|Fτl ] = P [ sup
s∈[0,t]

|Xx,u
τl+s
−Xx,u

τl
| ≥ ε|Fτl ]

≤ 1

ε3
E[ sup

s∈[0,t]

|Xx,u
τl+s
−Xx,u

τl
|3|Fτl ] ≤ C

t3/2

ε3
, P -a.s. on {τl < +∞}.

Consequently, since b and σ are bounded on K, for all N ≥ 1,

P [τN ≤ T ] = P [

N−1∑
l=0

τl+1 − τl ≤ T, τj ≤ T, ∀j = 0, 1 . . . N − 1]

≤
N−1∑
l=0

P [τl+1 − τl ≤
T

N
, τl ≤ T ] =

N−1∑
l=0

E[I{τl+1−τl≤Tn }
I{τl≤T}]

=

N−1∑
l=0

E{E[I{τl+1−τl≤ T
N }
I{τl≤T}|Fτl ]} =

N−1∑
l=0

E[P
(
τl+1 − τl ≤

T

N
|Fτl

)
Iτl≤T ]

≤ CN (T/N)3/2

ε3
→ 0, as N →∞.
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Thus, τN ↑ +∞, P -a.s., as N →∞. Our claim (11) is proved. Moreover, observe that we have obtained

(12) P [
⋃
k≥0

↑ {τi,k = Θi, Θi < +∞}] = P [Θi < +∞].

Step II: Construction of a suitable control u for Int(K). We iterate the process of Step I as follows for the
set Qi+1. We put

τi+1,0 := Θi, ξi+1,0 := ū(Xx,ui

τi+1,0
)I{τi+1,0<∞} + ξi,0I{τi+1,0=∞},

ui+1,0 := uiI[0,Θi) + ξi+1,0I[Θi,+∞) ∈ U ,
τi+1,1 := inf{s ≥ τi+1,0, X

x,u1+i,0

s /∈ Qi+1 or |Xx,ui+1,0

s −Xx,ui+1,0

τi+1,0
| ≥ εi+1}

ξi+1,1 := ū(Xx,ui+1,0

τi+1,1
)I{τi+1,1<∞} + ξi+1,0I{τi+1,1=∞},

ui+1,1 := uiI[0,Θi) + ξi+1,0I[τi+1,0,τi+1,1) + ξi+1,1I[τi+1,1,+∞) ∈ U ,
etc.

By analogy with step I, we define a control

ui+1 := uiI[0,Θi) +
∑
k≥0

ξi+1,kI[τi+1,k,τi+1,k+1) + u0I[Θi+1,+∞) ∈ U ,

and the stopping time

Θi+1 = lim
k↑+∞

↑ τi+1,k = inf{s ≥ 0, X0,ui+1

s /∈ Qi+1}.

Notice that

P [
⋃
k≥0

↑ {τi+1,k = Θi+1, Θi+1 <∞}] = P [Θi+1 < +∞].

So we are now able to define the control u by setting

u :=
∑
m≥i

umI[Θm−1,Θm) + u0I[Θ,+∞),(13)

where

Θi−1 := 0 and Θ := lim
m
↑ Θm.

Observe that due to the above construction,

Θm = inf{s ≥ 0, Xx,u
s /∈ Qm}, for m ≥ i,

Θ = inf{s ≥ 0, Xx,u
s ∈ ∂K}.

Moreover, for s ∈ [τm,k, τm,k+1) ( m ≥ i, k ≥ 0 ) we have |Xx,u
s −Xx,u

τm,k
| ≤ εm. Hence,(

LXx,us ,u(s)V
)

=
(
LXx,us ,ξm,kV

)
≤
(
LXx,uτm,k ,ξm,kV

)
+ 1 ≤ L+ 2,

in view of (9) and (10). From Itô’s formula we obtain, for all m ≥ i, t ≥ 0,

E[V (Xx,u
t∧Θm

)] = V (x) + E[

∫ t∧Θm

0

(
LXx,us ,u(s)V

)
ds] ≤ V (x) + (L+ 2)t.

Consequently, letting m→∞, Fatou’s lemma yields

(14) E[lim inf
m→∞

V (Xx,u
t∧Θm

)] ≤ V (x) + (L+ 2)t, t ∈ [0,+∞).
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Recalling that V (x) = − ln g(x) for x ∈ Int(K), we observe that lim infm→∞ V (Xx,u
t∧Θm

) = +∞ on the set
{Θ(= limm ↑ Θm) ≤ t}. Thus (14) implies that P (Θ ≤ t) = 0, i.e., P -a.s. we have Xx,u

s ∈ Int(K) for all
s ∈ [0, t], or in other words

P [Xx,i
s ∈ Int(K), s ∈ [0, t] ] = 1, t ≥ 0.

Replacing t by an increasing sequence tn ↑ +∞, from the monotone continuity property of the probability
measure P we deduce the viability property of Int(K) on [0,+∞), our desired result (c).

Let us now prove that (c) implies (a). As in [11], we introduce the value function W defined by (3) for
λ > 0 large enough but fixed. With the assumptions (H1)−(H3) one can easily show that W is continuous
with polynomial growth (cf [11] and references therein).

Fix x ∈ K, and consider a sequence (xk)k≥0 such that

xk ∈ Int(K), for all k ≥ 0, and limk xk = x .

From (c) we know that for all k ≥ 0 there exists uk ∈ U with Xxk,uk
s ∈ Int(K) for all s ≥ 0, P -a.s. This

yields W (xk) = 0. From the continuity of W we deduce that W (x) = limkW (xk) = 0. Hence in view of
Remark 1.2, our desired result (a) is obtained.

Now we state our second main result under the additional assumption (H5).

Proposition 2.3. Let K ⊂ Rn be a nonempty closed set. Assume (H1)-(H5). Then the set K is viable for
(1) if and only if its interior Int(K) is viable for (1).

Proof : This result can be deduced from Proposition 2.2 by noticing that under (H5) the ε- viability of K
is equivalent1 to the viability of K.

Indeed a viable set K is obviously ε-viable. Therefore Int(K) is viable by Proposition 2.2.
Conversely suppose that Int(K) is viable, thus K is ε-viable. Fix x ∈ K. From (H5), we know by [22]

that the infimum in (3) is attained and so there is an admissible control v(·) ∈ U on a possibly enlarged
probability space such that

W (x) = E[

∫ ∞
0

e−λsd2
K(Xx,v

s )ds].

So Remark 1.2 implies that W (x) = 0. This yields that Xx,v
s ∈ K for all s ≥ 0, P -a.e. The proof is

complete.

3 Examples

In this section we discuss two examples where the equivalence between the viability of K and Int(K) fails.
For our result we need in a crucial way the smoothness of the constraint set K. This fact is illustrated

in the following

Example 3.1. Without sufficient regularity of K, it is possible to have the viability property for K while
its interior Int(K) is not viable. Indeed, consider the two-dimensional deterministic control problem with
constraint set

K := {(x, y) ∈ R2, 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ x2 } ∪

(
[−1, 0]× R

)
⊂ R2,

and {
dX(t) = −(1 +X(t))dt
dY (t) = − 3

4u(t)dt, u(t) ∈ [0, 1] .

1This equivalence between ε- viability and viability is valid under (H5) for an arbitrary closed set K, even in the absence of
the regularity assumption (H4).
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By using Proposition 1.3, one can easily check that K is viable for the above control system.
Moreover, since X(t) = e−t(1 + X(0)) − 1, any viable trajectory starting from some (x0, y0) ∈ K with

x0 > 0 must reach (0, 0) which does not belong to Int(K). Consequently, Int(K) is not viable.
Note that the lack of regularity of K occurs only at the point (0, 0).

The Example below shows that without Lipschitz continuity of the dynamics Proposition 2.3 fails.

Example 3.2. Consider the following dynamics on R (here n = d = 1)

(15) dX(s) = 2
√
X(s)dW (s), X(0) = x > 0.

with the constraint set K := [0,∞).
Observe that X is the squared Bessel process. We know that it touches 0 in finite time and 0 is absorbing

(cf [27] chap. XI). So K is viable but Int(K) is not viable.
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