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Abstract

Regularity properties are investigated for the value function of the Bolza optimal
control problem with affine dynamic and end-point constraints. In the absence of
singular geodesics, we prove the local semiconcavity of the sub-Riemannian distance
from a compact set Γ ⊂ Rn. Such a regularity result was obtained by the second au-
thor and L. Rifford in [Semiconcavity results for optimal control problems admitting
no singular minimizing controls, Annales de l’IHP Analyse non linéaire 25(4): 2008 ]
when Γ is a singleton. Furthermore, we derive sensitivity relations for time optimal
control problems with general target sets Γ, that is, without imposing any geometric
assumptions on Γ.

1. Introduction

Regularity properties of the value function of optimal control problems with finite
horizon, in the absence of state constraints, have been widely investigated. For the
Mayer and Bolza problems it can be shown that the value function is continuous,
Lipschitz continuous, or semiconcave in line with the problem data (see [3, 4, 5, 6,
7, 14]). Even for optimal exit time problems, regularity results are available under
suitable controllability assumptions (see [10, 12, 13, 14]). More precisely, let Γ be a
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compact subset of Rn and consider the following time minimization problem
minimize θΓ(x(·), u(·))
over all trajectory-control pairs (x, u)(·) satisfying

x′(s) = f(x(s), u(s)) for a.e. s > 0, x(0) = x0

u ∈ L2(R+;Rm),

where f : Rn × Rm → Rn is a given function, x0 ∈ Rm, and θΓ(x(·), u(·)) :=
inf {s > 0 |xx0,u(s) ∈ Γ} is the so-called transfer time (to Γ) along the trajectory
x(·) starting from x0 and associated with the control u(·). For any x0 ∈ Rn and
any control u(·) we denote by xx0,u(·) the solution of the Cauchy problem x′(s) =
f(x(s), u(s)) for a.e. s > 0, x(0) = x0. By convention θΓ(xx0,u(·), u(·)) = +∞ if
xx0,u(s) /∈ Γ for all s > 0. The set Γ is called the target set and the value function
τΓ(x0) = inf {θΓ(xx0,u(·), u(·)) |u ∈ L2(R+;Rm)} is the minimum time function. It is
well known (see [14, Chapter 8]) that τΓ is locally Lipschitz continuous on the set
A = {x0 ∈ Rn | ∃u ∈ L2(R+;Rm), θΓ(xx0,u(·), u(·)) <∞} provided that Γ satisfies
Petrov’s condition: there exists r > 0 such that for any y ∈ ∂Γ and any proximal
unit vector ν to Γ at y we can find u ∈ Rm satisfying 〈 f(y, u), ν〉 < −r. In addition,
if the target set fulfils the uniform inner ball property, then τΓ(·) is locally semicon-
cave on A \Γ and it is locally Lipschitz continuous on A \Γ if and only if Γ satisfies
Petrov’s condition.

Recovering the local semiconcavity property for the minimum time function,
associated with the above problem, when the target set does not satisfy the uni-
form inner ball property, becomes quite challenging. Indeed, let us suppose that
f(x, u) =

∑m
i=1 ui fi(x) and u(·) takes values in the m-dimensional closed unit ball,

with f1, ..., fm smooth (C∞ or Cω) vector fields on Rn and 1 6 m 6 n. Then Petrov’s
condition may be not satisfied and, if Γ is a singleton, the uniform ball property fails.
Nevertheless, the minimum time to reach a point is equal to the sub-Riemannian
distance dSR from such a point associated with the distribution ∆ = span {f1, ..., fm}
on the manifold M = Rn (see [2, 20, 22]). Regularity properties of dSR were obtained
for subanalytic structures (see [1, 25], and Section 4). In particular, if the Lie algebra
generated by ∆ is regular everywhere, i.e., it satisfies Hörmander’s condition (see [19]
and Section 4), then for any x0 there exists a dense subset Sx0 of Rn such that for
all y ∈ Sx0 the function dSR(x0, ·) is Lipschitz continuous on a suitable open neigh-
borhood of y (see [24, Chapter 2]). One can show (see [11]), assuming furthermore
that any geodesics associated with ∆ connecting x to x0 6= x is not singular (see
Section 2 for the definition), that the function dSR(x0, ·) is locally semiconcave on
Rn\ {x0}. So, under such assumptions, it follows that for any compact set Λ ⊂ Rn

and any y ∈ Rn\Λ the function dSR(y, ·) is C(y)-semiconcave on Λ. Such a property
does not suffice to guarantee the local semiconcavity of dSR(Γ, ·) = infy∈Γ dSR(y, ·)
on Rn\Γ, because the semiconcavity constant C(y) might blow up with y ∈ Γ. Nev-
ertheless, in this paper we analyze the local semiconcavity property of the function
infy∈Γ dSR(y, ·) obtaining uniform bounds on the semiconcavity constant C(y) as y lies
in a compact set (see Section 4). More precisely, we will show that for any compact
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set Γ ⊂ Rn\Λ there exists a nonnegative constant C = C(Λ,Γ) such that dSR(x0, ·)
is C-semiconcave on Λ for every x0 ∈ Γ.

In order to obtain the semiconcavity results we assume that there are no singular
geodesics and we study the dependence of the semiconcavity constant with respect to
the initial point, showing that it is bounded from the above when x0 lies in a compact
set. As it was the case in [11], a key point of the reasoning is to show the local invert-
ibility of the end-point map (x0, u) 7→ xx0,u(T ), where T > 0, and to prove the C1,1

regularity of its inverse function (Proposition 4.5). Then, we use a compactness result
ensuring that all optimal controls are uniformly Lipschitz continuous and uniformly
bounded. The final step consists in combining the local semiconcavity property of
the cost functional with the C1,1 regularity of the inverse of end-point map.

After establishing semiconcavity, we address sensitivity relations and transversal-
ity conditions for the minimum time function associated with an affine control system
as above. Such relations are given in the form of the following inclusions{

−p(t) ∈ ∂P τΓ(xx0,ū(t)) ∀ t ∈ [0, τΓ(x0))

p(τΓ(x0)) ∈ Lim supt→ τΓ(x0)− N
P
Rn\Γt

(xx0,ū(t)),

where x0 ∈ Rn\Γ, ū(·) is an optimal control for τΓ at x0, Γt = {y ∈ Rn | τΓ(y) 6 t},
and p(·) solves the adjoint equation −p′(t) = dxf(xx0,ū(t), ū(t))∗p(t) for a.e. t ∈
[0, τΓ(x0)]. Sensitivity relations for the minimum time function to reach a set with
the inner ball property were already investigated (see [4, 9, 18]). We recover, for time
optimal control problems, sensitivity relations for the co-state in terms of proximal
normal cones (see [26, 9] and Section 2). This is done under the assumption that there
are no singular geodesics associated with ∆ and the target set is merely compact.
The analysis, that applies to any compact target, is based on the dynamic program-
ming principle and further properties of viscosity solutions of the eikonal equation
|F (x)∗∇τΓ(x)|−1 = 0 for x ∈ Γc, where F (x) is the matrix which has f1(x), ..., fm(x)
as column vectors.

The outline of the paper is as follows. Section 2 recalls some basic notations and
results from nonsmooth analysis and control theory. In Section 3, we state our main
results. We give their proof in Section 4. Finally, in Section 5, we derive sensitivity
relations for the minimum time function.

2. Preliminaries

Let (X, | · |X) be a normed space. We denote by BX(z, r) the open ball centered
at z with radius r > 0 in X (we write Br(z) in place of BRn(z, r) when no confusion
arises) and we set S1 = ∂BX(0, 1). For a subset C ⊂ X we write intC, C, and Cc

for the interior, the closure, and the complement of C, respectively. We denote by
| · | and 〈 ·, ·〉 the Euclidean norm and the scalar product in Rn, respectively. Let
A ⊂ X be a nonempty subset. The distance from x to A is defined by d(x,A) =
inf {|x− y|X | y ∈ A}. A function ϕ : A ⊂ X → R is said to be C-semiconcave (with
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linear modulus) on A, with C > 0, if it is continuous and

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x) 6 C |h|2 ∀x, h ∈ X, [x− h, x+ h] ⊂ A.

We say that ϕ is locally semiconcave on A if for any compact subset K ⊂ A there
exists CK > 0 such that ϕ is CK-semiconcave on K. If A is open, we say that
ϕ ∈ C1,1 or ϕ ∈ C1,1

loc if ϕ is continuously differentiable with Lipschitz continuous or
locally Lipschitz continuous differential on A, respectively. It is well known that any
ϕ ∈ C1,1

loc is locally semiconcave. We say that φ : X → X has a sub-linear growth if
there exists M > 0 such that |φ(x)|X 6M(1 + |x|X) for all x ∈ X.

For p ∈ N+ we denote by Lp(0, T ;Rn) the set of all Lebesgue measurable functions

g : [0, T ]→ Rn such that ‖g‖pLp :=
∫ T

0
|g(s)|p ds <∞, by C(0, T ;Rn) the space of all

Rn-valued continuous functions on [0, T ], and by Cp(0, T ;Rn) the space of Rn-valued
functions on [0, T ], p-times continuously differentiable.

Let D ⊂ Rn be nonempty and {Ah}h∈D be a family of nonempty subsets of
Rn. The upper limit (in the Kuratowski-Painlevé sense) of Ah at h0 ∈ D, written
Lim suph→Dh0

Ah, is the set of all vectors v ∈ Rn such that lim infh→Dh0 dAh
(v) = 0.

If D = N+, then Lim supi→∞ S(i) := Lim supy→0
A
G(y) where A = {1/i}i∈N+ and

G(1/i) := S(i).
Let E be a closed subset of Rn and x ∈ E. We denote by E− the negative polar

of the set E, i.e. the set {y ∈ Rn | 〈 y, x〉 6 0 ∀x ∈ E}. The proximal normal cone
to E at x is the set defined by

NP
E (x) =

{
p ∈ Rn | ∃σ = σ(x, p) > 0 : 〈 p, y − x〉 6 σ |y − x|2 ∀y ∈ E

}
.

Furthermore, p ∈ NP
E (x) if and only if there exists λ > 0 such that Br|p|(x+rp) ⊂ Ec

for all 0 6 r 6 λ (see [26]).
The contingent cone to E at x is the set defined by

TE(x) = {v ∈ Rn | ∃ ti → 0+, ∃ vi → v, x+ tivi ∈ E ∀i}.

It is known that NP
E (ξ) ⊂ TE(ξ)− for all ξ ∈ ∂E.

Let ϕ be a real valued function on E. The superdifferential D+ϕ(x) of ϕ at x ∈ E

is defined as the set of all p ∈ Rn satisfying lim supy→x
E

ϕ(y)− ϕ(x)− 〈 p, y − x〉
|y − x|

6 0.

Moreover, if ϕ is locally semiconcave, then for all x ∈ int E holds the following
property (see [14, Theorem 3.3.6])

co D∗ϕ(x) = D+ϕ(x), (1)

where D∗ϕ(x) := {ξ ∈ Rn | ∃xi → x, ∇ϕ(xi) → ξ} and “co” stands for the convex
hull. The proximal and horizontal proximal supergradient of ϕ at x are the sets
defined, respectively, by

∂Pϕ(x) =
{
ξ ∈ Rn | (−ξ, 1) ∈ NP

hypoϕ(x, ϕ(x))
}
,

∂∞,Pϕ(x) =
{
ξ ∈ Rn | (−ξ, 0) ∈ NP

hypoϕ(x, ϕ(x))
}
,

where hypoϕ denotes the hypograph of the function ϕ. For further properties of
superdifferentials and proximal cones we refer to [16, 26].
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3. Main Result

Let 1 6 m 6 n be two natural numbers. Consider the optimal control problem

minimize

∫ t

0

L(xx0,u(s), u(s)) ds (2)

over all controls u ∈ L2(0, t;Rm) such that the solution xx0,u(·) of the affine control
system {

x′(s) =
∑m

i=1 ui(s) fi(x(s)) for a.e. s ∈ [0, t]

x(0) = x0

(3)

satisfies the end-point constraint

xx0,u(t) = y, (4)

where (t, y) ∈ [0,∞)× Rn and fi : Rn → Rn, L : Rn × Rm → R are given functions.
We say that a control v ∈ L2(0, t;Rm) steers x0 to y in time t if xx0,v(t) = y. The
infimum of the cost functional in (2) over all controls steering x0 to y in time t
is denoted by Vx0(t, y) (if there are no controls steering x0 to y in time t, we set
Vx0(t, y) = +∞). The function Vx0 : [0,∞) × Rn → R ∪ {±∞} is called the value
function of the problem (2)-(4) with starting point x0. A control v ∈ L2(0, t;Rm) is
said to be an optimal control or a minimizer (for the problem (2)-(4)) at (x0, t, y)
if xx0,v(t) = y and Vx0(t, y) =

∫ t
0
L(xx0,v(s), v(s)) ds. We denote by Ux0(s, y) the

(possibly empty) set of all optimal controls steering x0 to y in time s.
Let us denote by (H) the following assumptions:

(H) (i) f1, ..., fm are C2 vector fields on Rn with sub-linear growth and Lipschitz
continuous differential;

(ii) L ∈ C2 and ∇2
uL(x, u) > 0 for all (x, u) ∈ Rn × Rm;

(iii) G is a given nonempty compact subset of Rn and the following set is
nonemepty

DG := {(t, x) ∈ [0,∞)× Rn |Vx0(t, x) < +∞ ∀x0 ∈ G} ;

(iv) there exists a nonempty open subset ΩG ⊂ [0,∞)×Rn such that ΩG ⊂ DG;

(v) there exist c > 0 and a function φ : [0,∞)→ R+ such that

lim inf
r→∞

φ(r)/r2 > 0 & L(x, u) > φ(|u|)− c ∀(x, u) ∈ Rn × Rm,

and for any r > 0

sup

{
|∇xL(x, u)|
φ(|u|)

|x ∈ Br(0), u ∈ Rm

}
<∞.
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Remark 3.1. Assume (H) and that |L(x, u)| 6 ϕ(x)(1+ |u|2), where ϕ(·) is a locally
bounded function on Rn. Then (t, x) ∈ DG if for any x0 ∈ G there exists a square
integrable control u : [0, t]→ Rm steering x0 to x in time t.

Let T > 0 and W ⊂ L2(0, T ;Rm) be such that all solutions of (3), with u ∈ W ,
are well defined on [0, T ]. The end-point map associated to the system (3) at time
T , written ET , is the function given by

ET (x0, u) = xx0,u(T ) ∀ (x0, u) ∈ Rn ×W .

It can be proved that, if the vector fields f1, ..., fm are smooth, then W can be chosen
to be open (see [2, 22]).

Definition 3.2. A control u ∈ L2(0, t;Rm) is said to be singular at x0 if dEt(x0, u)(0, ·)
is not a surjective map on L2(0, t;Rm).

Definition 3.3. If (H)(iii)-(iv) hold true, we say that the problem (2)-(4) does not
admit singular minimizers (on G) if any u ∈ Ux0(t, y) is not singular whenever (t, y) ∈
ΩG, y /∈ G, and x0 ∈ G.

We state next the main result.

Theorem 3.4. Assume (H) and suppose that the problem (2)-(4) does not admit
singular minimizers.

Then, for any compact subset Γ ⊂ ΩG, there exists a constant C = C (G,Γ) > 0
such that the value function Vx0(·, ·) is C-semiconcave on Γ for all x0 ∈ G.

Now, let us denote by (H)′ the following assumptions on f1, ..., fm:

(H)′ (i) f1, ..., fm are smooth vector fields (C∞ or Cω) satisfying Hörmander’s con-
dition, i.e.,

span
{
X i(x)

}
i>1

= Rn ∀x ∈ Rn,

where X1(x) = {f1(x), ..., fm(x)}, X i+1(x) = X i(x) ∪ {[f, g](x) | f ∈
X1(x), g ∈ X i(x)} for all i ∈ N+ ([·, ·] denotes the Lie bracket);

(ii) f1, ..., fm have sub-linear growth, Lipschitz continuous differential, and
f1(x), ..., fm(x) are linearly independent for all x ∈ Rn.

If (H)′-(i) holds true, by the Chow-Rashevsky theorem (see [15, 23]), for any x0, y ∈
Rn there exists an absolutely continuous arc x : [0, 1] → Rn, with square integrable
derivative, such that x(0) = x0, x(1) = y, and

x′(t) ∈ span {f1(x(t)), ..., fm(x(t))} for a.e. t ∈ [0, 1]. (5)

An absolutely continuous arc on [0, 1] satisfying (5), with square integrable derivative,
is said to be an horizontal arc.

Let us denote by S (x0, x) the set of all horizontal arcs β such that β(0) = x0

and β(1) = x. Then, if (H)′ holds true, there exists a bijection between S (x0, x) and
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L2(0, 1;Rm) such that for any β ∈ S (x0, x) there exists a unique uβ ∈ L2(0, 1;Rm)
satisfying β′(s) =

∑m
i=1(uβ(s))ifi(β(s)) for a.e. s ∈ [0, 1]. We can associate to any

horizontal arc [0, 1] 3 t 7→ β(t) its length given by l(β) =
∫ 1

0
|uβ(t)| dt, and the sub-

Riemannian distance between x0 and x, written dSR(x0, x), is inf {l(β) | β ∈ S (x0, x)}.
The following result is very useful (see [2]):

Proposition 3.5. Assume (H)′-(i). For any x0, x ∈ Rn

dSR(x0, x)2 = e(x0, x) := inf

{∫ 1

0

|uβ(t)|2 dt | β ∈ S (x0, x)

}
.

The function e(·, ·) is said to be the sub-Riemannian energy, and an horizontal
arc minimizing e(x0, x) is said to be a geodesic steering x0 to x. A geodesic β is called
a singular geodesic (or singular) if the associated control uβ is singular.

Consider the following minimization problem

Ex0(t, x) := inf

{∫ t

0

|u(s)|2 ds |u ∈ L2(0, t;Rm), xx0,u(t) = x

}
,

where (t, x) ∈ [0,∞) × Rn and x0 ∈ Rn. Then, by Proposition 3.5, it follows that
dSR(x0, x) =

√
Ex0(1, x) for all x ∈ Rn, and, assuming that any geodesic connecting

x to x0 6= x is not singular, by [11, Theorem 5] the function dSR(x0, ·) is locally
semiconcave on Rn\ {x0}. We would like to underline that the infimum of a family of
semiconcave functions is not in general a semiconcave function. When each member
of the family is semiconcave with same constant then the infimum is semiconcave too.

Lemma 3.6 ([14]). Let {u |u ∈ Z } be a family of C-semiconcave functions on Γ ⊂
Rn and put w(x) = infu∈Z u(x). If w(x) 6= −∞ for all x ∈ Γ then w(·) is C-
semiconcave on Γ.

For any compact set Γ ⊂ Rn, the sub-Riemannian distance between Γ and x is

dSR(Γ, x) = inf
x0∈Γ

dSR(x0, x).

Definition 3.7. We say that there are no singular geodesics for Γ (associated to the
distribution spanned by f1, ..., fm) if any geodesics connecting x to y is not singular
whenever x ∈ Γ and y ∈ Γc.

Finally, in light of Proposition 3.5, Lemma 3.6, and Theorem 3.4, we get the
following result:

Corollary 3.8. Assume (H)′. Let Γ ⊂ Rn be a compact set and suppose that there
are no singular geodesics for Γ.

Then dSR(Γ, ·) is locally semiconcave on Γc.
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4. Proof of the Main Result

We provide here the proof of our main result deferring technical details to the
appendix. For any k > 0, T > 0, x0 ∈ Rn, and Γ ⊂ [0,∞) × Rn, we introduce the
following notation

Ux0(Γ) =
⋃

(s,y)∈Γ

Ux0(s, y),

L T
k = {u : [0, T ]→ Rm | ‖u‖∞ 6 k and u is k-Lipschitz continuous} .

We equip the set L T
k with the uniform norm.

Lemma 4.1. Assume (H) and let T > 0. Then, for any k′ > 0 there exists K > 0
such that for any z ∈ G the map

[0, T ]×L T
k′ 3 (t, u) 7→

∫ t

0

L(xz,u(s), u(s)) ds (6)

is K-Lipschitz continuous and K-semiconcave.

Proof. By Remark 6.1 from the Appendix, there exists r = r(k′, G) > 0 such that
‖xz,u‖∞ 6 r for all z ∈ G and all u ∈ L T

k′ . Consider α > 0, M̃ > 0, depending on k′

and G, such that for all x, y ∈ Br(0) and all u,w ∈ Bk′(0)

|L(x, u)− L(y, w)| 6 α (|x− y|+ |u− w|) & |L(x, u)| 6 M̃, (7)

and for all x, η with [x+ η, x− η] ⊂ B3r(0) and every u ∈ Bk′(0)

L(x+ η, u) + L(x− η, u)− 2L(x, u) 6 α |η|2 . (8)

Fix z ∈ G. Denote for simplicity the map in (6) by Ct(u). Then, from Lemma
6.2 and (7), there exists σ = σ(k′, G) > 1 such that for any 0 6 s 6 t 6 T , and any
u,w ∈ L T

k′

|Ct(u)− Cs(w)| 6
∫ t

s

|L(xz,w(ξ), w(ξ))| dξ

+

∫ s

0

|L(xz,u(ξ), u(ξ))− L(xz,w(ξ), w(ξ))| dξ

6 M̃ |t− s|+ α

∫ s

0

(|xz,u(ξ)− xz,w(ξ)|+ |u(ξ)− w(ξ)|) dξ

6
(
M̃ + ασT

)
(|t− s|+ ‖u− w‖∞) .

Now, let t, h, u, and v be such that [t− h, t+ h] ⊂ [0, T ] and u− v, u+ v ∈ L T
k′ . We

have

Ct+h(u+ v) + Ct−h(u− v)− 2Ct(u)

= Ct(u+ v) + Ct(u− v)− 2Ct(u)

+ Ct+h(u+ v) + Ct−h(u− v)− Ct(u+ v)− Ct(u− v).

(9)

8
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Then,

Ct(u+ v) + Ct(u− v)− 2Ct(u)

=

∫ t

0

(L(xz,u+v(s), u(s) + v(s)) + L(xz,u−v(s), u(s)− v(s))− 2L(xz,u(s), u(s))) ds

=

∫ t

0

(L(xz,u+v(s), u(s)) + L(2xz,u(s)− xz,u+v(s), u(s))− 2L(xz,u(s), u(s))) ds

+

∫ t

0

(L(xz,u+v(s), u(s) + v(s))− L(xz,u+v(s), u(s))) ds

+

∫ t

0

(L(xz,u−v(s), u(s)− v(s))− L(xz,u−v(s), u(s))) ds

+

∫ t

0

(L(xz,u−v(s), u(s))− L(2xz,u(s)− xz,u+v(s), u(s))) ds.

(10)

From (8) and Lemma 6.2, there exists a constant σ0 = σ0(k′, G) > 0 such that∫ t

0

(L(xz,u+v(s), u(s)) + L(2xz,u(s)− xz,u+v(s), u(s))− 2L(xz,u(s), u(s))) ds 6 σ0 ‖v‖2
∞ .

According to Remark 6.4 below, there exists σ1 = σ1(k′, G) > 0 such that |xz,u+v(s)+
xz,u−v(s)− 2xz,u(s)| 6 σ1 ‖v‖2

L2 for all s ∈ [0, T ]. Hence, by (7),∫ t

0

(L(xz,u−v(s), u(s))− L(2xz,u(s)− xz,u+v(s), u(s))) ds

6 α

∫ t

0

|xz,u+v(s) + xz,u−v(s)− 2xz,u(s)| ds

6 σ2 ‖v‖2
∞ ,

where σ2 = σ2(k′, G) > 0. For the second and third term in (10) we have, using
the regularity of the Lagrangian in the second variable, Lemma 6.2, and the Cauchy-
Schwarz inequality, that∫ t

0

(L(xz,u+v(s), u(s) + v(s))− L(xz,u+v(s), u(s))) ds

+

∫ t

0

(L(xz,u−v(s), u(s)− v(s))− L(xz,u−v(s), u(s))) ds

=

∫ t

0

∫ 1

0

〈∇uL(xz,u+v(s), ξv(s) + u(s)), v(s)〉dξ ds

−
∫ t

0

∫ 1

0

〈∇uL(xz,u−v(s),−ξv(s) + u(s)), v(s)〉 dξ ds

6 σ3

∫ t

0

(|xz,u+v(s)− xz,u−v(s)|+ |v(s)|) |v(s)| ds

6 σ4 ‖v‖2
∞ ,

9



V. Basco, P. Cannarsa, and H. Frankowska Semiconcavity Sub-Riemannian

where σi = σi(k
′, G) > 0 for i = 3, 4. The above relations and (10) imply that

Ct(u+ v) + Ct(u− v)− 2Ct(u) 6 σ5 ‖v‖2
∞ (11)

for a suitable σ5 = σ5(k′, G) > 0.
On the other hand,

Ct+h(u+ v) + Ct−h(u− v)− Ct(u+ v)− Ct(u− v)

=

∫ t+h

t

(L(xz,u+v(s), u(s) + v(s))− L(xz,u+v(t), u(s) + v(s))) ds

+

∫ t+h

t

(L(xz,u+v(t), u(s) + v(s))− L(xz,u+v(t), u(s)− v(s))) ds

+

∫ t+h

t

(L(xz,u+v(t), u(s)− v(s))− L(xz,u−v(t), u(s)− v(s))) ds

+

∫ t+h

t

L(xz,u−v(t), u(s)− v(s)) ds−
∫ t

t−h
L(xz,u−v(s), u(s)− v(s)) ds,

and, on account of (7) and the Lipschitz regularity of trajectories, the first three
terms are bounded by 3C (h ‖v‖∞ + h2), while, since u − v ∈ L T

2k′ , there exists a
constant M = M (k′, G) > 0 satisfying∫ t+h

t

L(xz,u−v(t), u(s)− v(s)) ds−
∫ t

t−h
L(xz,u−v(s), u(s)− v(s)) ds

=

∫ t+h

t

(L(xz,u−v(t), (u− v)(s))− L(xz,u−v(s− h), (u− v)(s− h))) ds

6Mh2.

Then

Ct+h(u+ v) + Ct−h(u− v)− Ct(u+ v)− Ct(u− v) 6 2(3C +M)
(
‖v‖2

∞ + h2
)
.

This and (9) and (11) complete the proof.

Remark 4.2. Arguing in a similar way as in the first part of the proof of Lemma
4.1 and using Lemma 6.2, we have that, for any T > 0, the map

R+ × C(0, T ;Rm)× Rn 3 (t, u, z) 7→
∫ t

0

L(xz,u(s), u(s)) ds

is continuous.

Lemma 4.3. Assume (H) and suppose that the problem (2)-(4) does not admit sin-
gular minimizers.

Then the function (x0, t, x) 7→ Vx0(t, x) is continuous on G×DG.

10
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Proof. Let (x̄0, t̄, x̄) ∈ G × DG and consider a sequence (zi, ti, xi) → (x̄0, t̄, x̄) in
G×DG such that

lim
i→∞

Vzi(ti, xi) = l ∈ R ∪ {±∞}.

By [21, Theorem 8, Chap. 4]), for every i > 1 there exists a square integrable control
ui(·) such that Vzi(ti, xi) =

∫ ti
0
L(xi(s), ui(s)) ds, where xi(·) denotes the trajectory

xxi,ui(·) such that xzi,ui(ti) = xi. Without loss of generality we can suppose that for
all large i the controls {ui}i are defined on [0, t̄+ 1] putting ui ≡ 0 on [ti, t̄+ 1].

We first show that Vx̄0(t̄, x̄) > l. Notice that Vx̄0(t̄, x̄) 6= +∞. Let v(·) be an
optimal control steering x̄0 to x̄ in time t̄. From [11, Lemma 3], v(·) is continuous.
Moreover, according to Lemma 6.6 below, there exists {vj}nj=1 ⊂ C(0, t̄;Rm) such that

the map ϕ : Rn → Rn, defined by ϕ(β) =
∑n

j=1 βjdEt̄(x̄0, v)(0, vj), is an isomorphism.
Then, from Lemma 6.2 and Corollary 6.5, we conclude that the map E : Rn×R+×Rn

defined by

E (y, s, β) =
(
y, s, Es(y, v +

n∑
j=1

βjvj)
)

is C1 in a neighborhood of (x̄0, t̄, 0) and det dE (x̄0, t̄, 0) 6= 0. So, applying the Inverse
Function Theorem, the map E is open in a neighborhood of (t̄, x̄0, 0). It means
that any point (zi, ti, xi), sufficiently close to (x̄0, t̄, x̄), admits a control wi = v +∑n

j=1 βjvj close to v in C(0, t̄ + 1;Rm) such that xzi,wi(ti) = xi. By Remark 4.2, we

have that limi

∫ ti
0
L(xzi,wi(s), wi(s)) ds =

∫ t̄
0
L(xx̄0,v(s), v(s)) ds. So, since Vzi(ti, xi) 6∫ ti

0
L(xzi,wi(s), wi(s)) ds for all i, passing to the limit we deduce that l 6 Vx̄0(t̄, x̄).

Consequently l < +∞.
We next prove that Vx̄0(t̄, x̄) 6 l. By assumptions on φ(·), there exists α, C > 0

such that αr2 6 φ(r) for all r > C. So

‖ui‖2
L2 =

∫
[0,t̄+1]∩{s:|ui(s)|>C}

|ui(s)|2 ds+

∫
[0,t̄+1]∩{s:|ui(s)|6C}

|ui(s)|2 ds

6 α−1

∫
[0,t̄+1]∩{s:|ui(s)|>C}

φ(|ui(s)|) ds+ C2(t̄+ 1)

6 α−1

∫ t̄+1

0

L(xi(s), ui(s)) ds+ (c+ C2)(t̄+ 1).

Since l < +∞, {‖ui‖L2}i is bounded. By further extraction of a subsequence and
from Gronwall’s lemma and the Ascoli-Arzelà theorem, keeping the same notation,
we have that ui ⇀ ū in L2(0, t̄ + 1;Rm) and xi(·) converges uniformly on [0, t̄ + 1]
to an absolutely continuous trajectory y(·) := xx̄0,ū(·). Now, since |y(ti)− x̄| 6
|y(ti)− xi(ti)|+ |xi(ti)− x̄|, we conclude that limi |y(ti)− x̄| = 0. So y(t̄) = x̄. Then,
from the convexity of L with respect to the second variable (see [21, proof of Theorem

8 Chap. 3]), we deduce that limi

∫ ti
0
L(xi(s), ui(s)) ds >

∫ t̄
0
L(y(s), ū(s)) ds. Hence

Vx̄0(t̄, x̄) 6 l.

11
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From the proof of [11, Lemma 3], Remark 4.2, and Lemma 4.3, we get the following
compactness result.

Lemma 4.4. Assume (H) and suppose that the problem (2)-(4) does not admit sin-
gular minimizers.

Then, for any nonempty compact subset Γ ⊂ ΩG, we have Ux0(s, y) 6= ∅ for all
(s, y) ∈ Γ and x0 ∈ G, and there exists k = k(G,Γ) > 0 such that⋃

x0∈G

U x0(Γ) ⊂ L T
k .

We give next an inverse mapping result for the end-point map.

Proposition 4.5. Assume (H) and suppose that the problem (2)-(4) does not admit
singular minimizers. Let Γ ⊂ ΩG be a nonempty compact subset and define

T = sup {t > 0 | ∃x ∈ Rn, (t, x) ∈ Γ} ,

Λ =
{

(t, z, u) ∈ [0,∞)×G× L2(0, T ;Rm) | ∃x ∈ Rn, u ∈ Uz(t, x), (t, x) ∈ Γ
}
.

If for some k > 0 ⋃
x0∈G

U x0(Γ) ⊂ L T
k , (12)

then there exist k′ > k, r > 0, and ` > 0 such that for any (t, z, u) ∈ Λ we can find a
map

Ft,z,u : Br(t)×Br(z)×Br(xz,u(t))→ L T
k′ ,

satisfying for all (t, z, u) ∈ Λ:

(i) Ft,z,u ∈ C1,1;

(ii) Es(z
′, Ft,z,u(s, z

′, β)) = β for all (s, z′, β) ∈ Br(t)×Br(z)×Br(xz,u(t));

(iii) dFt,z,u is `-Lipschitz.

Proof. Let (t0, z0, u0) ∈ Λ. We know that dEt0(z0, u0)(0, ·) is surjective on L2(0, T ;Rm).
Let V ⊂ C1(0, T ;Rm) be a countable subset such that spanV = L2(0, T ;Rm). By
Lemma 6.6, there exist n linearly independent vectors {v0

1, ..., v
0
n} ⊂ V such that the

map A0 : Rn → Rn, defined by A0(α) =
∑n

i=1 αidEt0(z0, u0)(0, v0
i ), is an isomor-

phism. Define for any (t, z, u) ∈ (0,∞)×Rn×L2(0, T ;Rm) the map ϕ0
t,z,u : Rn → Rn

by ϕ0
t,z,u(α) =

∑n
i=1 αidEt(z, u)(0, v0

i ). By Lemma 6.2 and Corollary 6.5, there exist
%0 > 0, µ0 > 0 such that for any (t, z, u) ∈ J0 := B%0(t0) × B%0(z0) × BL2(u0, %0)
the map E 0

t,z,u : (0,∞) × Rn × Rn → (0,∞) × Rn × Rn, defined by E 0
t,z,u(s, y, α) =

(s, y, Es(y, u+
∑m

i=1 αiv
0
i )), satisfies for all (t, z, u) ∈ J0

| det
(
dE 0

t,z,u(t, z, 0)
)
| =

∣∣detϕ0
t,z,u

∣∣ > µ0.

12
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β

z′

z

xu(t)

Now, from (12) and the Ascoli-Arzelà theorem, the set
⋃
x0∈G U x0(Γ) is compact.

Then there exists N ∈ N+ such that, for all j = 1, ..., N , we can find ρj > 0, µj > 0,
(tj, zj, uj) ∈ Λ, and linearly independent

{
vj1, ..., v

j
n

}
⊂ V , such that

Λ ⊂
⋃

j=1,...,N

B%j(tj)×B%j(zj)×BL2(uj, %j) =:
⋃

j=1,...,N

Jj.

Defining for any (t, z, u) ∈ Jj the maps E j
t,z,u : (0,∞)×Rn×Rn → (0,∞)×Rn×Rn

and ϕjt,z,u : Rn → Rn by E j
t,z,u(s, y, α) = (s, y, Es(y, u +

∑m
i=1 αiv

j
i )) and ϕjt,z,u(α) =∑n

i=1 αidEt(z, u)(0, vji ), we deduce that for all (t, z, u) ∈ Jj and j = 1, ..., N

| det
(
dE j

t,z,u(t, z, 0)
)
| =

∣∣detϕjt,z,u
∣∣ > µj > min {µ1, ..., µN} > 0. (13)

Applying the Inverse Mapping Theorem to the map E j
t,z,u and using a compact-

ness argument, we conclude that for each j there exists rj > 0 such that the set

Vj(t, z, u) := (t−rj, t+rj)×Brj(z)×Brj(Et(z, u)) is isomorph to
(
E j
t,z,u

)−1
(Vj(t, z, u))

for any (t, z, u) ∈ Jj. Put r = min {r1, ..., rN} and define for any (t, z, u) ∈ Jj,

Ft,z,u(t
′, z′, β) = u+

m∑
i=1

αi(t
′, z′, β)vji ∀(t′, z′, β) ∈ Vj(t, z, u),

where
(
E j
t,z,u

)−1
(t′, z′, β) = (t′, z′, α(t′, z′, β)). Notice that, since the coefficients αi are

bounded by a suitable constant M > 0 and vji ∈ C1(0, T ;Rm), there exists a constant
k′ > k such that Ft,z,u take values in L T

k′ . Hence, (i) and (ii) follow. Moreover, from
(13) and the C1,1

loc regularity of the end-point map, there exists a constant ` > 0,
depending only on k and G, such that dFt,z,u is `-Lipschitz for all (t, z, u) ∈ Λ. So,
we get (iii).

Proof of Theorem 3.4. Define δ = dist(∂ΩG,Γ) and let r > 0 be as in Proposition
4.5 (we can pick r such that r 6 δ). It is sufficient to prove the semiconcavity of Vx0 ,

uniformly in x0, on the set
(

[t− r, t+ r]×Br(x)
)
∩ Γ whenever (t, x) ∈ Γ. So, fix

x0 ∈ G and let u ∈ Ux0(t, x) and h, η ∈ Rn be such that [t−h, t+h]× [x−η, x+η] ⊂(
[t− r, t+ r]×Br(x)

)
∩Γ. Hence, denoting for simplicity Ft,x0,u by F and using the

same notation as in the proof of Lemma 4.1, from Lemma 4.4 and Proposition 4.5
we conclude that

Vx0(t, x) = Ct(F (t, x0, x)),

13
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and for all (t′, x′) ∈
(

[t− r, t+ r]×Br(x)
)
∩ Γ

Vx0(t′, x′) 6 Ct′(F (t′, x0, x
′)).

So, by Lemma 4.1 and Proposition 4.5, there exist C̃ = C̃ (G,Γ) > 0 and C =
C (G,Γ) > 0 such that for all x0 ∈ G

Vx0(t+ h, x+ η) + Vx0(t− h, x− η)− 2Vx0(t, x)

6 Ct+h(F (t+ h, x0, x+ η)) + Ct−h(F (t− h, x0, x− η))− 2Ct(F (t, x0, x))

= Ct+h(F (t+ h, x0, x+ η)) + Ct−h(F (t− h, x0, x− η))

− 2Ct

(
F (t+ h, x0, x+ η) + F (t− h, x0, x− η)

2

)
+ 2

(
Ct

(
F (t+ h, x0, x+ η) + F (t− h, x0, x− η)

2

)
− Ct(F (t, x0, x))

)
6 C|F (t+ h, x0, x+ η)− F (t− h, x0, x− η)|2

+ C |F (t+ h, x0, x+ η) + F (t− h, x0, x− η)− 2F (t, x0, x)|
6 CC̃2 (h+ η)2 + CC̃

(
h2 + η2

)
.

Since all constants involved in the previous inequality depend only on G and Γ,
the conclusion follows.

5. Sensitivity Relations

We investigate next sensitivity relations for the minimum time function. Let
Γ ⊂ Rn be a compact subset.

Remark 5.1. It is known (see [20, Proposition 3.1]) that the sub-Riemannian dis-
tance between two points y and x is equal to the minimum time τ{y}(x) to reach y
from x, associated to the control system

y′(s) =
∑m

i=1 ui(s) fi(y(s)) for a.e. s > 0

y(0) = x

u ∈ Bm,

(14)

where Bm denotes the set of all Lebesgue measurable controls u : [0,∞)→ Rm such
that u(s) ∈ B1(0) for a.e. s > 0. So, the minimum time function τΓ(·) to reach Γ for
the control system (14) satisfies τΓ(x) = infy∈Γ τ{y}(x) = infy∈Γ dSR(y, x) = dSR(Γ, x)
for all x ∈ Rn. A control u ∈ Bm is said to be optimal (for the minimum time
function τΓ) at z if τΓ(z) = θΓ(xz,u(·), u(·)).

Subsequently, to shorten notation, we write f(x, u) in place of
∑m

i=1 uifi(x). Next
we recall a result from [8, Theorem 3.1], stated under more general assumptions for
the vector fields f1, ..., fm:

14
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Lemma 5.2 ([8]). Assume (H)-(i). Let A ⊂ Rn be a closed set, ū be an optimal
control at x0 ∈ Ac for the minimum time function τA(·), and put τ0 = τA(x0).

Then for any ξ ∈ TAc(xx0,ū(τ0))− the solution q : [0, τ0] → Rn of the adjoint
system {

−q′(t) = dxf(xx0,ū(t), ū(t))∗q(t) for a.e. t ∈ [0, τ0]

q(τA(x0)) = −ξ
(15)

satisfies the minimum principle

〈 q(t), f(xx0,ū(t), ū(t))〉 = min
u∈B1(0)

〈 q(t), f(xx0,ū(t), u)〉 ∀ t ∈ [0, τ0].

We denote by H the Hamiltonian function on Rn × Rn, defined by

H(x, p) = max
u∈B1(0)

〈 p, f(x, u)〉.

Proposition 5.3. Assume (H)-(i). Let A ⊂ Rn be a closed set and fix x0 ∈ Ac. Let
ū be an optimal control at x0 for the minimum time function and let ξ ∈ NP

Ac(x̄),
where x̄ := xx0,ū(τA(x0)).

The following statements hold true:

(i) if H(x̄, ξ) 6= 0, then

−p(t) ∈ ∂P τA(xx0,ū(t)) ∀ t ∈ [0, τA(x0)),

where p(·) solves (15) with final condition p(τA(x0)) = ξ/H(x̄, ξ);

(ii) if H(x̄, ξ) = 0, then

−p(t) ∈ ∂∞,P τA(xx0,ū(t)) ∀ t ∈ [0, τA(x0)),

where p(·) solves (15) with final condition p(τA(x0)) = ξ.

Proof. Denote for simplicity by τ(·) the minimum time function τA(·). Let q(·) be the
solution of (15) with final condition −q(τ(x0)) = ξ ∈ NP

Ac(x̄), and put α := H(x̄, ξ)
and p(·) := −q(·). We only show the conclusions (i) and (ii) at t = 0, i.e.,

(p(0), α) ∈ NP
hypo τ (x0, τ(x0)). (16)

First of all we claim that α > 0. Indeed, since p(τ(x0)) ∈ NP
Ac(x̄), there exists

σ > 0 such that 〈 ξ, ȳ − x̄〉 6 σ |ȳ − x̄|2 for all ȳ ∈ Ac. So, for every 0 < t < τ(x0)

〈 ξ, xx0,ū(t)− xx0,ū(τ(x0))〉 6 σ |xx0,ū(t)− xx0,ū(τ(x0))|2 ,

and, dividing the previous inequality by t− τ(x0), it follows

〈 ξ, 1

t− τ(x0)

∫ t

τ(x0)

f(xx0,ū(s), ū(s)) ds〉

> σ
1

t− τ(x0)
|xx0,ū(t)− xx0,ū(τ(x0))|

∣∣∣∣∫ t

τ(x0)

f(xx0,ū(s), ū(s)) ds

∣∣∣∣ . (17)

15
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Now,

1

t− τ(x0)

∫ t

τ(x0)

f(xx0,ū(s), ū(s)) ds

=
1

t− τ(x0)

∫ t

τ(x0)

(f(xx0,ū(s), ū(s))− f(xx0,ū(τ(x0)), ū(s))) ds

+
1

t− τ(x0)

∫ t

τ(x0)

f(xx0,ū(τ(x0)), ū(s)) ds.

(18)

By Lemma 6.2, there exists a constant C > 0 such that∣∣∣∣ 1

t− τ(x0)

∫ t

τ(x0)

(f(xx0,ū(s), ū(s))− f(xx0,ū(τ(x0)), ū(s))) ds

∣∣∣∣ 6 C |t− τ(x0)| . (19)

Furthermore, since f(x,B1(0)) is compact and convex for all x ∈ Rn,

1

t− τ(x0)

∫ t

τ(x0)

f(xx0,ū(τ(x0)), ū(s)) ds ∈ f(xx0,ū(τ(x0)), B1(0)),

and there exist ti → τ(x0)− and u∗ ∈ B1(0) satisfying

1

ti − τ(x0)

∫ ti

τ(x0)

f(xx0,ū(τ(x0)), ū(s)) ds→ f(xx0,ū(τ(x0)), u∗). (20)

So, using (18), (19), and (20), passing to the limit in (17) when t = ti and ti → τ(x0)−

we get that
〈 ξ, f(xx0,ū(τ(x0)), u∗)〉 > 0.

Hence, the claim holds true.
To prove (16), we have to show that there exists σ̂ > 0 such that for all y ∈ Ac

and β 6 τ(y)

〈 p(0), y − x0〉+ α(β − τ(x0)) 6 σ̂
(
|y − x0|2 + |β − τ(x0)|2

)
. (21)

On account of [17, Proposition 1.5], we prove (21) for all y ∈ Ac and β 6 τ(y) with
|τ(y)− τ(x0)| 6 1. Fix such y and β, and let ξ(·) be the solution of the Cauchy
problem {

ξ′(t) = f(ξ(t), ū(t)) for a.e. t > 0

ξ(0) = y.
(22)

Case 1: τ(y) 6 τ(x0).
Put y1 = ξ(τ(y)) ∈ Ac and x1 = xx0,ū(τ(y)) ∈ Ac. By Gronwall’s lemma there

exists K > 0 such that for any s ∈ [0, τ(x0)]

|ξ(s)− xx0,ū(s)| 6 eKs |y − x0| 6 eKτ(x0) |y − x0| . (23)

16
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Furthermore,

Ds〈 p(s), ξ(s)− xx0,ū(s)〉
= 〈 p′(s), ξ(s)− xx0,ū(s)〉+ 〈 p(s), f(ξ(s), ū(s))− f(xx0,ū(s), ū(s))〉
= 〈−dxf(xx0,ū(s), ū(s))∗p(s), ξ(s)− xx0,ū(s)〉

+ 〈 p(s), f(ξ(s), ū(s))− f(xx0,ū(s), ū(s))〉
= 〈 p(s), f(ξ(s), ū(s))− f(xx0,ū(s), ū(s))− dxf(xx0,ū(s), ū(s))(ξ(s)− xx0,ū(s))〉

= 〈 p(s),
∫ 1

0

(1− t)d2
xf(tξ(s) + (1− t)xx0,ū(s), ū(s))(ξ(s)− xx0,ū(s))

2 dt〉,

and

〈 p(τ(y)), y1 − x1〉 = 〈 p(0), y − x0〉+

∫ τ(y)

0

Ds〈 p(s), ξ(s)− xx0,ū(s)〉 ds.

Applying (23) we deduce that there exists σ1 > 0 (not depending on y) satisfying

〈 p(0), y − x0〉 6 〈 p(τ(y)), y1 − x1〉+ σ1 |y − x0|2 . (24)

Since p(·) is Lipschitz continuous, there exists σ2 > 0 such that

〈 p(τ(y)), y1 − x1〉 = 〈 p(τ(x0)), y1 − x1〉+ 〈 p(τ(y))− p(τ(x0)), y1 − x1〉
6 〈 p(τ(x0)), y1 − x1〉+ σ2 |τ(y)− τ(x0)| |y1 − x1|

6 〈 p(τ(x0)), y1 − x1〉+
σ2

2

(
|τ(y)− τ(x0)|2 + |y1 − x1|2

)
,

(25)

and

〈 p(τ(x0)), y1 − x1〉
= 〈 p(τ(x0)), xx0,ū(τ(x0))− xx0,ū(τ(y))〉+ 〈 p(τ(x0)), ξ(τ(y))− xx0,ū(τ(x0))〉

=

∫ τ(x0)

τ(y)

〈 p(τ(x0)), f(xx0,ū(s), ū(s))〉 ds+ 〈 p(τ(x0)), ξ(τ(y))− xx0,ū(τ(x0))〉

=

∫ τ(x0)

τ(y)

(〈 p(τ(x0)), f(xx0,ū(s), ū(s))− f(xx0,ū(τ(x0)), ū(τ(x0)))〉) ds

+ α (τ(x0)− τ(y)) + 〈 p(τ(x0)), y1 − x̄〉.

(26)

Since p(τ(x0)) ∈ NP
Ac(x̄), we have

〈 p(τ(x0)), y1 − x̄〉 6 σ |y1 − x̄|2

6 σ
(
|τ(x0)− τ(y)|2 + |y1 − x̄|2

)
,

(27)

and there exists σ3 > 0 such that for all s ∈ [0, τ(x0)]

〈 p(τ(x0)), f(xx0,ū(s), ū(s))− f(xx0,ū(τ(x0)), ū(τ(x0)))〉
= 〈 p(τ(x0)), f(xx0,ū(s), ū(s))− f(xx0,ū(τ(x0)), ū(s))〉

+ 〈 p(τ(x0)), f(xx0,ū(τ(x0)), ū(s))− f(xx0,ū(τ(x0)), ū(τ(x0)))〉
6 σ3 |τ(x0)− s| .

(28)
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So, using (26) and inequalities (27) and (28), it follows that

〈 p(τ(x0)), y1 − x1〉 6 α (τ(x0)− τ(y)) + max (σ, σ3)
(
|τ(x0)− τ(y)|2 + |y1 − x̄|2

)
.

(29)

On account of (23), by (29) there exists σ4 > 0 satisfying

〈 p(τ(x0)), y1 − x1〉 6 α (τ(x0)− τ(y)) + σ4

(
|y − x0|2 + |τ(x0)− τ(y)|2

)
.

Finally, from (23), (24), and (25), we deduce (21) (we assumed β 6 τ(y)).
Case 2: τ(y) > τ(x0).
We claim that

(p(τ(x0)), α) ∈ NP
hypo τ (x̄, 0). (30)

The inclusion (30) means that there exists σ5 > 0 satisfying for all ỹ ∈ Ac and
β̃ 6 τ(ỹ)

〈 p(τ(x0)), ỹ − x̄〉+ αβ̃ 6 σ5

(
|ỹ − x̄|2 + β̃2

)
. (31)

If β̃ 6 0, then (31) follows from the condition p(τ(x0)) ∈ NP
Ac(x̄). On the other hand,

suppose that 0 < β̃ 6 τ(ỹ) 6 1 and let z(·) be the solution of the problem{
z′(t) = f(z(t), ū(τ(x0))) for a.e. t > 0

z(0) = ỹ.

Define ȳ1 = z(β̃) and observe that ȳ1 ∈ Ac. So, letting K > 0 to be the Lipschitz con-
stant of f with respect to the space variable on the compact set {y ∈ Rn | τ(y) 6 1},
we deduce that for all 0 < t 6 β̃

|z(t)− ỹ| 6
∫ t

0

|f(z(s), ū(τ(x0)))| ds

6
∫ t

0

|f(z(s), ū(τ(x0)))− f(ỹ, ū(τ(x0)))| ds+ t |f(ỹ, ū(τ(x0)))|

6 K

∫ t

0

|z(s)− ỹ| ds+ t |f(ỹ, ū(τ(x0)))|

6 K

∫ t

0

|z(s)− ỹ| ds+ β̃ |f(ỹ, ū(τ(x0)))| .

From Gronwall’s lemma, it follows that for all 0 < t 6 β̃ 6 1

|z(t)− ỹ| 6 β̃eKt |f(ỹ, ū(τ(x0)))|
6 β̃eK (|f(ỹ, ū(τ(x0)))− f(x̄, ū(τ(x0)))|+ |f(x̄, ū(τ(x0)))|)
6 β̃KeK |ỹ − x̄|+ β̃eK |f(x̄, ū(τ(x0)))|
6 KeK |ỹ − x̄|+ β̃eK |f(x̄, ū(τ(x0)))|

6 K̃eK
(
|ỹ − x̄|+ β̃ |f(x̄, ū(τ(x0)))|

)
,

(32)

18
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where K̃ = K + 1. Now

〈 p(τ(x0)), ỹ − x̄〉 = 〈 p(τ(x0)), ỹ − ȳ1〉+ 〈 p(τ(x0)), ȳ1 − x̄〉, (33)

and, combining the inclusion p(τ(x0)) ∈ NP
Ac(x̄) with (32), it follows that

〈 p(τ(x0)), ȳ1 − x̄〉 6 σ |ȳ1 − x̄|2

6 2σ
(
|ȳ1 − ỹ|2 + |ỹ − x̄|2

)
6 2σK̃2e2K̃

(
2 |ỹ − x̄|2 + 2β̃2 |f(x̄, ū(τ(x0)))|2 + |ỹ − x̄|2

)
6 σ̃5

(
β̃2 + |ỹ − x̄|2

)
,

(34)

for a suitable constant σ̃5 > 0. On the other hand,

〈 p(τ(x0)), ỹ − ȳ1〉

= −
∫ β̃

0

〈 p(τ(x0)), f(z(s), ū(τ(x0)))〉 ds

= −
∫ β̃

0

〈 p(τ(x0)), f(x̄, ū(τ(x0)))〉 ds

−
∫ β̃

0

〈 p(τ(x0)), f(z(s), ū(τ(x0)))− f(x̄, ū(τ(x0)))〉 ds

= −αβ̃ −
∫ β̃

0

〈 p(τ(x0)), f(z(s), ū(τ(x0)))− f(x̄, ū(τ(x0)))〉 ds.

(35)

Furthermore, putting σ̃ = |p(τ(x0))|K,

−
∫ β̃

0

〈 p(τ(x0)), f(z(s), ū(τ(x0)))− f(x̄, ū(τ(x0)))〉 ds

6 |p(τ(x0))|
∫ β̃

0

|f(z(s), ū(τ(x0)))− f(x̄, ū(τ(x0)))| ds

6 σ̃

∫ β̃

0

|z(s)− x̄| ds

6 σ̃

(∫ β̃

0

|z(s)− x̄| ds+ β̃ |ỹ − x̄|

)

6 σ̃

(∫ β̃

0

(eK̃ |ỹ − x̄|+ s |f(x̄, ū(τ(x0)))|) ds+
1

2
β̃2 +

1

2
|ỹ − x̄|2

)

6 σ̃

(
eK̃ β̃ |ỹ − x̄|+ 1

2
β̃2 |f(x̄, ū(τ(x0)))|+ 1

2
β̃2 +

1

2
|ỹ − x̄|2

)
6 σ̂5

(
β̃2 + |ỹ − x̄|2

)
,

(36)

19



V. Basco, P. Cannarsa, and H. Frankowska Semiconcavity Sub-Riemannian

for a suitable constant σ̂5 > 0. Now, from (35) and (36) it follows that

〈 p(τ(x0)), ỹ − ȳ1〉+ αβ̃ 6 σ̂5

(
β̃2 + |ỹ − x̄|2

)
. (37)

Hence (31) follows from (33), (34), and (37).
Now, consider the solution ξ(·) of (22) and put ȳ = ξ(τ(x0)) ∈ Ac. In a similar
fashion as in the previous step, there exists σ6 > 0 such that

〈 p(0), y − x0〉 6 〈 p(τ(x0)), ȳ − x̄〉+ σ6 |y − x0|2 . (38)

From the dynamic programming principle it follows that if β 6 τ(y) then β−τ(x0) 6
τ(y)− τ(x0) 6 τ(ȳ), so by (31) we have

〈 p(τ(x0)), ȳ − x̄〉+ α (β − τ(x0)) 6 σ5

(
|ȳ − x̄|2 + |β − τ(x0)|2

)
,

and, using (23), we deduce that there exists σ7 > 0 not depending on y such that

〈 p(τ(x0)), ȳ − x̄〉+ α (β − τ(x0)) 6 σ7

(
|y − x0|2 + |β − τ(x0)|2

)
. (39)

So, combining (38) and (39), we deduce (21).
Finally, from the dynamic programming principle and with the same technique as

those used for the case t = 0, we show that the conclusion holds on the whole time
interval [0, τ(x0)).

Proposition 5.4. Let u be a C-semiconcave function on an open set O ⊂ Rn, with
C > 0. Suppose that, for some λ ∈ R,

(i) Uλ := {x ∈ O |u(x) 6 λ} 6= ∅
(ii) ∂Uλ ∩ O ⊂ O and ∂Uλ ∩ O is compact (40)

(iii) ∃α > 0 such that D+u(x) ∩Bα(0)c 6= ∅ ∀x ∈ O, (41)

then there exists r > 0 such that for all x ∈ ∂Uλ ∩ O we can find v̂x ∈ S1 satisfying

Br(x+ rv̂x) ⊂ Uλ.

Proof. We claim the following: if x ∈ ∂Uλ ∩ O, p ∈ D+u(x), and R′ > 0 are such
that

BR′(x) ⊂ O & p 6= 0, (42)

then for v̂ := −p/ |p| we have Br′(x+ r′v̂) ⊂ Uλ, where r′ = min {R′/2, |p| /2C}.
Indeed, for such r′, by (42), we have [x, x − r′

p

|p|
+ r′v] ⊂ O for all v ∈ S1, and,

applying [14, Proposition 3.3.1], we get

u(x− r′ p
|p|

+ r′v) 6 u(x) + 〈 p, r′v − r′ p
|p|
〉+ Cr′2

∣∣∣∣v − p

|p|

∣∣∣∣2
6 λ+ r′〈 p, v〉 − r′ |p|+ 2Cr′2

(
1− 〈 p, v〉

|p|

)
= λ+ r′ (〈 p, v〉 − |p|)

(
1− 2Cr′

|p|

)
6 λ.
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So, the claim holds true for v̂ = −p/ |p|.
Now, denote Rx = sup

{
r > 0 |Br(x) ⊂ O

}
for all x ∈ ∂Uλ ∩O. If Rx = +∞ for

some x ∈ ∂Uλ ∩ O, then O = Rn. Otherwise, we claim that there exists R > 0 such
that Rx > R for all x ∈ ∂Uλ ∩ O. Indeed, otherwise there exists a sequence {xi}i ⊂
∂Uλ∩O such that BRxi+ε

(xi)∩Oc 6= ∅ for all i > 1 and Rxi → 0 for any ε > 0. Using

(40), by further subsequence extraction, we can suppose that xi → x̄ ∈ ∂Uλ ∩ O (then
x̄ ∈ O), and since d(xi,Oc) 6 Rxi +ε, passing to the limit we obtain d(x̄,Oc) 6 ε. By
arbitrariness of ε it follows that d(x̄,Oc) = 0 and so x̄ ∈ Oc. Hence x̄ ∈ O∩Oc = ∂O,
in contradiction with (40). So, the claim holds true. We can conclude that for some
R > 0, BR(x) ⊂ O for all x ∈ ∂Uλ ∩ O. From the first claim, we deduce that
for any x ∈ ∂Uλ ∩ O and any px ∈ D+u(x) ∩ Bα(0)c, v̂x := −px/ |px| satisfies
Brx(x+ rxv̂x) ⊂ Uλ, where rx = min {Rx/2, |px| /2C}. Finally, using (41), we have
rx > min {R/2, α/2C}, and the conclusion follows with r = min {R/2, α/2C}.

We state next the main result of this section.

Theorem 5.5. Assume (H)′. Let Γ ⊂ Rn be a compact set and suppose that there
are no singular geodesics for Γ. Let x0 ∈ Γc and ū be an optimal control for the
minimum time function at x0. Denote Γt = {y ∈ Rn | τΓ(y) 6 t}.

Then the solution of the adjoint equation

−p′(t) = dxf(xx0,ū(t), ū(t))∗p(t) for a.e. t ∈ [0, τΓ(x0)]

satisfy the sensitivity relation

−p(t) ∈ ∂P τΓ(xx0,ū(t)) ∀t ∈ [0, τΓ(x0)), (43)

and the transversality condition

p(τΓ(x0)) ∈ Lim sup
t→ τΓ(x0)−

NP
Γc
t
(xx0,ū(t)). (44)

Proof. First of all we notice that by Corollary 3.8 and Remark 5.1 the minimum time
function τΓ is locally semiconcave on Γc. Let {λi}i ⊂ (0,∞) with λi → 0+ and write
for simplicity Γi in place of Γλi . It is easy to see that the level sets Γi are compact.
Hence, for all i > 1 there exist open sets Ai, Bi, D ⊂ Rn such that D is bounded and

Γ ⊂ Bi ⊂ int Γi & Γi ⊂ Ai ⊂ D. (45)

Putting Oi = Ai\Bi, it follows from (45) that ∂Γi ∩ Oi is bounded and ∂Γi =
{y ∈ Rn | τΓ(y) = λi} ⊂ Oi. So, ∂Γi ∩ Oi ⊂ Oi. Consider now the eikonal equa-
tion |F (y)∗∇τΓ(y)| − 1 = 0 on Γc, where F (y) is the matrix whose columns are the
vectors f1(y), ..., fm(y). Since τΓ is a viscosity solution of such an equation, we have
that |F (y)∗p| − 1 = 0 for all y ∈ Γc and all p ∈ D∗τ(y) (see [11, Section 5.3]). So,
putting M > max

{
‖F (y)‖ | y ∈ D

}
, from (1) we deduce that for all i > 1 and all

y ∈ Oi there exists pi ∈ D+τΓ(y) such that |pi| >M−1. Hence, applying Proposition
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5.4, for all i > 1 there exists ri > 0 such that for any y ∈ ∂Γi we can find a unit
vector v̂i(y) satisfying

Bri(y + riv̂i(y)) ⊂ Γi. (46)

We note that (46) implies that the set NP
Γc
i
(y) contains a nonnull vector for all

y ∈ ∂Γi. Furthermore, since τΓ is locally Lipschitz continuous on Γc, applying [14,
Theorem 8.2.3], we have for all i > 1 and all y ∈ ∂Γi that H(y, ξ) 6= 0 for any
ξ ∈ NP

Γc
i
(y) ∩ S1. We next construct a solution p(·), solving the adjoint equation,

associated to the sequence {λi}i as follows. For all i > 1 pick ξi ∈ NP
Γc
i
(yi) ∩ S1

where yi = xx0,ū(τ∂Γi
(x0)). We denote by pi(·) the solution of (15) on [0, τ∂Γi

(x0)],
with final condition ξiH(yi, ξi)

−1, and we extend such functions as solutions of the
adjoint equation in (15) to the whole interval [0, τΓ(x0)] (we continue to denote by
pi(·) such extended functions). Notice that, since τ∂Γi

(·) = τΓ(·) − λi on Γci for all
i > 1, ∂P τ∂Γi

(y) = ∂P τΓ(y) for all y ∈ Γci . From Proposition 5.3 it follows that

−pi(t) ∈ ∂P τΓ(xx0,ū(t)) ∀t ∈ [0, τ∂Γi
(x0)]. (47)

Letting L = max {‖dxf(xx0,ū(t), ū(t))‖ | t ∈ [0, τΓ(x0)]}, by Gronwall’s lemma we get
|pi(t)| 6 etL |pi(0)| and |pi′(t)| 6 L |pi(t)| for all t ∈ [0, τΓ(x0)]. Since ∂P τΓ(x0) is
bounded, the sequence {|pi(0)|}i is bounded. So, applying the Ascoli-Arzelà and
the Dunford-Pettis theorems, taking a subsequence and keeping the same notations,
there exists an absolutely continuous function p(·) on [0, τΓ(x0)] such that pi → p
uniformly on [0, τΓ(x0)] and p′i ⇀ p′ in L1(0, τΓ(x0)). Such p(·) satisfies the adjoint
equation on [0, τΓ(x0)].

Now, using the closedness of ∂P τΓ(y) for any y ∈ Γc, we get (43) by passing to
the limit in (47), and from the definition of upper limit we get (44).

6. Appendix

Below we assume that T > 0.

Remark 6.1. If (H)-(i) holds true and B ⊂ Rn, W ⊂ L2(0, T ;Rm) are bounded
subsets then, by Gronwall’s lemma, it follows that there exists r = r (W , B) > 0 such
that

‖xx0,u‖∞ 6 r ∀u ∈ W , ∀x0 ∈ B. (48)

If W ⊂ BL∞(0, R) for R > 0, then all trajectories xx0,u(·) with (x0, u) ∈ B ×W are
uniformly Lipschitz continuous on [0, T ].

Lemma 6.2. Assume (H)-(i). Let B ⊂ Rn and W ⊂ L2(0, T ;Rm) be bounded
subsets.
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Then there exists C = C(W , B) > 0 such that for all t ∈ [0, T ], z, y ∈ B, and
v, w ∈ W

|xz,v(t)− xy,w(t)| 6 C (‖v − w‖L2 + |z − y|) . (49)

In particular, if W ⊂ BL∞(0, R), then there exists C̃ = C̃(R,B) > 0 such that for all
t, s ∈ [0, T ], z, y ∈ B, and v, w ∈ W

|xz,v(t)− xy,w(s)| 6 C̃ (‖v − w‖L2 + |z − y|+ |t− s|) .

Proof. Let B ⊂ Rn and W ⊂ L2(0, T ;Rm) be bounded subsets. We have

|xz,v(t)− xy,w(t)|

=

∣∣∣∣∣
∫ t

0

m∑
i=1

vi(s) fi(xz,v(s)) ds−
∫ t

0

m∑
i=1

wi(s) fi(xy,w(s)) ds+ z − y

∣∣∣∣∣
6

∣∣∣∣∣
∫ t

0

m∑
i=1

(vi(s)− wi(s)) fi(xz,v(s)) ds−
∫ t

0

m∑
i=1

wi(s) (fi(xy,w(s))− fi(xz,v(s))) ds

∣∣∣∣∣
+ |z − y|

6
m∑
i=1

(∫ t

0

|(vi(s)− wi(s))| |fi(xz,v(s))| ds+

∫ t

0

|wi(s)| |fi(xy,w(s))− fi(xz,v(s))| ds
)

+ |z − y| .
(50)

From (48) it follows that xz,v(·) takes values in a compact set of Rn for all v ∈ W
and z ∈ B. Then there exists M = M (W , B) > 0 such that W ⊂ BL2(0,M) and for
all z, y ∈ B, v, w ∈ W , s ∈ [0, T ], and i = 1, ...,m holds

|fi(xz,v(s))| 6M & |fi(xz,v(s))− fi(xy,w(s))| 6M |xz,v(s)− xy,w(s)| . (51)

Now, from the Cauchy-Schwarz inequality and since
∑m

i=1 |vi| 6
√
m |v|, we have

m∑
i=1

∫ t

0

|vi(s)− wi(s)| |fi(xz,v(s))| ds

6M
m∑
i=1

∫ t

0

|vi(s)− wi(s)| ds

6M
√
m

∫ T

0

|v(s)− w(s)| ds

6M
√
mT ‖v − w‖L2
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and

m∑
i=1

∫ t

0

|wi(s)| |fi(xy,w(s))− fi(xz,v(s))| ds

6M

m∑
i=1

∫ t

0

|wi(s)| |xy,w(s)− xz,v(s)| ds

= M

∫ t

0

(
m∑
i=1

|wi(s)|

)
|xy,w(s)− xz,v(s)| ds.

On account of the above inequalities, (50) becomes

|xz,v(t)− xy,w(t)| 6M
√
mT‖v − w‖L2 + |z − y|

+M

∫ t

0

(
m∑
i=1

|wi(s)|

)
|xz,v(s)− xy,w(s)| ds.

Hence, applying Gronwall’s lemma, for some C = C (W , B) > 0 we get (49).
Finally, if W ⊂ BL∞(0, R), the last conclusion follows from (49) and Remark

6.1.

Proposition 6.3. Assume (H)-(i). Then ET ∈ C1,1
loc (Rn × L2(0, T ;Rm)).

Proof. Let (y, u) ∈ Rn×L2(0, T ;Rm) and consider a bounded neighbourhood of (y, u)
in Rn × L2(0, T ;Rm) of the form Bδ(y) × BL2(u, δ), with δ > 0. Set for simplicity
∆x(·) = xy+h,u+v(·) and x(·) = xy,u(·). So

x′y+h,u+v(t)− x′y,u(t)

=
m∑
i=1

(ui(t) + vi(t))fi(∆x(t))−
m∑
i=1

ui(t)fi(x(t))

=
m∑
i=1

vi(t)fi(∆x(t)) +
m∑
i=1

ui(t) (fi(∆x(t))− fi(x(t))) .

(52)

Observe that

fi(∆x(t))− fi(x(t))

= dfi(x(t))(∆x(t)− x(t)) +

∫ 1

0

(1− s)d2fi((1− s)x(t) + s∆x(t))(∆x(t)− x(t))2 ds.
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Hence we can rewrite (52) as

x′y+h,u+v(t)− x′y,u(t)

=
m∑
i=1

vi(t)fi(∆x(t))

+
m∑
i=1

ui(t)dfi(x(t))(∆x(t)− x(t))

+
m∑
i=1

ui(t)

∫ 1

0

(1− s)d2fi((1− s)x(t) + s∆x(t))(∆x(t)− x(t))2 ds.

(53)

Since
∑m

i=1 vi(t)fi(∆x(t)) =
∑m

i=1 vi(t)fi(x(t))+
∑m

i=1 vi(t) (fi(∆x(t))− fi(x(t))), let-
ting 

ξ(t) = ∆x(t)− x(t)

A(t) =
∑m

i=1 ui(t)dfi(x(t))

B(t) = (f1(x(t))|...|fm(x(t))),

the equation (53) becomes

ξ′ = Aξ +Bv +R, (54)

where

R(t) =
m∑
i=1

vi(t) (fi(∆x(t))− fi(x(t)))

+
m∑
i=1

ui(t)

∫ 1

0

(1− s)d2fi((1− s)x(t) + s∆x(t))(∆x(t)− x(t))2 ds.

We remark that ∆x and x depend on starting points y+h, y and on controls u+v, u
respectively, while the matrices A and B depend only on y and u.

By Lemma 6.2, there exists C = C (δ) > 0 such that for all t ∈ [0, T ]

|∆x(t)− x(t)| 6 C(|h|+ ‖v‖L2) ∀(h, v) ∈ Bδ(y)×BL2(u, δ). (55)

Observe that there exists M̃ > 0 such that, by (55) and (51),

|R(t)| 6
m∑
i=1

|vi(t)| |fi(∆x(t))− fi(x(t))|+ M̃C (|h|+ ‖v‖L2)2
m∑
i=1

|ui(t)|

6MC (|h|+ ‖v‖L2)
m∑
i=1

|vi(t)|+ M̃C (|h|+ ‖v‖L2)2
m∑
i=1

|ui(t)|.
(56)
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Solving the system (54) with initial condition ξ(0) = h we have that

ξ(t) = X(t)h+

∫ t

0

X(t)X(s)−1B(s)v(s) ds

+

∫ t

0

X(t)X(s)−1R(s) ds

(57)

where X(·) is the fundamental solution, i.e.,{
X ′(t) = A(t)X(t) for a.e. t ∈ [0, T ]

X(0) = I.

Furthermore, letting C1 = max {‖X(T )X(s)−1‖ | s ∈ [0, T ]} and C2 = max
{
MC, M̃C

}
,

we have that∣∣∣∣∫ T

0

X(T )X(s)−1R(s) ds

∣∣∣∣
6
∫ T

0

∥∥X(T )X(s)−1
∥∥ |R(s)| ds

6 C1

∫ T

0

|R(s)| ds

6 C1C2

(
(|h|+ ‖v‖L2)

m∑
i=1

∫ T

0

|vi(t)| dt+ (|h|+ ‖v‖L2)2
m∑
i=1

∫ T

0

|ui(t)| dt

)
6 L (|h|+ ‖v‖L2)2 ,

where L > 0 is a suitable constant depending only on δ. Finally, from (57) it follows
that∣∣∣∣∆x(T )− x(T )−

(
X(T )h+

∫ T

0

X(T )X(s)−1B(s)v(s) ds

)∣∣∣∣ 6 L (|h|+ ‖v‖L2)2

and since

(h, v) 7→ X(T )h+

∫ T

0

X(T )X(s)−1B(s)v(s) ds

is linear and continuous on Rn × L2(0, T ;Rm), we get

dET (y, u)(h, v) = X(T )h+

∫ T

0

X(T )X(s)−1B(s)v(s) ds. (58)

Now, from (58) and regularity of fi’s it follows that there exists C̃ = C̃ (δ) > 0
such that

|dET (y1, u1)(ŷ, û)− dET (y2, u2)(ŷ, û)|
6 C̃ (|y1 − y2|+ ‖u1 − u2‖L2) (|ŷ|+ ‖û‖L2) ,
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and so

‖dET (y1, u1)− dET (y2, u2)‖ 6 C̃ (|y1 − y2|+ ‖u1 − u2‖L2) . (59)

Remark 6.4. From the last part of the proof of Proposition 6.3 we deduce that
for any τ > 0, r > 0, and R > 0 we can find C = C(τ, r, R) > 0 satisfying
‖dEs(y1, u1)− dEs(y2, u2)‖ 6 C (|y1 − y2|+ ‖u1 − u2‖L2) for all s ∈ [0, τ ], u1, u2 ∈
BL2(0, R), and y1, y2 ∈ B(0, r). Therefore |xz,u+v(s)+xz,u−v(s)− 2xz,u(s)| 6 C ‖v‖2

L2

for all s ∈ [0, τ ], u, v ∈ BL2(0, R), and z ∈ B(0, r).

Corollary 6.5. Assume (H)-(i). Then the map

[0, τ ]× Rn × L2(0, τ ;Rm) 3 (s, y, u) 7→ dEs(y, u)

is continuous.

Proof. Notice that, from continuous dependence on parameters of solutions to ODE’s
and from the expression of the differential in (58), for any τ > 0 and every bounded
subsetA ⊂ Rn×L2(0, τ ;Rm), the maps {s 7→ dEs(y, u) | s ∈ [0, τ ]} are equicontinuous
for (y, u) ∈ A and the constant C̃ that appears in (59) may be taken the same for
0 6 T 6 τ , (y1, u1), (y2, u2) ∈ A.

The following result is well known.

Lemma 6.6. Let X be a separable normed space and Φ : X → Rn be a linear,
continuous, and surjective operator. Consider {xi}i dense in X.

Then there exist linearly independent vectors x1, ..., xn such that Φ : W → Rn is
an isomorphism, where W = span {x1, ..., xn}.

Proof. Let {xi}i be dense in X. Then there exists a countable increasing family of

finite dimensional subspaces Wk = span {xi}ki=1 such that ∪kWk = X. So, Φ(Wk) is
a finite dimensional subspace and Φ(Wk) is increasing. Hence there exists k0 such
that Φ(Wk0) = Rn. So we can choose n linearly independent vectors x1, ..., xn in Wk0

such that Φ is onto and injective on W = span {x1, ..., xn}.
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