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The main purpose of this work is to establish some first and second order necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints. The control may affect both the drift and the diffusion terms of the systems and the control regions are allowed to be nonconvex. A stochastic inward pointing condition is proposed to ensure the normality of the corresponding necessary conditions.

Introduction

Let d, m, n, k ∈ N and R n×m be the space of all n × m-real matrices. For any A ∈ R n×m , denote by A and |A| = tr(AA ) respectively the transpose and norm of A. Also, denote by •, • and | • | respectively the usual inner product and norm in R n or R m , which can be identified from the context, and by B(X) the Borel σ-field of a metric space X.

Let T > 0 and (Ω, F, F, P ) be a complete filtered probability space with the filtration F = {F t } 0≤t≤T (satisfying the usual conditions), on which a d-dimensional standard Wiener process W (•) ≡ W 1 (•), • • • , W d (•) is defined such that F is the natural filtration generated by W (•) (augmented by all the P -null sets). We consider the following controlled stochastic differential equation dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t), t ∈ [0, T ],

x(0) = x 0 , (1.1) 
with the Mayer-type cost functional

J(x(•), u(•)) = E φ(x(T )), (1.2) 
the initial-final states constraints

x 0 ∈ K 0 , E ϕ (x(T )) ≤ 0, = 1, . . . , k (1.3) 
and the state constraint E g(x(t)) ≤ 0, for all t ∈ [0, T ]. (1.4) Here u(•) ∈ U is a control, U is the set of B([0, T ]) ⊗ F-measurable and F-adapted stochastic processes with values in a closed nonempty subset U of R m such that u 2 := E T 0 |u(t)| 2 dt 1 2 < ∞, x(•) solves (1.1), b : [0, T ]×R n ×R m ×Ω → R n , σ = (σ 1 , . . . , σ d ) : [0, T ]×R n ×R m ×Ω → R n×d , φ : R n ×Ω → R, ϕ : R n → R, = 1, . . . , k and g : R n → R are given functions (satisfying suitable conditions to be given later), and, K 0 is a nonempty subset of R n . As usual, when the context is clear, we omit writing ω (∈ Ω) explicitly.

A state-control pair (x(•), u(•)) is called admissible if u(•) ∈ U and x(•), the solution of (1.1) corresponding to u, satisfies (1.3) and (1.4). In this case, we call u(•) an admissible control. Denote by P ad the set of all admissible pairs. In this paper, we shall consider the following optimal control problem: inf (x(•),u(•))∈P ad J(x(•), u(•)).

(1.5)

Similarly to its counterpart in deterministic optimal control problems, we define Definition 1.1. An admissible pair (x, ū) ∈ L 2 F (Ω; C([0, T ]; R n )) × U is called a local minimizer for the problem (1.5) if there exists a δ > 0 such that J((x(•), u(•))) ≥ J(x(•), ū(•)) for any (x(•), u(•)) ∈ P ad satisfying |x(0) -x(0)| < δ and u -ū 2 < δ.

One of the main motivations to study the optimal control problem (1.5) with state constraint (1.4) comes from its financial applications. Let us consider an investment and consumption model as follows: Suppose there are m + 1 assets whose price processes S i (•), i = 0, 1, . . . , m are described by the following differential equations:

dS 0 (t) = rS 0 (t)dt, t ∈ [0, T ], S 0 (0) = s 0 ,

and, for i = 1, 2, . . . , m,

   dS i (t) = b i S i (t)dt + d j=1 σ ij S i (t)dW j (t), t ∈ [0, T ], S i (0) = s i , (1.7) 
where r ∈ [0, ∞), s 0 , s i , b i , σ ij ∈ R, i = 1, 2, . . . , m, j = 1, . . . , d. Denote by x(t) the total wealth of an investor at time t and by u i (t) the market value of his or her wealth in the i-th asset at time t, i = 1, . . . , m.

Then, x satisfies the following controlled stochastic differential equation:

   dx(t) = rx(t) + c(t) + m i=1 (b i -r)u i (t) dt + m i=1 d j=1
σ ij u i (t)dW j (t), t ∈ [0, T ],

x(0) = x 0 ,

where x 0 is the initial wealth and c(•) is a suitably chosen scalar stochastic processes. In order to prohibit bankrupt the investor needs to choose the portfolio u(•) ≡ u 1 (•), • • • , u m (•) such that the corresponding state x satisfies x(t, ω) ≥ 0, a.e. (t, ω) ∈ [0, T ] × Ω.

(1.9)

Many scholars have studied this type of portfolio selection problem, see [START_REF] Bielecki | Continuous-time mean-variance portfolio selection with bankruptcy prohibition[END_REF][START_REF] Cvitanić | Convex duality in constrained portfolio optimization[END_REF][START_REF] Karoui | A dynamic maximum principle for the optimization of recursive utilities under constraints[END_REF] and the references cited therein. Generally, the portfolio that only prohibits bankrupt is not well adapted to an individual investor with initial wealth x 0 > 0, who wishes to keep the expected return to be not lower than a proper proportion of the initial wealth for all time t, i.e., for some θ > 0, E x(t) ≥ θx 0 , for all t ∈ [0, T ].

(1.10)

Obviously, (1.10) is a special case of (1.4). Note that, under this condition, the investor still has to face the danger of the bankruptcy with some probability.

The optimal control problems with state constraints have been studied extensively in the deterministic setting, see [START_REF] Cernea | A connection between the maximum principle and dynamic programming for constrained control problems[END_REF][START_REF] Frankowska | A second-order maximum principle in optimal control under state constraints[END_REF][START_REF] Frankowska | Inward pointing trajectories, normality of the maximum principle and the non occurrence of the Lavrentieff phenomenon in optimal control under state constraints[END_REF][START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF] Páles | First-and second-order necessary conditions for control problems with constraints[END_REF][START_REF] Vinter | Optimal Control[END_REF] and the references therein. However, compared with their deterministic counterpart, the literature for the state constrained stochastic optimal control problems is not rich. The existing results on necessary optimality conditions for stochastic optimal control problems under state constraints only focus on some special cases, as for instance when the diffusion terms are invertible with respect to the control variable and the state constraint is represented by (1.9). When the diffusion terms are invertible with respect to the control variable, the controlled stochastic differential equation can be rewritten as a backward stochastic differential equation without control, and, by the comparison theorem (see [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF], p. [START_REF] Páles | First-and second-order necessary conditions for control problems with constraints[END_REF], under some further assumptions, the state constraint (1.9) is equivalent to the sample point pointwise end-point constraint x(T ) ≥ 0, a.s.

Then, the state constrained optimal control problem can be reformulated as a stochastic optimization problem using backward stochastic differential equations. For more details, we refer the reader to [START_REF] Bielecki | Continuous-time mean-variance portfolio selection with bankruptcy prohibition[END_REF][START_REF] Ji | A maximum principle for stochastic optimal control with terminal state constraints, and its applications[END_REF]. Unfortunately, this approach fails whenever the state constraint (1.4) is present.

The main purpose of this paper is to provide some first and second order necessary conditions for the local minimizers of problem (1.5). The techniques of variational analysis are used to handle the nonconvexity of the control regions. Using the separation theorem, we first establish a weak maximum principle for local minimizers. Then, we derive some second order necessary conditions for critical elements of local minimizers. Also, a sufficient condition, namely a stochastic inward pointing condition, is proposed to guarantee the normality of the weak maximum principle.

Some key ideas of this paper are taken from [START_REF] Cernea | A connection between the maximum principle and dynamic programming for constrained control problems[END_REF][START_REF] Frankowska | First and second order necessary conditions for stochastic optimal controls[END_REF] and they can be used to deal with much more general classes of state constrained stochastic optimal control problems. For instance, the state constraints may be defined by finitely many inequalities and (or) the function g may depend on the time variable t. Further, one may consider some other control problems, for example, the mean field type stochastic control problems, the forward-backward stochastic control problems, or, the same control system but with the pointwise state constraint (for some nonempty subset

K of R n ) x(t, ω) ∈ K, a.e. (t, ω) ∈ [0, T ] × Ω. (1.11)
Nevertheless, in this paper, we do not intend to pursue the full generality. Instead, we shall discuss such problem in a relatively simple setting making the main idea much clearer and direct. Other cases will be discussed elsewhere. The rest of this paper is organized as follows. In Section 2, we collect some notations and introduce some preliminary results that will be used later. In Section 3, we derive the first order necessary condition for stochastic optimal controls, and, in Section 4, we establish the second order necessary conditions. Finally, in Section 5, we present a stochastic inward pointing condition to guarantee the normality of the first order necessary condition.

Preliminaries

In this section, we introduce some notations and results which will be used in the sequel.

Let

f : [0, T ] × R n × R m × Ω → R ( ∈ N
) be a given function. For a.e. (t, ω) ∈ [0, T ] × Ω, we denote by f x (t, x, u, ω) and f u (t, x, u, ω) respectively the first order partial derivatives of f with respect to x and u at (t, x, u, ω), by f (x,u) 2 (t, x, u, ω) the Hessian of f with respect to (x, u) at (t, x, u, ω), and by f xx (t, x, u, ω), f xu (t, x, u, ω) and f uu (t, x, u, ω) the second order partial derivatives of f with respect to x and u at (t, x, u, ω) respectively.

For any α, β ∈ [1, +∞) and t ∈ [0, T ], we denote by

L β Ft (Ω; R n ) the space of R n -valued, F t measurable random variables ξ such that E |ξ| β < +∞; by L β ([0, T ] × Ω; R n ) the space of R n -valued, B([0, T ]) ⊗ F- measurable processes ϑ such that ϑ β := E T 0 |ϑ(t, ω)| β dt 1 β < +∞; by L β F (Ω;L α (0, T ;R n )) the space of R n - valued, B([0, T ])⊗F-measurable, F-adapted processes ϑ such that ϑ α,β := E T 0 |ϑ(t, ω)| α dt β α 1 β < +∞; by L β F (Ω; C([0, T ]; R n )) the space of R n -valued, B([0, T ])⊗F-measurable and F-adapted continuous processes ϑ such that ϑ ∞,β := E sup t∈[0,T ] |ϑ(t, ω)| β 1 β < +∞, by C F ([0, T ]; L β (Ω; R n )) the space of R n -valued, B([0, T ])⊗F-measurable and F-adapted processes ϑ such that the map t → ϑ(t, •) is continuous in L β F T (Ω; R n ) and ϑ β,∞ := sup t∈[0,T ] E |ϑ(t, ω)| β 1 β < +∞, by L β F (Ω; D([0, T ]; R n )) the space of R n -valued, B([0, T ]
)⊗Fmeasurable and F-adapted processes ϑ whose paths are right-continuous with left limits and ϑ ∞,β < +∞, by

L β F (Ω; BV ([0, T ]; R n )) the space of processes ϑ ∈ L β F (Ω; D([0, T ]; R n )) whose sample paths have bounded variation such that ϑ BV,β := E |ϑ(t, ω)| β BV [0,T ] 1 β < +∞, by L β F (Ω; BV 0 ([0, T ]; R n )) the space of processes ϑ ∈ L β F (Ω; BV ([0, T ]; R n )) with ϑ(0) = 0, and, by L ∞ F ([0, T ] × Ω; R n ) the space of R n -valued, B([0, T ]) ⊗ F- measurable, F-adapted processes ϑ such that ϑ ∞ := ess sup (t,ω)∈[0,T ]×Ω |ϑ(t, ω)| < +∞.
When every sample path of a process ϑ has left limits, we denote by ϑ -its left continuous modification.

Let us recall that on a given filtered probability space, any F-progressively measurable process is B([0; T ]) ⊗F-measurable and F-adapted, and every B([0; T ])⊗F-measurable, F-adapted process has an F-progressively measurable modification (see [START_REF] Yong | Stochastic Controls: Hamiltonian Systems and HJB Equations[END_REF]Proposition 2.8,p. 17]).

Next, we recall some concepts and results from the set-valued analysis. We refer the reader to [START_REF] Aubin | Set-Valued Analysis[END_REF] for more details.

In the sequel, we assume that X is a Banach space with a norm • X and the dual X * . For any subset K ⊂ X, denote by ∂K, intK, clK and coK its boundary, interior, closure and convex hull, respectively. K is called a cone if αx ∈ K for any α > 0 and x ∈ K. For a cone K, the convex closed cone

K -:= {ξ ∈ X * | ξ(x) ≤ 0, ∀ x ∈ K} is called the dual cone (or negative polar cone) of K. Define the distance between a point x ∈ X and K by dist (x, K) := inf y∈K y -x X . Definition 2.1. For x ∈ K, the Clarke tangent cone C K (x) to K at x is defined by C K (x) := v ∈ X lim ε→0 + y∈K, y→x dist (y + εv, K) ε = 0 , the adjacent cone T b K (x) to K at x is defined by T b K (x) := v ∈ X lim ε→0 + dist (x + εv, K) ε = 0 . It is well known that C K (x) is a closed convex cone in X and C K (x) ⊂ T b K (x). By the definition of T b K (x), v ∈ T b K (x) if and only if for any ε > 0 there exists a v ε ∈ X such that v ε → v (in X) as ε → 0 + and x+εv ε ∈ K. Equivalently, v ∈ T b K (x)
if and only if for any ε > 0 there exists an η(ε) ∈ X with η(ε

) X = o(ε) (ε → 0 + ) such that x+εv+η(ε) ∈ K. When K is convex, for any x ∈ K, T b K (x) = C K (x) = cl{α(y-x) | α ≥ 0, y ∈ K}. Example 2.1.
Let ϕ : R n → R, = 1, ..., k be continuously differentiable with globally Lipschitz derivatives. Consider the set K T defined by

K T := ξ ∈ L 2 F T (Ω; R n ) E ϕ (ξ) ≤ 0, = 1, . . . , k . (2.1) Let ξ ∈ K T and define I(ξ) := ∈ {1, . . . , k} | E ϕ (ξ) = 0 . If I(ξ) = ∅, then T b K T (ξ) = L 2 F T (Ω; R n ). If I(ξ) = ∅ and there exists a set A ∈ F T with P (A) > 0 such that Z(ω) := z ∈ R n ϕ x (ξ(ω)), z < 0, ∀ ∈ I(ξ) = ∅, a.s. in A, (2.2) then, int T b K T (ξ) = ∅ and T b K T (ξ) = v ∈ L 2 F T (Ω; R n ) E ϕ x (ξ), v ≤ 0, ∀ ∈ I(ξ) . Proof. Let v ∈ T b K T (ξ).
Then, from the definition of the adjacent cone, for any ε > 0, there exists a

v ε ∈ L 2 F T (Ω; R n ) such that v ε converges to v in L 2 F T (Ω; R n ) as ε → 0 + and ξ + εv ε ∈ K T . Therefore, for any ∈ I(ξ), 0 ≥ E ϕ (ξ + εv ε ) = E ϕ (ξ) + εE ϕ x (ξ), v ε + o(ε) = εE ϕ x (ξ), v ε + o(ε)
Dividing by ε the both sides of the above inequality and letting ε → 0 + , we obtain that

E ϕ x (ξ), v ≤ 0.
On the other hand, by the condition (2.2) and by similar arguments to those in [16, Proof of Lemma 3.3], there exists a v ∈ L 2

F T (Ω; R n ) such that E ϕ x (ξ), v < 0, ∀ ∈ I(ξ). (2.3)
From the definition of the adjacent cone, it is easy to verify that v ∈ int T b K T (ξ) . Let v ∈ L 2 F T (Ω; R n ) be such that, for any ∈ I(ξ), E ϕ x (ξ), v ≤ 0. Then E ϕ x (ξ), v λ < 0 for all ∈ I(ξ), where λ ∈ (0, 1) and v λ := (1 -λ)v + λv. It implies that there exists a ρ > 0 such that for all sufficiently small ε > 0,

E ϕ (ξ + εv λ ) = E ϕ (ξ) + εE ϕ x (ξ), v λ + o(ε) < -ερ + o(ε) ≤ 0, ∀ ∈ I(ξ) and E ϕ (ξ + εv λ ) = E ϕ (ξ) + εE ϕ x (ξ), v λ + o(ε) < -ρ + εE ϕ x (ξ), v λ + o(ε) ≤ 0, ∀ / ∈ I(ξ).
This proves that v λ ∈ T b K T (ξ) for any λ ∈ (0, 1). Since

T b K T (ξ) is closed, letting λ → 0, we have v ∈ T b K T (ξ).
Observe that the proof in the above example can be used to show that, under the condition (2.2),

C K T (ξ) = T b K T (ξ) when K T is represented by (2.1
). Definition 2.2. For any x ∈ K and v ∈ T b K (x), the second order adjacent subset to K at (x, v) is defined by

T b(2) K (x, v) := h ∈ X lim ε→0 + dist (x + εv + ε 2 h, K) ε 2 = 0 . Thus h ∈ T b (2) 
K (x, v) if and only if for any ε > 0 there exists an

h ε ∈ X such that h ε → h (in X) as ε → 0 + and x + εv + ε 2 h ε ∈ K. Remark 2.1. It is not difficult to check that v ∈ T b(2) K (x, 0) if and only if v ∈ T b K (x). Moreover, it follows from [12, Lemma 2.4] that, if T b(2) K (x, v) = ∅, then C K (x) + T b(2) K (x, v) = T b(2) K (x, v). In particular, C K (x) + T b K (x) = T b K (x). The dual cone of the Clarke tangent cone C K (x), denoted by N C K (x), is called the Clarke normal cone to K at x, i.e., N C K (x) := ξ ∈ X * ξ(v) ≤ 0, ∀ v ∈ C K (x) .
When K is convex, N C K (x) is the normal cone N K (x) := ξ ∈ X * ξ(y -x) ≤ 0, ∀ y ∈ K of the convex analysis.

The following three elementary lemmas will be useful in the sequel. Lemma 2.5]) Let H be a Hilbert space (with an inner product •, • H ), and K be a nonempty closed polyhedra in H, i.e., for some {a

Lemma 2.1. ([16, Lemma 2.4]) Let K 1 , . . . , K k be convex cones in X such that k i=1 intK i = ∅. Then for any convex cone K 0 such that K 0 k i=1 intK i = ∅, we have k i=0 K i -= k i=0 K - i . Lemma 2.2. ([16,
1 , • • • , a k } ⊂ H \ {0} and {b 1 , • • • , b k } ⊂ R, K := x ∈ H | a i , x H + b i ≤ 0, ∀ i = 1, • • • , k . If 0 = ξ ∈ H satisfies sup x∈K ξ, x H < +∞, then, this supremum is attained at some x ∈ ∂K and ξ ∈ i∈I(x) R + a i , where I(x) := i ∈ {1, • • • , k} a i , x H + b i = 0 . Lemma 2.3 ([6]
). Let X be a Banach space and M 0 , M 1 , . . . , M k be nonempty convex subsets of X such that

M i is open for all i ∈ {1, • • • , k}. Then M 0 ∩ M 1 ∩ . . . ∩ M k = ∅ (2.4)
if and only if there are x * 0 , x * 1 , . . . , x * k ∈ X * , not vanishing simultaneously, such that

x * 0 + x * 1 + . . . + x * k = 0, inf x * 0 (M 0 ) + inf x * 1 (M 1 ) + . . . + inf x * k (M k ) ≥ 0, (2.5) 
where inf x * j (M j ) := inf{x * j (x) | x ∈ M j } for j ∈ {0, 1, • • • , k}. Furthermore, if (2.5) holds true and for some i ∈ {0, . . . , k}, there is a nonempty cone C i ⊂ X and

x i ∈ X such that x i + C i ⊂ M i , then -x * i ∈ C - i .
A very short proof of the above lemma can be found in [START_REF] Frankowska | Second-order necessary conditions for a strong local minimum in a problem with state and general control constraints[END_REF].

Remark 2.2. Lemma 2.3 implies that: if (2.5) holds true for a nontrivial family

x * 0 , x * 1 , . . . , x * k ∈ X * , k ≥ 2, and M 0 ∩ M 2 ∩ . . . ∩ M k = ∅, then x * 1 = 0.
Let (Ξ, G ) be a measurable space, Y be a complete separable metric space and F : Ξ ; Y be a set-valued map. The inverse F -1 of F is the set-valued map from Y to Ξ defined by 

F -1 (y) := ξ ∈ Ξ y ∈ F (ξ) , ∀ y ∈ Y. Recall that F is called measurable if F -1 (A) := {ξ ∈ Ξ | F (ξ) ∩ A = ∅} ∈ G
M (ξ) := y ∈ F (ξ) f (ξ, y) = inf z∈F (ξ) f (ξ, z) , ∀ ξ ∈ Ξ is a measurable set-valued map (from Ξ to Y ).
Combining [1, Theorem 8.5.1] with [16, Lemma 2.6], we have:

Lemma 2.5. Suppose (Ξ, G , µ) is a complete finite measure space, X is a separable Banach space, p ≥ 1 and K is a closed nonempty subset in X. Define

K := ϕ(•) ∈ L p (Ξ, G , µ; X) ϕ(ξ) ∈ K, µ-a.e. ξ ∈ Ξ .
Then for any ϕ(•) ∈ K, the set-valued maps

C K (ϕ(•)): ξ ; C K (ϕ(ξ)) and T b K (ϕ(•)): ξ ; T b K (ϕ(ξ)) are measurable, and v(•) ∈ L p (Ξ, G , µ; X) v(ξ) ∈ C K (ϕ(ξ)), µ-a.e. ξ ∈ Ξ ⊂ v(•) ∈ L p (Ξ, G , µ; X) v(ξ) ∈ T b K (ϕ(ξ)), µ-a.e. ξ ∈ Ξ ⊂ T b K (ϕ(•)).
(2.6)

As in [START_REF] Kisielewicz | Stochastic Differential Inclusions and Applications[END_REF], we call a measurable set-valued map ζ : (Ω, F) ; R m a set-valued random variable. We call a map Γ : [0, T ] × Ω ; R m a measurable set-valued stochastic process if Γ is B([0, T ]) ⊗ F-measurable, and, we say that Γ is F-adapted if Γ(t) is F t -measurable for any t ∈ [0, T ]. Define

A := A ∈ B([0, T ]) ⊗ F A t ∈ F t , ∀ t ∈ [0, T ] , (2.7) 
where

A t := {ω ∈ Ω | (t, ω) ∈ A} is the section of A. Obviously, A is a σ-subalgebra of B([0, T ]) ⊗ F.
As pointed in [20, p. 96], the following result holds.

Lemma 2.6. A set-valued stochastic process Γ :

[0, T ] × Ω ; R m is B([0, T ]) ⊗ F-measurable and F-adapted if and only if Γ is A -measurable.
The following result will play a key role in the sequel.

Lemma 2.7. Let p, q ∈ (1, ∞) and 1 p + 1 q = 1. Then, for any bounded linear functional Λ on the Banach space L p F (Ω; C([0, T ]; R n )), there exists a process

ψ ∈ L q F (Ω; BV 0 ([0, T ]; R n )) such that Λ(x(•)) = E T 0 x(t), dψ(t) , ∀ x(•) ∈ L p F (Ω; C([0, T ]; R n )), (2.8) 
and

Λ L p F (Ω;C([0,T ];R n )) * ≤ ψ L q F (Ω;BV ([0,T ];R n )) .
(2.9)

Proof. Clearly L p F (Ω; C([0, T ]; R n )) is a linear subspace of L p F (Ω; D([0, T ]; R n )). For Λ ∈ L p F (Ω; C([0, T ]; R n )) * , by the Hahn-Banach theorem, one can find an extension Λ ∈ L p F (Ω; D([0, T ]; R n )) * such that || Λ|| L p F (Ω;D([0,T ];R n )) * = ||Λ|| L p F (Ω;C([0,T ];R n )) * (2.10) and Λ(x(•)) = Λ(x(•)), ∀ x(•) ∈ L p F (Ω; C([0, T ]; R n )). (2.11)
From the proof of [9, Theorem 65, p. 254], we deduce that, there exist two processes ψ + (•) and ψ -(•) with bounded variation such that ψ + (•) is optional and purely discontinuous, ψ -(•) is predictable with ψ -(0) = 0,

E (0,T ] d|ψ -(t)| + [0,T ) d|ψ + (t)| 2 < ∞
and, for any

x(•) ∈ L p F (Ω; D([0, T ]; R n )), Λ(x(•)) = E (0,T ] x -(t), dψ -(t) + [0,T )
x(t), dψ + (t) .

Define ψ * := ψ -+ ψ + . By (2.11), we have

Λ(x(•)) = E T 0 x(t), dψ * (t) , ∀ x(•) ∈ L p F (Ω; C([0, T ]; R n )).
Letting ψ = ψ * -ψ * (0), we obtain (2.8). (2.9) follows from (2.8).

Let p = q = 2. Obviously, for any

ψ ∈ L 2 F (Ω; BV 0 ([0, T ]; R n )), x(•) → E T 0 x(t), dψ(t) , ∀ x(•) ∈ L 2 F (Ω; C([0, T ]; R n ))
defines a bounded linear functional on L 2 F (Ω; C([0, T ]; R n )). Due to this and in order to simplify the notation, in this paper we identify the process ψ ∈ L 2 F (Ω; BV 0 ([0, T ]; R n )) with the above bounded linear functional, and for a convex cone

K ⊂ L 2 F (Ω; C([0, T ]; R n )), we say ψ ∈ K -if E T 0 x(t), dψ(t) ≤ 0, ∀ x(•) ∈ K.
By Itô's formula for discontinuous semimartingales (see [24, Theorem 33]), we have the following result.

Lemma 2.8. Let ψ ∈ L 2 F (Ω; BV ([0, T ]; R n )) and z(•) = z(0)+ • 0 η(t)dt+ d j=1 • 0 ϑ j (t)dW j (t) with z(0) ∈ R n , η, ϑ j ∈ L 2 F (Ω; L 2 (0, T ; R n )), j = 1, . . . , d. Then, E z(T ), ψ(T ) = E z(0), ψ(0) + E T 0 z(t), dψ(t) + E T 0 ψ(t), η(t) dt. Proof. Since ψ ∈ L 2 F (Ω; BV ([0, T ]; R n )), we have ψ -(•), ϑ j (•) ∈ L 2 (0, T ; R) a.s., for any j = 1, . . . , d. Let A n (ω) := t ∈ [0, T ] d j=1 t 0 | ψ -(s, ω), ϑ j (s, ω) | 2 ds > n . Define τ n (ω) := inf A n (ω), if A n (ω) = ∅, T, if A n (ω) = ∅, ω ∈ Ω and z n (•) = z(0) + • 0 η(t)dt + d j=1 • 0 ϑ j (t)χ [0,τn] (t)dW j (t).
By [24, Theorem 33], we have

z n (T ), ψ(T ) -z(0), ψ(0) = T 0 z n (t), dψ(t) + T 0 ψ -(t), η(t) dt + d j=1 T 0 ψ -(t), ϑ j (t) χ [0,τn] (t)dW j (t), a.s.
Obviously, by the property of the Lebesgue integral,

T 0 ψ -(t), η(t) dt = T 0 ψ(t), η(t) dt, a.s. In addition, since d j=1 E T 0 | ψ -(t), ϑ j (t) χ [0,τn] (t)| 2 dt ≤ n, by the property of Itô's integral we have d j=1 E T 0 ψ -(t), ϑ j (t) χ [0,τn] (t)dW j (t) = 0.
Therefore,

E z n (T ), ψ(T ) -z(0), ψ(0) = E T 0 z n (t), dψ(t) + E T 0 ψ(t), η(t) dt.
(2.12)

Obviously, by Lebesgue's dominated convergence theorem,

E T 0 |ϑ j (t)χ [0,τn] (t) -ϑ j (t)| 2 dt → 0, n → ∞, j = 1, . . . , d, which implies that E sup t∈[0,T ] |z n (t) -z(t)| 2 → 0 as n → ∞.
Then, the desired conclusion follows by passing to the limit on both sides of (2.12).

We end this section by the following simple result (which is certainly known but we could not find an exact reference). Lemma 2.9.

L β F (Ω; C([0, T ]; R n )) ⊂ C F ([0, T ]; L β (Ω; R n )) for any β ∈ [1, ∞). Proof.
Although the proof of this lemma is obvious, for the sake of completeness, we give below the details.

Let z ∈ L β F (Ω; C([0, T ]; R n )). We only need to prove that t → z(t) is a continuous function from [0, T ] to the Banach space L β F T (Ω; R n ). Let t ∈ [0, T ] and t n ∈ [0, T ], t n → t as n → ∞. Since z ∈ L β F (Ω; C([0, T ]; R n )), z(t n , ω) → z(t, ω) a.s. as n → ∞. On the other hand, E |z(t n , ω)| β ≤ E sup t∈[0,T ] |z(t, ω)| β < +∞. By Lebesgue's dominated convergence theorem, E |z(t n , ω) -z(t, ω)| β → 0 as n → ∞.

First order necessary conditions

In this section, we study the first order necessary optimality conditions for the optimal control problem (1.5).

We need the following assumptions:

(A1) The control region U is nonempty and closed in R m .

(A2) The functions b, σ, φ, g and ϕ , = 1, . . . , k satisfy the following:

(i) For any (x, u) ∈ R n × R m , b(•, x, u, •) : [0, T ] × Ω → R n and σ j (•, x, u, •) : [0, T ] × Ω → R n (j = 1, . . . , d) are B([0, T ]) ⊗ F-measurable and F-adapted. For a.e. (t, ω) ∈ [0, T ] × Ω, the functions b(t, •, •, ω) : R n × R m → R n and σ j (t, •, •, ω) : R n × R m → R n are differentiable and (x, u) → (b x (t, x, u, ω), b u (t, x, u, ω)), (x, u) → (σ j x (t, x, u, ω), σ j u (t, x, u, ω)), j = 1, . . . , d are uniformly continuous in x ∈ R n and u ∈ R m . There exists a constant L ≥ 0 and a nonnegative η ∈ L 2 F (Ω; L 2 (0, T ; R)) such that for a.e. (t, ω) ∈ [0, T ] × Ω and for any x ∈ R n and u ∈ R m ,      |b(t, 0, u, ω)| + |σ j (t, 0, u, ω)| ≤ L(η(t, ω) + |u|), |b x (t, x, u, ω)| + |b u (t, x, u, ω)| ≤ L, |σ j x (t, x, u, ω)| + |σ j u (t, x, u, ω)| ≤ L, j = 1, . . . , d; (ii) For any x ∈ R n , the random variable φ(x, •) is F T -measurable, φ(•, ω) : R n → R is differentiable a.s.
, and there exists a nonnegative

η T ∈ L 2 F T (Ω; R) such that for any x, x ∈ R n , |φ(x, ω)| ≤ L(η T (ω) 2 + |x| 2 ), |φ x (0, ω)| ≤ Lη T (ω), a.s., |φ x (x, ω) -φ x (x, ω)| ≤ L|x -x|, a.s.
(iii) g and ϕ , = 1, . . . , k are differentiable functions from R n to R, and, for any

x, x ∈ R n ,      |g(x)| + k =1 |ϕ (x)| ≤ L(1 + |x| 2 ), |g x (0)| + k =1 |ϕ x (0)| ≤ L, |g x (x) -g x (x)| + k =1 |ϕ x (x) -ϕ x (x)| ≤ L|x -x|.
Moreover we assume that, g(x 0 ) < 0 for every x 0 ∈ K 0 .

When the conditions (i) and (ii) in (A2) are satisfied, the state x (of (1.1)) is uniquely defined by any given initial datum x 0 ∈ R n and control u ∈ U, and the cost functional (1.2) is well-defined for u(•) ∈ U. In what follows, C represents a generic positive constant (depending only on T , η(•), η T (•) and L), which may differ from one place to another.

Let (x, ū) be a local minimizer and x0 := x(0). For f = b, σ, denote

f x [t] = f x (t, x(t), ū(t)), f u [t] = f u (t, x(t), ū(t)).
Let Φ be a set-valued stochastic process satisfying

   Φ is B([0, T ]) ⊗ F-measurable and F-adapted; for a.e. (t, ω) ∈ [0, T ] × Ω, Φ(t, ω) is a nonempty closed convex cone in R m ; Φ(t, ω) ⊂ T b U (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × Ω. (3.1) Define T Φ (ū) := v(•) ∈ L 2 F (Ω; L 2 (0, T ; R m )) v(t, ω) ∈ Φ(t, ω), a.e. (t, ω) ∈ [0, T ] × Ω . Since 0 ∈ T Φ (ū), T Φ (ū) is nonempty. Clearly it is a closed convex cone in L 2 F (Ω;L 2 (0, T ;R m ))
. By Lemma 2.5, we may chose Φ(t, ω) = C U (ū(t, ω)). However, in general, there may exist a Φ(t, ω) as above such that

C U (ū(t, ω)) Φ(t, ω) ⊂ T b U (ū(t, ω)). Let v ∈ T Φ (ū) and ν 0 ∈ T b K0 (x 0 )
. We consider the following first order linearized stochastic control system:

   dy 1 (t) = b x [t]y 1 (t) + b u [t]v(t) dt + d j=1 σ j x [t]y 1 (t) + σ j u [t]v(t) dW j (t), t ∈ [0, T ], y 1 (0) = ν 0 . (3.2)
It is easy to see that, under the assumption (i) in (A2), for any v ∈ T Φ (ū) and

ν 0 ∈ T b K0 (x 0 ), (3.2) admits a unique solution y 1 (•) ∈ L 2 F (Ω; C([0, T ]; R n )). By Lemma 2.5, T Φ (ū) ⊂ T b U (ū). For any ε > 0, choose ν ε 0 ∈ R n and v ε ∈ L 2 F (Ω; L 2 (0, T ; R m )) such that x ε 0 := x0 + εν ε 0 ∈ K 0 , u ε := ū + εv ε ∈ U and ν ε 0 → ν 0 in R n , v ε → v in L 2 F (Ω; L 2 (0, T ; R m )) as ε → 0 + . Let x ε
be the solution of (1.1) corresponding to the control u ε and the initial datum x ε 0 , and put

δx ε = x ε -x, r ε 1 (t, ω) := δx ε (t, ω) ε -y 1 (t, ω).
The following results for the d-dimensional Wiener process can be proved in the same way as [15, Lemma 3.2] for the one-dimensional Wiener process. Lemma 3.1. Let (i) and (ii) in (A2) hold. Then, for any β ≥ 2, a)

y 1 ∞,β ≤ C ν 0 + v 2,β , δx ε ∞,β = O(ε); b) r ε 1 ∞,β → 0, as ε → 0 + . Let T K0 (x 0 ) be a nonempty closed convex cone contained in T b K0 (x 0 ). Denote G (1) := y 1 (•) ∈ L 2 F (Ω; C([0, T ]; R n )) y 1 solves (3.2) with v ∈ T Φ (ū) and ν 0 ∈ T K0 (x 0 ) , (3.3) 
I g 0 := {t ∈ [0, T ] | Eg(x(t)) = 0}, (3.4) 
and

I ϕ 0 := ∈ {1, . . . , k} | Eϕ (x(T )) = 0 .
Consider the sets

Q (1) := z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E g x (x(t)), z(t) < 0, ∀ t ∈ I g 0 , (3.5) 
and

E (1) := z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E ϕ x (x(T )), z(T ) < 0, ∀ ∈ I ϕ 0 . (3.6) When I g 0 = ∅ (resp. I ϕ 0 = ∅) we set Q (1) = L 2 F (Ω; C([0, T ]; R n )) (resp. E (1) = L 2 F (Ω; C([0, T ]; R n ))). Also, we define L (1) := z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E φ x (x(T )), z(T ) < 0 . (3.7)
Since T Φ (ū) and T K0 (x 0 ) are nonempty convex cones, G (1) is a nonempty convex cone in

L 2 F (Ω; C([0, T ]; R n )).
Notice that E (1) and L (1) are, possibly empty, open convex cones in

L 2 F (Ω; C([0, T ]; R n ))
. In Example 2.1 we have found that when the condition (2.2) (with ξ replaced by x(T )) holds true, there exists a

z T ∈ L 2 F T (Ω) such that E ϕ x (x(T )), z T < 0 for every ∈ I ϕ 0 . By the Itô representation theorem (see [21, Theorem 4.3.3, p.51]), there exist ϑ j ∈ L 2 F (Ω; L 2 (0, T ; R n )), j = 1, . . . , d such that z T = E z T + d j=1 T 0 ϑ j (t)dW j (t), a.s. Then, z(•) := E z T + d j=1
• 0 ϑ j (t)dW j (t) belongs to E (1) . Similarly, when φ x (x(T )) = 0 on a set A ∈ F T with P (A) > 0, L (1) = ∅. Furthermore, when Q (1) and E (1) are nonempty sets,

cl ∞,2 Q (1) = {z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E g x (x(t)), z(t) ≤ 0, ∀ t ∈ I g 0 },
and cl ∞,2 E (1) = z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E ϕ x (x(T )), z(T ) ≤ 0, ∀ ∈ I ϕ 0 . Lemma 3.2. Q (1) is an open convex cone in L 2 F (Ω; C([0, T ]; R n )). Proof. It is sufficient to prove that Q (1) is open when it is nonempty. Let z ∈ Q (1) . Since x ∈ L 2 F (Ω; C([0, T ]; R n ))
, by Lemma 2.9, I g 0 is a compact subset of [0, T ]. Hence, there exists a constant ρ > 0 such that E g x (x(t)), z(t) < -ρ for every t ∈ I g 0 and for some δ > 0 and for

any η ∈ L 2 F (Ω; C([0, T ]; R n )) with η ∞,2 ≤ δ, E g x (x(t)), z(t) + η(t) < - ρ 2 , ∀ t ∈ I g 0 .
This proves that z ∈ intQ (1) .

We associate with the first order variational equation (3.2), the following first order adjoint equation

       dP 1 (t) = -b x [t] P 1 (t)+ψ(t) + d j=1 σ j x [t] Q j 1 (t) dt+ d j=1 Q j 1 (t)dW j (t), t ∈ [0, T ], P 1 (T ) = -λ 0 φ x (x(T )) - ∈I ϕ 0 λ ϕ x (x(T )) -ψ(T ), (3.8) 
where λ 0 ∈ {0, 1}, ψ ∈ L 2 F (Ω; BV 0 ([0, T ]; R n )) and λ ≥ 0 for any ∈ I ϕ 0 ( λ 0 , {λ } and ψ will be specified later). Since

L 2 F (Ω; BV 0 ([0, T ]; R n )) ⊂ L 2 F (Ω; L 2 (0, T ; R n ))
, under the assumption (A2), the equation (3.8) admits a unique strong solution (P

1 (•), Q 1 (•)) ∈ L 2 F (Ω; C([0, T ]; R n ))× L 2 F (Ω; L 2 (0, T ; R n×d )). Define the Hamiltonian H (t, x, u, p, q, r, ω) := p + r, b(t, x, u, ω) + d j=1 q j , σ j (t, x, u, ω) , (3.9) 
where (t, x, u, p, q, r, ω)

∈ [0, T ] × R n × R m × R n × R n×d × R n × Ω, and denote 
H [t] = H (t, x(t), ū(t), P 1 (t), Q 1 (t), ψ(t)), t ∈ [0, T ], H x [t], H u [t], H xx [t], H xu [t] and H uu [t]
are defined in a similar way.

Let γ be the map from

L 2 F (Ω; C([0, T ]; R n )) to L 2 F T (Ω; R n ) given by γ(x) = x(T ), ∀ x ∈ L 2 F (Ω; C([0, T ]; R n )). (3.10)
By Lemma 2.9, γ is a well-defined bounded linear operator. By Lemma 2.7, denote by

γ * : L 2 F T (Ω; R n ) → L 2 F (Ω; BV 0 ([0, T ]; R n )) (3.11)
the adjoint operator of γ.

We next state the first order necessary optimality condition in the integral form.

Theorem 3.1. Let (A1)-(A2) hold and (x, ū) be a local minimizer for the problem (1.5). If E |g x (x(t))| = 0 for any t ∈ I g 0 , then there exist λ 0 ∈ {0, 1}, λ ≥ 0 for any ∈ I ϕ 0 and ψ ∈ Q (1) -with ψ(0) = 0 satisfying

λ 0 + ∈I ϕ 0 λ + ψ BV,2 = 0
such that the corresponding solution (P 1 , Q 1 ) to the first order adjoint equation (3.8) verifies

P 1 (0), ν 0 + E T 0 H u [t], v(t) dt ≤ 0, ∀ ν 0 ∈ T K0 (x 0 ), ∀ v(•) ∈ T Φ (ū).
(3.12)

In addition, the above holds true with

λ 0 = 1 if Q (1) ∩ G (1) ∩ E (1) = ∅.
Letting Φ(t, ω) = C U (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × Ω and T K0 (x 0 ) = C K0 (x 0 ) and using the same arguments as those in [15, proof of Theorem 3.2], as a direct consequence of Theorem 3.1, we obtain the following pointwise first order necessary condition (Hence we omit its proof). Theorem 3.2. Let (A1)-(A2) hold. If (x, ū) is a local minimizer for the problem (1.5) such that E|g x (x(t))| = 0 for any t ∈ I g 0 , then for (P 1 , Q 1 ) as in Theorem 3.1,

P 1 (0) ∈ N C K0 (x 0 ) and H u [t] ∈ N C U (ū(t)), a.e. t ∈ [0, T ], a.s. (3.13)
Proof. (of Theorem 3.1). We shall derive the desired result by considering several cases.

(i) If I g 0 = ∅, then E g(x(t)) < 0 for every t ∈ [0, T ] and Q (1) = L 2 F (Ω; C([0, T ]; R n )). Let ν 0 ∈ T K0 (x 0 ) and v ∈ T Φ (ū). Consider µ(ε) ∈ R n with |µ(ε)| = o(ε) and η(ε) ∈ L 2 F (Ω; L 2 (0, T ; R n )) with η(ε) 2 = o(ε) such that x ε 0 := x0 + εν 0 + µ(ε) ∈ K 0 and u ε := ū + εv + η(ε) ∈ U. Let
x ε be the solution to the control system (1.1) with the initial datum x ε 0 and control u ε and let y 1 be the solution to the first order linearized control system (3.2) with control v and initial datum ν 0 . By Lemma 3.1, for any fixed t ∈ [0, T ], one can find ρ(t) > 0 and α(t) > 0 such that for any ε ∈ [0, α(t)],

E g(x ε (t)) = E g(x(t)) + εE g x (x(t)), y 1 (t) + o(ε) ≤ -ρ(t) + Cε(|ν 0 | + v 2 ) + o(ε) < - ρ(t) 2 .
Then, by the continuity of x ε and Lemma 2.9, there exists a δ(t) > 0 such that

E g(x ε (s)) < - ρ(t) 4 , ∀ s ∈ (t -δ(t), t + δ(t)).
In the above we have set x ε (s) ≡ x 0 when s ∈ (-δ(0), 0] and x ε (s) ≡ x(T ) when s ∈ [T, T + δ(T )). Since [0, T ] is compact, there exist ρ 0 > 0 and ε 0 > 0 (both independent from t), such that for any ε ∈ [0, ε 0 ], E g(x ε (t)) ≤ -ρ 0 for every t ∈ [0, T ]. This proves that any (x ε (•), u ε (•)) obtained by a sufficiently small perturbation of ū(•) and x0 satisfies the state constraint (1.4). Setting ψ ≡ 0 and using [16, proof of Theorem 3.4] we deduce that, there exist λ 0 ∈ {0, 1}, λ ≥ 0 for ∈ I ϕ 0 , λ 0 + ∈I ϕ 0 λ = 0 such that, for the adjoint process (P 1 , Q 1 ) defined by (3.8) (with ψ ≡ 0),

P 1 (0), ν 0 + E T 0 H u [t], v(t) dt ≤ 0, ∀ ν 0 ∈ T K0 (x 0 ), ∀ v(•) ∈ T Φ (ū)
and that λ 0 = 1 if G (1) ∩ E (1) = ∅.

(ii) I g 0 = ∅, then -g x (x(•)) ∈ Q (1) and therefore, Q (1) = ∅. We first prove that

G (1) ∩ Q (1) ∩ E (1) ∩ L (1) = ∅. (3.14)
Indeed, otherwise, there would exist a ȳ1 ∈ G (1) ∩ Q (1) ∩ E (1) such that

E φ x (x(T )), ȳ1 (T ) < 0. (3.15)
Let ν0 ∈ T K0 (x 0 ) and v(•) ∈ T Φ (ū(•)) be respectively the initial datum and control corresponding to ȳ1 .

Consider µ(ε) ∈ R n with |µ(ε)| = o(ε) and η(ε) ∈ L 2 F (Ω; L 2 (0, T ; R n )) with η(ε) 2 = o(ε) such that x ε 0 := x0 + εν 0 + µ(ε) ∈ K 0 and u ε := ū + εv + η(ε) ∈ U. Let
x ε be the solution to the control system (1.1) with the initial datum x ε 0 and control u ε . Since ȳ1 ∈ Q (1) , there exists a ρ 0 > 0 such that E g x (x(t)), ȳ1 (t) < -ρ 0 for every t ∈ I g 0 . Then, by Lemma 2.9 and the compactness of I g 0 , there exists a δ > 0 (independent of t ∈ I g 0 ) such that, E g x (x(s)), ȳ1 (s) < -ρ0 2 for every s ∈ (t -δ, t + δ) ∩ [0, T ], t ∈ I g 0 . Using Lemma 3.1 again, we can find an ε 0 > 0 such that, for any ε ∈ [0, ε 0 ],

E g(x ε (s)) = E g(x(s)) + ε E g x (x(s)), ȳ1 (s) + o(ε) ≤ ε E g x (x(s)), ȳ1 (s) + o(ε) < - ερ 0 4 < 0, ∀ s ∈ (t -δ, t + δ) ∩ [0, T ], t ∈ I g 0 . (3.16) 
In addition, because

I c δ := [0, T ] \ ∪ t∈I g 0 (t -δ, t + δ) is a compact set, there exist ρ 1 > 0 and ε 1 > 0 such that, for any ε ∈ [0, ε 1 ], E g(x ε (t)) = E g(x(t)) + εE g x (x(t)), ȳ1 (t) + o(ε) < -ρ 1 + εE g x (x(t)), ȳ1 (t) + o(ε) < - ρ 1 2 < 0, ∀ t ∈ I c δ . (3.17) 
By (3.16) and (3.17), x ε satisfies the state constraint (1.4) when ε < min{ε 0 , ε 1 }. Moreover, since ȳ1 (T ) ∈ E (1) , E ϕ x (x(T )), ȳ1 (T ) < 0 for avery ∈ I ϕ 0 . Similarly to the arguments in the proof of [START_REF] Frankowska | Stochastic optimal control problems with control and initial-final states constraints[END_REF]Theorem 3.4], for every sufficient small ε, x ε satisfies the end point constraint (1.3). This proves that, when ε is small enough, (x ε , u ε ) ∈ P ad . By (3.15), there exists a ρ 2 > 0 such that for sufficiently small ε,

E φ(x ε (T )) = E φ(x(T )) + εE φ x (x(T )), ȳ1 (T ) + o(ε) < E φ(x(T )) -ερ 2 + o(ε) < E φ(x(T )),
in contradiction with the local optimality of (x, ū). This completes the proof of (3.14). Now we consider three different subcases.

Case a: Q (1) ∩ G (1) = ∅. Since Q (1) is a nonempty open convex set and G (1) is nonempty and convex, by Lemma 2.7 and the separation theorem there exists a nonzero ψ ∈ L 2

F (Ω; BV ([0, T ]; R n )) with ψ(0) = 0 such that sup z∈Q (1) E T 0 z(t), dψ(t) ≤ inf y∈G (1) E T 0 y(t), dψ(t) .
Because Q (1) and G (1) are cones, 0 = sup

z∈Q (1) E T 0 z(t), dψ(t) = inf y∈G (1) E T 0 y(t), dψ(t) .
Therefore, ψ ∈ Q (1) -and -ψ ∈ G (1) -. By Lemma 2.8, for any y 1 ∈ G (1) ,

0 ≥ -E T 0 y 1 (t), dψ(t) = -E y 1 (T ), ψ(T ) + E T 0 ψ(t), b x [t]y 1 (t) + b u [t]v(t) dt. (3.18)
On the other hand, by the duality between (3.2) and (3.8) we have

E P 1 (T ), y 1 (T ) -P 1 (0), ν 0 = E T 0 P 1 (t), b x [t]y 1 (t) + P 1 (t), b u [t]v(t) -b x [t] (P 1 (t) + ψ(t)), y 1 (t) - d j=1 σ j x [t] Q j 1 (t), y 1 (t) + d j=1 Q j 1 (t), σ j x [t]y 1 (t) + d j=1 Q j 1 (t), σ j u [t]v(t) dt = E T 0 P 1 (t), b u [t]v(t) -b x [t] ψ(t), y 1 (t) + d j=1 Q j 1 (t), σ j u [t]v(t) dt. (3.19) 
Set λ 0 = 0, λ = 0, ∈ I ϕ 0 and P 1 (T ) = -ψ(T ). Then, λ 0 + ∈I ϕ 0 λ + ψ BV,2 = 0 and (3.12) follows from (3.18) and (3.19).

Case b: Q (1) ∩ G (1) = ∅ and Q (1) ∩ G (1) ∩ E (1) = ∅.

If E (1) = ∅, then from the proof of case (ii) in [16, Theorem 3.4], we know that, for each ∈ I ϕ 0 there exists a λ ≥ 0 such that ∈I ϕ 0 λ > 0 and ∈I ϕ 0 λ ϕ x (x(T )) = 0. Then, taking λ 0 = 0, ψ ≡ 0 and P 1 (T ) = 0, we have λ 0 + ∈I ϕ 0 λ + ψ BV,2 = 0 and the condition (3.12) holds trivially with (P 1 , Q 1 ) ≡ 0.

If E (1) = ∅, then γ Q (1) ∩ G (1) ∩ E (1) 
T = ∅, where γ is the bounded linear operator defined by (3.10) and

E

(1)

T := ζ ∈ L 2 F T (Ω; R n ) E ϕ x (x(T )), ζ < 0, ∀ ∈ I ϕ 0 . (3.20) 
By the separation theorem, there exists a nonzero ξ ∈ L 2

F T (Ω; R n ) such that sup α∈γ(Q (1) ∩G (1) ) E ξ, α ≤ inf β∈E (1) T E ξ, β .
Since both γ(Q (1) ∩ G (1) ) and

E (1) T are cones, 0 = sup α∈γ(Q (1) ∩G (1) ) E ξ, α = inf β∈E (1) T E ξ, β . Therefore, ξ ∈ γ(Q (1) ∩ G (1) )
-and -ξ ∈ E

(1) T -. By Lemma 2.1, for each ∈ I ϕ 0 there exists a λ ≥ 0 such that

∈I ϕ 0 λ > 0 and -ξ = ∈I ϕ 0 λ ϕ x (x(T )). In addition, 0 ≥ E ξ, γ(z) ∀ z ∈ Q (1) ∩ G (1) , (3.21) 
implying that γ * (ξ) ∈ Q (1) ∩ G (1) -. By Lemma 2.1 there exists a ψ ∈ Q (1) -with ψ(0) = 0 such that γ * (ξ) -ψ ∈ G (1) -. Then, by Lemma 2.8, for any y 1 ∈ G (1) , Case c:

0 ≥ E ξ, y 1 (T ) -E T 0 y 1 (t), dψ(t) 13 = E ξ, y 1 (T ) -E ψ(T ), y 1 (T ) + E T 0 ψ(t), b x [t]y 1 (t) + b u [t]v(t) dt. (3.22) Let λ 0 = 0. Since ξ = 0, λ 0 + ∈I ϕ 0 λ + ψ BV,2 = 0. Setting P 1 (T ) = - ∈I ϕ 0 λ ϕ x (x(T )) -ψ(T ), (3.23 
Q (1) ∩ G (1) ∩ E (1) = ∅. It implies that γ Q (1) ∩ G (1) ∩ E (1) 
T = ∅, (E (1) 
T is defined by (3.20)). By (3.14), 0 ≤ E φ x (x(T )), z(T ) for every z ∈ Q (1) ∩ G (1) ∩ E (1) . This yields

0 ≤ E φ x (x(T )), ζ , ∀ ζ ∈ γ Q (1) ∩ G (1) ∩ E (1) T . Consequently, -φ x (x(T )) ∈ γ Q (1) ∩ G (1) ∩ E (1) T -. By Lemma 2.1, γ Q (1) ∩ G (1) ∩ E (1) T -= γ Q (1) ∩ G (1) -+ E (1) T -.
Then, for each ∈ I ϕ 0 there exists a λ ≥ 0 such that ξ :=

∈I ϕ 0 λ ϕ x (x(T )) ∈ E (1) T -and -φ x (x(T )) - ∈I ϕ 0 λ ϕ x (x(T )) ∈ γ Q (1) ∩ G (1) -. Therefore, γ * -φ x (x(T )) - ∈I ϕ 0 λ ϕ x (x(T )) ∈ Q (1) ∩ G (1) -= Q (1) -+ G (1) -.
Let ψ ∈ Q (1) -with ψ(0) = 0 be such that

γ * -φ x (x(T )) - ∈I ϕ 0 λ ϕ x (x(T )) -ψ ∈ G (1) - and set λ 0 = 1, P 1 (T ) = -φ x (x(T )) - ∈I ϕ 0 λ ϕ x (x(T )) -ψ(T ). (3.24) 
Then, λ 0 + ∈I ϕ 0 λ + ψ BV,2 = 0 and, by Lemma 2.8 once more, for any y 1 ∈ G (1) , To end this section, we give below a simple example.

0 ≥ -E φ x (x(T ))), y 1 (T ) - ∈I ϕ 0 λ E ϕ x (x(T )), y 1 (T ) -E T 0 y 1 (t), dψ(t) = -E φ x (x(T ))), y 1 (T ) - ∈I ϕ 0 λ E ϕ x (x(T )), y 1 (T ) -E ψ(T ), y 1 (T ) +E T 0 ψ(t), b x [t]y 1 (t) + b u [t]v(t) dt. ( 3 
Example 3.1. Let T = 2, m = n = 2, d = 1, K 0 = {0}(⊂ R 2 ) and B = 0 1 0 0 , C = 0 1 0 0 , D = 0 0 1 0 . Consider the control system dx(t) = Bu(t)dt + Cx(t) + Du(t) dW (t), t ∈ [0, 2], x(0) = 0 (3.26)
with the control set

U := (u 1 , u 2 ) ∈ R 2 0 ≤ u 1 ≤ 2, 0 ≤ u 2 ≤ 2 -4 -(u 1 -2) 2 , the cost functional E φ(x(2)) = 1 2 E |x 1 (2) -1 -(W (2) -W (1)) 2 | 2 -2E x 1 (2)
and the state constraint

E g(x(t)) = E x 1 (t) -2 ≤ 0, ∀ t ∈ [0, 2]. Let ū(•) = (ū 1 (•), ū2 (•)) be defined by ū1 (t, ω) = 0, (t, ω) ∈ [0, 1) × Ω; 2, (t, ω) ∈ [1, 2] × Ω. , ū2 (t, ω) = 2, (t, ω) ∈ [0, 1) × Ω; 0, (t, ω) ∈ [1, 2] × Ω.
Then, the solution

x(•) = (x 1 (•), x2 (•)) of (3.26) corresponding to ū(•) is x1 (t) = 2t, t ∈ [0, 1), a.s.; 3 -t + (W (t) -W (1)) 2 , t ∈ [1, 2], a.s.; x2 (t) = 0, t ∈ [0, 1), a.s.; 2W (t) -2W (1), t ∈ [1, 2], a.s.
Clearly, (x, ū) is an optimal pair, I g 0 = [1, 2], and,

Q (1) = y ∈ L 2 F (Ω; C([0, T ]; R n )) E y 1 (t) < 0, ∀ t ∈ [1, 2] .
It is easy to check that

T b U (ū(t, ω)) = C U (ū(t, ω)) =    (0, -α) α ≥ 0 , (t, ω) ∈ [0, 1) × Ω; (-α, 0) α ≥ 0 , (t, ω) ∈ [1, 2] × Ω.
Then, we can choose Φ(t, ω) = T b U (ū(t, ω)) for any (t, ω)

∈ [0, 2] × Ω. Letting v(t, ω) = (0, -1) , (t, ω) ∈ [0, 1) × Ω; (0, 0) , (t, ω) ∈ [1, 2] × Ω and y 1 (•) = (y 1 1 (•), y 2 1 (•)) be the solution to dy 1 (t) = Bv(t)dt + Cy 1 (t) + Dv(t) dW (t), t ∈ [0, 2], y 1 (0) = 0, (3.27) 
we have y 1 ∈ G (1) ∩ Q (1) . Set

ψ(t, ω) = (0, 0) , (t, ω) ∈ [0, 1) × Ω; (1, 0) , (t, ω) ∈ [1, 2] × Ω,
λ 0 = 1 and let (P 1 , Q 1 ) be the solution to the backward stochastic differential equation

dP 1 (t) = -C Q 1 (t)dt + Q 1 (t)dW (t), t ∈ [0, 2], P 1 (2) = (1, 0) . (3.28) Then ψ ∈ Q (1) -, λ 0 + ψ BV,2 = 0, (P 1 , Q 1 ) ≡ ((1, 0) , 0), P 1 (t, ω) + ψ(t, ω) = (1, 0) , (t, ω) ∈ [0, 1) × Ω; (2, 0) , (t, ω) ∈ [1, 2] × Ω,
and,

H u [t], v = B (P 1 (t) + ψ(t)), v ≤ 0, ∀ v ∈ C U (ū(t)), ∀ t ∈ [0, T ], a.s.
Therefore, the first order necessary condition (3.13) holds.

Second order necessary condition

In this section, we investigate the second order necessary condition for (x, ū) to be a local minimizer for the problem (1.5). Throughout this section, we assume that ū ∈ L 4 F (Ω; L 4 (0, T ; R m )) and write V := U ∩ L 4 F (Ω; L 4 (0, T ; R m )). In addition to (A1)-(A2), we assume that (A3) b, σ j (j = 1, . . . , d), φ, g and ϕ ( = 1, . . . , k) satisfy the following conditions:

(i) For a.e. (t, ω) ∈ [0, T ] × Ω, b(t, •, •, ω) : R n × R m → R n and σ j (t, •, •, ω) : R n × R m → R n (j = 1, . . . , d) are twice differentiable and (x, u) → b (x,u) 2 (t, x, u, ω), (x, u) → σ j (x,u) 2 (t, x, u, ω), j = 1, . . . , d
are uniformly continuous in x ∈ R n and u ∈ R m , and,

|b (x,u) 2 (t, x, u, ω)| + d j=1 |σ j (x,u) 2 (t, x, u, ω)| ≤ L, ∀ (x, u) ∈ R n × R m , a.s.;
(ii) φ(•, ω) : R n → R is twice differentiable a.s., and for any x, x ∈ R n ,

|φ xx (x, ω)| ≤ L, |φ xx (x, ω) -φ xx (x, ω)| ≤ L|x -x|, a.s.
(iii) g, ϕ , = 1, . . . , k are twice differentiable functions, and for any x,

x ∈ R n ,        |g xx (x)| + k =1 |ϕ xx (x)| ≤ L, |g xx (x) -g xx (x)| + k =1 |ϕ xx (x) -ϕ xx (x)| ≤ L|x -x|, a.s.
For f = b, σ j (j = 1, . . . , d), write

f xx [t] = f xx (t, x(t), ū(t)), f xu [t] = f xu (t, x(t), ū(t)), f uu [t] = f uu (t, x(t), ū(t)).
For any

ν 0 ∈ T b K0 (x 0 ), v ∈ T b V (ū), 0 ∈ T b(2) K0 (x 0 , ν 0 ) and h ∈ T b(2) V
(ū, v) (Here and henceforth, for the

definitions of T b V (ū) and T b(2) V (ū, v), V is viewed as a subset of L 4 F (Ω; L 4 (0, T ; R m ))
), similarly to [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF][START_REF] Frankowska | First and second order necessary conditions for stochastic optimal controls[END_REF], we introduce the following second-order variational equation:

             dy 2 (t) = b x [t]y 2 (t) + b u [t]h(t) + 1 2 y 1 (t) b xx [t]y 1 (t) + v(t) b xu [t]y 1 (t) + 1 2 v(t) b uu [t]v(t) dt + d j=1 σ j x [t]y 2 (t)+σ j u [t]h(t)+ 1 2 y 1 (t) σ j xx [t]y 1 (t) +v(t) σ j xu [t]y 1 (t) + 1 2 v(t) σ j uu [t]v(t) dW j (t), t ∈ [0, T ], y 2 (0) = 0 , (4.1) 
where y 1 is the solution of the linearized equation (3.2). By the definition of the second order adjacent vector, for any ε > 0, there exist ε

0 ∈ R n and h ε ∈ L 4 F (Ω; L 4 (0, T ; R m )) such that x ε 0 := x0 + εν 0 + ε 2 ε 0 ∈ K 0 , u ε := ū + εv + ε 2 h ε ∈ V, ε 0 → 0 in R n and h ε converges to h in L 4
F (Ω; L 4 (0, T ; R m )) as ε → 0 + . Denote by x ε the solution of (1.1) corresponding to the initial datum x ε 0 and the control u ε . Put

δx ε = x ε -x, r ε 2 (t, ω) := δx ε (t, ω) -εy 1 (t, ω) -ε 2 y 2 (t, ω) ε 2 .
The next result for d-dimensional Wiener process follows by the same arguments as those used to prove [15, Lemma 4.1].

Lemma 4.1. Let (A2) (i) and (A3) (i) hold. Then, for any v, h, h ε ∈ L 4 F (Ω; L 4 (0, T ; R m )) and ν 0 , 0 , ε 0 ∈ R n as above, we have

y 2 ∞,2 ≤ C(| 0 | + v 2 4 + h 2 ). Furthermore, r ε 2 ∞,2 → 0, ε → 0 + . (4.2)
Define the critical set ) ) and E φ x (x(T )), y 1 (T ) = 0 . (4.3)

Υ(x, ū) := (y 1 , v, ν 0 ) ∈ L 4 F (Ω; C([0, T ]; R n ))×T b V (ū)×T b K0 (x 0 ) y 1 solves (3.2), y 1 ∈ cl ∞,2 (Q (1) ) ∩ cl ∞,2 (E ( 1 
For any (y 1 , v, ν 0 ) ∈ Υ(x, ū), let W(x 0 , ν 0 ) and M(ū, v) be convex subsets of

T b(2) K0 (x 0 , ν 0 ) and T b(2) V (ū, v), respectively. Denote G (2) (y 1 , v) := y 2 ∈ L 2 F (Ω; C([0, T ]; R n )) y 2 solves (4.1) for some 0 ∈ W(x 0 , ν 0 ) and h ∈ M(ū, v) . (4.4) Remark 4.1. Let v ∈ T b V (ū).
When U is defined by finitely many equalities and inequalities constraints, under some constraint qualification and smoothness assumptions, the second order adjacent set

T b(2) U (ū(t, ω), v(t, ω)) is a nonempty closed convex subset of R m for a.e. (t, ω) ∈ [0, T ] × Ω (see [15, Example 2.1]). Moreover, if there exist a nonnegative η(•) ∈ L 4 F (Ω; L 4 (0, T ; R)) and an ε 0 > 0 such that dist(ū(t, ω) + εv(t, ω), U ) ≤ ε 2 η(t, ω), a.e. (t, ω) ∈ [0, T ] × Ω, ∀ ε ∈ [0, ε 0 ], (4.5) 
then, similarly to the proof of [15, Theorem 4.1], we deduce that every h(

•) ∈ L 4 F (Ω; L 4 (0, T ; R m )) satisfying h(t, ω) ∈ T b(2) U (ū(t, ω), v(t, ω)) for a.e. (t, ω) ∈ [0, T ] × Ω belongs to T b(2) V (ū, v).
In this case, we can choose M(ū, v) to be the set 

h(•) ∈ L 4 F (Ω; L 4 (0, T ; R m )) h(t, ω) ∈ T b(2) U (ū(t, ω), v(t, ω)), a.e. (t, ω) ∈ [0, T ] × Ω .

Define

I g 1 := t ∈ I g 0 E g x (x(t)), y 1 (t) = 0 , (4.6)

I ϕ 1 := ∈ I ϕ 0 | E ϕ x (x(T )), y 1 (T ) = 0 , (4.7) τ g (x) := t ∈ [0, T ] ∃ {s i } ∞ i=1 ⊂ [0, T ] such that lim i→∞ s i = t, E g(x(s i )) < 0, E g x (x(s i )), y 1 (s i ) > 0, ∀ i = 1, 2, . . . , (4.8) 
and

e(t) :=          lim sup s→t E g(x(s))<0 E gx(x(s)),y1(s) >0 E g x (x(s)), y 1 (s) 2 4 E g(x(s))
, t ∈ τ g (x), 0, otherwise.

(4.9)

Consider the set

Q (2) (y 1 ) := z ∈ L 2 F (Ω; C([0, T ]; R n )) For all t ∈ I g 1 , E g x (x(t)), z(t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) + e(t) < 0 (4.10)
and

E (2) (y 1 ) := z ∈ L 2 F (Ω; C([0, T ]; R n )) For all ∈ I ϕ 1 , E ϕ x (x(T )), z(T ) + 1 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) < 0 . (4.11)
Remark 4.2. From (4.9), it is easy to see that e(•) is an upper semicontinuous function on I g 1 . Therefore, Q (2) (y 1 ) is a convex open set (possibly empty). When y 1 ∈ Q (1) , i.e., E g x (x(t)), y 1 (t) < 0 for any t ∈ I g 0 ,

Q (2) (y 1 ) = L 2 F (Ω; C([0, T ]; R n ))
, since for such y 1 , I g 1 = ∅. In addition, if there exists a δ > 0 such that

E g x (x(s)), y 1 (s) ≤ 0, ∀ s ∈ (t -δ, t + δ), t ∈ I g 0 ,
then, e(t) = 0 for any t ∈ I g 1 . In this case, Q (2) (y 1 ) enjoys a much simpler expression:

Q (2) (y 1 ) := z ∈ L 2 F (Ω; C([0, T ]; R n )) For all t ∈ I g 1 , E g x (x(t)), z(t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) < 0 .
However, since the function e(•) depends on the process y 1 , in general, e(•) = 0. For more details about this issue in the deterministic cases we refer the reader to [START_REF] Páles | Optimum problems with certain lower semicontinuous set-valued constraints[END_REF] and references cited therein.

Let (P 1 , Q 1 ), ψ and λ , ∈ I ϕ 0 be defined as in the proof of Theorem 3.1 in the case when G (1) ∩Q (1) ∩E (1) = ∅ (See (3.3), (3.5) and (3.6) for the definitions of G (1) , Q (1) and E (1) , respectively). In particular, P 1 (T ) is given by (3.24). Corresponding to such fixed (P 1 , Q 1 ), ψ and λ for all ∈ I ϕ 0 , we introduce the following adjoint equation to (4.1):

               dP 2 (t) = -b x [t] P 2 (t) + P 2 (t)b x [t] + d j=1 σ j x [t] P 2 (t)σ j x [t] + d j=1 σ j x [t] Q j 2 (t) + d j=1 Q j 2 (t)σ j x [t] + H xx [t] dt + d j=1 Q j 2 (t)dW j (t), t ∈ [0, T ], P 2 (T ) = -φ xx (x(T )) - ∈I ϕ 0 λ ϕ xx (x(T )), (4.12)
where H is given by (3.9). Clearly, under the assumptions (A2)-(A3), the equation (4.12) admits a unique strong solution (P

2 (•), Q 2 (•)) ∈ L 2 F (Ω; C([0, T ]; S n )) × L 2 F (Ω; L 2 (0, T ; S n )) d , where S n := A ∈ R n×n A = A .
To simplify the notation, we define

S(t, x, u, y 1 , z 1 , r, y 2 , z 2 , ω) := H xu (t, x, u, y 1 , z 1 , r, ω) + b u (t, x, u, ω) y 2 + d j=1 σ j u (t, x, u, ω) z j 2 + d j=1
σ j u (t, x, u, ω) y 2 σ j x (t, x, u, ω),

where (t, x, u, y 1 , z 1 , r, y 2 , z 2 , ω) ∈ [0, T ] × R n × R m × R n × R n×d × R n × S n × (S n ) d × Ω. Write S[t] = S(t, x(t), ū(t), P 1 (t), Q 1 (t), ψ(t), P 2 (t), Q 2 (t)), t ∈ [0, T ], (4.13) 
where (P 1 (•), Q 1 (•)) and (P 2 (•), Q 2 (•)) solve the systems (3.8) with λ 0 = 1 and (4.12), respectively. We have the following result.

Theorem 4.1. Let (x, ū) be a local minimizer for the problem (1.5) with the initial datum x0 and the control ū ∈ V. Suppose (A1)-(A3) and that G (1) ∩ Q (1) ∩ E (1) = ∅. Let λ 0 = 1, (P 1 , Q 1 ), ψ and λ , ∈ I ϕ 0 be as in the conclusions of Theorem 3.1 for the case that G (1) (2) (y 1 )) with the corresponding 0 ∈ W(x 0 , ν 0 ) and h(•) ∈ M(ū, v), the following second order necessary condition holds:

∩ Q (1) ∩ E (1) = ∅. If (y 1 , v, ν 0 ) ∈ Υ(x, ū) and G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) = ∅, then for any given y 2 ∈ G (2) (y 1 , v)∩ cl ∞,2 (Q (2) (y 1 )) ∩ cl ∞,2 (E
P 1 (0), 0 + 1 2 P 2 (0)ν 0 , ν 0 + ∈I ϕ 0 E λ ϕ x (x(T )), y 2 (T ) + 1 2 E λ ϕ xx (x(T ))y 1 (T ), y 1 (T ) +E T 0 H u [t], h(t) + 1 2 H uu [t]v(t), v(t) + 1 2 d j=1 P 2 (t)σ j u [t]v(t), σ j u [t]v(t) + S[t]y 1 (t), v(t) dt + E T 0 y 2 (t), dψ(t) ≤ 0, (4.14)
where (P 2 , Q 2 ) is defined by (4.12).

Remark 4.3. (i) In Theorem 4.1 we assumed that the set G (1) ∩ Q (1) ∩ E (1) is nonempty and have taken λ 0 = 1 and any (P 1 , Q 1 ), ψ and λ , ∈ I ϕ 0 as in the conclusion of Theorem 3.1. That is our second order condition is valid for any normal multiplier appearing in the first order conditions. In Theorem 4.2 below this assumption is skipped, but, in contrast, it states that a similar second order necessary optimality condition holds true for some (P 1 , Q 1 ) as in Theorem 3.2. That is, removing the requirement G (1) ∩ Q (1) ∩ E (1) = ∅, yields a weaker conclusion.

(ii) Also, in Theorem 4.1 we assumed that G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) = ∅. This holds true under some appropriate conditions. For instance, let us assume that for T K0 (x 0 ) = C K0 (x 0 ) and T Φ (ū) = C V (ū) it holds that G (1) ∩ Q (1) ∩ E (1) = ∅ (a sufficient condition for it will be provided in Section 5), and pick any ȳ1 ∈ G (1) ∩ Q (1) ∩ E (1) . Then, for every (y 1 , v, ν 0 ) ∈ Υ(x, ū) such that the function e(•) defined by (4.9) is bounded on

I g 1 , T b(2) K0 (x 0 , ν 0 ) = ∅ and T b(2) V (ū, v) = ∅, we can find W(x 0 , ν 0 ) and M(ū, v) so that G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) = ∅. Indeed, since T b(2) K0 (x 0 , ν 0 ) and T b(2) V
(ū, v) are nonempty, they contain some nonempty convex subsets

W(x 0 , ν 0 ) ⊂ T b(2) K0 (x 0 , ν 0 ) and M(ū, v) ⊂ T b(2) V (ū, v).
Fix such subsets and define nonempty convex sets

W(x 0 , ν 0 ) := C K0 (x 0 )+W(x 0 , ν 0 ), M(ū, v) := C V (ū)+M(ū, v). From Remark 2.1, it follows that W(x 0 , ν 0 ) ⊂ T b(2) K0 (x 0 , ν 0 ) and M(ū, v) ⊂ T b(2) V (ū, v). Moreover, for every 0 ∈ W(x 0 , ν 0 ), h ∈ M(ū, v) for any ≥ 0 we have ν0 + 0 ∈ W(x 0 , ν 0 ) and v + h ∈ M(ū, v).
Fixing ≥ 0 and letting y 2 be the solution of (4.1) corresponding to ν0 + 0 and v + h, we have

y 2 = ȳ1 + z 2 . By Lemma 4.1, z 2 2 ∞,2 ≤ C(| 0 | 2 + v 4 4 + h 2 2
). Since ȳ1 ∈ G (1) ∩ Q (1) ∩ E (1) , and I g 0 and I g 1 are compact sets, for all sufficiently large ,

E g x (x(t)), y 2 (t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) + e(t) = E g x (x(t)), ȳ1 (t) + E g x (x(t)), z 2 (t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) + e(t) < 0, ∀ t ∈ I g 1 ,
and for every ∈ I ϕ 1 , and all sufficiently large

E ϕ x (x(T )), y 2 (T ) + 1 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) = E ϕ x (x(T )), ȳ1 (T ) + E ϕ x (x(T )), z 2 (T ) + 1 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) < 0.
Therefore, when is large enough,

y 2 ∈ G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ).
Proof. (of Theorem 4.1).

Observe that if (2) (y 1 ). In this case, the same arguments as given below do apply by simply skipping the constraint (1.4) in the problem (1.5) and putting ψ = 0.

I g 1 = ∅, then Q (2) (y 1 ) = L 2 F (Ω; C([0, T ]; R n )) and therefore, G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) = G (2) (y 1 , v) ∩ E
For this reason we provide the proof only when I g 1 = ∅. We proceed in two steps.

Step 1: y 2 ∈ G (2) (y 1 , v)∩Q (2) (y 1 )∩E (2) (y 1 ), i.e., when y 2 is a solution of the equation (4.1) corresponding to some ( 0 , h) ∈ W(x 0 , ν 0 ) × M(ū, v) such that

E g x (x(t)), y 2 (t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) + e(t) < 0, ∀ t ∈ I g 1 .
and

E ϕ x (x(T )), y 2 (T ) + 1 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) < 0, ∀ ∈ I ϕ 1 ,
where I g 1 and I ϕ 1 are defined respectively by (4.6) and (4.7

). Let µ(ε) ∈ R n with |µ(ε)| = o(ε 2 ) and η(ε) ∈ L 4 F (Ω; L 4 (0, T ; R m )) with η(ε) 4 = o(ε 2 ) be such that x ε 0 := x0 + εν 0 + ε 2 0 + µ(ε) ∈ K 0 and u ε := ū + εv + ε 2 h + η(ε) ∈ V.
Denote by x ε the solution to (1.1) 19

corresponding to x ε 0 and u ε . By the assumptions (A2)-(A3) and Lemma 4.1, for any t ∈ [0, T ] we have the following expansion

E g(x ε (t)) = E g(x(t)) + εE g x (x(t)), y 1 (t) + ε 2 E g x (x(t)), y 2 (t) + ε 2 2 E g xx (x(t))y 1 (t), y 1 (t) + o(ε 2 ). (4.15)
Similarly to the proof of [18, Proposition 4.5], we first check that (x ε , u ε ) ∈ P ad when ε is sufficiently small.

Our first goal is to show that there exist a δ 0 > 0 and an ε 0 > 0 such that

E g(x ε (s)) ≤ 0, ∀ s ∈ (t -δ 0 , t + δ 0 ) ∩ [0, T ], ∀ t ∈ I g 0 , ∀ ε ∈ [0, ε 0 ]. (4.16) 
Fix an arbitrary t ∈ I g 1 . We claim that there exist δ( t) > 0 and α( t) > 0 such that

E g(x ε (s)) ≤ 0, ∀ s ∈ ( t -δ( t), t + δ( t)) ∩ [0, T ], ∀ ε ∈ [0, α( t)]. (4.17) 
Indeed, otherwise, for any i ∈ N, there would exist

ε i ∈ [0, 1 i ], s i ∈ ( t - 1 i , t + 1 i ) ∩ [0, T ] such that E g(x εi (s i )) > 0. (4.18) 
Assume for a moment that there exists a subsequence

{s iκ } ∞ κ=1 of {s i } ∞ i=1 with corresponding subsequence {ε iκ } ∞ κ=1 of {ε i } ∞ i=1 satisfying E g(x(s iκ )) < 0 and E g x (x(s iκ )), y 1 (s iκ ) > 0, ∀ κ = 1, 2, . . . . (4.19) Then, by (4.15) 
,

E g(x εi κ (s iκ )) = ε 2 iκ E g x (x(s iκ )), y 2 (s iκ ) + 1 2 E g xx (x(s iκ ))y 1 (s iκ ), y 1 (s iκ ) - E g x (x(s iκ )), y 1 (s iκ ) 2 4E g(x(s iκ )) + o(ε 2 iκ ) ε 2 iκ +E g(x(s iκ )) 1 + ε iκ E g x (x(s iκ )), y 1 (s iκ ) 2E g(x(s iκ )) 2 . (4.20) 
Since t ∈ I g 1 and y 2 ∈ Q (2) (y 1 ), there exists ρ 0 > 0 such that

E g x (x( t)), y 2 ( t) + 1 2 E g xx (x( t))y 1 ( t), y 1 ( t) + e( t) < -ρ 0 .
Therefore, when κ is large enough,

E g x (x(s iκ )), y 2 (s iκ ) + 1 2 E g xx (x(s iκ ))y 1 (s iκ ), y 1 (s iκ ) + E g x (x(s iκ )), y 1 (s iκ ) 2 4 E g(x(s iκ )) < - ρ 0 2 .
This, together with (4.20), implies that, when κ is large enough, E g(x εi κ (s iκ )) ≤ 0 contradicting to (4.18). Now, assume that there is no any subsequence of {s i } ∞ i=1 such that (4.19) hold. Then, E g(x(s i )) = 0 or E g x (x(s i )), y 1 (s i ) ≤ 0 for all sufficiently large i. Then, if s i / ∈ I g 0 , we have E g(x(s i )) < 0 and hence E g x (x(s i )), y 1 (s i ) ≤ 0. On the other hand, if s i ∈ I g 0 , then E g(x(s i )) = 0 and, since

y 1 ∈ cl ∞,2 Q (1) , E g x (x(s i )), y 1 (s i ) ≤ 0. In both cases, E g(x(s i )) + ε i E g x (x(s i )), y 1 (s i ) ≤ 0. ( 4.21) 
Noting that e(t) ≥ 0 for all t ∈ [0, T ], and I g 1 is compact, there exists ρ 2 > 0 such that

E g x (x(t)), y 2 (t) + 1 2 E g xx (x(t))y 1 (t), y 1 (t) < -ρ 2 , ∀ t ∈ I g 1 . 20 
Since s i → t and t ∈ I g 1 , when i is large enough,

E g x (x(s i )), y 2 (s i ) + 1 2 E g xx (x(s i ))y 1 (s i ), y 1 (s i ) < - ρ 2 2 .
Then, by (4.15) and (4.21), for any sufficiently large i,

E g(x εi (s i )) ≤ ε 2 i E g x (x(s i )), y 2 (s i ) + ε 2 i 2 E g xx (x(s i ))y 1 (s i ), y 1 (s i ) + o(ε 2 i ) ≤ ε 2 i - ρ 2 2 + o(ε 2 i ) ε 2 i ≤ 0,
which also contradicts (4.18). This proves (4.17).

Since I g 1 is compact, there exist finitely many

t i ∈ I g 1 , i = 1, 2, . . . , N (N ∈ N) such that I g 1 ⊂ N i=1 (t i - δ(t i ), t i + δ(t i )). Choosing ε 1 := min{α(t i ), i = 1, 2, . . . , N }, we have E g(x ε (s)) ≤ 0, ∀ s ∈ N i=1 (t i -δ(t i ), t i + δ(t i )) ∩ [0, T ], ∀ ε ∈ [0, ε 1 ]. (4.22) Let I c 1 := I g 0 \ N i=1 (t i -δ(t i ), t i + δ(t i ))
. By the compactness of I c 1 , there exist a δ > 0 and a ρ 3 > 0 (independent of t) such that

E g x (x(s)), y 1 (s) < -ρ 3 , ∀ s ∈ (t -δ, t + δ) ∩ [0, T ], t ∈ I c 1 . (4.23) Then, by (4.15) 
, there exists an ε 2 such that

E g(x ε (s)) ≤ 0, ∀ s ∈ (t -δ, t + δ) ∩ [0, T ], t ∈ I c 1 , ∀ ε ∈ [0, ε 2 ]. (4.24) 
Let ε 0 = min{ε 1 , ε 2 }. Clearly,

I g 0 ⊂ N i=1 (t i -δ(t i ), t i + δ(t i )) t∈I c 1 (t -δ, t + δ) .
Choosing a sufficiently small δ 0 > 0 such that

I g 0 ⊂ t∈I g 0 (t -δ 0 , t + δ 0 ) ⊂ N i=1 (t i -δ(t i ), t i + δ(t i )) t∈I c 1 (t -δ, t + δ) ,
from the above discussion (especially, (4.22) and (4.24)), we obtain that

E g(x ε (s)) ≤ 0, ∀ s ∈ (t -δ 0 , t + δ 0 ) ∩ [0, T ], ∀ t ∈ I g 0 , ∀ ε ∈ [0, ε 0 ].
This proves (4.16). Next, define

I < := [0, T ] \ t∈I g 0 (t -δ 0 , t + δ 0 ) .
It is clear that I < is also a compact set and consequently, there exists a ρ 4 > 0 such that

E g(x(t)) < -ρ 4 , ∀ t ∈ I < . (4.25) 
By (4.15), we have, for sufficiently small ε > 0,

E g(x ε (s)) ≤ 0, ∀ s ∈ I < . (4.26) 
Combining (4.16) with (4.26), we conclude that, when ε is small enough, x ε satisfies the constraint (1.4).

In addition, using a similar method as above at time T , we have, when ε is small enough, x ε satisfies the constraint (1.3) (see also [START_REF] Frankowska | Stochastic optimal control problems with control and initial-final states constraints[END_REF]Theorem 4.2] for a detailed discussion). This proves that (x ε , u ε ) ∈ P ad .

By the optimality of (x, ū) and the equality E φ x (x(T )), y 1 (T ) = 0, we have

0 ≤ E φ(x ε (T )) -E φ(x(T )) ε 2 = 1 ε E φ x (x(T )), y 1 (T ) + E φ x (x(T )), y 2 (T ) + 1 2 E φ xx (x(T ))y 1 (T ), y 1 (T ) + o(ε 2 ) ε 2 → E φ x (x(T )), y 2 (T ) + 1 2 E φ xx (x(T ))y 1 (T ), y 1 (T ) , (as ε → 0 + ). (4.27) 
By (3.24), we have

φ x (x(T )) = -P 1 (T ) - ∈I ϕ 0 λ ϕ x (x(T )) -ψ(T ). (4.28) 
By Itô's formula, Step 2: 2) (y 1 )) with the corresponding 0 ∈ W(x 0 , ν 0 ) and h(•) ∈ M(ū, v). Since we assume that G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) = ∅, we may choose a ŷ2 ∈ G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ E (2) (y 1 ) and let ˆ 0 (∈ W(x 0 , ν 0 ) and ĥ(•) (∈ M(ū, v)) be its initial datum and control in the equation (4.1). For any θ ∈ (0, 1), define y θ 2 = (1 -θ)y 2 + θŷ 2 . Since W(x 0 , ν 0 ) and M(ū, v) are convex set, y θ 2 is the solution to the equation (4.1) with initial datum θ

E P 1 (T ), y 2 (T ) (4.29) = P 1 (0), 0 + E T 0 P 1 (t), b u [t]h(t) + 1 2 P 1 (t), y 1 (t) b xx [t]y 1 (t) + P 1 (t), v(t) b xu [t]y 1 (t) + 1 2 P 1 (t), v(t) b uu [t]v(t) -ψ(t), b x [t]y 2 (t) + d j=1 Q j 1 (t), σ j u [t]h(t) + 1 2 d j=1 Q j 1 (t), y 1 (t) σ j xx [t]y 1 (t) + d j=1 Q j 1 (t), v(t) σ j xu [t]y 1 (t) + 1 2 d j=1 Q j 1 (t), v(t) σ j uu [t]v(t)
E φ x (x(T )), y 2 (T ) = E -P 1 (T ) - ∈I ϕ 0 λ ϕ x (x(T )) -ψ(T ), y 2 (T ) = -P 1 (0), 0 - ∈I ϕ 0 E λ ϕ x (x(T )), y 2 (T ) -E T 0 y 2 (t), dψ(t) -E T 0 P 1 (t) + ψ(t), b u [t]h(t) + 1 2 P 1 (t) + ψ(t), y 1 (t) b xx [t]y 1 (t) + P 1 (t) + ψ(t), v(t) b xu [t]y 1 (t) + 1 2 P 1 (t) + ψ(t), v(t) b uu [t]v(t) + d j=1 Q j 1 (t), σ j u [t]h(t) + 1 2 d j=1 Q j 1 (t), y 1 (t) σ j xx [t]y 1 (t) + d j=1 Q j 1 (t), v(t) σ j xu [t]y 1 (t) + 1 2 d j=1 Q j 1 (t), v(t) σ j uu [t]v(t) dt = -P 1 (0), 0 - ∈I ϕ 0 E λ ϕ x (x(T )), y 2 (T ) -E T 0 y 2 (t), dψ(t) -E T 0 H u [t], h(t) dt - 1 2 E T 0 H xx [t]
Let y 2 ∈ G (2) (y 1 , v) ∩ cl ∞,2 (Q (2) (y 1 )) ∩ cl ∞,2 (E ( 
0 := (1 -θ) 0 + θ ˆ 0 ∈ W(x 0 , ν 0 ) and control h θ (•) := (1 -θ)h(•) + θ ĥ(•) ∈ M(ū, v). Then, y θ 2 → y 2 in L 2 F (Ω; C([0, T ]; R n ))
as θ → 0. Moreover, since ŷ2 ∈ Q (2) (y 1 ) ∩ E (2) (y 1 ) we have y θ 2 ∈ Q (2) (y 1 ) ∩ E (2) (y 1 ). From Step 1, we deduce that

P 1 (0), θ 0 + 1 2 P 2 (0)ν 0 , ν 0 + ∈I ϕ 0 E λ ϕ x (x(T )), y θ 2 (T ) + 1 2 E λ ϕ xx (x(T ))y 1 (T ), y 1 (T ) +E T 0 H u [t], h θ (t) + 1 2 H uu [t]v(t), v(t) + 1 2 d j=1 P 2 (t)σ j u [t]v(t), σ j u [t]v(t) + S[t]y 1 (t), v(t) dt + E T 0 y θ 2 (t), dψ(t) ≤ 0.
Letting θ → 0, we obtain (4.14). This completes the proof of Theorem 4.1.

The above theorem excludes the case of abnormal multipliers. Our next aim is to state second order conditions that may be abnormal but allow to dispense some assumptions. Theorem 4.2. Let (x, ū) be a local minimizer for the problem (1.5) with the initial datum x0 and the control ū ∈ V. Assume (A1)-(A3) and that E |g x (x(t))| = 0 for any t ∈ I g 0 . Let (y 1 , v, ν 0 ) ∈ Υ(x, ū) and suppose that e(•) (defined by (4.9)) is bounded on

I g 1 . Consider convex sets W(x 0 , ν 0 ) ⊂ T b(2) K0 (x 0 , ν 0 ) and M(ū, v) ⊂ T b(2) V (ū, v).
Then there exist λ 0 ∈ {0, 1}, λ ≥ 0 for all ∈ I ϕ 1 and ψ ∈ Q (1) -such that the solution (P 1 , Q 1 ) to (3.8) with I ϕ 0 replaced by I ϕ 1 satisfies the first order condition (3.13), and for any y 2 ∈ G (2) (y 1 , v) with the corresponding 0 ∈ W(x 0 , ν 0 ) and h(•) ∈ M(ū, v) the following second order necessary condition holds true:

P 1 (0), 0 + 1 2 P 2 (0)ν 0 , ν 0 + E T 0 H u [t], h(t) + 1 2 H uu [t]v(t), v(t) + S[t]y 1 (t), v(t) + 1 2 d j=1 P 2 (t)σ j u [t]v(t), σ j u [t]v(t) dt + sup α∈Q (2) (y1) E T 0 α(t), dψ(t) ≤ 0, (4.34)
where (P 2 , Q 2 ) solves (4.12) with

P 2 (T ) = -λ 0 φ xx (x(T )) - ∈I ϕ 1 λ ϕ xx (x(T )). (4.35)
Proof. If W(x 0 , ν 0 ) or M(ū, v) is empty, then it is enough to apply Theorem 3.2. Assume next that these two sets are nonempty. We replace them by larger convex sets as follows W(x 0 , ν 0 ) := C K0 (x 0 ) + W(x 0 , ν 0 ), M(ū, v) := T Φ (ū) + M(ū, v), where

T Φ (ū) := {u ∈ L 4 F (Ω; L 4 (0, T ; R m )) | u(t, ω) ∈ C U (ū(t, ω)) a.e. in [0, T ] × Ω}. By [16, Lemma 2.7], T Φ (ū) ⊂ C V (ū). Thus, by Remark 2.1, M(ū, v) ⊂ T b(2) V (ū, v).
For simplicity, we keep the same notations W(x 0 , ν 0 ) and M(ū, v) for these larger sets.

If

I g 1 = ∅, then Q (2) (y 1 ) = L 2 F (Ω; C([0, T ]; R n ))
and G (2) (y 1 , v)∩Q (2) (y 1 )∩E (2) (y 1 ) = G (2) (y 1 , v)∩E (2) (y 1 ). Then [START_REF] Frankowska | Stochastic optimal control problems with control and initial-final states constraints[END_REF]Theorem 4.2] implies the result with ψ = 0.

Assume next that I g 1 = ∅. Since E |g x (x(t))| = 0 for any t ∈ I g 0 and e(•) is bounded on I g 1 , we have -g x (x(•)) ∈ Q (1) and -g x (x(•)) ∈ Q (2) (y 1 ) when (> 0) is large enough. Hence Q (1) = ∅ and Q (2) (y 1 ) = ∅.

Let y 2 ∈ G (2) (y 1 , v) and (P 1 , Q 1 ) be a solution of (3.8). Then using (4.29) and (4.30), in the same way as in (4.31), we deduce that (4.37)

E P 1 (T ) + ψ(T ), y 2 (T ) = P 1 (0), 0 + E T 0 y 2 (t), dψ(t) + E T 0 H u [t], h(t) dt + 1 2 E T 0 H xx [t]y 1 (t), y 1 (t) + 2 H xu [t]y 1 (t), v(t) + H uu [t]v(t), v (t) dt. 
Since (P 1 (t), Q 1 (t)) ≡ 0 and ψ(t) ≡ 0, we obtain that

1 2 E T 0 H xx [t]y 1 (t), y 1 (t) dt = 0.
This and (4.33) imply (4.34).

Assume next that M = ∅ for every ∈ {0} ∪ I ϕ 1 and observe that

∈I ϕ 1 M = E (2) (y 1
). Thus, by Step 1 of the proof of Theorem 4.1,

G (2) (y 1 , v) ∩ Q (2) (y 1 ) ∩ ∈{0}∪I ϕ 1 M = ∅. By Lemma 2.3, there exist x * , x * ∈ L 2 F (Ω; C([0, T ]; R n )) * for all ∈ {0} ∪ I ϕ 1 not vanishing simultaneously such that for p * = -(x * + ∈{0}∪I ϕ 1 x * ) we have inf p * (G (2) (y 1 , v)) + inf x * (Q (2) (y 1 )) + ∈{0}∪I ϕ 1 inf x * (M ) ≥ 0. (4.38) If ϕ x (x(T )) = 0 for some ∈ {0} ∪ I ϕ 1 , then M = L 2 F (Ω; C([0, T ]; R n ))
and (4.38) implies that x * = 0. For any ∈ {0} ∪ I ϕ 1 with ϕ x (x(T )) = 0, consider the closed convex cone

Q := z T ∈ L 2 F T (Ω; R n ) E ϕ x (x(T )), z T ≤ 0 . (4.39) Then (Q ) -= R + ϕ x (x(T )).
Let γ be given by (3.10) and γ * denote its adjoint (see (3.11)). It is not difficult to realize that γ -1 (Q ) + M ⊂ M for every ∈ {0}∪I ϕ 1 and that γ -1 (Q ) is a cone. Hence, by (4.38), -x * ∈ γ -1 (Q ) -. We already know that γ is surjective. Thus, by the well known result of the convex analysis, γ -1 (Q ) -= γ * (Q -) (see for instance [2, Corollary 22, p. 144] applied to the closed convex cone Q and the set-valued map γ -1 whose graph is a closed subspace of

L 2 F T (Ω; R n ) × L 2 F (Ω; C([0, T ]; R n ))
). Consequently, -x * = γ * (λ ϕ x (x(T ))) for some λ ≥ 0. If x * = 0, set λ = 0. By normalizing, we may assume that λ

0 ∈ {0, 1}. Define Γ = z T ∈ L 2 F T (Ω; R n ) E ϕ x (x(T )), z T + 1 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) < 0 .
By the surjectivity of γ,

sup m∈M (-x * ) (m) = sup m∈M E λ ϕ x (x(T )), γ(m) = sup z T ∈Γ E λ ϕ x (x(T )), z T .
On the other hand, by the definition of M , for any ∈ {0} ∪ I ϕ 1 with ϕ x (x(T )) = 0, sup

z T ∈Γ E λ ϕ x (x(T )), z T = - λ 2 E ϕ xx (x(T ))y 1 (T ), y 1 (T ) .
From (4.38), and setting ψ = -x * , q * = -p * , we deduce that sup

y2∈G (2) (y1,v) q * (y 2 ) + sup α∈Q (2) (y1) E T 0 α(t), dψ(t) - 1 2 E ∈{0}∪I ϕ 1 λ ϕ xx (x(T ))y 1 (T ), y 1 (T ) ≤ 0. (4.40)
Observe that that Q (1) + Q (2) (y 1 ) ⊂ Q (2) (y 1 ) and G (1) + G (2) (y 1 , v) ⊂ G (2) (y 1 , v). Thus (4.40) implies that ψ ∈ (Q (1) ) -and q * ∈ (G (1) ) -.

Since 

q * = x * - ∈{0}∪I ϕ 1 γ * (λ ϕ x (x(T ))), for every y 1 ∈ G (1) -E T 0 y 1 (t), dψ(t) - ∈{0}∪I ϕ 1 E λ ϕ x (x(T )), y 1 (T ) ≤ 0. Define P 1 (T ) = - ∈{0}∪I ϕ 1 λ ϕ x (x(T )) -ψ(T )
∈ G (2) (y 1 , v), -E T 0 y 2 (t), dψ(t) - ∈{0}∪I ϕ 1 E λ ϕ x (x(T )), y 2 (T ) + 1 2 E P 2 (T )y 1 (T ), y 1 (T ) + sup α∈Q (2) (y1) T 0 α(t), dψ(t) ≤ 0.
From the above inequality, using (4.29), (4.30) and (4.33), we deduce (4.34).

A sufficient condition for normality

As in the deterministic optimal control problems with state constraints, we call the first order necessary condition (3.12 ) normal if the Lagrange multiplier λ 0 = 0. By Theorem 3.1, this is the case when G (1) ∩ Q (1) ∩ E (1) = ∅. In this section, we first give a sufficient condition for G (1) ∩ Q (1) = ∅ and then use the obtained results to investigate a sufficient condition guaranteeing that G (1) ∩ Q (1) ∩ E (1) = ∅.

In addition to (A2) (i), we assume that For y(•) and g x (x(•)) as above, using Itô's formula again, we have

E g x (x(t 1 )), y(t 1 ) = g x (x 0 ), ν 0 + E t1 0 g x (x(t)), b x [t]y(t) + C 1 η(t)|y(t)|b u [t]v(t) dt +E t1 0 g x (x(t)), C 2 |ν 0 | t 1 b u [t]v(t) dt +E t1 0 d j=1 g xx (x(t))σ j [t], σ j x [t]y(t) + C 1 η(t)|y(t)|σ j u [t]v(t) dt +E t1 0 d j=1 g xx (x(t))σ j [t], C 2 |ν 0 | t 1 σ j u [t]v(t) dt +E t1 0 g xx (x(t))b[t], y(t) dt + 1 2 E t1 0 g xxx (x(t))σ[t]σ[t] , y(t) dt ≤ |g x (x 0 )||ν 0 | + E t1 0 g x (x(t)), C 2 |ν 0 | t 1 b u [t]v(t) dt +E t1 0 d j=1 g xx (x(t))σ j [t], C 2 |ν 0 | t 1 σ j u [t]v(t) dt +E t1 0 g x (x(t)), b x [t]y(t) + d j=1 g xx (x(t))σ j [t], σ j x [t]y(t) + g xx (x(t))b[t], y(t) + 1 2 g xxx (x(t))σ[t]σ[t] , y(t) dt +E t1 0 C 1 η(t)|y(t)| g x (x(t)), b u [t]v(t) + d j=1 g xx (x(t))σ j [t], σ j u [t]v(t) dt ≤ |g x (x 0 )||ν 0 | -ρC 2 |ν 0 | + E t1 0 |g x (x(t))||b x [t]| + d j=1 |g xx (x(t))σ j [t]||σ j x [t]| +|g xx (x(t))b[t]| + 1 2 |g xxx (x(t))σ[t]σ[t] | |y(t)|dt -ρC 1 E t1 0 η(t)|y(t)|dt ≤ -|ν 0 | -E t1 0 η(t)|y(t)|dt < 0. (5.5) (b) If there is a t ∈ [0, t 1 ) such that E g(x(t)) ≤ -δ then let t 0 = sup t ∈ [0, t 1 ) E g(x(t)) ≤ -δ .
By the continuity of E g(x(•)), t 0 < t 1 and E g(x(t 0 )) = -δ. Let ν 0 ∈ T K0 (x 0 ), ν 0 = 0 and define y on [0, t 0 ] × Ω by the following stochastic differential equation:

   dy(t) = b x [t]y(t)dt + d j=1 σ j x [t]y(t)dW j (t), t ∈ [0, t 0 ],
y(0) = ν 0 .

(5.6)

Letting S(•) be the solution to the matrix-valued stochastic differential equation: Since ν 0 = 0, we have y(t) = 0 for any t ∈ [0, t 0 ]. In particular, y(t 0 ) = 0. Denote ξ t0 = y(t 0 ) and let y be the solution of the following stochastic differential equation on [t 0 , t 1 ] × Ω:

   dS(t) = b x [t]S(t)dt + d j=1 σ j x [t]S(t)dW j (t), t ∈ [0, t 0 ], S ( 
                               dy(t) = b x [t]y(t) + L + 2 ρ η(t)|y(t)|b u [t]v(t) dt + E|g x (x(t 0 ))| 2 1 2 + 1 E|ξ t0 | 2 1 2 ρ(t 1 -t 0 ) b u [t]v(t)dt + d j=1 σ j x [t]y(t) + L + 2 ρ η(t)|y(t)|σ j u [t]v(t) dW j (t) + E|g x (x(t 0 ))| 2 1 2 + 1 E|ξ t0 | 2 1 2 ρ(t 1 -t 0 ) d j=1 σ j u [t]v(t)dW j (t), t ∈ [t 0 , t 1 ],
y(t 0 ) = ξ t0 .

(5.7)

Similarly to (5.5), we show that

E g x (x(t 1 )), y(t 1 ) ≤ -E |ξ t0 | 2 1 2 -E t1 t0 η(t)|y(t)|dt < 0.
Step 2: Denote by ξ t1 the random variable y(t 1 ) obtained in Step 1. Obviously, ξ t1 = 0. Define

t 2 = max t ∈ (t 1 , T ] E g(x(s)) ∈ [-δ, 0], ∀ s ∈ [t 1 , t] .
In the sequel, we consider two different cases.

(a) If t 2 = T , we define y on [t 1 , T ] × Ω by Clearly, for this problem, g(x) = θx 0 -x, x ∈ R, (5.12)

           dy(t) = b x [t]y(t) + L + 2 ρ η ( 
and for any control û ∈ U with the corresponding state x, g x (x(t)) ≡ -1, g xx (x(t)) = g xxx (x(t)) ≡ 0.

Letting η ≡ 1, we find that (A4) holds true.

It is easy to check that, for any û ∈ U,

T b U (û(t, ω)) =          α(-1, 0) + β(-1 √ 2 , 1 √ 
2 ) α ≥ 0, β ≥ 0 , û(t, ω) = (1, 0) ; Let I δ be defined by (5.1) (with x replaced by x and g defined by (5.12 )). Assume that there exists a constant C such that x(t) ≥ C > 0, a.e. (t, ω) ∈ [0, T ] × Ω.

(v 1 , v 2 ) ∈ R 2 v 1 + v 2 = 0 , û(t, ω) = ( 1 2 , 1 2 ) ; (v 1 , v 2 ) ∈ R 2 v 1 + v 2 ≤ 0 , otherwise.
(5.14)

(Clearly, the condition (5.14) is trivially satisfied whenever û2 = 0. On the other hand, by means of the martingale property, it is easy to see that this condition is equivalent to the essential boundedness (with respect to the probability measure P ) of Note that the inward pointing condition (A5) is only a sufficient condition but not a necessary condition for G (1) ∩ Q (1) = ∅. We give next an example in which the condition (A5) does not hold but G (1) ∩ Q (1) = ∅. Then, the corresponding state x(•) = (x Clearly, (x, ū) is a global minimizer and I g 0 = [START_REF] Aubin | Applied Nonlinear Analysis[END_REF][START_REF] Bielecki | Continuous-time mean-variance portfolio selection with bankruptcy prohibition[END_REF]. Let Φ(t) ≡ R 3 . For the above (x, ū) the condition (A5) becomes:

min v∈B R 3 g x (x(t)), b u [t]v ≤ -ρ, ∀ t ∈ I δ ,
where I δ := t ∈ [0, T ] | g(x(t)) ∈ [-δ, 0] (for some ρ > 0 and δ > 0).

Obviously, g x (x(t)) = (0, 1, 0) , b u [t] = B, and g x (x(t)), b u [t]v = 0 for any v ∈ B R 3 , i.e., the condition (A5) does not hold in this case.

Next we show that G (1) ∩ Q (1) = ∅. Clearly, the corresponding first order linearized equation is: ẏ(t) = Ay(t) + Bv(t), t ∈ [0, 3], y(0) = 0, (5.16) where v(•) ∈ L 2 (0, T ; R 3 ).

Let y(0) = 0, v(t) ≡ (0, 0, -1) . Then, we have y 2 (t) = -t 2 2 and g x (x(t)), y(t) = -t 2 2 < 0, ∀ t ∈ (0, 3],

implying that G (1) ∩ Q (1) = ∅.

We propose next a sufficient condition for G (1) ∩ Q (1) ∩ E (1) = ∅. which implies that ȳ ∈ G (1) ∩ Q (1) ∩ E (1) .

If I g 0 ∩ [T -ε, T ) = ∅. Define t F := min{t ∈ [T -ε, T ] | E g(x(t)) = 0}, α t F := 1 + ∈I ϕ 0 E |ϕ x (x(t F ))| 2 1 2 .
Let y be the stochastic process satisfying (5.18) with τ = t F . Then, y(t F ) = 0 and E g x (x(t F )), y(t F ) < 0. Denote ξ t F = y(t F ), and, on [t F , T ] × Ω, let ȳ be the solution to the following equation: implying that ȳ ∈ G (1) ∩ Q (1) ∩ E (1) .

                       dȳ(t) = b x [

) by ( 3 .

 3 [START_REF] Páles | First-and second-order necessary conditions for control problems with constraints[END_REF],(3.23) and(3.19) we obtain (3.12).

. 25 )

 25 Combining (3.24) and (3.25) with(3.19), we obtain (3.12). This completes the proof of Theorem 3.1.

For a sufficient condition for ( 4 . 5 )

 45 we refer the reader to [16, Example 4.1].

2 E

 2 ϕ 0 := φ and define for ∈ {0} ∪ I ϕ 1 the open convex setsM = z(•) ∈ L 2 F (Ω; C([0, T ]; R n )) E ϕ x (x(T )), z(T ) + 1 ϕ xx (x(T ))y 1 (T ), y 1 (T ) < 0 .If M¯ = ∅ for some ¯ ∈ {0} ∪ I ϕ 1 , then ϕ ¯ x (x(T )) = 0 a.s. and E ϕ ¯ xx (x(T ))y 1 (T ), y 1 (T ) ≥ 0. Setting ψ(t) ≡ 0, λ¯ = 1 and λ = 0 for all ¯ = ∈ {0} ∪ I ϕ 1 , we get (P 1 (t), Q 1 (t)) ≡ 0, P 2 (T ) = -ϕ ¯ xx (x(T )) and 1 2 E P 2 (T )y 1 (T ), y 1 (T ) ≤ 0.

g

  xx (x(s))σ j [s], σ j x [s]y(s) + g xx (x(s))b[s], y(s) + 1 2 g xxx (x(s))σ[s]σ[s] , y(s) ds +E t t1 L + 2 ρ η(s)|y(s)| g x (x(s)), b u [s]v(s) + d j=1 g xx (x(s))σ j [s], σ j u [s]v(s) ds

(5. 13 ) 0 BD

 130 By (5.13), T b U (û(•)) is B([0, T ]) ⊗ F-measurable and F-adapted, and for a.e.(t, ω)∈ [0, T ] × Ω, T b U (û(t, ω)) is a nonempty closed convex cone.For any t ∈ [0, T ], we have x(t) = x 0 exp t j û(s)dW j (s) > 0, a.s.

0 1 √ 2 , 1 √ 2 )

 1212 D j û(s)dW j (s). Note that, for any ξ ∈ L ∞ F T (Ω; R) with mean 0, by Martingale Representation Theorem, there exists a ũ ∈ L 2 F (Ω;L 2 (0, T ; R 2 )) so that ξ = d j=1 T 0 D j ũ(s)dW j (s). If, further, this ũ belongs to U, then (5.14) is satisfied with the corresponding û replaced by ũ.) If I(x) := t ∈ [0, T ] E x(t) = θx 0 = ∅ (e.g., C > θx 0 ), there is no need to verify the condition (A5). If I(x) = ∅, letting Φ(•) = T b U (û(•)) and choosing v = (-, we have -x(t)Bv = -a.e. (t, ω) ∈ I δ × Ω, i.e., (A5) holds true for ρ = C 2 √ 2 .

Example 5 . 2 . 2 E |x 1 ( 3 )

 52213 Let T = 3, m = n = 3 and K 0 = {0}(⊂ R 3 ).Let us consider the following control systemẋ(t) = Ax(t) + Bu(t), t ∈ [0, 3], x(0) = 0 (5.15)with the control set U = R 3 , the cost functionalE φ(x(3)) = 1 -2| 2and the state constraintg(x(t)) = x 2 (t) -1 ≤ 0, ∀ t ∈ [0, T ].Let ū(•) = (ū 1 (•), ū2 (•), ū3 (•)) be defined by ū1 (t) = ū2 (t) ≡ 0, ū3 (t) =

+ ∈I ϕ 0 E 2 ( 5 E

 025 For any (t, ω) ∈ [0, T ] × Ω, let Φ be a set-valued map satisfying (3.1) and denoteΦ S ρ (t, ω) := v ∈ Φ(t, ω) g x (x(t)), b u [t]v + d j=1 g xx (x(t))σ j [t], σ j u [t]v ≤ -ρ ,andΦ F ρ (t, ω) := v ∈ Φ(t, ω) ϕ x (x(t)), b u [t]v + d j=1 ϕ xx (x(t))σ j [t], σ j u [t]v ≤ -ρ, ∈ I ϕ 0 . Thus E g(x(t)) ∈ [-δ, 0] for any t ∈ [T -ε, T ]). If I g 0 ∩ [T -ε, T ) = ∅,then, let y be the stochastic process satisfying (5.18) with τ = T -ε. Then,y(T -ε) = 0. Denote ξ T -ε = y(T -ε). Define α T -ε := 1 + E|g x (x(T -ε))| 2 1 2 |ϕ x (x(T -ε))| 2 1 .20)and, on [T -ε, T ] × Ω, let ȳ be the solution to(5.19) with α T -ε defined by(5.20). By Itô's formula, as before, we show thatE g x (x(T )), ȳ(T ) ≤ E g x (x(T -ε)), ξ T -ε -α T -ε E|ξ T -ε | 2 ϕ x (x(T )), ȳ(T ) ≤ E ϕ x (x(T -ε)), ξ T -ε -α T -ε E|ξ T -ε | 2 1 2 -E T T -ε η(s)|ȳ(s)|ds < 0

  Now, for the solution (P 2 , Q 2 ) to (4.12) with P 2 (T ) given by (4.35), by (4.40), for every y 2

and consider the solution (P 1 , Q 1 ) of (3.8) with I ϕ 0 replaced by I ϕ 1 . Applying (3.22) and (3.19

) we obtain (3.12). Then

(3.13) 

follows in the same way as before.

  0) = I, by[START_REF] Yong | Stochastic Controls: Hamiltonian Systems and HJB Equations[END_REF] Theorem 6.14, p.47], for a.e. (t, ω) ∈ [0, t 0 ] × Ω, S(t) is invertible and y(t) = S(t)ν 0 , a.e. t ∈ [0, t 0 ], a.s.

  E|ξ t F | 2 E g x (x(t)), ȳ(t) ≤ E g x (x(t F )), ξ t F -α t F (t -t F ) E|ξ t F | 2 (x(T )), ȳ(T ) ≤ E ϕ x (x(t F )), ξ t F -α t F E|ξ t F | 2 1 2 -E

		t]ȳ(t) +	L + 2 ρ	η(t)|ȳ(t)|b u [t]ṽ(t) dt +	α t F E|ξ t F | 2 ρ(T -t F )	1 2	b u [t]ṽ(t)dt
	+	d j=1	σ j x [t]ȳ(t) +	L + 2 ρ	η(t)|ȳ(t)|σ j u [t]ṽ(t) dW j (t)
	+	α t F 1 2 ρ(T -t F )	d j=1	σ j u [t]ṽ(t)dW 1 2	t
							T -t F	-E	t F	η(s)|ȳ(s)|ds < 0,
	and					
	E ϕ x T	η(s)|ȳ(s)|ds < 0, ∀ ∈ I ϕ 0 ,
							t F

j (t), t ∈ [t F , T ], ȳ(t F ) = ξ t F .

(5.22) By Itô's formula, for any t ∈ [t F , T ]
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(A4) g(•) is continuously differentiable up to the third order, and there exists a nonnegative η ∈ L ∞ F ([0, T ] × Ω; R) such that (A5) There exist a δ > 0 and a ρ > 0 such that

where, Φ is a set-valued map satisfying (3.1), B R m is the unit ball in R m and

Theorem 5.1. Assume (A2)(i) and (A4)-(A5), and that g(x 0 ) < 0 and T K0 (x 0 ) contains a non-zero element. Then, Q (1) ∩ G (1) = ∅.

Proof. We follow the proof of [START_REF] Cernea | A connection between the maximum principle and dynamic programming for constrained control problems[END_REF]Theorem 3.10]. We only need to prove Q (1) ∩ G (1) = ∅ when I g 0 = ∅ (I g 0 is defined by (3.4)).

By (A5) and Lemma 2.4 (using a completion argument if necessary), there exists a

In the following we shall construct a continuous stochastic process y ∈ Q (1) ∩ G (1) .

Step 1: Define t 1 = inf t t ∈ I g 0 . Since I g 0 is nonempty and compact, t 1 ∈ I g 0 . Since g(x 0 ) < 0, t 1 > 0. We shall consider below two different cases.

where ν 0 ∈ T K0 (x 0 ), ν 0 = 0. By Itô's formula,

) and there exists an s ∈ (t 2 , T ] such that E g(x(s)) < -δ. Let y be the solution to the equation (5.8) on [t 1 , t 2 ] × Ω, and denote ξ t2 = y(t 2 ). By (5.9), ξ t2 = 0.

If Eg(x(t)) < 0 for any t ∈ [t 2 , T ], then on [t 2 , T ] × Ω we simply let y(•) be the solution to (3.2) with initial condition y(t 2 ) = ξ t2 and control v ≡ 0 (on [t 2 , T ] × Ω). Otherwise, there exists an s ∈ (t 2 , T ] such that E g(x(s)) = 0. Define

By the definition of t 

and denote ξ t4 = y(t 4 ). By (5.9) (with t replaced by t 2 ), ξ t2 = 0, ξ t4 = 0. Then, define y on [t 4 , t 3 ] × Ω by the following stochastic differential equation:

y(t 4 ) = ξ t4 .

(5.11)

Then, E g x (x(t 3 )), y(t 3 ) < 0 and we return to the beginning of the Step 2. Since [0, T ] is a finite interval and E g(x(•)) is continuous, repeating the above arguments a finite number of times we construct y ∈ Q (1) ∩ G (1) .

In the following we give an example in which the assumptions (A4)-(A5) are satisfied.

Example 5.1. Let n = 1, m = 2, U be a subset in R 2 defined by

x(0) = x 0 , and the state constraint

Let I g δ be defined by (5.1) and

otherwise.

(5.17)

By the definition of Φ and the assumption (A5), Θ(t, ω) = ∅ for a.e. (t, ω) ∈ [0, T ] × Ω. We assume that (A6) Functions ϕ (•) : R n → R, ∈ I ϕ 0 are continuously differentiable up to the third order, and, for some

(A7) There exists an > 0 such that, for a.e. (t, ω)

Theorem 5.2. In Theorem 5.1, assume that also (A6)-(A7) hold true. Then, Q (1) ∩ G (1) ∩ E (1) = ∅.

Proof. We only need to consider the case I ϕ 0 = ∅. By the proof of Theorem 5.1, for any τ ∈ [0, T ), there exists a solution y to (3.2) on [0, τ ] × Ω satisfying

By the assumption (A7), such ṽ exists. Now, we shall prove the conclusion by considering two different cases.

case a: E g(x(T )) < 0. Then for sufficiently small ε ∈ [0, ], Eg(x(s)) < 0 for all s ∈ [T -ε, T ], i.e.

Let y be the stochastic process satisfying (5.18) with τ replaced by T -ε and let ȳ (5.19)

Similarly to (5.5), we show that E ϕ x (x(T )), ȳ(T ) < 0, ∀ ∈ I ϕ 0 .

case b: E g(x(T )) = 0. Then, there exists an ε > 0 such that (T -ε, T ] ⊂ I g δ (Recall that I g δ is defined by (5.1)). Without loss of generality, we assume that ε ≤ .