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Viability of an Open Set for Stochastic Control Systems *

The problem of compatibility of a stochastic control system and a set of constraints -the so called viability property -has been widely investigated during the last three decades. Given a stochastic control system, the question is to characterize sets A such that for any initial condition in A there exists a control ensuring that the associated stochastic process remains forever almost surely in A (this is called the viability property of A). When A is closed and the dynamics is continuous, the viability property has been characterized in the literature through several equivalent geometric conditions involving A, the drift and the diffusion of the control system. In this article we give a necessary and sufficient condition involving the boundary of an open set A ensuring the viability property of A, whenever A has a C 2,1 boundary and the dynamics are Lipschitz. If moreover a classical convexity condition on the con trol dynamics holds true, we show that the viability of an open set A is equivalent to the viability of its closure. This last result is rather surprising, because several very elementary examples in the deterministic framework show that, in general, there is no such equivalence for a general open set A. We will also discuss examples illustrating that the above equivalence is wrong when either the boundary of A does not have enough regularity, or the dynamics are not Lipschitz continuous.

Introduction

Let us consider a stochastic control system described by the following differential equation: [START_REF] Jaber | Stochastic invariance of closed sets with non-Lipschitz coefficients[END_REF] dX(s) = b(X(s), u(s))ds + σ(X(s), u(s))dW (s), u(s) ∈ U, s ≥ 0,

X(0) = x,
where U is a compact metric space, b : R n × U → R n , σ : R n × U → R n×d , and W = (W (s), s ∈ [0, +∞)) is a d-dimensional standard (F s )-Brownian motion on some complete stochastic basis (Ω, F, (F s ), P ). We denote by U = U(Ω, (F s ), P ) the set of all U -valued (F s )-progressively measurable processes u(•) called admissible controls. Let t → X x,u t stand for the solution of (1) corresponding to a control u ∈ U (whose existence and uniqueness is ensured by classical assumptions given later on).

A set K ⊂ R n is said to be viable for [START_REF] Jaber | Stochastic invariance of closed sets with non-Lipschitz coefficients[END_REF] if and only if, for all x ∈ K, there exists a control u ∈ U such that, P almost surely, X x,u t ∈ K for all t ≥ 0. This property has important applications in several fields (cf. [START_REF] Aubin | Viability theory. Systems & Control: Foundations & Applications[END_REF][START_REF] Aubin | Viability Theory: New Directions[END_REF] for many examples).

When K is closed, the viability property of K for (1) can be characterized by conditions involving only b, σ and the geometry of K. It is worth pointing out that these conditions do not require any regularity property of the closed set K. In [START_REF] Gautier | Viability for constrained stochastic differential equations[END_REF][START_REF] Aubin | Stochastic viability and invariance[END_REF][START_REF] Aubin | The viability theorem for stochastic differential inclusions[END_REF] such a chararacterization of viability is given in terms of the stochastic tangent cones to K, while in [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF][START_REF] Buckdahn | Viability of moving sets for stochastic differential equation[END_REF] it is given through the distance function d K to K (cf also [START_REF] Da Prato | Stochastic viability for compact sets in terms of the distance function[END_REF] for smooth sets). Further, in [START_REF] Buckdahn | On a representation formula for the mean curvature motion[END_REF] a characterization is obtained through the first and second derivatives of real valued C 2 functions having a local maximum in K. The viability property has been also studied for random sets [START_REF] Aubin | The viability theorem for stochastic differential inclusions[END_REF], for time dependent sets [START_REF] Buckdahn | Viability of moving sets for stochastic differential equation[END_REF], for infinite dimensional systems [START_REF] Buckdahn | Controlled stochastic differential equations under constraints in infinite dimensional spaces[END_REF], as well as for backward stochastic differential equations [START_REF] Buckdahn | Viability property for a backward stochastic differential equation and applications to partial differential equations[END_REF] (see also [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF][START_REF] Nie | Deterministic characterization of viability for stochastic differential equation driven by fractional Brownian motion[END_REF][START_REF] Peng | Viability property on Riemannian manifolds[END_REF]).

It is worth pointing out that the above viability property differs from the so-called invariance property: A set K ⊂ R n is said to be invariant for (1) whenever for all x ∈ K and for any control u ∈ U, X x,u t ∈ K for all t ≥ 0, P almost surely. Of course, for stochastic uncontrolled differential equations enjoying the existence and uniqueness of solutions, the invariance and the viability properties do coincide. The viability property is weaker than invariance and also more difficult to investigate because the controller needs to construct for every initial point a control such that the associate trajectory is viable, while for the invariance, controls are given a priori and it remains only to check that the associated trajectories stay in K. The invariance property can be characterized as well by conditions involving only b, σ and the geometry of K (cf [START_REF] Jaber | Stochastic invariance of closed sets with non-Lipschitz coefficients[END_REF][START_REF] Aubin | Stochastic viability and invariance[END_REF][START_REF] Aubin | Stochastic invariance for differential inclusions. Set-valued analysis in control theory[END_REF][START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF][START_REF] Da Prato | Invariance of closed sets under stochastic control systems[END_REF][START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF][START_REF] Spreij | Affine diffusions with non-canonical state space[END_REF]).

When a set K is the closure of its interior Int(K), it may happen that K is viable but the set Int(K) is not necessarily viable as shown by the following one dimensional example

dX(x) = 2 X(s)dW (s), s ≥ 0.
Here d = n = 1 and K = [0, +∞). In this case K is viable but Int(K) = (0, +∞) is not viable. This example will be discussed in detail in the last section.

In the present paper, we restrict our attention to the sets K with C 2,1 boundary and to stochastic control systems with Lipschitz dynamics. Our main goal is to give a characterization of the viability property of the interior Int(K) using a geometric condition. We also show that it is equivalent to the so-called ε-viability introduced in [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF]. The question if similar results can be obtained for the stochastic control systems with less regular sets K remains open.

When the control system (1) reduces to an uncontrolled differential equation, in [START_REF] Cannarsa | Invariant Measures Associated to Degenerate Elliptic Operators[END_REF], some (weaker than in the present paper) regularity assumptions were imposed on the closed set K and it was shown that invariance of K is equivalent to the invariance of its interior. In the present paper we exhibit a deterministic example illustrating that without sufficient regularity of boundary, the equivalence between the viability of K and its interior may fail. This example, of course, does not satisfy assumptions of [START_REF] Cannarsa | Invariant Measures Associated to Degenerate Elliptic Operators[END_REF].

Even when K is sufficiently regular, an additional convexity assumption like in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: Existence of an optimal control[END_REF] has to be imposed on the controlled stochastic system for us to prove the equivalence between the invariance of K and of its interior. This convexity assumption is needed to show that the limit of stochastic processes solution to [START_REF] Jaber | Stochastic invariance of closed sets with non-Lipschitz coefficients[END_REF] is still a solution to (1). This convexity condition, used to obtain the existence of optimal controls, cf. [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: Existence of an optimal control[END_REF], is very strong and is not satisfied even by diffusions depending on controls in a linear way. This is the reason why the ε-viability seems to be a more convenient notion for this type of investigations. Under the convexity assumption, it is known from [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF] that viability and ε-viability coincide.

This paper can be considered as a first attempt to deal with viability of the interior of K for control systems in the stochastic framework (while the invariance of the interior of K for uncontrolled systems was studied in [START_REF] Cannarsa | Invariant Measures Associated to Degenerate Elliptic Operators[END_REF]). Once again the novelty of the results of the paper concerns the viability property, the invariance property is somehow simpler because it requires to study the existence of a constrained solution of the stochastic differential equation (1) for any fixed control, while the main difficulty of the viability property consists in the construction of a control such that the corresponding solution to (1) satisfies the constraint. Let us note that the viability property of the interior of a set has many important applications in optimal control of the deterministic systems under state constraints: regularity of the value function, uniqueness of solutions to Hamilton-Jacobi equations, maximum pri nciple and sensitivity relations were investigated with its help, cf. [START_REF] Bettiol | Vinter Improved sensitivity relations in state constrained optimal control[END_REF][START_REF] Frankowska | Mazzola Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints[END_REF]. Having in mind similar applications, it is of a crucial importance to have sufficient conditions for the viability of the interior of K for the stochastic control systems as well.

Let us describe now how our paper is organized. After a section devoted to notations and preliminaries, we state and prove our main result in section 2. Section 3 is devoted to the discussion of several examples and counterexamples.

Preliminaries

We denote by B the closed unit ball of R n and by Int(B) its interior. As usual, B(x, r) = x + rB. The notation |x| stands for the Euclidean norm of x ∈ R n . The set of continuous real valued function on R n is denoted by C(R n ), while C 1 (R n ) and C 2 (R n ) are the sets of continuously differentiable and twice continously differentiable functions, respectively.

Assumptions on the dynamics

In what follows, we assume that the coefficients of the control system satisfy the following conditions: (H1) b and σ are continuous in (x, v);

(H2) |σ(x, v) -σ(x , v)| ≤ C 0 |x -x | for all x, x ∈ R n , for all v ∈ U ; (H3) |b(x, v) -b(x , v)| ≤ C 0 |x -x | for all x, x ∈ R n , for all v ∈ U ; where C 0 > 0 is a given constant.
It is well known that under (H1-H3), for every initial condition x and every admissible control u ∈ U there exists a unique adapted continuous solution t → X x,u t of (1) defined on [0, +∞). Consider the second order Kolmogorov operator L associated with the stochastic control system (1), defined for all φ ∈ C 2 (R n ) by

L x,v φ := b(x, v), ∇φ(x) + 1 2 Tr D 2 φ(x)σ(x, v)σ * (x, v) , (x, v) ∈ R n × U.

Set of constraints

Let K ⊂ R n be a nonempty closed set of state constraints. Its interior is denoted by Int(K), and its boundary by ∂K. We introduce the distance function from

K d K (x) := inf y∈K |x -y|, x ∈ R n ,
d ∂K is the distance to the boundary of K, and the oriented distance function from ∂K is defined by

δ K (x) := d ∂K (x) if x ∈ K, -d ∂K (x) else.
We also define the set of projections of x onto ∂K by Π ∂K (x

) := {y ∈ ∂K, d ∂K (x) = |y -x| }. For any ε > 0, K ε := K + εInt(B) is the ε-neighborhood of K.
We recall that A ⊂ R n is a closed domain of class C 2,1 if A it is a connected set such that for any x ∈ ∂A there exists r > 0 and a C 2,1 function (i.e. a twice differentiable function with locally Lipschitz second order derivative) φ : B(x, r) → R with nonvanishing gradient on ∂A ∩ B(x, r) such that

A ∩ B(x, r) = {y ∈ B(x, r), φ(y) ≤ 0}.
Recall, cf [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF], that A is a closed domain of class C 2,1 with compact boundary if and only if ∂A is compact and there exists r > 0 such that the oriented distance function δ A is of class C 2,1 on ∂A + rB. Then for all x ∈ (∂A + rB) ∩ A, [START_REF] Aubin | Set-valued analysis. Systems & Control: Foundations & Applications[END_REF] there exists a unique x ∈ ∂A such that δ

A (x) = |x -x| and ∇δ A (x) = ∇δ A (x) = -n A (x),
where n A (x) denotes the outward unit normal to A at x. We introduce the following smoothness assumption on K which will be needed to investigate the viability of open sets.

(H4) The set K ⊂ R n is a compact domain of class C 2,1 .

Viability and ε-viability of a closed set

We first recall some useful definition from [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF].

Definition 1.1. Let K be a nonempty subset of R n .
The set K is viable for (1), if and only if for all x ∈ K, there is an admissible control v(•) ∈ U such that the solution X x,v(•) to (1) satisfies

P X x,v(•) s ∈ K, ∀s ∈ [0, ∞) = 1.
The set K is ε-viable if and only if for some λ > 0 and for all x ∈ K and for all ε > 0, there is an

admissible control v(•) ∈ U such that E[ +∞ 0 e -λs d 2 K (X x,v(•) s )ds] ≤ ε.. Remark 1.2.
Observe that the ε-viability of K is equivalent to the fact that the following value function

W (x) := inf u∈U E[ ∞ 0 e -λs d 2 K (X x,u s )ds], x ∈ R n . ( 3 
)
vanishes on K.

We recall the following characterization of the viability property of a closed set. Proposition 1.3. (cf [START_REF] Buckdahn | On a representation formula for the mean curvature motion[END_REF] Theorem A.1, and [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF]) Let K be a nonempty closed subset of R n . Let us assume that the conditions (H1)-(H3) are satisfied by the stochastic control system (1). Then the following statements are equivalent:

(i) The set K is ε-viable for (1).
(ii) For all x ∈ ∂K and any C 2 function ϕ : R n → R with a local maximum on K at x, there exists v ∈ U with σ(x, v) * Dϕ(x) = 0, and (L x,v ϕ) ≤ 0.

Moreover if the following condition (H5) The set

1 2 σσ * (x, v), b(x, v) , v ∈ U is convex for all x ∈ R n ,
holds true, then i) and ii) are also equivalent to the viability of K.

Viability of the interior of K

We now state our main result: Theorem 2.1. Let K ⊂ R n be a nonempty compact set. Assume (H1)-(H4). Then the following statements are equivalent:

(i) For all x ∈ ∂K there exists some v ∈ U such that σ(x, v) * D δ K (x) = 0, and L x,v (δ K ) ≥ 0 .

(ii) The set Int(K) is viable for (1), i.e., for all x ∈ Int(K), there is an admissible control v(•) ∈ U such that the solution X x,v(•) to (1) satisfies, P -a.s.,

X x,v(•) s ∈ Int(K), ∀s ≥ 0.
The above theorem is a direct consequence of the following proposition having an extra (but more heavy) equivalence relation. From our assumptions on the set K, one can find (cf [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF]) r 1 > 0 small enough and a function g : R n → R of class C 2,1 with (4)

       0 ≤ g(x) ≤ 1 for x ∈ K 0 < g(x) for x ∈ Int(K) g(x) = δ K (x) for x ∈ K ∩ (∂K + r 1 B) g(x) < 0 for x / ∈ K.
We first prove that (a) implies (b). Fix x ∈ ∂K. Then clearly the C 2 function y → ϕ(y) := -g(y) has a local maximum on K at x. So from Proposition 1.3-(ii) we deduce the desired conclusion (b).

Let us prove now that (b) implies (c). Suppose that (b) holds true, and define the function

V (x) = -ln g(x), for x ∈ Int(K).
Clearly 0 < V (x) < +∞ for any x ∈ Int(K).

Observe that for any x ∈ Int(K) and u ∈ U

(5) (L x,u V ) = - 1 g(x) (L x,u g) + 1 2 1 g 2 (x) |σ (x, u)∇g(x)| 2 .
We claim that there exists a constant L > 0 such that for all x ∈ Int(K) there is u ∈ U satisfying

(6) - 1 g(x) (L x,u g) + 1 2 1 g 2 (x) |σ (x, u)∇g(x)| 2 ≤ L.
Fix ε 1 > 0 small enough. The above relation is clear when g(x) ≥ ε 1 because g does not vanish on Int(K). So we need only to prove the claim when x ∈ Int(K) and g(x) < ε 1 .

Consider such a point x ∈ Int(K) and let x ∈ Π ∂K (x). By (b), there exists u ∈ U with σ(x, u) * ∇g(x) = 0 and (L x,u g) ≥ 0. Thus,

|σ (x, u)∇g(x)| = |σ (x, u)∇g(x) -σ (x, u)∇g(x)| ≤ C|x -x| = Cd ∂K (x) = Cg(x),
where C is a Lipschitz constant of the map y → σ (y, u)∇g(y) on K. Hence [START_REF] Aubin | Stochastic invariance for differential inclusions. Set-valued analysis in control theory[END_REF] 1 2

1 g(x) 2 |σ (x, u)∇g(x)| 2 ≤ C 2 .
Moreover since the function y → (L y,u g) is Lipschitz continuous on K with some constant c > 0, we have

-(L x,u g) ≤ (L x,u g) -(L x,u g) ≤ c|x -x| = cd ∂K (x) = cg(x). Hence (8) - 1 g(x) (L x,ui g) ≤ c for x ∈ Int(K) such that g(x) < ε 1 .
Since c and C in the estimates ( 7) and ( 8) do not depend on x ∈ Int(K) with g(x) ≤ ε 1 , we obtain our claim [START_REF] Aubin | The viability theorem for stochastic differential inclusions[END_REF]. Consequently, there exists some constant L > 0 such that

(9) inf u∈U (L x,u V ) ≤ L, for all x ∈ Int(K).
We claim that there exists a Borel measurable function ū :

Int(K) → U such that inf u∈U (L x,u V ) = L x,ū(x) V , ∀ x ∈ Int(K).
Les us prove this claim. Denote by L(x) := inf u∈U (L x,u V ) ( which is continuous on Int(K)) and define

F (x) := {u ∈ U, (L x,u V ) = L(x)}
which is a closed nonempty set. We claim that F is weakly Borel measurable in the sense that, for any open set O ⊂ U , the set

R := {x ∈ Int(K), F (x) ∩ O = ∅ }
is a Borel set. Indeed, fix an open subset O ⊂ U , and consider an increasing sequence of closed subsubsets

O n ⊂ O, n ≥ 1, such that O = ∪ n≥1 ↑ O n . Then the complement of R in Int(K) is R c = {x ∈ Int(K), F (x) ∩ O = ∅ } = {x ∈ Int(K), (L x,u V ) > L(x), ∀u ∈ O } = ∩ n≥1 ↓ R n , with R n := {x ∈ Int(K), inf u∈On (L x,u V ) > L(x)}, n ≥ 1.
However, as the functions x → inf u∈On (L x,u V ) and x → L(x) are both continuous in Int(K), R n is a Borel set, for all n ≥ 1, and consequently, so are R c and R. Therefore, denoting by B the set of all Borel subsets of Int(K), the Kuratowski and Ryll-Nardzeski measurable selection theorem [START_REF] Srivastava | A course on Borel sets[END_REF] applied to the measurable space (Int(K), B), yields that there exists a Borel measurable selection ū :

Int(K) → U such that ū(x) ∈ F (x), ∀x ∈ Int(K).
This proves our claim.

Now we consider an increasing sequence of compact subsets

Q i ⊂ Int(K) with Q i = Int(K) and dist(Q i , ∂K) ≥ ρ i > 0. Since the function (x, u) → (L x,u V ) is uniformly continuous on the compact set Q i × U , there exist ε 1 ≥ ε 2 . . . ≥ ε i . . . > 0 satisfying the following relation: (10) ∀u ∈ U, ∀x, y ∈ Q i , with |x -y| < ε i , | (L x,u V ) -(L y,u V ) | ≤ 1.
Let x ∈ Int(K) and i > 0 be such that x ∈ Int(Q i ). We set ξ i,0 = ū(x) and u i,0 = ξ i,0 I [0,∞) ∈ U.

Step I: construction of a suitable control u i for Q i . Let us define the following stopping times

τ i,0 = 0, τ i,1 = inf{s ≥ τ i,0 , X x,u i,0 s / ∈ Q i or |X x,u i,0 s -X x,u i,0 τi,0 | ≥ ε i }.
We set ξ i,1 = ū(X x,u i,0 τi,1 )I {τi,1<∞} + ξ i,0 I {τi,1=∞} and u i,1 = ξ i,0 I [0,τi,1) + ξ i,1 I [τi,1,+∞) ∈ U, and we define the new stopping time

τ i,2 = inf{s ≥ τ i,1 , X x,u i,1 s / ∈ Q i or |X x,u i,1 s -X x,u i,1 τi,1 | ≥ ε i }.
Similarly, by iteration, we define a nondecreasing sequence of stopping times (τ i,k ) k≥0 and a sequence of random variables (ξ i,k ) k≥0 . Now for an arbitrary u 0 ∈ U define

Θ i := lim k↑+∞ ↑ τ i,k , u i := k≥0 ξ i,k I [τ i,k ,τ i,k+1 ) + u 0 I [Θi,+∞) ∈ U. We claim that (11) Θ i = inf{s ≥ 0, X x,u i s / ∈ Q i }.
From the very definition of Θ i and of the sequence (τ i,k ) k≥0 , to prove our claim it is enough to show that the sequence (τ l ) l≥0 defined below satisfies lim l τ l = +∞. To prove [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF], fix u ∈ U and an arbitrary ε > 0.

Let us introduce the (auxiliary) stopping times

τ 0 = 0 τ l+1 = inf{s ≥ τ l , |X x,u s -X x,u τ l | ≥ ε}, for l ≥ 0 .
Observe that for the particular choice u = u i we have τ i,k = τ k ∧ Θ i . Thus to prove [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF], it suffices to show that τ k ↑ +∞ as k → ∞.

Let T > 0 be arbitrarily chosen. Then for all t ∈ [0, T ∧ 1], we deduce from the (conditional) Chebychev inequality and from standard estimates on the trajectory t → X x,u t that

P [τ l+1 -τ l ≤ t|F τ l ] = P [ sup s∈[0,t] |X x,u τ l +s -X x,u τ l | ≥ ε|F τ l ] ≤ 1 ε 3 E[ sup s∈[0,t] |X x,u τ l +s -X x,u τ l | 3 |F τ l ] ≤ C t 3/2 ε 3 , P -a.s. on {τ l < +∞}.
Consequently, since b and σ are bounded on K, for all N ≥ 1,

P [τ N ≤ T ] = P [ N -1 l=0 τ l+1 -τ l ≤ T, τ j ≤ T, ∀j = 0, 1 . . . N -1] ≤ N -1 l=0 P [τ l+1 -τ l ≤ T N , τ l ≤ T ] = N -1 l=0 E[I {τ l+1 -τ l ≤ T n } I {τ l ≤T } ] = N -1 l=0 E{E[I {τ l+1 -τ l ≤ T N } I {τ l ≤T } |F τ l ]} = N -1 l=0 E[P τ l+1 -τ l ≤ T N |F τ l I τ l ≤T ] ≤ CN (T /N ) 3/2 ε 3 → 0, as N → ∞.
Thus, τ N ↑ +∞, P -a.s., as N → ∞. Our claim [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF] is proved. Moreover, observe that we have obtained ( 12)

P [ k≥0 ↑ {τ i,k = Θ i , Θ i < +∞}] = P [Θ i < +∞].
Step II: Construction of a suitable control u for Int(K). We iterate the process of Step I as follows for the set Q i+1 . We put τ i+1,0 := Θ i , ξ i+1,0 := ū(X x,u i τi+1,0 )I {τi+1,0<∞} + ξ i,0 I {τi+1,0=∞} , u i+1,0 :=

u i I [0,Θi) + ξ i+1,0 I [Θi,+∞) ∈ U, τ i+1,1 := inf{s ≥ τ i+1,0 , X x,u 1+i,0 s / ∈ Q i+1 or |X x,u i+1,0 s -X x,u i+1,0 τi+1,0 | ≥ ε i+1 } ξ i+1,1 := ū(X x,u i+1,0 τi+1,1 )I {τi+1,1<∞} + ξ i+1,0 I {τi+1,1=∞} , u i+1,1 := u i I [0,Θi) + ξ i+1,0 I [τi+1,0,τi+1,1) + ξ i+1,1 I [τi+1,1,+∞) ∈ U, etc.
By analogy with step I, we define a control

u i+1 := u i I [0,Θi) + k≥0 ξ i+1,k I [τ i+1,k ,τ i+1,k+1 ) + u 0 I [Θi+1,+∞) ∈ U,
and the stopping time

Θ i+1 = lim k↑+∞ ↑ τ i+1,k = inf{s ≥ 0, X 0,u i+1 s / ∈ Q i+1 }.
Notice that

P [ k≥0 ↑ {τ i+1,k = Θ i+1 , Θ i+1 < ∞}] = P [Θ i+1 < +∞].
So we are now able to define the control u by setting

u := m≥i u m I [Θm-1,Θm) + u 0 I [Θ,+∞) , (13) 
where Θ i-1 := 0 and Θ := lim m ↑ Θ m .

Observe that due to the above construction,

Θ m = inf{s ≥ 0, X x,u s / ∈ Q m }, for m ≥ i, Θ = inf{s ≥ 0, X x,u s ∈ ∂K}. Moreover, for s ∈ [τ m,k , τ m,k+1 ) ( m ≥ i, k ≥ 0 ) we have |X x,u s -X x,u τ m,k | ≤ ε m . Hence, L X x,u s ,u(s) V = L X x,u s ,ξ m,k V ≤ L X x,u τ m,k ,ξ m,k V + 1 ≤ L + 2,
in view of ( 9) and [START_REF] Buckdahn | On a representation formula for the mean curvature motion[END_REF]. From Itô's formula we obtain, for all m ≥ i, t ≥ 0,

E[V (X x,u t∧Θm )] = V (x) + E[ t∧Θm 0 L X x,u s ,u(s) V ds] ≤ V (x) + (L + 2)t.
Consequently, letting m → ∞, Fatou's lemma yields ( 14)

E[lim inf m→∞ V (X x,u t∧Θm )] ≤ V (x) + (L + 2)t, t ∈ [0, +∞).
Recalling that V (x) = -ln g(x) for x ∈ Int(K), we observe that lim inf m→∞ V (X x,u t∧Θm ) = +∞ on the set {Θ(= lim m ↑ Θ m ) ≤ t}. Thus [START_REF] Buckdahn | Controlled stochastic differential equations under constraints in infinite dimensional spaces[END_REF] implies that P (Θ ≤ t) = 0, i.e., P -a.s. we have X x,u s ∈ Int(K) for all s ∈ [0, t], or in other words P [X x,i s ∈ Int(K), s ∈ [0, t] ] = 1, t ≥ 0. Replacing t by an increasing sequence t n ↑ +∞, from the monotone continuity property of the probability measure P we deduce the viability property of Int(K) on [0, +∞), our desired result (c).

Let us now prove that (c) implies (a). As in [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF], we introduce the value function W defined by (3) for λ > 0 large enough but fixed. With the assumptions (H1)-(H3) one can easily show that W is continuous with polynomial growth (cf [START_REF] Buckdahn | Existence of stochastic control under state constraints[END_REF] and references therein).

Fix x ∈ K, and consider a sequence (x k ) k≥0 such that

x k ∈ Int(K), for all k ≥ 0, and lim k x k = x .

From (c) we know that for all k ≥ 0 there exists u k ∈ U with X x k ,u k s ∈ Int(K) for all s ≥ 0, P -a.s. This yields W (x k ) = 0. From the continuity of W we deduce that W (x) = lim k W (x k ) = 0. Hence in view of Remark 1.2, our desired result (a) is obtained. Now we state our second main result under the additional assumption (H5).

Proposition 2.3. Let K ⊂ R n be a nonempty closed set. Assume (H1)-(H5). Then the set K is viable for (1) if and only if its interior Int(K) is viable for [START_REF] Jaber | Stochastic invariance of closed sets with non-Lipschitz coefficients[END_REF].

Proof : This result can be deduced from Proposition 2.2 by noticing that under (H5) the ε-viability of K is equivalent1 to the viability of K. Indeed a viable set K is obviously ε-viable. Therefore Int(K) is viable by Proposition 2.2. Conversely suppose that Int(K) is viable, thus K is ε-viable. Fix x ∈ K. From (H5), we know by [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: Existence of an optimal control[END_REF] that the infimum in (3) is attained and so there is an admissible control v(•) ∈ U on a possibly enlarged probability space such that

W (x) = E[ ∞ 0 e -λs d 2 K (X x,v s )ds].
So Remark 1.2 implies that W (x) = 0. This yields that X x,v s ∈ K for all s ≥ 0, P -a.e. The proof is complete.

Examples

In this section we discuss two examples where the equivalence between the viability of K and Int(K) fails.

For our result we need in a crucial way the smoothness of the constraint set K. This fact is illustrated in the following Example 3.1. Without sufficient regularity of K, it is possible to have the viability property for K while its interior Int(K) is not viable. Indeed, consider the two-dimensional deterministic control problem with constraint set By using Proposition 1.3, one can easily check that K is viable for the above control system. Moreover, since X(t) = e -t (1 + X(0)) -1, any viable trajectory starting from some (x 0 , y 0 ) ∈ K with x 0 > 0 must reach (0, 0) which does not belong to Int(K). Consequently, Int(K) is not viable.

K := {(x, y) ∈ R 2 , 0 ≤ x ≤ 1 2 , 0 ≤ y ≤ x 2 } ∪ [-1, 0] × R ⊂ R
Note that the lack of regularity of K occurs only at the point (0, 0).

The Example below shows that without Lipschitz continuity of the dynamics Proposition 2.3 fails.

Example 3.2. Consider the following dynamics on R (here n = d = 1) (15) dX(s) = 2 X(s)dW (s), X(0) = x > 0.

with the constraint set K := [0, ∞).

Observe that X is the squared Bessel process. We know that it touches 0 in finite time and 0 is absorbing (cf [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] chap. XI). So K is viable but Int(K) is not viable.

Proposition 2 . 2 .

 22 Let K ⊂ R n be a nonempty compact set. Assume (H1)-(H4). Then the following statements are equivalent:(a) The set K is ε-viable for (1). (b) For all x ∈ ∂K there exists some v ∈ U such that σ(x, v) * D δ K (x) = 0, and L x,v (δ K ) ≥ 0 .(c) The set Int(K) is viable for (1). Proof : We proceed by proving (a) ⇒ (b) ⇒ (c) ⇒ (a).

2 ,

 2 anddX(t) = -(1 + X(t))dt dY (t) = -3 4 u(t)dt, u(t) ∈ [0, 1] .

This equivalence between ε-viability and viability is valid under (H5) for an arbitrary closed set K, even in the absence of the regularity assumption (H4).
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