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Necessary optimality conditions for local minimizers of stochastic

optimal control problems with state constraints

Hélène Frankowska∗, Haisen Zhang† and Xu Zhang‡

Abstract

The main purpose of this work is to establish some first and second order necessary optimality
conditions for local minimizers of stochastic optimal control problems with state constraints. The control
may affect both the drift and the diffusion terms of the systems and the control regions are allowed
to be nonconvex. A stochastic inward pointing condition is proposed to ensure the normality of the
corresponding necessary conditions.

Key words: Stochastic optimal control, local minimizer, necessary optimality conditions, inward pointing
condition.

AMS subject classifications: Primary 93E20; Secondary 49J53, 60H10.

1. Introduction

Let d,m, n, k ∈ N and Rn×m be the space of all n ×m-real matrices. For any A ∈ Rn×m, denote by A>

and |A| =
√
tr(AA>) respectively the transpose and norm of A. Also, denote by 〈·, ·〉 and | · | respectively

the usual inner product and norm in Rn or Rm, which can be identified from the context, and by B(X) the
Borel σ-field of a metric space X.

Let T > 0 and (Ω,F ,F, P ) be a complete filtered probability space with the filtration F = {Ft}0≤t≤T (sat-

isfying the usual conditions), on which a d-dimensional standard Wiener processW (·) ≡
(
W 1(·), · · · ,W d(·)

)>
is defined such that F is the natural filtration generated by W (·) (augmented by all the P -null sets). We
consider the following controlled stochastic differential equation{

dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
x(0) = x0,

(1.1)

with the Mayer-type cost functional
J(x(·), u(·)) = E φ(x(T )), (1.2)

the initial-final states constraints

x0 ∈ K0, E ϕ`(x(T )) ≤ 0, ` = 1, . . . , k (1.3)

and the state constraint
E g(x(t)) ≤ 0, for all t ∈ [0, T ]. (1.4)

∗CNRS, IMJ-PRG, Sorbonne Université, case 247, 4 place Jussieu, 75252 Paris, France. The research of this author benefited
from the support of the “FMJH Program Gaspard Monge in optimization and operation research”, and from the support
to this program from EDF under grant PGMO 2016-2832H and CNRS-NSFC PRC Project under grant 271392. E-mail:
helene.frankowska@imj-prg.fr.
†School of Mathematics and Statistics, Southwest University, Chongqing 400715, China and CNRS, IMJ-PRG, Sorbonne
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Here u(·) ∈ U is a control, U is the set of B([0, T ])⊗F-measurable and F-adapted stochastic processes with

values in a closed nonempty subset U of Rm such that ‖u‖2 :=
[
E
∫ T

0
|u(t)|2dt

] 1
2 < ∞, x(·) solves (1.1),

b : [0, T ]×Rn×Rm×Ω→ Rn, σ = (σ1, . . . , σd) : [0, T ]×Rn×Rm×Ω→ Rn×d, φ : Rn×Ω→ R, ϕ` : Rn → R,
` = 1, . . . , k and g : Rn → R are given functions (satisfying suitable conditions to be given later), and, K0 is
a nonempty subset of Rn. As usual, when the context is clear, we omit writing ω (∈ Ω) explicitly.

A state-control pair (x(·), u(·)) is called admissible if u(·) ∈ U and x(·), the solution of (1.1) corresponding
to u, satisfies (1.3) and (1.4). In this case, we call u(·) an admissible control. Denote by Pad the set of all
admissible pairs. In this paper, we shall consider the following optimal control problem:

inf
(x(·),u(·))∈Pad

J(x(·), u(·)). (1.5)

Similarly to its counterpart in deterministic optimal control problems, we define

Definition 1.1. An admissible pair (x̄, ū) ∈ L2
F(Ω;C([0, T ];Rn)) × U is called a local minimizer for the

problem (1.5) if there exists a δ > 0 such that J((x(·), u(·))) ≥ J(x̄(·), ū(·)) for any (x(·), u(·)) ∈ Pad

satisfying |x̄(0)− x(0)| < δ and ‖u− ū‖2 < δ.

One of the main motivations to study the optimal control problem (1.5) with state constraint (1.4) comes
from its financial applications. Let us consider an investment and consumption model as follows: Suppose
there are m+ 1 assets whose price processes Si(·), i = 0, 1, . . . ,m are described by the following differential
equations: {

dS0(t) = rS0(t)dt, t ∈ [0, T ],
S0(0) = s0,

(1.6)

and, for i = 1, 2, . . . ,m,  dSi(t) = biSi(t)dt+
d∑
j=1

σijSi(t)dW
j(t), t ∈ [0, T ],

Si(0) = si,

(1.7)

where r ∈ [0,∞), s0, si, bi, σ
ij ∈ R, i = 1, 2, . . . ,m, j = 1, . . . , d. Denote by x(t) the total wealth of an

investor at time t and by ui(t) the market value of his or her wealth in the i-th asset at time t, i = 1, . . . ,m.
Then, x satisfies the following controlled stochastic differential equation: dx(t) =

[
rx(t) + c(t) +

m∑
i=1

(bi − r)ui(t)
]
dt+

m∑
i=1

d∑
j=1

σijui(t)dW
j(t), t ∈ [0, T ],

x(0) = x0,

(1.8)

where x0 is the initial wealth and c(·) is a suitably chosen scalar stochastic processes. In order to prohibit

bankrupt the investor needs to choose the portfolio u(·) ≡
(
u1(·), · · · , um(·)

)>
such that the corresponding

state x satisfies
x(t, ω) ≥ 0, a.e. (t, ω) ∈ [0, T ]× Ω. (1.9)

Many scholars have studied this type of portfolio selection problem, see [3, 8, 11] and the references cited
therein. Generally, the portfolio that only prohibits bankrupt is not well adapted to an individual investor
with initial wealth x0 > 0, who wishes to keep the expected return to be not lower than a proper proportion
of the initial wealth for all time t, i.e., for some θ > 0,

E x(t) ≥ θx0, for all t ∈ [0, T ]. (1.10)

Obviously, (1.10) is a special case of (1.4). Note that, under this condition, the investor still has to face the
danger of the bankruptcy with some probability.

The optimal control problems with state constraints have been studied extensively in the deterministic
setting, see [7, 12, 14, 18, 22, 25] and the references therein. However, compared with their deterministic
counterpart, the literature for the state constrained stochastic optimal control problems is not rich. The
existing results on necessary optimality conditions for stochastic optimal control problems under state con-
straints only focus on some special cases, as for instance when the diffusion terms are invertible with respect
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to the control variable and the state constraint is represented by (1.9). When the diffusion terms are in-
vertible with respect to the control variable, the controlled stochastic differential equation can be rewritten
as a backward stochastic differential equation without control, and, by the comparison theorem (see [10], p.
22), under some further assumptions, the state constraint (1.9) is equivalent to the sample point pointwise
end-point constraint

x(T ) ≥ 0, a.s.

Then, the state constrained optimal control problem can be reformulated as a stochastic optimization problem
using backward stochastic differential equations. For more details, we refer the reader to [3, 19]. Unfortu-
nately, this approach fails whenever the state constraint (1.4) is present.

The main purpose of this paper is to provide some first and second order necessary conditions for the
local minimizers of problem (1.5). The techniques of variational analysis are used to handle the nonconvexity
of the control regions. Using the separation theorem, we first establish a weak maximum principle for local
minimizers. Then, we derive some second order necessary conditions for critical elements of local minimizers.
Also, a sufficient condition, namely a stochastic inward pointing condition, is proposed to guarantee the
normality of the weak maximum principle.

Some key ideas of this paper are taken from [7, 15] and they can be used to deal with much more general
classes of state constrained stochastic optimal control problems. For instance, the state constraints may be
defined by finitely many inequalities and (or) the function g may depend on the time variable t. Further,
one may consider some other control problems, for example, the mean field type stochastic control problems,
the forward-backward stochastic control problems, or, the same control system but with the pointwise state
constraint (for some nonempty subset K of Rn)

x(t, ω) ∈ K, a.e. (t, ω) ∈ [0, T ]× Ω. (1.11)

Nevertheless, in this paper, we do not intend to pursue the full generality. Instead, we shall discuss such
problem in a relatively simple setting making the main idea much clearer and direct. Other cases will be
discussed elsewhere.

The rest of this paper is organized as follows. In Section 2, we collect some notations and introduce some
preliminary results that will be used later. In Section 3, we derive the first order necessary condition for
stochastic optimal controls, and, in Section 4, we establish the second order necessary conditions. Finally,
in Section 5, we present a stochastic inward pointing condition to guarantee the normality of the first order
necessary condition.

2. Preliminaries

In this section, we introduce some notations and results which will be used in the sequel.
Let f : [0, T ] × Rn × Rm × Ω → R` (` ∈ N) be a given function. For a.e. (t, ω) ∈ [0, T ] × Ω, we denote

by fx(t, x, u, ω) and fu(t, x, u, ω) respectively the first order partial derivatives of f with respect to x and u
at (t, x, u, ω), by f(x,u)2(t, x, u, ω) the Hessian of f with respect to (x, u) at (t, x, u, ω), and by fxx(t, x, u, ω),
fxu(t, x, u, ω) and fuu(t, x, u, ω) the second order partial derivatives of f with respect to x and u at (t, x, u, ω)
respectively.

For any α, β ∈ [1,+∞) and t ∈ [0, T ], we denote by LβFt(Ω;Rn) the space of Rn-valued, Ft measurable

random variables ξ such that E |ξ|β < +∞; by Lβ([0, T ] × Ω;Rn) the space of Rn-valued, B([0, T ]) ⊗ F-

measurable processes ϑ such that ‖ϑ‖β :=
[
E
∫ T

0
|ϑ(t, ω)|βdt

] 1
β < +∞; by LβF(Ω;Lα(0, T ;Rn)) the space of Rn-

valued, B([0, T ])⊗F-measurable, F-adapted processes ϑ such that ‖ϑ‖α,β :=
[
E
( ∫ T

0
|ϑ(t, ω)|αdt

) β
α
] 1
β < +∞;

by LβF(Ω;C([0, T ];Rn)) the space of Rn-valued, B([0, T ])⊗F-measurable and F-adapted continuous processes

ϑ such that ‖ϑ‖∞,β :=
[
E
(

supt∈[0,T ] |ϑ(t, ω)|β
)] 1

β <+∞, by CF([0, T ];Lβ(Ω;Rn)) the space of Rn-valued,

B([0, T ])⊗F-measurable and F-adapted processes ϑ such that the map t 7→ ϑ(t, ·) is continuous in LβFT (Ω;Rn)

and ‖ϑ‖β,∞ := supt∈[0,T ]

(
E |ϑ(t, ω)|β

) 1
β < +∞, by LβF(Ω;D([0, T ];Rn)) the space of Rn-valued, B([0, T ])⊗F-

measurable and F-adapted processes ϑ whose paths are right-continuous with left limits and ‖ϑ‖∞,β < +∞,

by LβF(Ω;BV ([0, T ];Rn)) the space of processes ϑ ∈ LβF(Ω;D([0, T ];Rn)) whose sample paths have bounded
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variation such that ‖ϑ‖BV,β :=
(
E |ϑ(t, ω)|βBV [0,T ]

) 1
β < +∞, by LβF(Ω;BV0([0, T ];Rn)) the space of processes

ϑ ∈ LβF(Ω;BV ([0, T ];Rn)) with ϑ(0) = 0, and, by L∞F ([0, T ]× Ω;Rn) the space of Rn-valued, B([0, T ])⊗F-
measurable, F-adapted processes ϑ such that ‖ϑ‖∞ :=ess sup(t,ω)∈[0,T ]×Ω|ϑ(t, ω)| < +∞. When every sample
path of a process ϑ has left limits, we denote by ϑ− its left continuous modification.

Let us recall that on a given filtered probability space, any F-progressively measurable process is B([0;T ])
⊗F-measurable and F-adapted, and every B([0;T ])⊗F-measurable, F-adapted process has an F-progressively
measurable modification (see [27, Proposition 2.8, p. 17]).

Next, we recall some concepts and results from the set-valued analysis. We refer the reader to [1] for
more details.

In the sequel, we assume that X is a Banach space with a norm ‖ · ‖X and the dual X∗. For any subset
K ⊂ X, denote by ∂K, intK, clK and coK its boundary, interior, closure and convex hull, respectively. K
is called a cone if αx ∈ K for any α > 0 and x ∈ K. For a cone K, the convex closed cone K− := {ξ ∈
X∗ | ξ(x) ≤ 0, ∀ x ∈ K} is called the dual cone (or negative polar cone) of K. Define the distance between
a point x ∈ X and K by dist (x,K) := inf

y∈K
‖y − x‖X .

Definition 2.1. For x ∈ K, the Clarke tangent cone CK(x) to K at x is defined by

CK(x) :=
{
v ∈ X

∣∣∣ lim
ε→0+

y∈K, y→x

dist (y + εv,K)

ε
= 0
}
,

the adjacent cone T bK(x) to K at x is defined by

T bK(x) :=
{
v ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv,K)

ε
= 0
}
.

It is well known that CK(x) is a closed convex cone in X and CK(x) ⊂ T bK(x). By the definition of T bK(x),
v ∈ T bK(x) if and only if for any ε > 0 there exists a vε ∈ X such that vε → v (inX) as ε→ 0+ and x+εvε ∈ K.
Equivalently, v ∈ T bK(x) if and only if for any ε > 0 there exists an η(ε) ∈ X with ‖η(ε)‖X = o(ε) (ε→ 0+)
such that x+εv+η(ε) ∈ K. When K is convex, for any x ∈ K, T bK(x) = CK(x) = cl{α(y−x) |α ≥ 0, y ∈ K}.

Example 2.1. Let ϕ` : Rn → R, ` = 1, ..., k be continuously differentiable with globally Lipschitz derivatives.
Consider the set KT defined by

KT :=
{
ξ ∈ L2

FT (Ω;Rn)
∣∣E ϕ`(ξ) ≤ 0, ` = 1, . . . , k

}
. (2.1)

Let ξ ∈ KT and define I(ξ) :=
{
` ∈ {1, . . . , k} |E ϕ`(ξ) = 0

}
. If I(ξ) = ∅, then T bKT (ξ) = L2

FT (Ω;Rn).
If I(ξ) 6= ∅ and there exists a set A ∈ FT with P (A) > 0 such that

Z(ω) :=
{
z ∈ Rn

∣∣ 〈ϕ`x(ξ(ω)), z
〉
< 0, ∀ ` ∈ I(ξ)

}
6= ∅, a.s. in A, (2.2)

then, int
(
T bKT (ξ)

)
6= ∅ and

T bKT (ξ) =
{
v ∈ L2

FT (Ω;Rn)
∣∣E 〈ϕ`x(ξ), v

〉
≤ 0, ∀ ` ∈ I(ξ)

}
.

Proof. Let v ∈ T bKT (ξ). Then, from the definition of the adjacent cone, for any ε > 0, there exists a
vε ∈ L2

FT (Ω;Rn) such that vε converges to v in L2
FT (Ω;Rn) as ε→ 0+ and ξ+ εvε ∈ KT . Therefore, for any

` ∈ I(ξ),
0 ≥ E ϕ`(ξ + εvε) = E ϕ`(ξ) + εE

〈
ϕ`x(ξ), vε

〉
+ o(ε) = εE

〈
ϕ`x(ξ), vε

〉
+ o(ε)

Dividing by ε the both sides of the above inequality and letting ε→ 0+, we obtain that

E
〈
ϕ`x(ξ), v

〉
≤ 0.

On the other hand, by the condition (2.2) and by similar arguments to those in [16, Proof of Lemma 3.3],
there exists a v̄ ∈ L2

FT (Ω;Rn) such that

E
〈
ϕ`x(ξ), v̄

〉
< 0, ∀ ` ∈ I(ξ). (2.3)
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From the definition of the adjacent cone, it is easy to verify that v̄ ∈ int
(
T bKT (ξ)

)
. Let v ∈ L2

FT (Ω;Rn) be

such that, for any ` ∈ I(ξ), E
〈
ϕ`x(ξ), v

〉
≤ 0. Then E

〈
ϕ`x(ξ), vλ

〉
< 0 for all ` ∈ I(ξ), where λ ∈ (0, 1) and

vλ := (1− λ)v + λv̄. It implies that there exists a ρ > 0 such that for all sufficiently small ε > 0,

E ϕ`(ξ + εvλ) = E ϕ`(ξ) + εE
〈
ϕ`x(ξ), vλ

〉
+ o(ε) < −ερ+ o(ε) ≤ 0, ∀ ` ∈ I(ξ)

and

E ϕ`(ξ + εvλ) = E ϕ`(ξ) + εE
〈
ϕ`x(ξ), vλ

〉
+ o(ε) < −ρ+ εE

〈
ϕ`x(ξ), vλ

〉
+ o(ε) ≤ 0, ∀ ` /∈ I(ξ).

This proves that vλ ∈ T bKT (ξ) for any λ ∈ (0, 1). Since T bKT (ξ) is closed, letting λ → 0, we have v ∈
T bKT (ξ).

Observe that the proof in the above example can be used to show that, under the condition (2.2),
CKT (ξ) = T bKT (ξ) when KT is represented by (2.1).

Definition 2.2. For any x ∈ K and v ∈ T bK(x), the second order adjacent subset to K at (x, v) is defined
by

T
b(2)
K (x, v) :=

{
h ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv + ε2h,K)

ε2
= 0
}
.

Thus h ∈ T b(2)
K (x, v) if and only if for any ε > 0 there exists an hε ∈ X such that hε → h (in X) as

ε→ 0+ and x+ εv + ε2hε ∈ K.

Remark 2.1. It is not difficult to check that v ∈ T
b(2)
K (x, 0) if and only if v ∈ T bK(x). Moreover, it

follows from [12, Lemma 2.4] that, if T
b(2)
K (x, v) 6= ∅, then CK(x) + T

b(2)
K (x, v) = T

b(2)
K (x, v). In particular,

CK(x) + T bK(x) = T bK(x).

The dual cone of the Clarke tangent cone CK(x), denoted by NC
K(x), is called the Clarke normal cone to

K at x, i.e.,

NC
K(x) :=

{
ξ ∈ X∗

∣∣∣ ξ(v) ≤ 0, ∀ v ∈ CK(x)
}
.

When K is convex, NC
K(x) is the normal cone NK(x) :=

{
ξ ∈ X∗

∣∣∣ ξ(y − x) ≤ 0, ∀ y ∈ K
}

of the convex

analysis.
The following three elementary lemmas will be useful in the sequel.

Lemma 2.1. ([16, Lemma 2.4]) Let K1, . . . ,Kk be convex cones in X such that
⋂k
i=1 intKi 6= ∅. Then for

any convex cone K0 such that K0

⋂(⋂k
i=1 intKi

)
6= ∅, we have

(⋂k
i=0Ki

)−
=
∑k
i=0K

−
i .

Lemma 2.2. ([16, Lemma 2.5]) Let H be a Hilbert space (with an inner product 〈·, ·〉H), and K be a
nonempty closed polyhedra in H, i.e., for some {a1, · · · , ak} ⊂ H \ {0} and {b1, · · · , bk} ⊂ R,

K :=
{
x ∈ H | 〈ai, x〉H + bi ≤ 0, ∀ i = 1, · · · , k

}
.

If 0 6= ξ ∈ H satisfies supx∈K 〈ξ, x〉H < +∞, then, this supremum is attained at some x̄ ∈ ∂K and
ξ ∈

∑
i∈I(x̄) R+ai, where

I(x̄) :=
{
i ∈ {1, · · · , k}

∣∣ 〈ai, x̄〉H + bi = 0
}
.

Lemma 2.3 ([6]). Let X be a Banach space and M0,M1, . . . ,Mk be nonempty convex subsets of X such
that Mi is open for all i ∈ {1, · · · , k}. Then

M0 ∩M1 ∩ . . . ∩Mk = ∅ (2.4)

if and only if there are x∗0, x
∗
1, . . . , x

∗
k ∈ X∗, not vanishing simultaneously, such that

x∗0 + x∗1 + . . .+ x∗k = 0, inf x∗0(M0) + inf x∗1(M1) + . . .+ inf x∗k(Mk) ≥ 0, (2.5)

where inf x∗j (Mj) := inf{x∗j (x) | x ∈Mj} for j ∈ {0, 1, · · · , k}.
Furthermore, if (2.5) holds true and for some i ∈ {0, . . . , k}, there is a nonempty cone Ci ⊂ X and

xi ∈ X such that xi + Ci ⊂Mi, then −x∗i ∈ C
−
i .
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A very short proof of the above lemma can be found in [13].

Remark 2.2. Lemma 2.3 implies that: if (2.5) holds true for a nontrivial family x∗0, x
∗
1, . . . , x

∗
k ∈ X∗, k ≥ 2,

and M0 ∩M2 ∩ . . . ∩Mk 6= ∅, then x∗1 6= 0.

Let (Ξ,G ) be a measurable space, Y be a complete separable metric space and F : Ξ ; Y be a set-valued
map. The inverse F−1 of F is the set-valued map from Y to Ξ defined by

F−1(y) :=
{
ξ ∈ Ξ

∣∣ y ∈ F (ξ)
}
, ∀ y ∈ Y.

Recall that F is called measurable if F−1(A) := {ξ ∈ Ξ | F (ξ) ∩ A 6= ∅} ∈ G for any A ∈ B(Y ). We shall
need the following known result.

Lemma 2.4. ([1, Theorem 8.2.11]) Let (Ξ,G , µ) be a complete σ-finite measure space, Y be a complete
separable metric space, F be a measurable set-valued map from Ξ to Y with nonempty closed images, and, f
be a Carathéodory function from Ξ× Y to R. Then, the set-valued map

M(ξ) :=
{
y ∈ F (ξ)

∣∣ f(ξ, y) = inf
z∈F (ξ)

f(ξ, z)
}
, ∀ ξ ∈ Ξ

is a measurable set-valued map (from Ξ to Y ).

Combining [1, Theorem 8.5.1] with [16, Lemma 2.6], we have:

Lemma 2.5. Suppose (Ξ,G , µ) is a complete finite measure space, X is a separable Banach space, p ≥ 1
and K is a closed nonempty subset in X. Define

K :=
{
ϕ(·) ∈ Lp(Ξ,G , µ;X)

∣∣ ϕ(ξ) ∈ K, µ–a.e. ξ ∈ Ξ
}
.

Then for any ϕ(·) ∈ K, the set-valued maps CK(ϕ(·)): ξ ; CK(ϕ(ξ)) and T bK(ϕ(·)): ξ ; T bK(ϕ(ξ)) are
measurable, and {

v(·) ∈ Lp(Ξ,G , µ;X)
∣∣ v(ξ) ∈ CK(ϕ(ξ)), µ–a.e. ξ ∈ Ξ

}
⊂
{
v(·) ∈ Lp(Ξ,G , µ;X)

∣∣ v(ξ) ∈ T bK(ϕ(ξ)), µ–a.e. ξ ∈ Ξ
}

⊂ T bK(ϕ(·)).

(2.6)

As in [20], we call a measurable set-valued map ζ : (Ω,F) ; Rm a set-valued random variable. We call
a map Γ : [0, T ]×Ω ; Rm a measurable set-valued stochastic process if Γ is B([0, T ])⊗F-measurable, and,
we say that Γ is F-adapted if Γ(t) is Ft-measurable for any t ∈ [0, T ]. Define

A :=
{
A ∈ B([0, T ])⊗F

∣∣ At ∈ Ft, ∀ t ∈ [0, T ]
}
, (2.7)

where At := {ω ∈ Ω | (t, ω) ∈ A} is the section of A. Obviously, A is a σ-subalgebra of B([0, T ]) ⊗ F . As
pointed in [20, p. 96], the following result holds.

Lemma 2.6. A set-valued stochastic process Γ : [0, T ]×Ω ; Rm is B([0, T ])⊗F-measurable and F-adapted
if and only if Γ is A -measurable.

The following result will play a key role in the sequel.

Lemma 2.7. Let p, q ∈ (1,∞) and 1
p + 1

q = 1. Then, for any bounded linear functional Λ on the Banach

space LpF(Ω;C([0, T ];Rn)), there exists a process ψ ∈ LqF(Ω;BV0([0, T ];Rn)) such that

Λ(x(·)) = E
∫ T

0

〈x(t), dψ(t)〉 , ∀ x(·) ∈ LpF(Ω;C([0, T ];Rn)), (2.8)

and
‖Λ‖LpF (Ω;C([0,T ];Rn))∗ ≤ ‖ψ‖LqF(Ω;BV ([0,T ];Rn)). (2.9)
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Proof. Clearly LpF(Ω;C([0, T ];Rn)) is a linear subspace of LpF(Ω;D([0, T ];Rn)). For Λ∈LpF(Ω;C([0, T ];Rn))∗,

by the Hahn-Banach theorem, one can find an extension Λ̃ ∈ LpF(Ω; D([0, T ];Rn))∗ such that

||Λ̃||LpF (Ω;D([0,T ];Rn))∗ = ||Λ||LpF (Ω;C([0,T ];Rn))∗ (2.10)

and
Λ̃(x(·)) = Λ(x(·)), ∀ x(·) ∈ LpF(Ω;C([0, T ];Rn)). (2.11)

From the proof of [9, Theorem 65, p. 254], we deduce that, there exist two processes ψ+(·) and ψ−(·) with
bounded variation such that ψ+(·) is optional and purely discontinuous, ψ−(·) is predictable with ψ−(0) = 0,

E

∣∣∣∣∣
∫

(0,T ]

d|ψ−(t)|+
∫

[0,T )

d|ψ+(t)|

∣∣∣∣∣
2

<∞

and, for any x(·) ∈ LpF(Ω;D([0, T ];Rn)),

Λ̃(x(·)) = E

[∫
(0,T ]

〈
x−(t), dψ−(t)

〉
+

∫
[0,T )

〈
x(t), dψ+(t)

〉]
.

Define ψ∗ := ψ− + ψ+. By (2.11), we have

Λ(x(·)) = E
∫ T

0

〈x(t), dψ∗(t)〉 , ∀ x(·) ∈ LpF(Ω;C([0, T ];Rn)).

Letting ψ = ψ∗ − ψ∗(0), we obtain (2.8). (2.9) follows from (2.8).

Let p = q = 2. Obviously, for any ψ ∈ L2
F(Ω;BV0([0, T ];Rn)),

x(·) 7→ E
∫ T

0

〈x(t), dψ(t)〉 , ∀ x(·) ∈ L2
F(Ω;C([0, T ];Rn))

defines a bounded linear functional on L2
F(Ω;C([0, T ];Rn)). Due to this and in order to simplify the notation,

in this paper we identify the process ψ ∈L2
F(Ω;BV0([0, T ];Rn)) with the above bounded linear functional,

and for a convex cone K ⊂ L2
F(Ω;C([0, T ];Rn)), we say ψ ∈ K− if

E
∫ T

0

〈x(t), dψ(t)〉 ≤ 0, ∀ x(·) ∈ K.

By Itô’s formula for discontinuous semimartingales (see [24, Theorem 33]), we have the following result.

Lemma 2.8. Let ψ∈L2
F(Ω;BV ([0, T ];Rn)) and z(·) = z(0)+

∫ ·
0
η(t)dt+

∑d
j=1

∫ ·
0
ϑj(t)dW j(t) with z(0) ∈ Rn,

η, ϑj ∈ L2
F(Ω;L2(0, T ;Rn)), j = 1, . . . , d. Then,

E 〈z(T ), ψ(T )〉 = E 〈z(0), ψ(0)〉+ E
∫ T

0

〈z(t), dψ(t)〉+ E
∫ T

0

〈ψ(t), η(t)〉 dt.

Proof. Since ψ ∈ L2
F(Ω;BV ([0, T ];Rn)), we have

〈
ψ−(·), ϑj(·)

〉
∈ L2(0, T ;R) a.s., for any j = 1, . . . , d. Let

An(ω) :=
{
t ∈ [0, T ]

∣∣∣ d∑
j=1

∫ t

0

|
〈
ψ−(s, ω), ϑj(s, ω)

〉
|2ds > n

}
.

Define

τn(ω) :=

{
inf An(ω), if An(ω) 6= ∅,
T, if An(ω) = ∅, ω ∈ Ω

and

zn(·) = z(0) +

∫ ·
0

η(t)dt+

d∑
j=1

∫ ·
0

ϑj(t)χ[0,τn](t)dW
j(t).
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By [24, Theorem 33], we have

〈zn(T ), ψ(T )〉 − 〈z(0), ψ(0)〉

=

∫ T

0

〈zn(t), dψ(t)〉+

∫ T

0

〈ψ−(t), η(t)〉 dt+

d∑
j=1

∫ T

0

〈
ψ−(t), ϑj(t)

〉
χ[0,τn](t)dW

j(t), a.s.

Obviously, by the property of the Lebesgue integral,
∫ T

0
〈ψ−(t), η(t)〉 dt =

∫ T
0
〈ψ(t), η(t)〉 dt, a.s. In addition,

since
∑d
j=1 E

∫ T
0
|
〈
ψ−(t), ϑj(t)

〉
χ[0,τn](t)|2dt ≤ n, by the property of Itô’s integral we have

d∑
j=1

E
∫ T

0

〈
ψ−(t), ϑj(t)

〉
χ[0,τn](t)dW

j(t) = 0.

Therefore,

E 〈zn(T ), ψ(T )〉 − 〈z(0), ψ(0)〉 = E
∫ T

0

〈zn(t), dψ(t)〉+ E
∫ T

0

〈ψ(t), η(t)〉 dt. (2.12)

Obviously, by Lebesgue’s dominated convergence theorem,

E
∫ T

0

|ϑj(t)χ[0,τn](t)− ϑj(t)|2dt→ 0, n→∞, j = 1, . . . , d,

which implies that E supt∈[0,T ] |zn(t)− z(t)|2 → 0 as n→∞. Then, the desired conclusion follows by passing
to the limit on both sides of (2.12).

We end this section by the following simple result (which is certainly known but we could not find an
exact reference).

Lemma 2.9. LβF(Ω;C([0, T ];Rn)) ⊂ CF([0, T ];Lβ(Ω;Rn)) for any β ∈ [1,∞).

Proof. Although the proof of this lemma is obvious, for the sake of completeness, we give below the details.
Let z ∈ LβF(Ω;C([0, T ];Rn)). We only need to prove that t 7→ z(t) is a continuous function from [0, T ] to the

Banach space LβFT (Ω;Rn).

Let t ∈ [0, T ] and tn ∈ [0, T ], tn → t as n → ∞. Since z ∈ LβF(Ω;C([0, T ];Rn)), z(tn, ω) → z(t, ω) a.s.
as n → ∞. On the other hand, E |z(tn, ω)|β ≤ E supt∈[0,T ] |z(t, ω)|β < +∞. By Lebesgue’s dominated

convergence theorem, E |z(tn, ω)− z(t, ω)|β → 0 as n→∞.

3. First order necessary conditions

In this section, we study the first order necessary optimality conditions for the optimal control problem (1.5).
We need the following assumptions:

(A1) The control region U is nonempty and closed in Rm.

(A2) The functions b, σ, φ, g and ϕ`, ` = 1, . . . , k satisfy the following:

(i) For any (x, u) ∈ Rn × Rm, b(·, x, u, ·) : [0, T ] × Ω → Rn and σj(·, x, u, ·) : [0, T ] × Ω → Rn
(j = 1, . . . , d) are B([0, T ]) ⊗ F-measurable and F-adapted. For a.e. (t, ω) ∈ [0, T ] × Ω, the
functions b(t, ·, ·, ω) : Rn × Rm → Rn and σj(t, ·, ·, ω) : Rn × Rm → Rn are differentiable and

(x, u) 7→ (bx(t, x, u, ω), bu(t, x, u, ω)),

(x, u) 7→ (σjx(t, x, u, ω), σju(t, x, u, ω)), j = 1, . . . , d

are uniformly continuous in x ∈ Rn and u ∈ Rm. There exists a constant L ≥ 0 and a nonnegative
η ∈ L2

F(Ω;L2(0, T ;R)) such that for a.e. (t, ω) ∈ [0, T ]× Ω and for any x ∈ Rn and u ∈ Rm,
|b(t, 0, u, ω)|+ |σj(t, 0, u, ω)| ≤ L(η(t, ω) + |u|),
|bx(t, x, u, ω)|+ |bu(t, x, u, ω)| ≤ L,
|σjx(t, x, u, ω)|+ |σju(t, x, u, ω)| ≤ L, j = 1, . . . , d;
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(ii) For any x ∈ Rn, the random variable φ(x, ·) is FT -measurable, φ(·, ω) : Rn → R is differentiable
a.s., and there exists a nonnegative ηT ∈ L2

FT (Ω;R) such that for any x, x̃ ∈ Rn,{
|φ(x, ω)| ≤ L(ηT (ω)2 + |x|2), |φx(0, ω)| ≤ LηT (ω), a.s.,

|φx(x, ω)− φx(x̃, ω)| ≤ L|x− x̃|, a.s.

(iii) g and ϕ`, ` = 1, . . . , k are differentiable functions from Rn to R, and, for any x, x̃ ∈ Rn,
|g(x)|+

∑k
`=1 |ϕ`(x)| ≤ L(1 + |x|2),

|gx(0)|+
∑k
`=1 |ϕ`x(0)| ≤ L,

|gx(x)− gx(x̃)|+
∑k
`=1 |ϕ`x(x)− ϕ`x(x̃)| ≤ L|x− x̃|.

Moreover we assume that, g(x0) < 0 for every x0 ∈ K0.

When the conditions (i) and (ii) in (A2) are satisfied, the state x (of (1.1)) is uniquely defined by any
given initial datum x0 ∈ Rn and control u ∈ U , and the cost functional (1.2) is well-defined for u(·) ∈ U . In
what follows, C represents a generic positive constant (depending only on T , η(·), ηT (·) and L), which may
differ from one place to another.

Let (x̄, ū) be a local minimizer and x̄0 := x̄(0). For f = b, σ, denote

fx[t] = fx(t, x̄(t), ū(t)), fu[t] = fu(t, x̄(t), ū(t)).

Let Φ be a set-valued stochastic process satisfying Φ is B([0, T ])⊗F-measurable and F-adapted;
for a.e. (t, ω) ∈ [0, T ]× Ω,Φ(t, ω) is a nonempty closed convex cone in Rm;
Φ(t, ω) ⊂ T bU (ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.

(3.1)

Define
TΦ(ū) :=

{
v(·) ∈ L2

F(Ω;L2(0, T ;Rm))
∣∣ v(t, ω) ∈ Φ(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω

}
.

Since 0 ∈ TΦ(ū), TΦ(ū) is nonempty. Clearly it is a closed convex cone in L2
F(Ω;L2(0, T ;Rm)). By Lemma

2.5, we may chose Φ(t, ω) = CU (ū(t, ω)). However, in general, there may exist a Φ(t, ω) as above such that
CU (ū(t, ω)) ( Φ(t, ω) ⊂ T bU (ū(t, ω)).

Let v ∈ TΦ(ū) and ν0 ∈ T bK0
(x̄0). We consider the following first order linearized stochastic control

system:  dy1(t) =
(
bx[t]y1(t) + bu[t]v(t)

)
dt+

d∑
j=1

(
σjx[t]y1(t) + σju[t]v(t)

)
dW j(t), t ∈ [0, T ],

y1(0) = ν0.

(3.2)

It is easy to see that, under the assumption (i) in (A2), for any v ∈ TΦ(ū) and ν0 ∈ T bK0
(x̄0), (3.2) admits a

unique solution y1(·) ∈ L2
F(Ω;C([0, T ];Rn)).

By Lemma 2.5, TΦ(ū) ⊂ T bU (ū). For any ε > 0, choose νε0 ∈ Rn and vε ∈ L2
F(Ω;L2(0, T ; Rm)) such that

xε0 := x̄0 + ενε0 ∈ K0, uε := ū + εvε ∈ U and νε0 → ν0 in Rn, vε → v in L2
F(Ω;L2(0, T ;Rm)) as ε → 0+. Let

xε be the solution of (1.1) corresponding to the control uε and the initial datum xε0, and put

δxε = xε − x̄, rε1(t, ω) :=
δxε(t, ω)

ε
− y1(t, ω).

The following results for the d-dimensional Wiener process can be proved in the same way as [15, Lemma
3.2] for the one-dimensional Wiener process.

Lemma 3.1. Let (i) and (ii) in (A2) hold. Then, for any β ≥ 2,

a) ‖y1‖∞,β ≤ C
(
‖ν0‖+ ‖v‖2,β

)
, ‖δxε‖∞,β = O(ε);
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b) ‖rε1‖∞,β → 0, as ε→ 0+.

Let TK0(x̄0) be a nonempty closed convex cone contained in T bK0
(x̄0). Denote

G(1) :=
{
y1(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣ y1 solves (3.2) with v∈TΦ(ū) and ν0 ∈ TK0

(x̄0)
}
, (3.3)

Ig0 := {t ∈ [0, T ] |Eg(x̄(t)) = 0}, (3.4)

and
Iϕ0 :=

{
` ∈ {1, . . . , k} |Eϕ`(x̄(T )) = 0

}
.

Consider the sets

Q(1) :=
{
z(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣ E 〈gx(x̄(t)), z(t)〉 < 0, ∀ t ∈ Ig0

}
, (3.5)

and
E(1) :=

{
z(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣ E 〈ϕ`x(x̄(T )), z(T )

〉
< 0, ∀ ` ∈ Iϕ0

}
. (3.6)

When Ig0 = ∅ (resp. Iϕ0 = ∅) we set Q(1) = L2
F(Ω;C([0, T ];Rn)) (resp. E(1) = L2

F(Ω; C([0, T ];Rn))).
Also, we define

L(1) :=
{
z(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣ E 〈φx(x̄(T )), z(T )〉 < 0

}
. (3.7)

Since TΦ(ū) and TK0(x̄0) are nonempty convex cones, G(1) is a nonempty convex cone in L2
F(Ω;C([0, T ];

Rn)).
Notice that E(1) and L(1) are, possibly empty, open convex cones in L2

F(Ω;C([0, T ];Rn)). In Example 2.1
we have found that when the condition (2.2) (with ξ replaced by x̄(T )) holds true, there exists a zT ∈ L2

FT (Ω)

such that E
〈
ϕ`x(x̄(T )), zT

〉
< 0 for every ` ∈ Iϕ0 .

By the Itô representation theorem (see [21, Theorem 4.3.3, p.51]), there exist ϑj ∈ L2
F(Ω; L2(0, T ;Rn)),

j = 1, . . . , d such that

zT = E zT +

d∑
j=1

∫ T

0

ϑj(t)dW j(t), a.s.

Then, z(·) := E zT +
∑d
j=1

∫ ·
0
ϑj(t)dW j(t) belongs to E(1). Similarly, when φx(x̄(T )) 6= 0 on a set A ∈ FT

with P (A) > 0, L(1) 6= ∅. Furthermore, when Q(1) and E(1) are nonempty sets,

cl∞,2
(
Q(1)

)
= {z(·) ∈ L2

F(Ω;C([0, T ];Rn))
∣∣E 〈gx(x̄(t)), z(t)〉 ≤ 0, ∀ t ∈ Ig0},

and
cl∞,2

(
E(1)

)
=
{
z(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣ E 〈ϕ`x(x̄(T )), z(T )

〉
≤ 0, ∀ ` ∈ Iϕ0

}
.

Lemma 3.2. Q(1) is an open convex cone in L2
F(Ω;C([0, T ];Rn)).

Proof. It is sufficient to prove that Q(1) is open when it is nonempty.
Let z ∈ Q(1). Since x̄ ∈ L2

F(Ω;C([0, T ];Rn)), by Lemma 2.9, Ig0 is a compact subset of [0, T ]. Hence,
there exists a constant ρ > 0 such that E 〈gx(x̄(t)), z(t)〉 < −ρ for every t ∈ Ig0 and for some δ > 0 and for
any η ∈ L2

F(Ω;C([0, T ];Rn)) with ‖η‖∞,2 ≤ δ,

E 〈gx(x̄(t)), z(t) + η(t)〉 < −ρ
2
, ∀ t ∈ Ig0 .

This proves that z ∈ intQ(1).

We associate with the first order variational equation (3.2), the following first order adjoint equation
dP1(t) = −

[
bx[t]>

(
P1(t)+ψ(t)

)
+

d∑
j=1

σjx[t]>Qj1(t)
]
dt+

d∑
j=1

Qj1(t)dW j(t), t ∈ [0, T ],

P1(T ) = −λ0φx(x̄(T ))−
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))− ψ(T ),

(3.8)

10



where λ0 ∈ {0, 1}, ψ ∈L2
F(Ω;BV0([0, T ];Rn)) and λ` ≥ 0 for any `∈ Iϕ0 (

{
λ0, {λ`}

}
and ψ will be specified

later). Since L2
F(Ω;BV0([0, T ];Rn)) ⊂ L2

F(Ω;L2(0, T ;Rn)), under the assumption (A2), the equation (3.8)
admits a unique strong solution (P1(·), Q1(·))∈L2

F(Ω;C([0, T ];Rn))× L2
F(Ω;L2(0, T ; Rn×d)).

Define the Hamiltonian

H (t, x, u, p, q, r, ω) := 〈p+ r, b(t, x, u, ω)〉+

d∑
j=1

〈
qj , σj(t, x, u, ω)

〉
, (3.9)

where (t, x, u, p, q, r, ω) ∈ [0, T ]× Rn × Rm × Rn × Rn×d × Rn × Ω, and denote

H [t] = H (t, x̄(t), ū(t), P1(t), Q1(t), ψ(t)), t ∈ [0, T ],

Hx[t], Hu[t], Hxx[t], Hxu[t] and Huu[t] are defined in a similar way.
Let γ be the map from L2

F(Ω;C([0, T ];Rn)) to L2
FT (Ω;Rn) given by

γ(x) = x(T ), ∀ x ∈ L2
F(Ω;C([0, T ];Rn)). (3.10)

By Lemma 2.9, γ is a well-defined bounded linear operator. By Lemma 2.7, denote by

γ∗ : L2
FT (Ω;Rn)→ L2

F(Ω;BV0([0, T ];Rn)) (3.11)

the adjoint operator of γ.
We next state the first order necessary optimality condition in the integral form.

Theorem 3.1. Let (A1)–(A2) hold and (x̄, ū) be a local minimizer for the problem (1.5). If E |gx(x̄(t))| 6= 0

for any t ∈ Ig0 , then there exist λ0 ∈ {0, 1}, λ`≥0 for any `∈Iϕ0 and ψ ∈
(
Q(1)

)−
with ψ(0) = 0 satisfying

λ0 +
∑
`∈Iϕ0

λ` + ‖ψ‖BV,2 6= 0

such that the corresponding solution (P1, Q1) to the first order adjoint equation (3.8) verifies

〈P1(0), ν0〉+ E
∫ T

0

〈Hu[t], v(t)〉 dt ≤ 0, ∀ ν0 ∈ TK0
(x̄0), ∀ v(·) ∈ TΦ(ū). (3.12)

In addition, the above holds true with λ0 = 1 if Q(1) ∩ G(1) ∩ E(1) 6= ∅.

Letting Φ(t, ω) = CU (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × Ω and TK0
(x̄0) = CK0

(x̄0) and using the same
arguments as those in [15, proof of Theorem 3.2], as a direct consequence of Theorem 3.1, we obtain the
following pointwise first order necessary condition (Hence we omit its proof).

Theorem 3.2. Let (A1)–(A2) hold. If (x̄, ū) is a local minimizer for the problem (1.5) such that E|gx(x̄(t))|
6= 0 for any t ∈ Ig0 , then for (P1, Q1) as in Theorem 3.1,

P1(0) ∈ NC
K0

(x̄0) and Hu[t] ∈ NC
U (ū(t)), a.e. t ∈ [0, T ], a.s. (3.13)

Proof. (of Theorem 3.1). We shall derive the desired result by considering several cases.

(i) If Ig0 = ∅, then E g(x̄(t)) < 0 for every t ∈ [0, T ] and Q(1) = L2
F(Ω;C([0, T ];Rn)).

Let ν0 ∈ TK0
(x̄0) and v ∈ TΦ(ū). Consider µ(ε) ∈ Rn with |µ(ε)| = o(ε) and η(ε) ∈ L2

F(Ω;L2(0, T ;Rn))
with ‖η(ε)‖2 = o(ε) such that xε0 := x̄0 + εν0 + µ(ε) ∈ K0 and uε := ū + εv + η(ε) ∈ U . Let xε be the
solution to the control system (1.1) with the initial datum xε0 and control uε and let y1 be the solution to
the first order linearized control system (3.2) with control v and initial datum ν0. By Lemma 3.1, for any
fixed t ∈ [0, T ], one can find ρ(t) > 0 and α(t) > 0 such that for any ε ∈ [0, α(t)],

E g(xε(t)) = E g(x̄(t)) + εE 〈gx(x̄(t)), y1(t)〉+ o(ε)

≤ −ρ(t) + Cε(|ν0|+ ‖v‖2) + o(ε) < −ρ(t)

2
.
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Then, by the continuity of xε and Lemma 2.9, there exists a δ(t) > 0 such that

E g(xε(s)) < −ρ(t)

4
, ∀ s ∈ (t− δ(t), t+ δ(t)).

In the above we have set xε(s) ≡ x0 when s ∈ (−δ(0), 0] and xε(s) ≡ x(T ) when s ∈ [T, T + δ(T )). Since
[0, T ] is compact, there exist ρ0 > 0 and ε0 > 0 (both independent from t), such that for any ε ∈ [0, ε0],
E g(xε(t)) ≤ −ρ0 for every t ∈ [0, T ]. This proves that any (xε(·), uε(·)) obtained by a sufficiently small
perturbation of ū(·) and x̄0 satisfies the state constraint (1.4). Setting ψ ≡ 0 and using [16, proof of
Theorem 3.4] we deduce that, there exist λ0 ∈ {0, 1}, λ` ≥ 0 for ` ∈ Iϕ0 , λ0 +

∑
`∈Iϕ0

λ` 6= 0 such that, for

the adjoint process (P1, Q1) defined by (3.8) (with ψ ≡ 0),

〈P1(0), ν0〉+ E
∫ T

0

〈Hu[t], v(t)〉 dt ≤ 0, ∀ ν0 ∈ TK0(x̄0), ∀ v(·) ∈ TΦ(ū)

and that λ0 = 1 if G(1) ∩ E(1) 6= ∅.
(ii) Ig0 6= ∅, then −gx(x̄(·)) ∈ Q(1) and therefore, Q(1) 6= ∅.
We first prove that

G(1) ∩Q(1) ∩ E(1) ∩ L(1) = ∅. (3.14)

Indeed, otherwise, there would exist a ȳ1 ∈ G(1) ∩Q(1) ∩ E(1) such that

E 〈φx(x̄(T )), ȳ1(T )〉 < 0. (3.15)

Let ν̄0 ∈ TK0
(x̄0) and v̄(·) ∈ TΦ(ū(·)) be respectively the initial datum and control corresponding to ȳ1.

Consider µ(ε) ∈ Rn with |µ(ε)| = o(ε) and η(ε) ∈ L2
F(Ω;L2(0, T ;Rn)) with ‖η(ε)‖2 = o(ε) such that

xε0 := x̄0 + εν̄0 + µ(ε) ∈ K0 and uε := ū+ εv̄ + η(ε) ∈ U . Let xε be the solution to the control system (1.1)
with the initial datum xε0 and control uε.

Since ȳ1 ∈ Q(1), there exists a ρ0 > 0 such that E 〈gx(x̄(t)), ȳ1(t)〉 < −ρ0 for every t ∈ Ig0 . Then,
by Lemma 2.9 and the compactness of Ig0 , there exists a δ > 0 (independent of t ∈ Ig0 ) such that,
E 〈gx(x̄(s)), ȳ1(s)〉 < −ρ02 for every s ∈ (t − δ, t + δ) ∩ [0, T ], t ∈ Ig0 . Using Lemma 3.1 again, we can
find an ε0 > 0 such that, for any ε ∈ [0, ε0],

E g(xε(s)) = E g(x̄(s)) + εE 〈gx(x̄(s)), ȳ1(s)〉+ o(ε)

≤ εE 〈gx(x̄(s)), ȳ1(s)〉+ o(ε)

< −ερ0

4
< 0, ∀ s ∈ (t− δ, t+ δ) ∩ [0, T ], t ∈ Ig0 . (3.16)

In addition, because Icδ := [0, T ] \ ∪t∈Ig0 (t − δ, t + δ) is a compact set, there exist ρ1 > 0 and ε1 > 0 such
that, for any ε ∈ [0, ε1],

E g(xε(t)) = E g(x̄(t)) + εE 〈gx(x̄(t)), ȳ1(t)〉+ o(ε)

< −ρ1 + εE 〈gx(x̄(t)), ȳ1(t)〉+ o(ε)

< −ρ1

2
< 0, ∀ t ∈ Icδ . (3.17)

By (3.16) and (3.17), xε satisfies the state constraint (1.4) when ε < min{ε0, ε1}.
Moreover, since ȳ1(T ) ∈ E(1), E

〈
ϕ`x(x̄(T )), ȳ1(T )

〉
< 0 for avery ` ∈ Iϕ0 . Similarly to the arguments in

the proof of [16, Theorem 3.4], for every sufficient small ε, xε satisfies the end point constraint (1.3). This
proves that, when ε is small enough, (xε, uε) ∈Pad. By (3.15), there exists a ρ2 > 0 such that for sufficiently
small ε,

E φ(xε(T )) = E φ(x̄(T )) + εE 〈φx(x̄(T )), ȳ1(T )〉+ o(ε)

< E φ(x̄(T ))− ερ2 + o(ε) < E φ(x̄(T )),

in contradiction with the local optimality of (x̄, ū). This completes the proof of (3.14).
Now we consider three different subcases.
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Case a: Q(1) ∩ G(1) = ∅. Since Q(1) is a nonempty open convex set and G(1) is nonempty and convex,
by Lemma 2.7 and the separation theorem there exists a nonzero ψ ∈ L2

F(Ω;BV ([0, T ];Rn)) with ψ(0) = 0
such that

sup
z∈Q(1)

E
∫ T

0

〈z(t), dψ(t)〉 ≤ inf
y∈G(1)

E
∫ T

0

〈y(t), dψ(t)〉 .

Because Q(1) and G(1) are cones,

0 = sup
z∈Q(1)

E
∫ T

0

〈z(t), dψ(t)〉 = inf
y∈G(1)

E
∫ T

0

〈y(t), dψ(t)〉 .

Therefore, ψ ∈
(
Q(1)

)−
and −ψ ∈

(
G(1)

)−
. By Lemma 2.8, for any y1 ∈ G(1),

0 ≥ −E
∫ T

0

〈y1(t), dψ(t)〉 = −E 〈y1(T ), ψ(T )〉+ E
∫ T

0

〈ψ(t), bx[t]y1(t) + bu[t]v(t)〉 dt. (3.18)

On the other hand, by the duality between (3.2) and (3.8) we have

E 〈P1(T ), y1(T )〉 − 〈P1(0), ν0〉

= E
∫ T

0

(
〈P1(t), bx[t]y1(t)〉+ 〈P1(t), bu[t]v(t)〉 −

〈
bx[t]>(P1(t) + ψ(t)), y1(t)

〉
−

d∑
j=1

〈
σjx[t]>Qj1(t), y1(t)

〉
+

d∑
j=1

〈
Qj1(t), σjx[t]y1(t)

〉
+

d∑
j=1

〈
Qj1(t), σju[t]v(t)

〉)
dt

= E
∫ T

0

(
〈P1(t), bu[t]v(t)〉 −

〈
bx[t]>ψ(t), y1(t)

〉
+

d∑
j=1

〈
Qj1(t), σju[t]v(t)

〉)
dt. (3.19)

Set λ0 = 0, λ` = 0, ` ∈ Iϕ0 and P1(T ) = −ψ(T ). Then, λ0 +
∑
`∈Iϕ0

λ` + ‖ψ‖BV,2 6= 0 and (3.12) follows from

(3.18) and (3.19).

Case b: Q(1) ∩ G(1) 6= ∅ and Q(1) ∩ G(1) ∩ E(1) = ∅.
If E(1) = ∅, then from the proof of case (ii) in [16, Theorem 3.4], we know that, for each ` ∈ Iϕ0 there

exists a λ` ≥ 0 such that
∑
`∈Iϕ0

λ` > 0 and
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T )) = 0. Then, taking λ0 = 0, ψ ≡ 0 and P1(T ) = 0,

we have λ0 +
∑
`∈Iϕ0

λ` + ‖ψ‖BV,2 6= 0 and the condition (3.12) holds trivially with (P1, Q1) ≡ 0.

If E(1) 6= ∅, then γ
(
Q(1) ∩ G(1)

)
∩ E(1)

T = ∅, where γ is the bounded linear operator defined by (3.10) and

E(1)
T :=

{
ζ∈L2

FT (Ω;Rn)
∣∣ E 〈ϕ`x(x̄(T )), ζ

〉
< 0, ∀ ` ∈ Iϕ0

}
. (3.20)

By the separation theorem, there exists a nonzero ξ∈L2
FT (Ω;Rn) such that

sup
α∈γ(Q(1)∩G(1))

E 〈ξ, α〉≤ inf
β∈E(1)T

E 〈ξ, β〉 .

Since both γ(Q(1) ∩ G(1)) and E(1)
T are cones, 0 = supα∈γ(Q(1)∩G(1))E 〈ξ, α〉 = inf

β∈E(1)T

E 〈ξ, β〉 . Therefore,

ξ ∈
[
γ(Q(1) ∩ G(1))

]−
and −ξ ∈

(
E(1)
T

)−
. By Lemma 2.1, for each ` ∈ Iϕ0 there exists a λ` ≥ 0 such that∑

`∈Iϕ0
λ` > 0 and −ξ =

∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T )). In addition,

0 ≥ E 〈ξ, γ(z)〉 ∀ z ∈ Q(1) ∩ G(1), (3.21)

implying that γ∗(ξ) ∈
(
Q(1) ∩ G(1)

)−
. By Lemma 2.1 there exists a ψ ∈

(
Q(1)

)−
with ψ(0) = 0 such that

γ∗(ξ)− ψ ∈
(
G(1)

)−
. Then, by Lemma 2.8, for any y1 ∈ G(1),

0 ≥ E 〈ξ, y1(T )〉 − E
∫ T

0

〈y1(t), dψ(t)〉
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= E 〈ξ, y1(T )〉−E 〈ψ(T ), y1(T )〉+ E
∫ T

0

〈ψ(t), bx[t]y1(t) + bu[t]v(t)〉 dt. (3.22)

Let λ0 = 0. Since ξ 6= 0, λ0 +
∑
`∈Iϕ0

λ` + ‖ψ‖BV,2 6= 0. Setting

P1(T ) = −
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))− ψ(T ), (3.23)

by (3.22), (3.23) and (3.19) we obtain (3.12).

Case c: Q(1) ∩ G(1) ∩ E(1) 6= ∅. It implies that γ
(
Q(1) ∩ G(1)

)
∩ E(1)

T 6= ∅, (E(1)
T is defined by (3.20)). By

(3.14), 0 ≤ E 〈φx(x̄(T )), z(T )〉 for every z ∈ Q(1) ∩ G(1) ∩ E(1). This yields

0 ≤ E 〈φx(x̄(T )), ζ〉 , ∀ ζ ∈ γ
(
Q(1) ∩ G(1)

)
∩ E(1)

T .

Consequently, −φx(x̄(T )) ∈
[
γ
(
Q(1) ∩ G(1)

)
∩ E(1)

T

]−
.

By Lemma 2.1,
[
γ
(
Q(1)∩G(1)

)
∩E(1)

T

]−
=
[
γ
(
Q(1)∩G(1)

)]−
+
(
E(1)
T

)−
. Then, for each ` ∈ Iϕ0 there exists

a λ` ≥ 0 such that ξ :=
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T )) ∈

(
E(1)
T

)−
and

−φx(x̄(T ))−
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T )) ∈

[
γ
(
Q(1) ∩ G(1)

)]−
.

Therefore,

γ∗
(
− φx(x̄(T ))−

∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))

)
∈
(
Q(1) ∩ G(1)

)−
=
(
Q(1)

)−
+
(
G(1)

)−
.

Let ψ ∈
(
Q(1)

)−
with ψ(0) = 0 be such that

γ∗
(
− φx(x̄(T ))−

∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))

)
− ψ ∈

(
G(1)

)−
and set λ0 = 1,

P1(T ) = −φx(x̄(T ))−
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))− ψ(T ). (3.24)

Then, λ0 +
∑
`∈Iϕ0

λ` + ‖ψ‖BV,2 6= 0 and, by Lemma 2.8 once more, for any y1 ∈ G(1),

0 ≥ −E 〈φx(x̄(T ))), y1(T )〉 −
∑
`∈Iϕ0

λ`E
〈
ϕ`x(x̄(T )), y1(T )

〉
− E

∫ T

0

〈y1(t), dψ(t)〉

= −E 〈φx(x̄(T ))), y1(T )〉 −
∑
`∈Iϕ0

λ`E
〈
ϕ`x(x̄(T )), y1(T )

〉
− E 〈ψ(T ), y1(T )〉

+E
∫ T

0

〈ψ(t), bx[t]y1(t) + bu[t]v(t)〉 dt. (3.25)

Combining (3.24) and (3.25) with (3.19), we obtain (3.12). This completes the proof of Theorem 3.1.

To end this section, we give below a simple example.

Example 3.1. Let T = 2, m = n = 2, d = 1, K0 = {0}(⊂ R2) and

B =

(
0 1
0 0

)
, C =

(
0 1
0 0

)
, D =

(
0 0
1 0

)
.
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Consider the control system{
dx(t) = Bu(t)dt+

(
Cx(t) +Du(t)

)
dW (t), t ∈ [0, 2],

x(0) = 0
(3.26)

with the control set

U :=
{

(u1, u2)> ∈ R2
∣∣∣ 0 ≤ u1 ≤ 2, 0 ≤ u2 ≤ 2−

√
4− (u1 − 2)2

}
,

the cost functional

E φ(x(2)) =
1

2
E |x1(2)− 1− (W (2)−W (1))2|2 − 2E x1(2)

and the state constraint
E g(x(t)) = E x1(t)− 2 ≤ 0, ∀ t ∈ [0, 2].

Let ū(·) = (ū1(·), ū2(·)) be defined by

ū1(t, ω) =

{
0, (t, ω) ∈ [0, 1)× Ω;
2, (t, ω) ∈ [1, 2]× Ω.

, ū2(t, ω) =

{
2, (t, ω) ∈ [0, 1)× Ω;
0, (t, ω) ∈ [1, 2]× Ω.

Then, the solution x̄(·) = (x̄1(·), x̄2(·)) of (3.26) corresponding to ū(·) is

x̄1(t) =

{
2t, t ∈ [0, 1), a.s.;
3− t+ (W (t)−W (1))2, t ∈ [1, 2], a.s.;

x̄2(t) =

{
0, t ∈ [0, 1), a.s.;
2W (t)− 2W (1), t ∈ [1, 2], a.s.

Clearly, (x̄, ū) is an optimal pair, Ig0 = [1, 2], and,

Q(1) =
{
y ∈ L2

F(Ω;C([0, T ];Rn))
∣∣∣ E y1(t) < 0, ∀ t ∈ [1, 2]

}
.

It is easy to check that

T bU (ū(t, ω)) = CU (ū(t, ω)) =


{

(0,−α)>
∣∣ α ≥ 0

}
, (t, ω) ∈ [0, 1)× Ω;{

(−α, 0)>
∣∣ α ≥ 0

}
, (t, ω) ∈ [1, 2]× Ω.

Then, we can choose Φ(t, ω) = T bU (ū(t, ω)) for any (t, ω) ∈ [0, 2]× Ω.
Letting

v(t, ω) =

{
(0,−1)>, (t, ω) ∈ [0, 1)× Ω;
(0, 0)>, (t, ω) ∈ [1, 2]× Ω

and y1(·) = (y1
1(·), y2

1(·))> be the solution to{
dy1(t) = Bv(t)dt+

(
Cy1(t) +Dv(t)

)
dW (t), t ∈ [0, 2],

y1(0) = 0,
(3.27)

we have y1 ∈ G(1) ∩Q(1). Set

ψ(t, ω) =

{
(0, 0)>, (t, ω) ∈ [0, 1)× Ω;
(1, 0)>, (t, ω) ∈ [1, 2]× Ω,

λ0 = 1 and let (P1, Q1) be the solution to the backward stochastic differential equation{
dP1(t) = −C>Q1(t)dt+Q1(t)dW (t), t ∈ [0, 2],
P1(2) = (1, 0)>.

(3.28)

Then ψ ∈
(
Q(1)

)−
, λ0 + ‖ψ‖BV,2 6= 0, (P1, Q1) ≡ ((1, 0)>, 0),

P1(t, ω) + ψ(t, ω) =

{
(1, 0)>, (t, ω) ∈ [0, 1)× Ω;
(2, 0)>, (t, ω) ∈ [1, 2]× Ω,

and,
〈Hu[t], v〉 =

〈
B>(P1(t) + ψ(t)), v

〉
≤ 0, ∀ v ∈ CU (ū(t)),∀ t ∈ [0, T ], a.s.

Therefore, the first order necessary condition (3.13) holds.
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4. Second order necessary condition

In this section, we investigate the second order necessary condition for (x̄, ū) to be a local minimizer for the
problem (1.5). Throughout this section, we assume that ū ∈ L4

F(Ω;L4(0, T ;Rm)) and write

V := U ∩ L4
F(Ω;L4(0, T ;Rm)).

In addition to (A1)–(A2), we assume that

(A3) b, σj (j = 1, . . . , d), φ, g and ϕ` (` = 1, . . . , k) satisfy the following conditions:

(i) For a.e. (t, ω) ∈ [0, T ] × Ω, b(t, ·, ·, ω) : Rn × Rm → Rn and σj(t, ·, ·, ω) : Rn × Rm → Rn
(j = 1, . . . , d) are twice differentiable and

(x, u) 7→ b(x,u)2(t, x, u, ω), (x, u) 7→ σj(x,u)2(t, x, u, ω), j = 1, . . . , d

are uniformly continuous in x ∈ Rn and u ∈ Rm, and,

|b(x,u)2(t, x, u, ω)|+
d∑
j=1

|σj(x,u)2(t, x, u, ω)| ≤ L, ∀ (x, u) ∈ Rn × Rm, a.s.;

(ii) φ(·, ω) : Rn → R is twice differentiable a.s., and for any x, x̃ ∈ Rn,

|φxx(x, ω)| ≤ L, |φxx(x, ω)− φxx(x̃, ω)| ≤ L|x− x̃|, a.s.

(iii) g, ϕ`, ` = 1, . . . , k are twice differentiable functions, and for any x, x̃ ∈ Rn,
|gxx(x)|+

k∑̀
=1

|ϕ`xx(x)| ≤ L,

|gxx(x)− gxx(x̃)|+
k∑̀
=1

|ϕ`xx(x)− ϕ`xx(x̃)| ≤ L|x− x̃|, a.s.

For f = b, σj (j = 1, . . . , d), write

fxx[t] = fxx(t, x̄(t), ū(t)), fxu[t] = fxu(t, x̄(t), ū(t)), fuu[t] = fuu(t, x̄(t), ū(t)).

For any ν0 ∈ T bK0
(x̄0), v ∈ T bV(ū), $0 ∈ T b(2)

K0
(x̄0, ν0) and h ∈ T b(2)

V (ū, v) (Here and henceforth, for the

definitions of T bV(ū) and T
b(2)
V (ū, v), V is viewed as a subset of L4

F(Ω;L4(0, T ; Rm))), similarly to [18, 15], we
introduce the following second-order variational equation:

dy2(t) =
(
bx[t]y2(t) + bu[t]h(t) + 1

2y1(t)>bxx[t]y1(t) + v(t)>bxu[t]y1(t)

+ 1
2v(t)>buu[t]v(t)

)
dt+

d∑
j=1

(
σjx[t]y2(t)+σju[t]h(t)+ 1

2y1(t)>σjxx[t]y1(t)

+v(t)>σjxu[t]y1(t) + 1
2v(t)>σjuu[t]v(t)

)
dW j(t), t ∈ [0, T ],

y2(0) = $0,

(4.1)

where y1 is the solution of the linearized equation (3.2).
By the definition of the second order adjacent vector, for any ε > 0, there exist $ε

0 ∈ Rn and hε ∈
L4
F(Ω;L4(0, T ;Rm)) such that xε0 := x̄0 + εν0 + ε2$ε

0 ∈ K0, uε := ū+ εv+ ε2hε ∈ V, $ε
0 → $0 in Rn and hε

converges to h in L4
F(Ω;L4(0, T ; Rm)) as ε → 0+. Denote by xε the solution of (1.1) corresponding to the

initial datum xε0 and the control uε. Put

δxε = xε − x̄, rε2(t, ω) :=
δxε(t, ω)− εy1(t, ω)− ε2y2(t, ω)

ε2
.

The next result for d-dimensional Wiener process follows by the same arguments as those used to prove [15,
Lemma 4.1].
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Lemma 4.1. Let (A2) (i) and (A3) (i) hold. Then, for any v, h, hε ∈ L4
F(Ω;L4(0, T ; Rm)) and ν0, $0,

$ε
0 ∈ Rn as above, we have

‖y2‖∞,2 ≤ C(|$0|+ ‖v‖24 + ‖h‖2).

Furthermore,
‖rε2‖∞,2 → 0, ε→ 0+. (4.2)

Define the critical set

Υ(x̄, ū) :=
{

(y1, v, ν0)∈L4
F(Ω;C([0, T ];Rn))×T bV(ū)×T bK0

(x̄0)
∣∣∣ y1 solves (3.2),

y1∈cl∞,2(Q(1)) ∩ cl∞,2(E(1)) and E 〈φx(x̄(T )), y1(T )〉=0
}
. (4.3)

For any (y1, v, ν0) ∈ Υ(x̄, ū), letW(x̄0, ν0) andM(ū, v) be convex subsets of T
b(2)
K0

(x̄0, ν0) and T
b(2)
V (ū, v),

respectively. Denote

G(2)(y1, v) :=
{
y2∈L2

F(Ω;C([0, T ];Rn))
∣∣∣ y2 solves (4.1) for some $0∈W(x̄0, ν0) and h∈M(ū, v)

}
. (4.4)

Remark 4.1. Let v ∈ T bV(ū). When U is defined by finitely many equalities and inequalities constraints,

under some constraint qualification and smoothness assumptions, the second order adjacent set T
b(2)
U (ū(t, ω),

v(t, ω)) is a nonempty closed convex subset of Rm for a.e. (t, ω) ∈ [0, T ] × Ω (see [15, Example 2.1]).
Moreover, if there exist a nonnegative η(·)∈L4

F(Ω;L4(0, T ;R)) and an ε0 > 0 such that

dist(ū(t, ω) + εv(t, ω), U) ≤ ε2η(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω, ∀ ε ∈ [0, ε0], (4.5)

then, similarly to the proof of [15, Theorem 4.1], we deduce that every h(·)∈L4
F(Ω;L4(0, T ;Rm)) satisfying

h(t, ω) ∈ T b(2)
U (ū(t, ω), v(t, ω)) for a.e. (t, ω) ∈ [0, T ]× Ω belongs to T

b(2)
V (ū, v). In this case, we can choose

M(ū, v) to be the set{
h(·) ∈ L4

F(Ω;L4(0, T ;Rm))
∣∣∣ h(t, ω) ∈ T b(2)

U (ū(t, ω), v(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω
}
.

For a sufficient condition for (4.5) we refer the reader to [16, Example 4.1].

Define
Ig1 :=

{
t ∈ Ig0

∣∣ E 〈gx(x̄(t)), y1(t)〉 = 0
}
, (4.6)

Iϕ1 :=
{
` ∈ Iϕ0 | E

〈
ϕ`x(x̄(T )), y1(T )

〉
= 0
}
, (4.7)

τg(x̄) :=
{
t ∈ [0, T ]

∣∣ ∃ {si}∞i=1 ⊂ [0, T ] such that lim
i→∞

si = t, E g(x̄(si)) < 0,

E 〈gx(x̄(si)), y1(si)〉 > 0, ∀ i = 1, 2, . . .
}
, (4.8)

and

e(t) :=


lim sup
s→t

E g(x̄(s))<0
E〈gx(x̄(s)),y1(s)〉>0

∣∣E 〈gx(x̄(s)), y1(s)〉
∣∣2

4
∣∣E g(x̄(s))

∣∣ , t ∈ τg(x̄),

0, otherwise.

(4.9)

Consider the set

Q(2)(y1) :=
{
z ∈ L2

F(Ω;C([0, T ];Rn))
∣∣ For all t ∈ Ig1 ,

E 〈gx(x̄(t)), z(t)〉+
1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉+ e(t) < 0

}
(4.10)

and

E(2)(y1) :=
{
z ∈ L2

F(Ω;C([0, T ];Rn))
∣∣ For all ` ∈ Iϕ1 ,

E
〈
ϕ`x(x̄(T )), z(T )

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
<0

}
. (4.11)
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Remark 4.2. From (4.9), it is easy to see that e(·) is an upper semicontinuous function on Ig1 . Therefore,
Q(2)(y1) is a convex open set (possibly empty). When y1 ∈ Q(1), i.e., E 〈gx(x̄(t)), y1(t)〉 < 0 for any t ∈ Ig0 ,
Q(2)(y1) = L2

F(Ω;C([0, T ];Rn)), since for such y1, Ig1 = ∅. In addition, if there exists a δ > 0 such that

E 〈gx(x̄(s)), y1(s)〉 ≤ 0, ∀ s ∈ (t− δ, t+ δ), t ∈ Ig0 ,

then, e(t) = 0 for any t ∈ Ig1 . In this case, Q(2)(y1) enjoys a much simpler expression:

Q(2)(y1) :=
{
z ∈ L2

F(Ω;C([0, T ];Rn))
∣∣∣ For all t ∈ Ig1 , E 〈gx(x̄(t)), z(t)〉+

1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉 < 0

}
.

However, since the function e(·) depends on the process y1, in general, e(·) 6= 0. For more details about this
issue in the deterministic cases we refer the reader to [23] and references cited therein.

Let (P1, Q1), ψ and λ`, ` ∈ Iϕ0 be defined as in the proof of Theorem 3.1 in the case when G(1)∩Q(1)∩E(1) 6=
∅ (See (3.3), (3.5) and (3.6) for the definitions of G(1), Q(1) and E(1), respectively). In particular, P1(T ) is
given by (3.24). Corresponding to such fixed (P1, Q1), ψ and λ` for all ` ∈ Iϕ0 , we introduce the following
adjoint equation to (4.1):

dP2(t) = −
(
bx[t]>P2(t) + P2(t)bx[t] +

d∑
j=1

σjx[t]>P2(t)σjx[t] +
d∑
j=1

σjx[t]>Qj2(t)

+
d∑
j=1

Qj2(t)σjx[t] + Hxx[t]
)
dt+

d∑
j=1

Qj2(t)dW j(t), t ∈ [0, T ],

P2(T ) = −φxx(x̄(T ))−
∑
`∈Iϕ0

λ`ϕ
`
xx(x̄(T )),

(4.12)

where H is given by (3.9). Clearly, under the assumptions (A2)–(A3), the equation (4.12) admits a unique

strong solution (P2(·), Q2(·))∈L2
F(Ω;C([0, T ]; Sn))×

(
L2
F(Ω;L2(0, T ; Sn))

)d
, where Sn :=

{
A ∈ Rn×n

∣∣ A> =

A
}

.
To simplify the notation, we define

S(t, x, u, y1, z1, r, y2, z2, ω) := Hxu(t, x, u, y1, z1, r, ω) + bu(t, x, u, ω)>y2

+

d∑
j=1

σju(t, x, u, ω)>zj2 +

d∑
j=1

σju(t, x, u, ω)>y2σ
j
x(t, x, u, ω),

where (t, x, u, y1, z1, r, y2, z2, ω) ∈ [0, T ]× Rn × Rm × Rn × Rn×d × Rn × Sn × (Sn)d × Ω. Write

S[t] = S(t, x̄(t), ū(t), P1(t), Q1(t), ψ(t), P2(t), Q2(t)), t ∈ [0, T ], (4.13)

where (P1(·), Q1(·)) and (P2(·), Q2(·)) solve the systems (3.8) with λ0 = 1 and (4.12), respectively.
We have the following result.

Theorem 4.1. Let (x̄, ū) be a local minimizer for the problem (1.5) with the initial datum x̄0 and the control
ū ∈ V. Suppose (A1)–(A3) and that G(1) ∩ Q(1) ∩ E(1) 6= ∅. Let λ0 = 1, (P1, Q1), ψ and λ`, ` ∈ Iϕ0 be as in
the conclusions of Theorem 3.1 for the case that G(1) ∩Q(1) ∩ E(1) 6= ∅.

If (y1, v, ν0) ∈ Υ(x̄, ū) and G(2)(y1, v) ∩ Q(2)(y1) ∩ E(2)(y1) 6= ∅, then for any given y2 ∈ G(2)(y1, v)∩
cl∞,2(Q(2)(y1)) ∩ cl∞,2(E(2)(y1)) with the corresponding $0 ∈ W(x̄0, ν0) and h(·) ∈ M(ū, v), the following
second order necessary condition holds:

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+

∑
`∈Iϕ0

E
( 〈
λ`ϕ

`
x(x̄(T )), y2(T )

〉
+

1

2
E
〈
λ`ϕ

`
xx(x̄(T ))y1(T ), y1(T )

〉 )

+E
∫ T

0

(
〈Hu[t], h(t)〉+

1

2
〈Huu[t]v(t), v(t)〉+

1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

)
dt+ E

∫ T

0

〈y2(t), dψ(t)〉 ≤ 0, (4.14)

where (P2, Q2) is defined by (4.12).
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Remark 4.3. (i) In Theorem 4.1 we assumed that the set G(1) ∩ Q(1) ∩ E(1) is nonempty and have taken
λ0 = 1 and any (P1, Q1), ψ and λ`, ` ∈ Iϕ0 as in the conclusion of Theorem 3.1. That is our second order
condition is valid for any normal multiplier appearing in the first order conditions. In Theorem 4.2 below this
assumption is skipped, but, in contrast, it states that a similar second order necessary optimality condition
holds true for some (P1, Q1) as in Theorem 3.2. That is, removing the requirement G(1) ∩ Q(1) ∩ E(1) 6= ∅,
yields a weaker conclusion.

(ii) Also, in Theorem 4.1 we assumed that G(2)(y1, v) ∩ Q(2)(y1) ∩ E(2)(y1) 6= ∅. This holds true under
some appropriate conditions. For instance, let us assume that for TK0

(x̄0) = CK0
(x̄0) and TΦ(ū) = CV(ū)

it holds that G(1) ∩ Q(1) ∩ E(1) 6= ∅ (a sufficient condition for it will be provided in Section 5), and pick
any ȳ1 ∈ G(1) ∩ Q(1) ∩ E(1). Then, for every (y1, v, ν0) ∈ Υ(x̄, ū) such that the function e(·) defined by

(4.9) is bounded on Ig1 , T
b(2)
K0

(x̄0, ν0) 6= ∅ and T
b(2)
V (ū, v) 6= ∅, we can find W(x̄0, ν0) and M(ū, v) so that

G(2)(y1, v) ∩Q(2)(y1) ∩ E(2)(y1) 6= ∅.
Indeed, since T

b(2)
K0

(x̄0, ν0) and T
b(2)
V (ū, v) are nonempty, they contain some nonempty convex subsets

W(x̄0, ν0) ⊂ T
b(2)
K0

(x̄0, ν0) and M(ū, v) ⊂ T
b(2)
V (ū, v). Fix such subsets and define nonempty convex sets

W(x̄0, ν0) := CK0
(x̄0)+W(x̄0, ν0),M(ū, v) := CV(ū)+M(ū, v). From Remark 2.1, it follows thatW(x̄0, ν0) ⊂

T
b(2)
K0

(x̄0, ν0) and M(ū, v) ⊂ T b(2)
V (ū, v). Moreover, for every $0 ∈ W(x̄0, ν0), h ∈M(ū, v) for any % ≥ 0 we

have %ν̄0 +$0 ∈ W(x̄0, ν0) and %v̄ + h ∈M(ū, v).
Fixing % ≥ 0 and letting y2 be the solution of (4.1) corresponding to %ν̄0 + $0 and %v̄ + h, we have

y2 = %ȳ1 + z2. By Lemma 4.1,
‖z2‖2∞,2 ≤ C(|$0|2 + ‖v‖44 + ‖h‖22).

Since ȳ1 ∈ G(1) ∩Q(1) ∩ E(1), and Ig0 and Ig1 are compact sets, for all sufficiently large %,

E 〈gx(x̄(t)), y2(t)〉+
1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉+ e(t)

= %E 〈gx(x̄(t)), ȳ1(t)〉+ E 〈gx(x̄(t)), z2(t)〉+
1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉+ e(t)

< 0, ∀ t ∈ Ig1 ,

and for every ` ∈ Iϕ1 , and all % sufficiently large

E
〈
ϕ`x(x̄(T )), y2(T )

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
= %E

〈
ϕ`x(x̄(T )), ȳ1(T )

〉
+ E

〈
ϕ`x(x̄(T )), z2(T )

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
< 0.

Therefore, when % is large enough, y2 ∈ G(2)(y1, v) ∩Q(2)(y1) ∩ E(2)(y1).

Proof. (of Theorem 4.1).
Observe that if Ig1 = ∅, then Q(2)(y1) = L2

F(Ω;C([0, T ];Rn)) and therefore, G(2)(y1, v) ∩ Q(2)(y1) ∩
E(2)(y1) = G(2)(y1, v) ∩ E(2)(y1). In this case, the same arguments as given below do apply by simply
skipping the constraint (1.4) in the problem (1.5) and putting ψ = 0.

For this reason we provide the proof only when Ig1 6= ∅.
We proceed in two steps.
Step 1: y2 ∈ G(2)(y1, v)∩Q(2)(y1)∩E(2)(y1), i.e., when y2 is a solution of the equation (4.1) corresponding

to some ($0, h) ∈ W(x̄0, ν0)×M(ū, v) such that

E 〈gx(x̄(t)), y2(t)〉+
1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉+ e(t) < 0, ∀ t ∈ Ig1 .

and

E
〈
ϕ`x(x̄(T )), y2(T )

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
<0, ∀ ` ∈ Iϕ1 ,

where Ig1 and Iϕ1 are defined respectively by (4.6) and (4.7).
Let µ(ε) ∈ Rn with |µ(ε)| = o(ε2) and η(ε) ∈ L4

F(Ω;L4(0, T ;Rm)) with ‖η(ε)‖4 = o(ε2) be such that
xε0 := x̄0 + εν0 + ε2$0 + µ(ε) ∈ K0 and uε := ū + εv + ε2h + η(ε) ∈ V. Denote by xε the solution to (1.1)
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corresponding to xε0 and uε. By the assumptions (A2)–(A3) and Lemma 4.1, for any t ∈ [0, T ] we have the
following expansion

E g(xε(t)) = E g(x̄(t)) + εE 〈gx(x̄(t)), y1(t)〉+ ε2E 〈gx(x̄(t)), y2(t)〉

+
ε2

2
E 〈gxx(x̄(t))y1(t), y1(t)〉+ o(ε2). (4.15)

Similarly to the proof of [18, Proposition 4.5], we first check that (xε, uε) ∈ Pad when ε is sufficiently
small.

Our first goal is to show that there exist a δ0 > 0 and an ε0 > 0 such that

E g(xε(s)) ≤ 0, ∀ s ∈ (t− δ0, t+ δ0) ∩ [0, T ], ∀ t ∈ Ig0 , ∀ ε ∈ [0, ε0]. (4.16)

Fix an arbitrary t̂ ∈ Ig1 . We claim that there exist δ(t̂) > 0 and α(t̂) > 0 such that

E g(xε(s)) ≤ 0, ∀ s ∈ (t̂− δ(t̂), t̂+ δ(t̂)) ∩ [0, T ], ∀ ε ∈ [0, α(t̂)]. (4.17)

Indeed, otherwise, for any i ∈ N, there would exist εi ∈ [0,
1

i
], si ∈ (t̂− 1

i
, t̂+

1

i
) ∩ [0, T ] such that

E g(xεi(si)) > 0. (4.18)

Assume for a moment that there exists a subsequence {siκ}∞κ=1 of {si}∞i=1 with corresponding subsequence
{εiκ}∞κ=1 of {εi}∞i=1 satisfying

E g(x̄(siκ)) < 0 and E 〈gx(x̄(siκ)), y1(siκ)〉 > 0, ∀ κ = 1, 2, . . . . (4.19)

Then, by (4.15),

E g(xεiκ (siκ)) = ε2
iκ

(
E 〈gx(x̄(siκ)), y2(siκ)〉+

1

2
E 〈gxx(x̄(siκ))y1(siκ), y1(siκ)〉

−
∣∣E 〈gx(x̄(siκ)), y1(siκ)〉

∣∣2
4E g(x̄(siκ))

+
o(ε2

iκ
)

ε2
iκ

)
+E g(x̄(siκ))

(
1 +

εiκE 〈gx(x̄(siκ)), y1(siκ)〉
2E g(x̄(siκ))

)2

. (4.20)

Since t̂ ∈ Ig1 and y2 ∈ Q(2)(y1), there exists ρ0 > 0 such that

E
〈
gx(x̄(t̂)), y2(t̂)

〉
+

1

2
E
〈
gxx(x̄(t̂))y1(t̂), y1(t̂)

〉
+ e(t̂) < −ρ0.

Therefore, when κ is large enough,

E 〈gx(x̄(siκ)), y2(siκ)〉+
1

2
E 〈gxx(x̄(siκ))y1(siκ), y1(siκ)〉+

∣∣E 〈gx(x̄(siκ)), y1(siκ)〉
∣∣2

4
∣∣E g(x̄(siκ))

∣∣ < −ρ0

2
.

This, together with (4.20), implies that, when κ is large enough, E g(xεiκ (siκ)) ≤ 0 contradicting to (4.18).
Now, assume that there is no any subsequence of {si}∞i=1 such that (4.19) hold. Then, E g(x̄(si)) = 0

or E 〈gx(x̄(si)), y1(si)〉 ≤ 0 for all sufficiently large i. Then, if si /∈ Ig0 , we have E g(x̄(si)) < 0 and hence
E 〈gx(x̄(si)), y1(si)〉 ≤ 0. On the other hand, if si ∈ Ig0 , then E g(x̄(si)) = 0 and, since y1 ∈ cl∞,2

(
Q(1)

)
,

E 〈gx(x̄(si)), y1(si)〉 ≤ 0. In both cases,

E g(x̄(si)) + εiE 〈gx(x̄(si)), y1(si)〉 ≤ 0. (4.21)

Noting that e(t) ≥ 0 for all t ∈ [0, T ], and Ig1 is compact, there exists ρ2 > 0 such that

E 〈gx(x̄(t)), y2(t)〉+
1

2
E 〈gxx(x̄(t))y1(t), y1(t)〉 < −ρ2, ∀ t ∈ Ig1 .
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Since si → t̂ and t̂ ∈ Ig1 , when i is large enough,

E 〈gx(x̄(si)), y2(si)〉+
1

2
E 〈gxx(x̄(si))y1(si), y1(si)〉 < −

ρ2

2
.

Then, by (4.15) and (4.21), for any sufficiently large i,

E g(xεi(si)) ≤ ε2
iE 〈gx(x̄(si)), y2(si)〉+

ε2
i

2
E 〈gxx(x̄(si))y1(si), y1(si)〉+ o(ε2

i )

≤ ε2
i

(
− ρ2

2
+
o(ε2

i )

ε2
i

)
≤ 0,

which also contradicts (4.18). This proves (4.17).

Since Ig1 is compact, there exist finitely many ti ∈ Ig1 , i = 1, 2, . . . , N (N ∈ N) such that Ig1 ⊂
⋃N
i=1(ti −

δ(ti), ti + δ(ti)). Choosing ε1 := min{α(ti), i = 1, 2, . . . , N}, we have

E g(xε(s)) ≤ 0, ∀ s ∈
N⋃
i=1

(ti − δ(ti), ti + δ(ti)) ∩ [0, T ], ∀ ε ∈ [0, ε1]. (4.22)

Let Ic1 := Ig0 \
⋃N
i=1(ti − δ(ti), ti + δ(ti)). By the compactness of Ic1 , there exist a δ̃ > 0 and a ρ3 > 0

(independent of t) such that

E 〈gx(x̄(s)), y1(s)〉 < −ρ3, ∀ s ∈ (t− δ̃, t+ δ̃) ∩ [0, T ], t ∈ Ic1 . (4.23)

Then, by (4.15), there exists an ε2 such that

E g(xε(s)) ≤ 0, ∀ s ∈ (t− δ̃, t+ δ̃) ∩ [0, T ], t ∈ Ic1 , ∀ ε ∈ [0, ε2]. (4.24)

Let ε0 = min{ε1, ε2}. Clearly,

Ig0 ⊂
( N⋃
i=1

(ti − δ(ti), ti + δ(ti))
)⋃( ⋃

t∈Ic1

(t− δ̃, t+ δ̃)
)
.

Choosing a sufficiently small δ0 > 0 such that

Ig0 ⊂
⋃
t∈Ig0

(t− δ0, t+ δ0) ⊂
( N⋃
i=1

(ti − δ(ti), ti + δ(ti))
)⋃( ⋃

t∈Ic1

(t− δ̃, t+ δ̃)
)
,

from the above discussion (especially, (4.22) and (4.24)), we obtain that

E g(xε(s)) ≤ 0, ∀ s ∈ (t− δ0, t+ δ0) ∩ [0, T ], ∀ t ∈ Ig0 , ∀ ε ∈ [0, ε0].

This proves (4.16).
Next, define

I< := [0, T ] \
[ ⋃
t∈Ig0

(t− δ0, t+ δ0)
]
.

It is clear that I< is also a compact set and consequently, there exists a ρ4 > 0 such that

E g(x̄(t)) < −ρ4, ∀ t ∈ I<. (4.25)

By (4.15), we have, for sufficiently small ε > 0,

E g(xε(s)) ≤ 0, ∀ s ∈ I<. (4.26)

Combining (4.16) with (4.26), we conclude that, when ε is small enough, xε satisfies the constraint (1.4).
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In addition, using a similar method as above at time T , we have, when ε is small enough, xε satisfies the
constraint (1.3) (see also [16, Theorem 4.2] for a detailed discussion). This proves that (xε, uε) ∈Pad.

By the optimality of (x̄, ū) and the equality E 〈φx(x̄(T )), y1(T )〉 = 0, we have

0 ≤ E φ(xε(T ))− E φ(x̄(T ))

ε2

=
1

ε
E 〈φx(x̄(T )), y1(T )〉+ E 〈φx(x̄(T )), y2(T )〉

+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉+

o(ε2)

ε2

→ E 〈φx(x̄(T )), y2(T )〉+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉 , (as ε→ 0+). (4.27)

By (3.24), we have

φx(x̄(T )) = −P1(T )−
∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))− ψ(T ). (4.28)

By Itô’s formula,

E 〈P1(T ), y2(T )〉 (4.29)

= 〈P1(0), $0〉+ E
∫ T

0

(
〈P1(t), bu[t]h(t)〉+

1

2

〈
P1(t), y1(t)>bxx[t]y1(t)

〉
+
〈
P1(t), v(t)>bxu[t]y1(t)

〉
+

1

2

〈
P1(t), v(t)>buu[t]v(t)

〉
− 〈ψ(t), bx[t]y2(t)〉

+

d∑
j=1

〈
Qj1(t), σju[t]h(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), y1(t)>σjxx[t]y1(t)

〉
+

d∑
j=1

〈
Qj1(t), v(t)>σjxu[t]y1(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), v(t)>σjuu[t]v(t)

〉)
dt,

and

E 〈ψ(T ), y2(T )〉 (4.30)

= E
∫ T

0

(
〈ψ(t), bx[t]y2(t)〉+ 〈ψ(t), bu[t]h(t)〉+

1

2

〈
ψ(t), y1(t)>bxx[t]y1(t)

〉
+
〈
ψ(t), v(t)>bxu[t]y1(t)

〉
+

1

2

〈
ψ(t), v(t)>buu[t]v(t)

〉)
dt+ E

∫ T

0

〈y2(t), dψ(t)〉 .

Combining (4.28) with (4.29) and (4.30) we obtain that

E 〈φx(x̄(T )), y2(T )〉 = E

〈
−P1(T )−

∑
`∈Iϕ0

λ`ϕ
`
x(x̄(T ))− ψ(T ), y2(T )

〉

= −〈P1(0), $0〉 −
∑
`∈Iϕ0

E
〈
λ`ϕ

`
x(x̄(T )), y2(T )

〉
− E

∫ T

0

〈y2(t), dψ(t)〉

−E
∫ T

0

(
〈P1(t) + ψ(t), bu[t]h(t)〉+

1

2

〈
P1(t) + ψ(t), y1(t)>bxx[t]y1(t)

〉
+
〈
P1(t) + ψ(t), v(t)>bxu[t]y1(t)

〉
+

1

2

〈
P1(t) + ψ(t), v(t)>buu[t]v(t)

〉
+

d∑
j=1

〈
Qj1(t), σju[t]h(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), y1(t)>σjxx[t]y1(t)

〉
+

d∑
j=1

〈
Qj1(t), v(t)>σjxu[t]y1(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), v(t)>σjuu[t]v(t)

〉)
dt
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= −〈P1(0), $0〉 −
∑
`∈Iϕ0

E
〈
λ`ϕ

`
x(x̄(T )), y2(T )

〉
−E

∫ T

0

〈y2(t), dψ(t)〉 − E
∫ T

0

〈Hu[t], h(t)〉 dt

−1

2
E
∫ T

0

(
〈Hxx[t]y1(t), y1(t)〉+ 2 〈Hxu[t]y1(t), v(t)〉+ 〈Huu[t]v(t), v(t)〉

)
dt. (4.31)

In addition, by the choice of P2(T ), we have

φxx(x̄(T )) = −P2(T )−
∑
`∈Iϕ0

λ`ϕ
`
xx(x̄(T )). (4.32)

Also, by Itô’s formula,

E 〈P2(T )y1(T ), y1(T )〉 (4.33)

= 〈P2(0)ν0, ν0〉+ E
∫ T

0

(
2 〈P2(t)y1(t), bu[t]v(t)〉+ 2

d∑
j=1

〈
P2(t)σjx[t]y1(t), σju[t]v(t)

〉
+

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 2

d∑
j=1

〈
Qj2(t)y1(t), σju[t]v(t)

〉
− 〈Hxx[t]y1(t), y1(t)〉

)
dt.

Substituting (4.31), (4.32) and (4.33) into (4.27), we obtain (4.14).
Step 2: Let y2 ∈ G(2)(y1, v) ∩ cl∞,2(Q(2)(y1)) ∩ cl∞,2(E(2)(y1)) with the corresponding $0 ∈ W(x̄0, ν0)

and h(·) ∈ M(ū, v). Since we assume that G(2)(y1, v) ∩ Q(2)(y1) ∩ E(2)(y1) 6= ∅, we may choose a ŷ2 ∈
G(2)(y1, v)∩Q(2)(y1)∩E(2)(y1) and let $̂0(∈ W(x̄0, ν0) and ĥ(·) (∈M(ū, v)) be its initial datum and control
in the equation (4.1). For any θ ∈ (0, 1), define yθ2 = (1−θ)y2 +θŷ2. SinceW(x̄0, ν0) andM(ū, v) are convex
set, yθ2 is the solution to the equation (4.1) with initial datum $θ

0 := (1 − θ)$0 + θ$̂0 ∈ W(x̄0, ν0) and

control hθ(·) := (1 − θ)h(·) + θĥ(·) ∈ M(ū, v). Then, yθ2 → y2 in L2
F(Ω;C([0, T ];Rn)) as θ → 0. Moreover,

since ŷ2 ∈ Q(2)(y1) ∩ E(2)(y1) we have yθ2 ∈ Q(2)(y1) ∩ E(2)(y1). From Step 1, we deduce that〈
P1(0), $θ

0

〉
+

1

2
〈P2(0)ν0, ν0〉

+
∑
`∈Iϕ0

E
( 〈
λ`ϕ

`
x(x̄(T )), yθ2(T )

〉
+

1

2
E
〈
λ`ϕ

`
xx(x̄(T ))y1(T ), y1(T )

〉 )

+E
∫ T

0

( 〈
Hu[t], hθ(t)

〉
+

1

2
〈Huu[t]v(t), v(t)〉+

1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

)
dt+ E

∫ T

0

〈
yθ2(t), dψ(t)

〉
≤ 0.

Letting θ → 0, we obtain (4.14).
This completes the proof of Theorem 4.1.

The above theorem excludes the case of abnormal multipliers. Our next aim is to state second order
conditions that may be abnormal but allow to dispense some assumptions.

Theorem 4.2. Let (x̄, ū) be a local minimizer for the problem (1.5) with the initial datum x̄0 and the
control ū ∈ V. Assume (A1)–(A3) and that E |gx(x̄(t))| 6= 0 for any t ∈ Ig0 . Let (y1, v, ν0) ∈ Υ(x̄, ū)

and suppose that e(·) (defined by (4.9)) is bounded on Ig1 . Consider convex sets W(x̄0, ν0) ⊂ T
b(2)
K0

(x̄0, ν0)

and M(ū, v) ⊂ T
b(2)
V (ū, v). Then there exist λ0 ∈ {0, 1}, λ` ≥ 0 for all ` ∈ Iϕ1 and ψ ∈

(
Q(1)

)−
such

that the solution (P1, Q1) to (3.8) with Iϕ0 replaced by Iϕ1 satisfies the first order condition (3.13), and for
any y2 ∈ G(2)(y1, v) with the corresponding $0 ∈ W(x̄0, ν0) and h(·) ∈ M(ū, v) the following second order
necessary condition holds true:

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+ E

∫ T

0

(
〈Hu[t], h(t)〉+

1

2
〈Huu[t]v(t), v(t)〉+ 〈S[t]y1(t), v(t)〉
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+
1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉 )
dt+ sup

α∈Q(2)(y1)

E
∫ T

0

〈α(t), dψ(t)〉 ≤ 0, (4.34)

where (P2, Q2) solves (4.12) with

P2(T ) = −λ0φxx(x̄(T ))−
∑
`∈Iϕ1

λ`ϕ
`
xx(x̄(T )). (4.35)

Proof. If W(x̄0, ν0) or M(ū, v) is empty, then it is enough to apply Theorem 3.2. Assume next that these
two sets are nonempty. We replace them by larger convex sets as follows W(x̄0, ν0) := CK0(x̄0) +W(x̄0, ν0),
M(ū, v) := TΦ(ū) +M(ū, v), where

TΦ(ū) := {u ∈ L4
F(Ω;L4(0, T ;Rm)) | u(t, ω) ∈ CU (ū(t, ω)) a.e. in [0, T ]× Ω}.

By [16, Lemma 2.7], TΦ(ū) ⊂ CV(ū). Thus, by Remark 2.1, M(ū, v) ⊂ T
b(2)
V (ū, v). For simplicity, we

keep the same notations W(x̄0, ν0) and M(ū, v) for these larger sets.
If Ig1 = ∅, then Q(2)(y1) = L2

F(Ω;C([0, T ];Rn)) and G(2)(y1, v)∩Q(2)(y1)∩E(2)(y1) = G(2)(y1, v)∩E(2)(y1).
Then [16, Theorem 4.2] implies the result with ψ = 0.

Assume next that Ig1 6= ∅. Since E |gx(x̄(t))| 6= 0 for any t ∈ Ig0 and e(·) is bounded on Ig1 , we have
−gx(x̄(·)) ∈ Q(1) and −%gx(x̄(·)) ∈ Q(2)(y1) when % (> 0) is large enough. Hence Q(1) 6= ∅ and Q(2)(y1) 6= ∅.

Let y2 ∈ G(2)(y1, v) and (P1, Q1) be a solution of (3.8). Then using (4.29) and (4.30), in the same way
as in (4.31), we deduce that

E 〈P1(T ) + ψ(T ), y2(T )〉

= 〈P1(0), $0〉+ E
∫ T

0

〈y2(t), dψ(t)〉+ E
∫ T

0

〈Hu[t], h(t)〉 dt

+
1

2
E
∫ T

0

(
〈Hxx[t]y1(t), y1(t)〉+ 2 〈Hxu[t]y1(t), v(t)〉+ 〈Huu[t]v(t), v(t)〉

)
dt. (4.36)

Set ϕ0 := φ and define for ` ∈ {0} ∪ Iϕ1 the open convex sets

M` =

{
z(·)∈L2

F(Ω;C([0, T ];Rn))
∣∣∣ E 〈ϕ`x(x̄(T )), z(T )

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
< 0

}
.

If M¯̀ = ∅ for some ¯̀∈ {0} ∪ Iϕ1 , then ϕ
¯̀
x(x̄(T )) = 0 a.s. and E

〈
ϕ

¯̀
xx(x̄(T ))y1(T ), y1(T )

〉
≥ 0. Setting

ψ(t) ≡ 0, λ¯̀ = 1 and λ` = 0 for all ¯̀ 6= ` ∈ {0} ∪ Iϕ1 , we get (P1(t), Q1(t)) ≡ 0, P2(T ) = −ϕ¯̀
xx(x̄(T )) and

1

2
E 〈P2(T )y1(T ), y1(T )〉 ≤ 0. (4.37)

Since (P1(t), Q1(t)) ≡ 0 and ψ(t) ≡ 0, we obtain that

1

2
E
∫ T

0

〈Hxx[t]y1(t), y1(t)〉 dt = 0.

This and (4.33) imply (4.34).
Assume next that M` 6= ∅ for every ` ∈ {0} ∪ Iϕ1 and observe that

⋂
`∈Iϕ1

M` = E(2)(y1). Thus, by Step

1 of the proof of Theorem 4.1,

G(2)(y1, v) ∩Q(2)(y1) ∩
⋂

`∈{0}∪Iϕ1

M` = ∅.

By Lemma 2.3, there exist x∗, x∗` ∈ L2
F(Ω;C([0, T ];Rn))∗ for all ` ∈ {0} ∪ Iϕ1 not vanishing simultaneously

such that for p∗ = −(x∗ +
∑
`∈{0}∪Iϕ1

x∗` ) we have

inf p∗(G(2)(y1, v)) + inf x∗(Q(2)(y1)) +
∑

`∈{0}∪Iϕ1

inf x∗` (M`) ≥ 0. (4.38)
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If ϕ`x(x̄(T )) = 0 for some ` ∈ {0} ∪ Iϕ1 , then M` = L2
F(Ω;C([0, T ];Rn)) and (4.38) implies that x∗` = 0.

For any ` ∈ {0} ∪ Iϕ1 with ϕ`x(x̄(T )) 6= 0, consider the closed convex cone

Q` :=
{
zT ∈ L2

FT (Ω;Rn)
∣∣ E 〈ϕ`x(x̄(T )), zT

〉
≤0

}
. (4.39)

Then (Q`)
− = R+ϕ

`
x(x̄(T )).

Let γ be given by (3.10) and γ∗ denote its adjoint (see (3.11)). It is not difficult to realize that γ−1(Q`)+

M` ⊂M` for every ` ∈ {0}∪Iϕ1 and that γ−1(Q`) is a cone. Hence, by (4.38), −x∗` ∈
(
γ−1(Q`)

)−
. We already

know that γ is surjective. Thus, by the well known result of the convex analysis,
(
γ−1(Q`)

)−
= γ∗(Q−` ) (see

for instance [2, Corollary 22, p. 144] applied to the closed convex cone Q` and the set-valued map γ−1 whose
graph is a closed subspace of L2

FT (Ω;Rn)× L2
F(Ω;C([0, T ];Rn))). Consequently, −x∗` = γ∗(λ`ϕ

`
x(x̄(T ))) for

some λ` ≥ 0. If x∗` = 0, set λ` = 0. By normalizing, we may assume that λ0 ∈ {0, 1}.
Define

Γ` =
{
zT ∈L2

FT (Ω;Rn)
∣∣ E 〈ϕ`x(x̄(T )), zT

〉
+

1

2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
< 0
}
.

By the surjectivity of γ,

sup
m∈M`

(−x∗` ) (m) = sup
m∈M`

E〈λ`ϕ`x(x̄(T )), γ(m)〉 = sup
zT∈Γ`

E〈λ`ϕ`x(x̄(T )), zT 〉.

On the other hand, by the definition of M`, for any ` ∈ {0} ∪ Iϕ1 with ϕ`x(x̄(T )) 6= 0,

sup
zT∈Γ`

E〈λ`ϕ`x(x̄(T )), zT 〉 = −λ`
2
E
〈
ϕ`xx(x̄(T ))y1(T ), y1(T )

〉
.

From (4.38), and setting ψ = −x∗, q∗ = −p∗, we deduce that

sup
y2∈G(2)(y1,v)

q∗(y2) + sup
α∈Q(2)(y1)

E
∫ T

0

〈α(t), dψ(t)〉 − 1

2
E

∑
`∈{0}∪Iϕ1

〈
λ`ϕ

`
xx(x̄(T ))y1(T ), y1(T )

〉
≤ 0. (4.40)

Observe that that Q(1) + Q(2)(y1) ⊂ Q(2)(y1) and G(1) + G(2)(y1, v) ⊂ G(2)(y1, v). Thus (4.40) implies
that ψ ∈ (Q(1))− and q∗ ∈ (G(1))−.

Since q∗ = x∗ −
∑
`∈{0}∪Iϕ1

γ∗(λ`ϕ
`
x(x̄(T ))), for every y1 ∈ G(1)

−E
∫ T

0

〈y1(t), dψ(t)〉 −
∑

`∈{0}∪Iϕ1

E〈λ`ϕ`x(x̄(T )), y1(T )〉 ≤ 0.

Define P1(T ) = −
∑
`∈{0}∪Iϕ1

λ`ϕ
`
x(x̄(T )) − ψ(T ) and consider the solution (P1, Q1) of (3.8) with Iϕ0

replaced by Iϕ1 . Applying (3.22) and (3.19) we obtain (3.12). Then (3.13) follows in the same way as before.
Now, for the solution (P2, Q2) to (4.12) with P2(T ) given by (4.35), by (4.40), for every y2 ∈ G(2)(y1, v),

−E
∫ T

0

〈y2(t), dψ(t)〉 −
∑

`∈{0}∪Iϕ1

E〈λ`ϕ`x(x̄(T )), y2(T )〉

+
1

2
E〈P2(T )y1(T ), y1(T )〉+ sup

α∈Q(2)(y1)

∫ T

0

〈α(t), dψ(t)〉 ≤ 0.

From the above inequality, using (4.29), (4.30) and (4.33), we deduce (4.34).

5. A sufficient condition for normality

As in the deterministic optimal control problems with state constraints, we call the first order necessary
condition (3.12 ) normal if the Lagrange multiplier λ0 6= 0. By Theorem 3.1, this is the case when G(1) ∩
Q(1) ∩ E(1) 6= ∅. In this section, we first give a sufficient condition for G(1) ∩ Q(1) 6= ∅ and then use the
obtained results to investigate a sufficient condition guaranteeing that G(1) ∩Q(1) ∩ E(1) 6= ∅.

In addition to (A2) (i), we assume that
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(A4) g(·) is continuously differentiable up to the third order, and there exists a nonnegative η ∈ L∞F ([0, T ]×
Ω;R) such that

∣∣gx(x̄(t))
∣∣+
∣∣gxx(x̄(t))b[t]

∣∣+

d∑
j=1

∣∣gxx(x̄(t))σj [t]
∣∣

+
1

2

∣∣gxxx(x̄(t))σ[t]σ[t]>
∣∣ ≤ η(t), a.e. t ∈ [0, T ], a.s.

(A5) There exist a δ > 0 and a ρ > 0 such that

min
v∈Φ(t,ω)∩BRm

[
〈gx(x̄(t)), bu[t]v〉+

d∑
j=1

〈
gxx(x̄(t))σj [t], σju[t]v

〉 ]
≤ −ρ, a.e. (t, ω) ∈ Igδ × Ω,

where, Φ is a set-valued map satisfying (3.1), BRm is the unit ball in Rm and

Igδ :=
{
t ∈ [0, T ]

∣∣E g(x̄(t)) ∈ [−δ, 0]
}
. (5.1)

Theorem 5.1. Assume (A2)(i) and (A4)–(A5), and that g(x0) < 0 and TK0
(x̄0) contains a non-zero

element. Then, Q(1) ∩ G(1) 6= ∅.

Proof. We follow the proof of [7, Theorem 3.10]. We only need to prove Q(1) ∩ G(1) 6= ∅ when Ig0 6= ∅ (Ig0 is
defined by (3.4)).

By (A5) and Lemma 2.4 (using a completion argument if necessary), there exists a v ∈ L∞F ([0, T ] ×
Ω;Rm)),

v(t, ω) ∈ Φ(t, ω) ∩BRm , a.e. (t, ω) ∈ [0, T ]× Ω

such that

〈gx(x̄(t)), bu[t]v(t)〉+

d∑
j=1

〈
gxx(x̄(t))σj [t], σju[t]v(t)

〉
≤ −ρ, a.e. (t, ω) ∈ Igδ × Ω. (5.2)

In the following we shall construct a continuous stochastic process y ∈ Q(1) ∩ G(1).

Step 1: Define
t1 = inf

{
t
∣∣ t ∈ Ig0}.

Since Ig0 is nonempty and compact, t1 ∈ Ig0 . Since g(x0) < 0, t1 > 0.
We shall consider below two different cases.

(a) If E g(x̄(t)) ∈ (−δ, 0) for any t ∈ [0, t1), let C1 =
L+ 2

ρ
, C2 =

|gx(x̄0)|+ 1

ρ
and define y on [0, t1]×Ω

as the solution of 

dy(t) =
(
bx[t]y(t) + C1η(t)|y(t)|bu[t]v(t)

)
dt+ C2

|ν0|
t1
bu[t]v(t)dt

+
d∑
j=1

(
σjx[t]y(t) + C1η(t)|y(t)|σju[t]v(t)

)
dW j(t)

+C2
|ν0|
t1

d∑
j=1

σju[t]v(t)dW j(t), t ∈ [0, t1],

y(0) = ν0,

(5.3)

where ν0 ∈ TK0
(x̄0), ν0 6= 0. By Itô’s formula,

gx(x̄(t)) = gx(x0) +

∫ t

0

(
gxx(x̄(t))b[t] +

1

2
gxxx(x̄(t))σ[t]σ[t]>

)
dt

+

d∑
j=1

∫ t

0

gxx(x̄(t))σj [t]dW j(t), a.s.,∀ t ∈ [0, T ]. (5.4)
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For y(·) and gx(x̄(·)) as above, using Itô’s formula again, we have

E 〈gx(x̄(t1)), y(t1)〉

= 〈gx(x0), ν0〉+ E
∫ t1

0

〈gx(x̄(t)), bx[t]y(t) + C1η(t)|y(t)|bu[t]v(t)〉 dt

+E
∫ t1

0

〈
gx(x̄(t)), C2

|ν0|
t1
bu[t]v(t)

〉
dt

+E
∫ t1

0

d∑
j=1

〈
gxx(x̄(t))σj [t], σjx[t]y(t) + C1η(t)|y(t)|σju[t]v(t)

〉
dt

+E
∫ t1

0

d∑
j=1

〈
gxx(x̄(t))σj [t], C2

|ν0|
t1
σju[t]v(t)

〉
dt

+E
∫ t1

0

〈gxx(x̄(t))b[t], y(t)〉 dt+
1

2
E
∫ t1

0

〈
gxxx(x̄(t))σ[t]σ[t]>, y(t)

〉
dt

≤ |gx(x0)||ν0|+ E
∫ t1

0

〈
gx(x̄(t)), C2

|ν0|
t1
bu[t]v(t)

〉
dt

+E
∫ t1

0

d∑
j=1

〈
gxx(x̄(t))σj [t], C2

|ν0|
t1
σju[t]v(t)

〉
dt

+E
∫ t1

0

(
〈gx(x̄(t)), bx[t]y(t)〉+

d∑
j=1

〈
gxx(x̄(t))σj [t], σjx[t]y(t)

〉
+ 〈gxx(x̄(t))b[t], y(t)〉+

1

2

〈
gxxx(x̄(t))σ[t]σ[t]>, y(t)

〉 )
dt

+E
∫ t1

0

C1η(t)|y(t)|
(
〈gx(x̄(t)), bu[t]v(t)〉+

d∑
j=1

〈
gxx(x̄(t))σj [t], σju[t]v(t)

〉 )
dt

≤ |gx(x0)||ν0| − ρC2|ν0|+ E
∫ t1

0

[
|gx(x̄(t))||bx[t]|+

d∑
j=1

|gxx(x̄(t))σj [t]||σjx[t]|

+|gxx(x̄(t))b[t]|+ 1

2
|gxxx(x̄(t))σ[t]σ[t]>|

]
|y(t)|dt− ρC1E

∫ t1

0

η(t)|y(t)|dt

≤ −|ν0| − E
∫ t1

0

η(t)|y(t)|dt < 0. (5.5)

(b) If there is a t ∈ [0, t1) such that E g(x̄(t)) ≤ −δ then let

t0 = sup
{
t ∈ [0, t1)

∣∣E g(x̄(t)) ≤ −δ
}
.

By the continuity of E g(x̄(·)), t0 < t1 and E g(x̄(t0)) = −δ.
Let ν0 ∈ TK0(x̄0), ν0 6= 0 and define y on [0, t0]× Ω by the following stochastic differential equation: dy(t) = bx[t]y(t)dt+

d∑
j=1

σjx[t]y(t)dW j(t), t ∈ [0, t0],

y(0) = ν0.

(5.6)

Letting S(·) be the solution to the matrix-valued stochastic differential equation: dS(t) = bx[t]S(t)dt+
d∑
j=1

σjx[t]S(t)dW j(t), t ∈ [0, t0],

S(0) = I,
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by [27, Theorem 6.14, p.47], for a.e. (t, ω) ∈ [0, t0]× Ω, S(t) is invertible and

y(t) = S(t)ν0, a.e. t ∈ [0, t0], a.s.

Since ν0 6= 0, we have y(t) 6= 0 for any t ∈ [0, t0]. In particular, y(t0) 6= 0. Denote ξt0 = y(t0) and let y be
the solution of the following stochastic differential equation on [t0, t1]× Ω:

dy(t) =
(
bx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|bu[t]v(t)

)
dt

+

[(
E|gx(x̄(t0))|2

) 1
2 + 1

](
E|ξt0 |2

) 1
2

ρ(t1 − t0)
bu[t]v(t)dt

+
d∑
j=1

(
σjx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|σju[t]v(t)

)
dW j(t)

+

[(
E|gx(x̄(t0))|2

) 1
2 + 1

](
E|ξt0 |2

) 1
2

ρ(t1 − t0)

d∑
j=1

σju[t]v(t)dW j(t), t ∈ [t0, t1],

y(t0) = ξt0 .

(5.7)

Similarly to (5.5), we show that

E 〈gx(x̄(t1)), y(t1)〉 ≤ −
(
E |ξt0 |2

) 1
2 − E

∫ t1

t0

η(t)|y(t)|dt < 0.

Step 2: Denote by ξt1 the random variable y(t1) obtained in Step 1. Obviously, ξt1 6= 0. Define

t2 = max
{
t ∈ (t1, T ]

∣∣E g(x̄(s)) ∈ [−δ, 0], ∀ s ∈ [t1, t]
}
.

In the sequel, we consider two different cases.

(a) If t2 = T , we define y on [t1, T ]× Ω by
dy(t) =

(
bx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|bu[t]v(t)

)
dt

+
d∑
j=1

(
σjx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|σju[t]v(t)

)
dW j(t), t ∈ [t1, T ],

y(t1) = ξt1 .

(5.8)

Then, by Itô’s formula, for any t ∈ [t1, T ],

E 〈gx(x̄(t)), y(t)〉

= E 〈gx(x̄(t1)), y(t1)〉+ E
∫ t

t1

〈
gx(x̄(s)), bx[s]y(s) +

L+ 2

ρ
η(s)|y(s)|bu[s]v(s)

〉
ds

+E
∫ t

t1

d∑
j=1

〈
gxx(x̄(s))σj [s], σjx[s]y(s) +

L+ 2

ρ
η(s)|y(s)|σju[s]v(s)

〉
ds

+E
∫ t

t1

〈gxx(x̄(s))b[s], y(s)〉 ds+
1

2
E
∫ t

t1

〈
gxxx(x̄(s))σ[s]σ[s]>, y(s)

〉
ds

< E
∫ t

t1

(
〈gx(x̄(s)), bx[s]y(s)〉+

d∑
j=1

〈
gxx(x̄(s))σj [s], σjx[s]y(s)

〉
+ 〈gxx(x̄(s))b[s], y(s)〉+

1

2

〈
gxxx(x̄(s))σ[s]σ[s]>, y(s)

〉 )
ds

+E
∫ t

t1

L+ 2

ρ
η(s)|y(s)|

(
〈gx(x̄(s)), bu[s]v(s)〉+

d∑
j=1

〈
gxx(x̄(s))σj [s], σju[s]v(s)

〉 )
ds
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< −E
∫ t

t1

η(s)|y(s)|ds ≤ 0. (5.9)

(b) If t2 6= T , then −δ = E g(x̄(t2)) and there exists an s ∈ (t2, T ] such that E g(x̄(s)) < −δ. Let y be
the solution to the equation (5.8) on [t1, t2]× Ω, and denote ξt2 = y(t2). By (5.9), ξt2 6= 0.

If Eg(x̄(t)) < 0 for any t ∈ [t2, T ], then on [t2, T ] × Ω we simply let y(·) be the solution to (3.2) with
initial condition y(t2) = ξt2 and control v ≡ 0 (on [t2, T ] × Ω). Otherwise, there exists an s ∈ (t2, T ] such
that E g(x̄(s)) = 0. Define

t3 = min
{
t ∈ [t2, T ]

∣∣E g(x̄(t)) = 0
}
, t4 = max

{
t ∈ [t2, t3]

∣∣E g(x̄(s)) ≤ −δ
}
.

By the definition of t2, t3 and t4 we have t2 < t4 < t3. Similarly to Step 1, we construct y on [t2, t3]×Ω
such that E 〈gx(x̄(t3)), y(t3)〉 < 0 as follows:

On [t1, t2]× Ω, let y be the solution to the equation (5.8) (with y(t2) = ξt2) and define y on [t2, t4]× Ω
by the following stochastic differential equation: dy(t) = bx[t]y(t)dt+

d∑
j=1

σjx[t]y(t)dW j(t), t ∈ [t2, t4],

y(t2) = ξt2 ,

(5.10)

and denote ξt4 = y(t4). By (5.9) (with t replaced by t2), ξt2 6= 0, ξt4 6= 0. Then, define y on [t4, t3] × Ω by
the following stochastic differential equation:

dy(t) =
(
bx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|bu[t]v(t)

)
dt

+

[(
E|gx(x̄(t4))|2

) 1
2 + 1

](
E|ξt4 |2

) 1
2

ρ(t3 − t4)
bu[t]v(t)dt

+
d∑
j=1

(
σjx[t]y(t) +

L+ 2

ρ
η(t)|y(t)|σju[t]v(t)

)
dW j(t)

+

[(
E|gx(x̄(t4))|2

) 1
2 + 1

](
E|ξt4 |2

) 1
2

ρ(t3 − t4)

d∑
j=1

σju[t]v(t)dW j(t), t ∈ [t4, t3],

y(t4) = ξt4 .

(5.11)

Then, E 〈gx(x̄(t3)), y(t3)〉 < 0 and we return to the beginning of the Step 2.
Since [0, T ] is a finite interval and E g(x̄(·)) is continuous, repeating the above arguments a finite number

of times we construct y ∈ Q(1) ∩ G(1).

In the following we give an example in which the assumptions (A4)–(A5) are satisfied.

Example 5.1. Let n = 1, m = 2, U be a subset in R2 defined by

U :=
{

(u1, u2)> ∈ R2
∣∣∣ u2

1 + u2
2 ≥

1

2
, u1 + u2 ≤ 1, u1 ≥ 0, u2 ≥ 0

}
,

B = ( 1
2 , 1) ∈ R2, Dj = (0, σj) ∈ R2, j = 1, . . . , d, θ ∈ R, x0 ∈ R and x0 > 0. Consider the control system dx(t) = x(t)Bu(t)dt+

d∑
j=1

x(t)Dju(t)dW j(t), t ∈ [0, T ],

x(0) = x0,

and the state constraint
E x(t) ≥ θx0, a.e. t ∈ [0, T ].

Let Û :=
{

(u1, u2)> ∈ R2
∣∣ u1 + u2 = 1, u1 > 0, u2 ≥ 0

}
(⊂ U). Define

Û :=
{
u ∈ U

∣∣ u(t, ω) ∈ Û , a.e. (t, ω) ∈ [0, T ]× Ω
}
.
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Clearly, for this problem,
g(x) = θx0 − x, x ∈ R, (5.12)

and for any control û ∈ Û with the corresponding state x̂,

gx(x̂(t)) ≡ −1, gxx(x̂(t)) = gxxx(x̂(t)) ≡ 0.

Letting η ≡ 1, we find that (A4) holds true.

It is easy to check that, for any û ∈ Û ,

T bU (û(t, ω)) =


{
α(−1, 0)> + β(− 1√

2
, 1√

2
)>
∣∣ α ≥ 0, β ≥ 0

}
, û(t, ω) = (1, 0)>;{

(v1, v2)> ∈ R2
∣∣ v1 + v2 = 0

}
, û(t, ω) = ( 1

2 ,
1
2 )>;{

(v1, v2)> ∈ R2
∣∣ v1 + v2 ≤ 0

}
, otherwise.

(5.13)

By (5.13), T bU (û(·)) is B([0, T ])⊗F-measurable and F-adapted, and for a.e.(t, ω) ∈ [0, T ]×Ω, T bU (û(t, ω)) is
a nonempty closed convex cone.

For any t ∈ [0, T ], we have

x̂(t) = x0 exp
[ ∫ t

0

(
Bû(s)− 1

2

d∑
j=1

|Dj û(s)|2
)
ds+

d∑
j=1

∫ t

0

Dj û(s)dW j(s)
]
> 0, a.s.

Let Iδ be defined by (5.1) (with x̄ replaced by x̂ and g defined by (5.12 )). Assume that there exists a
constant C such that

x̂(t) ≥ C > 0, a.e. (t, ω) ∈ [0, T ]× Ω. (5.14)

(Clearly, the condition (5.14) is trivially satisfied whenever û2 = 0. On the other hand, by means of
the martingale property, it is easy to see that this condition is equivalent to the essential boundedness

(with respect to the probability measure P ) of
∑d
j=1

∫ T
0
Dj û(s)dW j(s). Note that, for any ξ ∈ L∞FT (Ω;R)

with mean 0, by Martingale Representation Theorem, there exists a ũ ∈ L2
F(Ω;L2(0, T ;R2)) so that ξ =∑d

j=1

∫ T
0
Dj ũ(s)dW j(s). If, further, this ũ belongs to Û , then (5.14) is satisfied with the corresponding û

replaced by ũ.) If
I(x̂) :=

{
t ∈ [0, T ]

∣∣ E x̂(t) = θx0

}
= ∅

(e.g., C > θx0), there is no need to verify the condition (A5). If I(x̂) 6= ∅, letting Φ(·) = T bU (û(·)) and
choosing v = (− 1√

2
, 1√

2
)>, we have

−x̂(t)Bv = − x̂(t)

2
√

2
≤ − C

2
√

2
< 0, a.e. (t, ω) ∈ Iδ × Ω,

i.e., (A5) holds true for ρ = C
2
√

2
.

Note that the inward pointing condition (A5) is only a sufficient condition but not a necessary condition
for G(1) ∩Q(1) 6= ∅. We give next an example in which the condition (A5) does not hold but G(1) ∩Q(1) 6= ∅.

Example 5.2. Let T = 3, m = n = 3 and K0 = {0}(⊂ R3). Define

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0 0 0
0 0 0
0 0 1

 .

Let us consider the following control system{
ẋ(t) = Ax(t) +Bu(t), t ∈ [0, 3],
x(0) = 0

(5.15)
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with the control set U = R3, the cost functional

E φ(x(3)) =
1

2
E |x1(3)− 2|2

and the state constraint
g(x(t)) = x2(t)− 1 ≤ 0, ∀ t ∈ [0, T ].

Let ū(·) = (ū1(·), ū2(·), ū3(·))> be defined by

ū1(t) = ū2(t) ≡ 0, ū3(t) =

 1, t ∈ [0, 1);
−1, t ∈ [1, 2);
0, t ∈ [2, 3].

Then, the corresponding state x̄(·) = (x̄1(·), x̄2(·), x̄3(·))> is given by

x̄1(t) =


t3

6 , t ∈ [0, 1);

− t
3

6 + t2 − t+ 1
3 , t ∈ [1, 2);

t− 1, t ∈ [2, 3];

x̄2(t) =


t2

2 , t ∈ [0, 1);

− t
2

2 + 2t− 1, t ∈ [1, 2);
1, t ∈ [2, 3];

x̄3(t) =

 t, t ∈ [0, 1);
2− t, t ∈ [1, 2);
0, t ∈ [2, 3].

Clearly, (x̄, ū) is a global minimizer and Ig0 = [2, 3].
Let Φ(t) ≡ R3. For the above (x̄, ū) the condition (A5) becomes:

min
v∈BR3

〈gx(x̄(t)), bu[t]v〉 ≤ −ρ, ∀ t ∈ Iδ,

where Iδ :=
{
t ∈ [0, T ] | g(x̄(t)) ∈ [−δ, 0]

}
(for some ρ > 0 and δ > 0).

Obviously, gx(x̄(t)) = (0, 1, 0)>, bu[t] = B, and 〈gx(x̄(t)), bu[t]v〉 = 0 for any v ∈ BR3 , i.e., the condition
(A5) does not hold in this case.

Next we show that G(1) ∩Q(1) 6= ∅. Clearly, the corresponding first order linearized equation is:{
ẏ(t) = Ay(t) +Bv(t), t ∈ [0, 3],
y(0) = 0,

(5.16)

where v(·) ∈ L2(0, T ;R3).

Let y(0) = 0, v(t) ≡ (0, 0,−1)>. Then, we have y2(t) = − t
2

2
and

〈gx(x̄(t)), y(t)〉 = − t
2

2
< 0, ∀ t ∈ (0, 3],

implying that G(1) ∩Q(1) 6= ∅.

We propose next a sufficient condition for G(1) ∩Q(1) ∩ E(1) 6= ∅.
For any (t, ω) ∈ [0, T ]× Ω, let Φ be a set-valued map satisfying (3.1) and denote

ΦSρ (t, ω) :=
{
v ∈ Φ(t, ω)

∣∣ 〈gx(x̄(t)), bu[t]v〉+

d∑
j=1

〈
gxx(x̄(t))σj [t], σju[t]v

〉
≤ −ρ

}
,

and

ΦFρ (t, ω) :=
{
v∈Φ(t, ω)

∣∣ 〈ϕ`x(x̄(t)), bu[t]v
〉
+

d∑
j=1

〈
ϕ`xx(x̄(t))σj [t], σju[t]v

〉
≤−ρ, `∈Iϕ0

}
.
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Let Igδ be defined by (5.1) and

Θ(t, ω) :=

{
ΦSρ (t, ω) ∩BRm , if (t, ω) ∈ Igδ × Ω,

Φ(t, ω) ∩BRm , otherwise.
(5.17)

By the definition of Φ and the assumption (A5), Θ(t, ω) 6= ∅ for a.e. (t, ω) ∈ [0, T ]× Ω.
We assume that

(A6) Functions ϕ`(·) : Rn → R, ` ∈ Iϕ0 are continuously differentiable up to the third order, and, for some
ε > 0, η ∈ L∞F ([0, T ]× Ω;Rn) as in (A4),

∣∣ϕ`x(x̄(t))
∣∣+
∣∣ϕ`xx(x̄(t))b[t]

∣∣+

d∑
j=1

∣∣ϕ`xx(x̄(t))σj [t]
∣∣

+
1

2

∣∣ϕ`xxx(x̄(t))σ[t]σ[t]>
∣∣ ≤ η(t), a.e. t ∈ [T − ε, T ], a.s. , ∀ ` ∈ Iϕ0 .

(A7) There exists an ε > 0 such that, for a.e. (t, ω) ∈ [T − ε, T ]× Ω,

Θ(t, ω)
⋂

ΦFρ (t, ω) 6= ∅.

Theorem 5.2. In Theorem 5.1, assume that also (A6)–(A7) hold true. Then, Q(1) ∩ G(1) ∩ E(1) 6= ∅.

Proof. We only need to consider the case Iϕ0 6= ∅.
By the proof of Theorem 5.1, for any τ ∈ [0, T ), there exists a solution y to (3.2) on [0, τ ]×Ω satisfying

y(τ) 6= 0, E 〈gx(x̄(s)), y(s)〉 < 0, ∀ s ∈ [0, τ ] ∩ Ig0 . (5.18)

Let ṽ ∈ L∞F ([T − ε, T ]× Ω;Rm) be such that

ṽ(t, ω) ∈ Θ(t, ω)
⋂

ΦFρ (t, ω), ∀ (t, ω) ∈ [T − ε, T ]× Ω.

By the assumption (A7), such ṽ exists.
Now, we shall prove the conclusion by considering two different cases.

case a: E g(x̄(T )) < 0. Then for sufficiently small ε ∈ [0, ε], Eg(x̄(s)) < 0 for all s ∈ [T − ε, T ], i.e.
Ig0 ∩ [T − ε, T ] = ∅.

Let y be the stochastic process satisfying (5.18) with τ replaced by T − ε and let ȳ = y on [0, T − ε]×Ω.

Define ξT−ε = y(T − ε), αT−ε :=
∑
`∈Iϕ0

(
E |ϕ`x(x̄(T − ε))|2

) 1
2 + 1, and, on [T − ε, T ] × Ω, consider the

following stochastic differential equation

dȳ(t) =
(
bx[t]ȳ(t) +

L+ 2

ρ
η(t)|ȳ(t)|bu[t]ṽ(t)

)
dt+

αT−ε
(
E |ξT−ε|2

) 1
2

ρε
bu[t]ṽ(t)dt

+
d∑
j=1

(
σjx[t]ȳ(t) +

L+ 2

ρ
η(t)|ȳ(t)|σju[t]ṽ(t)

)
dW j(t)

+
αT−ε

(
E |ξT−ε|2

) 1
2

ρε

d∑
j=1

σju[t]ṽ(t)dW j(t), t ∈ [T − ε, T ],

ȳ(T − ε) = ξT−ε.

(5.19)

Similarly to (5.5), we show that

E
〈
ϕ`x(x̄(T )), ȳ(T )

〉
< 0, ∀ ` ∈ Iϕ0 .

case b: E g(x̄(T )) = 0. Then, there exists an ε > 0 such that (T − ε, T ] ⊂ Igδ (Recall that Igδ is defined
by (5.1)). Without loss of generality, we assume that ε ≤ ε.
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Thus E g(x̄(t)) ∈ [−δ, 0] for any t ∈ [T − ε, T ]).
If Ig0 ∩ [T − ε, T ) = ∅, then, let y be the stochastic process satisfying (5.18) with τ = T − ε. Then,

y(T − ε) 6= 0. Denote ξT−ε = y(T − ε). Define

αT−ε := 1 +
(
E|gx(x̄(T − ε))|2

) 1
2 +

∑
`∈Iϕ0

(
E |ϕ`x(x̄(T − ε))|2

) 1
2 (5.20)

and, on [T − ε, T ] × Ω, let ȳ be the solution to (5.19) with αT−ε defined by (5.20). By Itô’s formula, as
before, we show that

E 〈gx(x̄(T )), ȳ(T )〉 ≤ E 〈gx(x̄(T − ε)), ξT−ε〉 − αT−ε
(
E|ξT−ε|2

) 1
2 − E

∫ T

T−ε
η(s)|ȳ(s)|ds

< 0, (5.21)

and for all ` ∈ Iϕ0 ,

E
〈
ϕ`x(x̄(T )), ȳ(T )

〉
≤ E

〈
ϕ`x(x̄(T − ε)), ξT−ε

〉
− αT−ε

(
E|ξT−ε|2

) 1
2 − E

∫ T

T−ε
η(s)|ȳ(s)|ds < 0

which implies that ȳ ∈ G(1) ∩Q(1) ∩ E(1).
If Ig0 ∩ [T − ε, T ) 6= ∅. Define

tF := min{t ∈ [T − ε, T ] |E g(x̄(t)) = 0}, αtF := 1 +
∑
`∈Iϕ0

(
E |ϕ`x(x̄(tF ))|2

) 1
2 .

Let y be the stochastic process satisfying (5.18) with τ = tF . Then, y(tF ) 6= 0 and E 〈gx(x̄(tF )), y(tF )〉 < 0.
Denote ξtF = y(tF ), and, on [tF , T ]× Ω, let ȳ be the solution to the following equation:

dȳ(t) =
(
bx[t]ȳ(t) +

L+ 2

ρ
η(t)|ȳ(t)|bu[t]ṽ(t)

)
dt+

αtF
(
E|ξtF |2

) 1
2

ρ(T − tF )
bu[t]ṽ(t)dt

+
d∑
j=1

(
σjx[t]ȳ(t) +

L+ 2

ρ
η(t)|ȳ(t)|σju[t]ṽ(t)

)
dW j(t)

+
αtF
(
E|ξtF |2

) 1
2

ρ(T − tF )

d∑
j=1

σju[t]ṽ(t)dW j(t), t ∈ [tF , T ],

ȳ(tF ) = ξtF .

(5.22)

By Itô’s formula, for any t ∈ [tF , T ]

E 〈gx(x̄(t)), ȳ(t)〉 ≤ E 〈gx(x̄(tF )), ξtF 〉 −
αtF (t− tF )

(
E|ξtF |2

) 1
2

T − tF
− E

∫ t

tF

η(s)|ȳ(s)|ds < 0,

and

E
〈
ϕ`x(x̄(T )), ȳ(T )

〉
≤ E

〈
ϕ`x(x̄(tF )), ξtF

〉
− αtF

(
E|ξtF |2

) 1
2 − E

∫ T

tF

η(s)|ȳ(s)|ds < 0, ∀ ` ∈ Iϕ0 ,

implying that ȳ ∈ G(1) ∩Q(1) ∩ E(1).
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[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984.

[3] T. R. Bielecki, H. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with
bankruptcy prohibition, Math. Finance, 15 (2005), pp. 213–244.

33



[4] J. F. Bonnans, Second order Pontryagin’s principle for stochastic control problems, Inria Saclay Ile de France. 2015,
https://hal.inria.fr/hal-01205854.

[5] J. F. Bonnans and F. J. Silva, First and second order necessary conditions for stochastic optimal control problems,
Appl. Math. Optim., 65 (2012), pp. 403–439.

[6] A.Ya. Dubovitskii and A.A. Milyutin, Extremum problems in the presence of restrictions, Zh. Vychisl. Mat. Mat.
Fiz. (USSR Comput. Math. and Math. Phys.), 5 (1965), pp. 1–80.

[7] A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for con-
strained control problems, SIAM J. Control Optim. 44 (2005), pp. 673–703.
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