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Semiconcavity Results and Sensitivity Relations for the Sub-Riemannian Distance

Regularity properties are investigated for the value function of the Bolza optimal control problem with affine dynamic and end-point constraints. In the absence of singular geodesics, we prove the local semiconcavity of the sub-Riemannian distance from a compact set Γ ⊂ R n . Such a regularity result was obtained by the second author and L. Rifford in [Semiconcavity results for optimal control problems admitting no singular minimizing controls, Annales de l'IHP Analyse non linéaire 25(4): 2008 ] when Γ is a singleton. Furthermore, we derive sensitivity relations for time optimal control problems with general target sets Γ, that is, without imposing any geometric assumptions on Γ.

Introduction

Regularity properties of the value function of optimal control problems with finite horizon, in the absence of state constraints, have been widely investigated. For the Mayer and Bolza problems it can be shown that the value function is continuous, Lipschitz continuous, or semiconcave in line with the problem data (see [START_REF] Cannarsa | Some characterizations of optimal trajectories in control theory[END_REF][START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF][START_REF] Cannarsa | Local regularity of the value function in optimal control[END_REF][START_REF] Cannarsa | From pointwise to local regularity for solutions of Hamilton-Jacobi equations[END_REF][START_REF] Cannarsa | Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control[END_REF][START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]). Even for optimal exit time problems, regularity results are available under suitable controllability assumptions (see [START_REF] Cannarsa | Semiconcavity for optimal control problems with exit time[END_REF][START_REF] Cannarsa | Convexity properties of the minimum time function[END_REF][START_REF] Cannarsa | On a class of nonlinear time optimal control problems[END_REF][START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]). More precisely, let Γ be a set Γ ⊂ R n \Λ there exists a nonnegative constant C = C(Λ, Γ) such that d SR (x 0 , •) is C-semiconcave on Λ for every x 0 ∈ Γ.

In order to obtain the semiconcavity results we assume that there are no singular geodesics and we study the dependence of the semiconcavity constant with respect to the initial point, showing that it is bounded from the above when x 0 lies in a compact set. As it was the case in [START_REF] Cannarsa | Semiconcavity results for optimal control problems admitting no singular minimizing controls[END_REF], a key point of the reasoning is to show the local invertibility of the end-point map (x 0 , u) → x x 0 ,u (T ), where T > 0, and to prove the C 1,1 regularity of its inverse function (Proposition 4.5). Then, we use a compactness result ensuring that all optimal controls are uniformly Lipschitz continuous and uniformly bounded. The final step consists in combining the local semiconcavity property of the cost functional with the C 1,1 regularity of the inverse of end-point map.

After establishing semiconcavity, we address sensitivity relations and transversality conditions for the minimum time function associated with an affine control system as above. Such relations are given in the form of the following inclusions -p(t) ∈ ∂ P τ Γ (x x 0 ,ū (t))

∀ t ∈ [0, τ Γ (x 0 )) p(τ Γ (x 0 )) ∈ Lim sup t → τ Γ (x 0 )-N P R n \Γt (x x 0 ,ū (t)), where x 0 ∈ R n \Γ, ū(•) is an optimal control for τ Γ at x 0 , Γ t = {y ∈ R n | τ Γ (y) t}, and p(•) solves the adjoint equation -p (t) = d x f (x x 0 ,ū (t), ū(t)) * p(t) for a.e. t ∈ [0, τ Γ (x 0 )]. Sensitivity relations for the minimum time function to reach a set with the inner ball property were already investigated (see [START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF][START_REF] Cannarsa | Optimality conditions and regularity results for time optimal control problems with differential inclusions[END_REF][START_REF] Colombo | On the structure of the minimum time function[END_REF]). We recover, for time optimal control problems, sensitivity relations for the co-state in terms of proximal normal cones (see [START_REF] Vinter | Optimal control[END_REF][START_REF] Cannarsa | Optimality conditions and regularity results for time optimal control problems with differential inclusions[END_REF] and Section 2). This is done under the assumption that there are no singular geodesics associated with ∆ and the target set is merely compact. The analysis, that applies to any compact target, is based on the dynamic programming principle and further properties of viscosity solutions of the eikonal equation |F (x) * ∇τ Γ (x)| -1 = 0 for x ∈ Γ c , where F (x) is the matrix which has f 1 (x), ..., f m (x) as column vectors. The outline of the paper is as follows. Section 2 recalls some basic notations and results from nonsmooth analysis and control theory. In Section 3, we state our main results. We give their proof in Section 4. Finally, in Section 5, we derive sensitivity relations for the minimum time function.

Preliminaries

Let (X, | • | X ) be a normed space. We denote by B X (z, r) the open ball centered at z with radius r > 0 in X (we write B r (z) in place of B R n (z, r) when no confusion arises) and we set S 1 = ∂B X (0, 1). For a subset C ⊂ X we write int C, C, and C c for the interior, the closure, and the complement of C, respectively. We denote by | • | and •, • the Euclidean norm and the scalar product in R n , respectively. Let A ⊂ X be a nonempty subset. The distance from x to A is defined by d(x, A) = inf {|x -y| X | y ∈ A}. A function ϕ : A ⊂ X → R is said to be C-semiconcave (with linear modulus) on A, with C 0, if it is continuous and

ϕ(x + h) + ϕ(x -h) -2ϕ(x) C |h| 2 ∀ x, h ∈ X, [x -h, x + h] ⊂ A.
We say that ϕ is locally semiconcave on A if for any compact subset K ⊂ A there exists

C K 0 such that ϕ is C K -semiconcave on K. If A is open, we say that ϕ ∈ C 1,1 or ϕ ∈ C 1,1
loc if ϕ is continuously differentiable with Lipschitz continuous or locally Lipschitz continuous differential on A, respectively. It is well known that any ϕ ∈ C 1,1 loc is locally semiconcave. We say that φ : X → X has a sub-linear growth if there exists M 0 such that |φ(x)| X M (1 + |x| X ) for all x ∈ X.

For p ∈ N + we denote by L p (0, T ; R n ) the set of all Lebesgue measurable functions g :

[0, T ] → R n such that g p L p := T 0 |g(s)| p ds < ∞, by C(0, T ; R n
) the space of all R n -valued continuous functions on [0, T ], and by C p (0, T ; R n ) the space of R n -valued functions on [0, T ], p-times continuously differentiable.

Let D ⊂ R n be nonempty and {A h } h∈D be a family of nonempty subsets of R n . The upper limit (in the Kuratowski-Painlevé sense) of

A h at h 0 ∈ D, written Lim sup h→ D h 0 A h , is the set of all vectors v ∈ R n such that lim inf h→ D h 0 d A h (v) = 0. If D = N + , then Lim sup i→∞ S(i) := Lim sup y→0 A G(y) where A = {1/i} i∈N + and G(1/i) := S(i).
Let E be a closed subset of R n and x ∈ E. We denote by E -the negative polar of the set E, i.e. the set {y ∈ R n | y, x 0 ∀x ∈ E}. The proximal normal cone to E at x is the set defined by

N P E (x) = p ∈ R n | ∃σ = σ(x, p) 0 : p, y -x σ |y -x| 2 ∀y ∈ E .
Furthermore, p ∈ N P E (x) if and only if there exists λ > 0 such that B r|p| (x + rp) ⊂ E c for all 0 r λ (see [START_REF] Vinter | Optimal control[END_REF]).

The contingent cone to E at x is the set defined by

T E (x) = {v ∈ R n | ∃ t i → 0+, ∃ v i → v, x + t i v i ∈ E ∀i}.
It is known that

N P E (ξ) ⊂ T E (ξ) -for all ξ ∈ ∂E. Let ϕ be a real valued function on E. The superdifferential D + ϕ(x) of ϕ at x ∈ E is defined as the set of all p ∈ R n satisfying lim supy→x E ϕ(y) -ϕ(x) -p, y -x |y -x| 0.
Moreover, if ϕ is locally semiconcave, then for all x ∈ int E holds the following property (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 3.3.6])

co D * ϕ(x) = D + ϕ(x), (1) 
where D * ϕ(x) := {ξ ∈ R n | ∃x i → x, ∇ϕ(x i ) → ξ} and "co" stands for the convex hull. The proximal and horizontal proximal supergradient of ϕ at x are the sets defined, respectively, by

∂ P ϕ(x) = ξ ∈ R n | (-ξ, 1) ∈ N P hypo ϕ (x, ϕ(x)) , ∂ ∞,P ϕ(x) = ξ ∈ R n | (-ξ, 0) ∈ N P hypo ϕ (x, ϕ(x))
, where hypo ϕ denotes the hypograph of the function ϕ. For further properties of superdifferentials and proximal cones we refer to [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF][START_REF] Vinter | Optimal control[END_REF].

Main Result

Let 1 m n be two natural numbers. Consider the optimal control problem minimize t 0 L(x x 0 ,u (s), u(s)) ds

(2) over all controls u ∈ L 2 (0, t; R m ) such that the solution x x 0 ,u (•) of the affine control system

x (s) = m i=1 u i (s) f i (x(s)) for a.e. s ∈ [0, t] x(0) = x 0 (3) 
satisfies the end-point constraint

x x 0 ,u (t) = y, (4) 
where

(t, y) ∈ [0, ∞) × R n and f i : R n → R n , L : R n × R m → R are given functions.
We say that a control v ∈ L 2 (0, t; R m ) steers x 0 to y in time t if x x 0 ,v (t) = y. The infimum of the cost functional in (2) over all controls steering x 0 to y in time t is denoted by V x 0 (t, y) (if there are no controls steering x 0 to y in time t, we set

V x 0 (t, y) = +∞). The function V x 0 : [0, ∞) × R n → R ∪ {±∞} is called the value function of the problem (2)-(4) with starting point x 0 . A control v ∈ L 2 (0, t; R m
) is said to be an optimal control or a minimizer (for the problem (2)-( 4)) at (x 0 , t, y) if x x 0 ,v (t) = y and V x 0 (t, y) = t 0 L(x x 0 ,v (s), v(s)) ds. We denote by U x 0 (s, y) the (possibly empty) set of all optimal controls steering x 0 to y in time s.

Let us denote by (H) the following assumptions:

(H) (i) f 1 , ..., f m are C 2 vector fields on R n with sub-linear growth and Lipschitz continuous differential;

(ii) L ∈ C 2 and ∇ 2 u L(x, u) > 0 for all (x, u) ∈ R n × R m ; (iii) G is a given nonempty compact subset of R n and the following set is nonemepty

D G := {(t, x) ∈ [0, ∞) × R n | V x 0 (t, x) < +∞ ∀x 0 ∈ G} ; (iv) there exists a nonempty open subset Ω G ⊂ [0, ∞)×R n such that Ω G ⊂ D G ;
(v) there exist c 0 and a function φ

: [0, ∞) → R + such that lim inf r→∞ φ(r)/r 2 > 0 & L(x, u) φ(|u|) -c ∀(x, u) ∈ R n × R m ,
and for any r > 0 sup Let T > 0 and W ⊂ L 2 (0, T ; R m ) be such that all solutions of (3), with u ∈ W , are well defined on [0, T ]. The end-point map associated to the system (3) at time T , written E T , is the function given by

|∇ x L(x, u)| φ(|u|) | x ∈ B r (0), u ∈ R m < ∞.
E T (x 0 , u) = x x 0 ,u (T ) ∀ (x 0 , u) ∈ R n × W .
It can be proved that, if the vector fields f 1 , ..., f m are smooth, then W can be chosen to be open (see [START_REF] Bellaıche | Sub-Riemannian geometry[END_REF][START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]).

Definition 3.2. A control u ∈ L 2 (0, t; R m ) is said to be singular at x 0 if dE t (x 0 , u)(0, •)
is not a surjective map on L 2 (0, t; R m ). We state next the main result.

Theorem 3.4. Assume (H) and suppose that the problem (2)-( 4) does not admit singular minimizers. Then, for any compact subset Γ ⊂ Ω G , there exists a constant C = C (G, Γ) 0 such that the value function V x 0 (•, •) is C-semiconcave on Γ for all x 0 ∈ G. Now, let us denote by (H) the following assumptions on f 1 , ..., f m : (H) (i) f 1 , ..., f m are smooth vector fields (C ∞ or C ω ) satisfying Hörmander's condition, i.e., span

X i (x) i 1 = R n ∀ x ∈ R n , where X 1 (x) = {f 1 (x), ..., f m (x)}, X i+1 (x) = X i (x) ∪ {[f, g](x) | f ∈ X 1 (x), g ∈ X i (x)} for all i ∈ N + ([•,
•] denotes the Lie bracket);

(ii) f 1 , ..., f m have sub-linear growth, Lipschitz continuous differential, and f 1 (x), ..., f m (x) are linearly independent for all x ∈ R n .

If (H) -(i) holds true, by the Chow-Rashevsky theorem (see [START_REF] Chow | Über systeme von linearen partiellen differentialgleichungen erster ordnung[END_REF][START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF]), for any x 0 , y ∈ R n there exists an absolutely continuous arc x : [0, 1] → R n , with square integrable derivative, such that x(0) = x 0 , x(1) = y, and

x (t) ∈ span {f 1 (x(t)), ..., f m (x(t))} for a.e. t ∈ [0, 1]. (5) 
An absolutely continuous arc on [0, 1] satisfying [START_REF] Cannarsa | Local regularity of the value function in optimal control[END_REF], with square integrable derivative, is said to be an horizontal arc.

Let us denote by S (x 0 , x) the set of all horizontal arcs β such that β(0) = x 0 and β(1) = x. Then, if (H) holds true, there exists a bijection between S (x 0 , x) and L 2 (0, 1; R m ) such that for any β ∈ S (x 0 , x) there exists a unique

u β ∈ L 2 (0, 1; R m ) satisfying β (s) = m i=1 (u β (s)) i f i (β(s)) for a.e. s ∈ [0, 1]
. We can associate to any horizontal arc [0, 1] t → β(t) its length given by l(β) = 

(x 0 , x), is inf {l(β) | β ∈ S (x 0 , x)}.
The following result is very useful (see [START_REF] Bellaıche | Sub-Riemannian geometry[END_REF]):

Proposition 3.5. Assume (H) -(i). For any x 0 , x ∈ R n d SR (x 0 , x) 2 = e(x 0 , x) := inf 1 0 |u β (t)| 2 dt | β ∈ S (x 0 , x) .
The function e(•, •) is said to be the sub-Riemannian energy, and an horizontal arc minimizing e(x 0 , x) is said to be a geodesic steering x 0 to x. A geodesic β is called a singular geodesic (or singular ) if the associated control u β is singular.

Consider the following minimization problem

E x 0 (t, x) := inf t 0 |u(s)| 2 ds | u ∈ L 2 (0, t; R m ), x x 0 ,u (t) = x , where (t, x) ∈ [0, ∞) × R n and x 0 ∈ R n . Then, by Proposition 3.5, it follows that d SR (x 0 , x) = E x 0 (1,
x) for all x ∈ R n , and, assuming that any geodesic connecting x to x 0 = x is not singular, by [START_REF] Cannarsa | Semiconcavity results for optimal control problems admitting no singular minimizing controls[END_REF]Theorem 5] the function d SR (x 0 , •) is locally semiconcave on R n \ {x 0 }. We would like to underline that the infimum of a family of semiconcave functions is not in general a semiconcave function. When each member of the family is semiconcave with same constant then the infimum is semiconcave too.

Lemma 3.6 ([14]). Let {u | u ∈ Z } be a family of C-semiconcave functions on Γ ⊂ R n and put w(x) = inf u∈Z u(x). If w(x) = -∞ for all x ∈ Γ then w(•) is C- semiconcave on Γ.
For any compact set Γ ⊂ R n , the sub-Riemannian distance between Γ and x is

d SR (Γ, x) = inf x 0 ∈Γ d SR (x 0 , x).
Definition 3.7. We say that there are no singular geodesics for Γ (associated to the distribution spanned by f 1 , ..., f m ) if any geodesics connecting x to y is not singular whenever x ∈ Γ and y ∈ Γ c .

Finally, in light of Proposition 3.5, Lemma 3.6, and Theorem 3.4, we get the following result: Corollary 3.8. Assume (H) . Let Γ ⊂ R n be a compact set and suppose that there are no singular geodesics for Γ.

Then d SR (Γ, •) is locally semiconcave on Γ c .

Proof of the Main Result

We provide here the proof of our main result deferring technical details to the appendix. For any k > 0, T > 0, x 0 ∈ R n , and Γ ⊂ [0, ∞) × R n , we introduce the following notation

U x 0 (Γ) = (s,y)∈Γ U x 0 (s, y), L T k = {u : [0, T ] → R m | u ∞ k and u is k-Lipschitz continuous} .
We equip the set L T k with the uniform norm. Lemma 4.1. Assume (H) and let T > 0. Then, for any k 0 there exists K 0 such that for any z ∈ G the map

[0, T ] × L T k (t, u) → t 0 L(x z,u (s), u(s)) ds (6) 
is K-Lipschitz continuous and K-semiconcave.

Proof. By Remark 6.1 from the Appendix, there exists r = r(k , G) > 0 such that x z,u ∞ r for all z ∈ G and all u ∈ L T k . Consider α > 0, M > 0, depending on k and G, such that for all x, y ∈ B r (0) and all u, w ∈ B k (0)

|L(x, u) -L(y, w)| α (|x -y| + |u -w|) & |L(x, u)| M , (7) 
and for all x, η with [x + η, x -η] ⊂ B 3r (0) and every u ∈ B k (0)

L(x + η, u) + L(x -η, u) -2L(x, u) α |η| 2 . ( 8 
)
Fix z ∈ G. Denote for simplicity the map in (6) by C t (u). Then, from Lemma 6.2 and (7), there exists σ = σ(k , G) > 1 such that for any 0 s t T , and any

u, w ∈ L T k |C t (u) -C s (w)| t s |L(x z,w (ξ), w(ξ))| dξ + s 0 |L(x z,u (ξ), u(ξ)) -L(x z,w (ξ), w(ξ))| dξ M |t -s| + α s 0 (|x z,u (ξ) -x z,w (ξ)| + |u(ξ) -w(ξ)|) dξ M + ασT (|t -s| + u -w ∞ ) . Now, let t, h, u, and v be such that [t -h, t + h] ⊂ [0, T ] and u -v, u + v ∈ L T k .
We have

C t+h (u + v) + C t-h (u -v) -2C t (u) = C t (u + v) + C t (u -v) -2C t (u) + C t+h (u + v) + C t-h (u -v) -C t (u + v) -C t (u -v). (9) 
Then,

C t (u + v) + C t (u -v) -2C t (u) = t 0 (L(x z,u+v (s), u(s) + v(s)) + L(x z,u-v (s), u(s) -v(s)) -2L(x z,u (s), u(s))) ds = t 0 (L(x z,u+v (s), u(s)) + L(2x z,u (s) -x z,u+v (s), u(s)) -2L(x z,u (s), u(s))) ds + t 0 (L(x z,u+v (s), u(s) + v(s)) -L(x z,u+v (s), u(s))) ds + t 0 (L(x z,u-v (s), u(s) -v(s)) -L(x z,u-v (s), u(s))) ds + t 0 (L(x z,u-v (s), u(s)) -L(2x z,u (s) -x z,u+v (s), u(s))) ds. (10) 
From ( 8) and Lemma 6.2, there exists a constant

σ 0 = σ 0 (k , G) > 0 such that t 0 (L(x z,u+v (s), u(s)) + L(2x z,u (s) -x z,u+v (s), u(s)) -2L(x z,u (s), u(s))) ds σ 0 v 2 ∞ .
According to Remark 6.4 below, there exists

σ 1 = σ 1 (k , G) > 0 such that |x z,u+v (s)+ x z,u-v (s)-2x z,u (s)| σ 1 v 2 L 2 for all s ∈ [0, T ]. Hence, by (7), t 0 (L(x z,u-v (s), u(s)) -L(2x z,u (s) -x z,u+v (s), u(s))) ds α t 0 |x z,u+v (s) + x z,u-v (s) -2x z,u (s)| ds σ 2 v 2 ∞ , where σ 2 = σ 2 (k , G) > 0.
For the second and third term in [START_REF] Cannarsa | Semiconcavity for optimal control problems with exit time[END_REF] we have, using the regularity of the Lagrangian in the second variable, Lemma 6.2, and the Cauchy-Schwarz inequality, that

t 0 (L(x z,u+v (s), u(s) + v(s)) -L(x z,u+v (s), u(s))) ds + t 0 (L(x z,u-v (s), u(s) -v(s)) -L(x z,u-v (s), u(s))) ds = t 0 1 0 ∇ u L(x z,u+v (s), ξv(s) + u(s)), v(s) dξ ds - t 0 1 0 ∇ u L(x z,u-v (s), -ξv(s) + u(s)), v(s) dξ ds σ 3 t 0 (|x z,u+v (s) -x z,u-v (s)| + |v(s)|) |v(s)| ds σ 4 v 2 ∞ ,
where σ i = σ i (k , G) > 0 for i = 3, 4. The above relations and [START_REF] Cannarsa | Semiconcavity for optimal control problems with exit time[END_REF] imply that

C t (u + v) + C t (u -v) -2C t (u) σ 5 v 2 ∞ ( 11 
)
for a suitable σ 5 = σ 5 (k , G) > 0.

On the other hand,

C t+h (u + v) + C t-h (u -v) -C t (u + v) -C t (u -v) = t+h t (L(x z,u+v (s), u(s) + v(s)) -L(x z,u+v (t), u(s) + v(s))) ds + t+h t (L(x z,u+v (t), u(s) + v(s)) -L(x z,u+v (t), u(s) -v(s))) ds + t+h t (L(x z,u+v (t), u(s) -v(s)) -L(x z,u-v (t), u(s) -v(s))) ds + t+h t L(x z,u-v (t), u(s) -v(s)) ds - t t-h L(x z,u-v (s), u(s) -v(s)) ds,
and, on account of ( 7) and the Lipschitz regularity of trajectories, the first three terms are bounded by 3C (h

v ∞ + h 2 ), while, since u -v ∈ L T 2k , there exists a constant M = M (k , G) > 0 satisfying t+h t L(x z,u-v (t), u(s) -v(s)) ds - t t-h L(x z,u-v (s), u(s) -v(s)) ds = t+h t (L(x z,u-v (t), (u -v)(s)) -L(x z,u-v (s -h), (u -v)(s -h))) ds M h 2 . Then C t+h (u + v) + C t-h (u -v) -C t (u + v) -C t (u -v) 2(3C + M ) v 2 ∞ + h 2 .
This and ( 9) and ( 11) complete the proof.

Remark 4.2. Arguing in a similar way as in the first part of the proof of Lemma 4.1 and using Lemma 6.2, we have that, for any T > 0, the map

R + × C(0, T ; R m ) × R n (t, u, z) → t 0 L(x z,u (s), u(s)) ds is continuous.
Lemma 4.3. Assume (H) and suppose that the problem (2)-( 4) does not admit singular minimizers. Then the function

(x 0 , t, x) → V x 0 (t, x) is continuous on G × D G . Proof. Let (x 0 , t, x) ∈ G × D G and consider a sequence (z i , t i , x i ) → (x 0 , t, x) in G × D G such that lim i→∞ V z i (t i , x i ) = l ∈ R ∪ {±∞}.
By [21, Theorem 8, Chap. 4]), for every i 1 there exists a square integrable control

u i (•) such that V z i (t i , x i ) = t i 0 L(x i (s), u i (s))
ds, where x i (•) denotes the trajectory

x x i ,u i (•) such that x z i ,u i (t i ) = x i .
Without loss of generality we can suppose that for all large i the controls {u i } i are defined on [0, t + 1] putting u i ≡ 0 on [t i , t + 1].

We first show that V x0 ( t, x) l. Notice that V x0 ( t, x) = +∞. Let v(•) be an optimal control steering x0 to x in time t. From [11, Lemma 3], v(•) is continuous. Moreover, according to Lemma 6.6 below, there exists {v j } n j=1 ⊂ C(0, t; R m ) such that the map ϕ : R n → R n , defined by ϕ(β) = n j=1 β j dEt(x 0 , v)(0, v j ), is an isomorphism. Then, from Lemma 6.2 and Corollary 6.5, we conclude that the map E : R n ×R + ×R n defined by

E (y, s, β) = y, s, E s (y, v + n j=1 β j v j )
is C 1 in a neighborhood of (x 0 , t, 0) and det dE (x 0 , t, 0) = 0. So, applying the Inverse Function Theorem, the map E is open in a neighborhood of ( t, x0 , 0). It means that any point (z i , t i , x i ), sufficiently close to (x 0 , t, x), admits a control

w i = v + n j=1 β j v j close to v in C(0, t + 1; R m ) such that x z i ,w i (t i ) = x i . By Remark 4.2, we have that lim i t i 0 L(x z i ,w i (s), w i (s)) ds = t 0 L(x x0 ,v (s), v(s)) ds. So, since V z i (t i , x i ) t i 0 L(x z i ,w i (s), w i (s)
) ds for all i, passing to the limit we deduce that l V x0 ( t, x). Consequently l < +∞.

We next prove that V x0 ( t, x) l. By assumptions on φ(•), there exists α, C > 0 such that αr 2 φ(r) for all r C. So

u i 2 L 2 = [0, t+1]∩{s:|u i (s)| C} |u i (s)| 2 ds + [0, t+1]∩{s:|u i (s)| C} |u i (s)| 2 ds α -1 [0, t+1]∩{s:|u i (s)| C} φ(|u i (s)|) ds + C 2 ( t + 1) α -1 t+1 0 L(x i (s), u i (s)) ds + (c + C 2 )( t + 1). Since l < +∞, { u i L 2 } i is bounded.
By further extraction of a subsequence and from Gronwall's lemma and the Ascoli-Arzelà theorem, keeping the same notation, we have that u i ū in L 2 (0, t + 1; R m ) and x i (•) converges uniformly on [0, t + 1] to an absolutely continuous trajectory y(•)

:= x x0 ,ū (•). Now, since |y(t i ) -x| |y(t i ) -x i (t i )| + |x i (t i ) -x|, we conclude that lim i |y(t i ) -x| = 0. So y( t) = x.
Then, from the convexity of L with respect to the second variable (see [21, proof of Theorem 8 Chap. 3]), we deduce that lim i

t i 0 L(x i (s), u i (s)) ds t 0 L(y(s), ū(s)) ds. Hence V x0 ( t, x) l.
From the proof of [11, Lemma 3], Remark 4.2, and Lemma 4.3, we get the following compactness result. Lemma 4.4. Assume (H) and suppose that the problem (2)-( 4) does not admit singular minimizers.

Then, for any nonempty compact subset Γ ⊂ Ω G , we have U x 0 (s, y) = ∅ for all (s, y) ∈ Γ and x 0 ∈ G, and there exists k = k(G, Γ) > 0 such that

x 0 ∈G U x 0 (Γ) ⊂ L T k .
We give next an inverse mapping result for the end-point map.

Proposition 4.5. Assume (H) and suppose that the problem (2)-( 4) does not admit singular minimizers. Let Γ ⊂ Ω G be a nonempty compact subset and define

T = sup {t > 0 | ∃ x ∈ R n , (t, x) ∈ Γ} , Λ = (t, z, u) ∈ [0, ∞) × G × L 2 (0, T ; R m ) | ∃ x ∈ R n , u ∈ U z (t, x), (t, x) ∈ Γ .
If for some k > 0

x 0 ∈G U x 0 (Γ) ⊂ L T k , (12) 
then there exist k k, r > 0, and 0 such that for any (t, z, u) ∈ Λ we can find a map F t,z,u : B r (t) × B r (z) × B r (x z,u (t)) → L T k , satisfying for all (t, z, u) ∈ Λ:

(i) F t,z,u ∈ C 1,1 ; (ii) E s (z , F t,z,u (s, z , β)) = β for all (s, z , β) ∈ B r (t) × B r (z) × B r (x z,u (t)); (iii) dF t,z,u is -Lipschitz. Proof. Let (t 0 , z 0 , u 0 ) ∈ Λ. We know that dE t 0 (z 0 , u 0 )(0, •) is surjective on L 2 (0, T ; R m ). Let V ⊂ C 1 (0, T ; R m )
be a countable subset such that spanV = L 2 (0, T ; R m ). By Lemma 6.6, there exist n linearly independent vectors {v 0 1 , ..., v 0 n } ⊂ V such that the map A 0 : R n → R n , defined by A 0 (α) = n i=1 α i dE t 0 (z 0 , u 0 )(0, v 0 i ), is an isomorphism. Define for any (t, z, u) ∈ (0, ∞) × R n × L 2 (0, T ; R m ) the map ϕ 0 t,z,u : R n → R n by ϕ 0 t,z,u (α) = n i=1 α i dE t (z, u)(0, v 0 i ). By Lemma 6.2 and Corollary 6.5, there exist 0 > 0, µ 0 > 0 such that for any (t, z, u)

∈ J 0 := B 0 (t 0 ) × B 0 (z 0 ) × B L 2 (u 0 , 0 ) the map E 0 t,z,u : (0, ∞) × R n × R n → (0, ∞) × R n × R n , defined by E 0 t,z,u (s, y, α) = (s, y, E s (y, u + m i=1 α i v 0 i )), satisfies for all (t, z, u) ∈ J 0 | det dE 0 t,z,u (t, z, 0) | = det ϕ 0 t,z,u µ 0 . β z z x u (t)
Now, from ( 12) and the Ascoli-Arzelà theorem, the set x 0 ∈G U x 0 (Γ) is compact. Then there exists N ∈ N + such that, for all j = 1, ..., N , we can find ρ j > 0, µ j > 0, (t j , z j , u j ) ∈ Λ, and linearly independent v j 1 , ...,

v j n ⊂ V , such that Λ ⊂ j=1,...,N B j (t j ) × B j (z j ) × B L 2 (u j , j ) =: j=1,...,N J j .
Defining for any (t, z, u) ∈ J j the maps

E j t,z,u : (0, ∞) × R n × R n → (0, ∞) × R n × R n and ϕ j t,z,u : R n → R n by E j t,z,u (s, y, α) = (s, y, E s (y, u + m i=1 α i v j i )) and ϕ j t,z,u (α) = n i=1 α i dE t (z, u)(0, v j i )
, we deduce that for all (t, z, u) ∈ J j and j = 1, ..., N

| det dE j t,z,u (t, z, 0) | = det ϕ j t,z,u µ j min {µ 1 , ..., µ N } > 0. (13) 
Applying the Inverse Mapping Theorem to the map E j t,z,u and using a compactness argument, we conclude that for each j there exists r j > 0 such that the set V j (t, z, u) := (t-r j , t+r j )×B r j (z)×B r j (E t (z, u)) is isomorph to E j t,z,u -1 (V j (t, z, u))

for any (t, z, u) ∈ J j . Put r = min {r 1 , ..., r N } and define for any (t, z, u) ∈ J j ,

F t,z,u (t , z , β) = u + m i=1 α i (t , z , β)v j i ∀(t , z , β) ∈ V j (t, z, u),
where E j t,z,u -1 (t , z , β) = (t , z , α(t , z , β)). Notice that, since the coefficients α i are bounded by a suitable constant M 0 and v j i ∈ C 1 (0, T ; R m ), there exists a constant k k such that F t,z,u take values in L T k . Hence, (i) and (ii) follow. Moreover, from (13) and the C 1,1 loc regularity of the end-point map, there exists a constant 0, depending only on k and G, such that dF t,z,u is -Lipschitz for all (t, z, u) ∈ Λ. So, we get (iii).

Proof of Theorem 3.4. Define δ = dist(∂Ω G , Γ) and let r > 0 be as in Proposition 4.5 (we can pick r such that r δ). It is sufficient to prove the semiconcavity of V x 0 , uniformly in x 0 , on the set [t -r, t + r] × B r (x) ∩ Γ whenever (t, x) ∈ Γ. So, fix

x 0 ∈ G and let u ∈ U x 0 (t, x) and h, η ∈ R n be such that [t -h, t + h] × [x -η, x + η] ⊂ [t -r, t + r] × B r (x) ∩ Γ.
Hence, denoting for simplicity F t,x 0 ,u by F and using the same notation as in the proof of Lemma 4.1, from Lemma 4.4 and Proposition 4.5 we conclude that

V x 0 (t, x) = C t (F (t, x 0 , x)),
and for all (t , x )

∈ [t -r, t + r] × B r (x) ∩ Γ V x 0 (t , x ) C t (F (t , x 0 , x )).
So, by Lemma 4.1 and Proposition 4.5, there exist C = C (G, Γ) > 0 and

C = C (G, Γ) > 0 such that for all x 0 ∈ G V x 0 (t + h, x + η) + V x 0 (t -h, x -η) -2V x 0 (t, x) C t+h (F (t + h, x 0 , x + η)) + C t-h (F (t -h, x 0 , x -η)) -2C t (F (t, x 0 , x)) = C t+h (F (t + h, x 0 , x + η)) + C t-h (F (t -h, x 0 , x -η)) -2C t F (t + h, x 0 , x + η) + F (t -h, x 0 , x -η) 2 + 2 C t F (t + h, x 0 , x + η) + F (t -h, x 0 , x -η) 2 -C t (F (t, x 0 , x)) C|F (t + h, x 0 , x + η) -F (t -h, x 0 , x -η)| 2 + C |F (t + h, x 0 , x + η) + F (t -h, x 0 , x -η) -2F (t, x 0 , x)| C C2 (h + η) 2 + C C h 2 + η 2 .
Since all constants involved in the previous inequality depend only on G and Γ, the conclusion follows.

Sensitivity Relations

We investigate next sensitivity relations for the minimum time function. Let Γ ⊂ R n be a compact subset.

Remark 5.1. It is known (see [START_REF] Jerison | Subelliptic, second order differential operators[END_REF]Proposition 3.1]) that the sub-Riemannian distance between two points y and x is equal to the minimum time τ {y} (x) to reach y from x, associated to the control system

     y (s) = m i=1 u i (s) f i (y(s)) for a.e. s 0 y(0) = x u ∈ B m , ( 14 
)
where B m denotes the set of all Lebesgue measurable controls u : [0, ∞) → R m such that u(s) ∈ B 1 (0) for a.e. s 0. So, the minimum time function τ Γ (•) to reach Γ for the control system [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF] 

satisfies τ Γ (x) = inf y∈Γ τ {y} (x) = inf y∈Γ d SR (y, x) = d SR (Γ, x) for all x ∈ R n . A control u ∈ B m is said to be optimal (for the minimum time function τ Γ ) at z if τ Γ (z) = θ Γ (x z,u (•), u(•)).
Subsequently, to shorten notation, we write f (x, u) in place of m i=1 u i f i (x). Next we recall a result from [8, Theorem 3.1], stated under more general assumptions for the vector fields f 1 , ..., f m :

Lemma 5.2 ([8]). Assume (H)-(i).

Let A ⊂ R n be a closed set, ū be an optimal control at x 0 ∈ A c for the minimum time function τ A (•), and put τ 0 = τ A (x 0 ).

Then for any ξ ∈ T A c (x x 0 ,ū (τ 0 )) -the solution q : [0, τ 0 ] → R n of the adjoint system -q (t) = d x f (x x 0 ,ū (t), ū(t)) * q(t) for a.e. t ∈ [0,

τ 0 ] q(τ A (x 0 )) = -ξ (15) 
satisfies the minimum principle

q(t), f (x x 0 ,ū (t), ū(t)) = min u∈B 1 (0) q(t), f (x x 0 ,ū (t), u) ∀ t ∈ [0, τ 0 ].
We denote by H the Hamiltonian function on R n × R n , defined by

H(x, p) = max u∈B 1 (0)
p, f (x, u) .

Proposition 5.3. Assume (H)-(i).

Let A ⊂ R n be a closed set and fix x 0 ∈ A c . Let ū be an optimal control at x 0 for the minimum time function and let ξ ∈ N P A c (x), where x := x x 0 ,ū (τ A (x 0 )).

The following statements hold true:

(i) if H(x, ξ) = 0, then -p(t) ∈ ∂ P τ A (x x 0 ,ū (t)) ∀ t ∈ [0, τ A (x 0 )),
where p(•) solves ( 15) with final condition p(τ A (x 0 )) = ξ/H(x, ξ);

(ii) if H(x, ξ) = 0, then -p(t) ∈ ∂ ∞,P τ A (x x 0 ,ū (t)) ∀ t ∈ [0, τ A (x 0 )),
where p(•) solves ( 15) with final condition p(τ A (x 0 )) = ξ.

Proof. Denote for simplicity by τ (•) the minimum time function τ A (•). Let q(•) be the solution of [START_REF] Chow | Über systeme von linearen partiellen differentialgleichungen erster ordnung[END_REF] with final condition -q(τ (x 0 )) = ξ ∈ N P A c (x), and put α := H(x, ξ) and p(•) := -q(•). We only show the conclusions (i) and (ii) at t = 0, i.e., (p(0), α)

∈ N P hypo τ (x 0 , τ (x 0 )). (16) 
First of all we claim that α 0. Indeed, since p(τ

(x 0 )) ∈ N P A c (x), there exists σ 0 such that ξ, ȳ -x σ |ȳ -x| 2 for all ȳ ∈ A c . So, for every 0 < t < τ (x 0 ) ξ, x x 0 ,ū (t) -x x 0 ,ū (τ (x 0 )) σ |x x 0 ,ū (t) -x x 0 ,ū (τ (x 0 ))| 2 ,
and, dividing the previous inequality by t -τ (x 0 ), it follows

ξ, 1 t -τ (x 0 ) t τ (x 0 ) f (x x 0 ,ū (s), ū(s)) ds σ 1 t -τ (x 0 ) |x x 0 ,ū (t) -x x 0 ,ū (τ (x 0 ))| t τ (x 0 ) f (x x 0 ,ū (s), ū(s)) ds . (17) 
Now,

1 t -τ (x 0 ) t τ (x 0 ) f (x x 0 ,ū (s), ū(s)) ds = 1 t -τ (x 0 ) t τ (x 0 ) (f (x x 0 ,ū (s), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(s))) ds + 1 t -τ (x 0 ) t τ (x 0 ) f (x x 0 ,ū (τ (x 0 )), ū(s)) ds. (18) 
By Lemma 6.2, there exists a constant C 0 such that

1 t -τ (x 0 ) t τ (x 0 ) (f (x x 0 ,ū (s), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(s))) ds C |t -τ (x 0 )| . (19) 
Furthermore, since f (x, B 1 (0)) is compact and convex for all

x ∈ R n , 1 t -τ (x 0 ) t τ (x 0 ) f (x x 0 ,ū (τ (x 0 )), ū(s)) ds ∈ f (x x 0 ,ū (τ (x 0 )), B 1 (0)),
and there exist t i → τ (x 0 )-and u * ∈ B 1 (0) satisfying

1 t i -τ (x 0 ) t i τ (x 0 ) f (x x 0 ,ū (τ (x 0 )), ū(s)) ds → f (x x 0 ,ū (τ (x 0 )), u * ). (20) 
So, using ( 18), [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF], and (20), passing to the limit in [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] when t = t i and t i → τ (x 0 ) - we get that ξ, f (x x 0 ,ū (τ (x 0 )), u * ) 0.

Hence, the claim holds true.

To prove [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], we have to show that there exists σ 0 such that for all y ∈ A c and β τ (y)

p(0), y -x 0 + α(β -τ (x 0 )) σ |y -x 0 | 2 + |β -τ (x 0 )| 2 . ( 21 
)
On account of [17, Proposition 1.5], we prove ( 21) for all y ∈ A c and β τ (y) with |τ (y) -τ (x 0 )| 1. Fix such y and β, and let ξ(•) be the solution of the Cauchy problem ξ (t) = f (ξ(t), ū(t)) for a.e. t 0 ξ(0) = y.

Case 1: τ (y) τ (x 0 ). Put y 1 = ξ(τ (y)) ∈ A c and x 1 = x x 0 ,ū (τ (y)) ∈ A c . By Gronwall's lemma there exists K 0 such that for any s ∈ [0, τ (x 0 )]

|ξ(s) -x x 0 ,ū (s)| e Ks |y -x 0 | e Kτ (x 0 ) |y -x 0 | . (23) Furthermore, 
D s p(s), ξ(s) -x x 0 ,ū (s) = p (s), ξ(s) -x x 0 ,ū (s) + p(s), f (ξ(s), ū(s)) -f (x x 0 ,ū (s), ū(s)) = -d x f (x x 0 ,ū (s), ū(s)) * p(s), ξ(s) -x x 0 ,ū (s) + p(s), f (ξ(s), ū(s)) -f (x x 0 ,ū (s), ū(s)) = p(s), f (ξ(s), ū(s)) -f (x x 0 ,ū (s), ū(s)) -d x f (x x 0 ,ū (s), ū(s))(ξ(s) -x x 0 ,ū (s)) = p(s), 1 0 (1 -t)d 2 x f (tξ(s) + (1 -t)x x 0 ,ū (s), ū(s))(ξ(s) -x x 0 ,ū (s)) 2 dt , and 
p(τ (y)), y 1 -x 1 = p(0), y -x 0 + τ (y) 0 D s p(s), ξ(s) -x x 0 ,ū (s) ds. 
Applying [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF] we deduce that there exists σ 1 0 (not depending on y) satisfying

p(0), y -x 0 p(τ (y)), y 1 -x 1 + σ 1 |y -x 0 | 2 . ( 24 
)
Since p(•) is Lipschitz continuous, there exists σ 2 0 such that

p(τ (y)), y 1 -x 1 = p(τ (x 0 )), y 1 -x 1 + p(τ (y)) -p(τ (x 0 )), y 1 -x 1 p(τ (x 0 )), y 1 -x 1 + σ 2 |τ (y) -τ (x 0 )| |y 1 -x 1 | p(τ (x 0 )), y 1 -x 1 + σ 2 2 |τ (y) -τ (x 0 )| 2 + |y 1 -x 1 | 2 , (25) 
and p(τ (x 0 )), y 1 -x 1 = p(τ (x 0 )), x x 0 ,ū (τ (x 0 )) -x x 0 ,ū (τ (y)) + p(τ (x 0 )), ξ(τ (y)) -

x x 0 ,ū (τ (x 0 )) = τ (x 0 ) τ (y) p(τ (x 0 )), f (x x 0 ,ū (s), ū(s)) ds + p(τ (x 0 )), ξ(τ (y)) -x x 0 ,ū (τ (x 0 )) = τ (x 0 ) τ (y) ( p(τ (x 0 )), f (x x 0 ,ū (s), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(τ (x 0 ))) ) ds + α (τ (x 0 ) -τ (y)) + p(τ (x 0 )), y 1 -x . (26) 
Since p(τ

(x 0 )) ∈ N P A c (x), we have p(τ (x 0 )), y 1 -x σ |y 1 -x| 2 σ |τ (x 0 ) -τ (y)| 2 + |y 1 -x| 2 , (27) 
and there exists σ 3 0 such that for all s ∈ [0, τ (x 0 )] p(τ (x 0 )), f (x x 0 ,ū (s), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(τ (x 0 ))) = p(τ (x 0 )), f (x x 0 ,ū (s), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(s)) + p(τ (x 0 )), f (x x 0 ,ū (τ (x 0 )), ū(s)) -f (x x 0 ,ū (τ (x 0 )), ū(τ (x 0 ))) σ 3 |τ (x 0 ) -s| .

(28) So, using [START_REF] Vinter | Optimal control[END_REF] and inequalities ( 27) and (28), it follows that

p(τ (x 0 )), y 1 -x 1 α (τ (x 0 ) -τ (y)) + max (σ, σ 3 ) |τ (x 0 ) -τ (y)| 2 + |y 1 -x| 2 . ( 29 
)
On account of [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF], by (29) there exists σ 4 0 satisfying

p(τ (x 0 )), y 1 -x 1 α (τ (x 0 ) -τ (y)) + σ 4 |y -x 0 | 2 + |τ (x 0 ) -τ (y)| 2 .
Finally, from ( 23), [START_REF] Rifford | Sub-Riemannian geometry and optimal transport[END_REF], and (25), we deduce (21) (we assumed β τ (y)). Case 2: τ (y) > τ (x 0 ). We claim that (p(τ (x 0 )), α)

∈ N P hypo τ (x, 0). ( 30 
)
The inclusion (30) means that there exists σ 5 0 satisfying for all ỹ ∈ A c and β τ (ỹ)

p(τ (x 0 )), ỹ -x + α β σ 5 |ỹ -x| 2 + β2 . ( 31 
)
If β 0, then (31) follows from the condition p(τ (x 0 )) ∈ N P A c (x). On the other hand, suppose that 0 < β τ (ỹ) 1 and let z(•) be the solution of the problem z (t) = f (z(t), ū(τ (x 0 ))) for a.e. t 0 z(0) = ỹ. Define ȳ1 = z( β) and observe that ȳ1 ∈ A c . So, letting K 0 to be the Lipschitz constant of f with respect to the space variable on the compact set {y ∈ R n | τ (y) 1}, we deduce that for all 0 < t β

|z(t) -ỹ| t 0 |f (z(s), ū(τ (x 0 )))| ds t 0 |f (z(s), ū(τ (x 0 ))) -f (ỹ, ū(τ (x 0 )))| ds + t |f (ỹ, ū(τ (x 0 )))| K t 0 |z(s) -ỹ| ds + t |f (ỹ, ū(τ (x 0 )))| K t 0 |z(s) -ỹ| ds + β |f (ỹ, ū(τ (x 0 )))| .
From Gronwall's lemma, it follows that for all 0 < t β 1

|z(t) -ỹ| βe Kt |f (ỹ, ū(τ (x 0 )))| βe K (|f (ỹ, ū(τ (x 0 ))) -f (x, ū(τ (x 0 )))| + |f (x, ū(τ (x 0 )))|) βKe K |ỹ -x| + βe K |f (x, ū(τ (x 0 )))| Ke K |ỹ -x| + βe K |f (x, ū(τ (x 0 )))| Ke K |ỹ -x| + β |f (x, ū(τ (x 0 )))| , (32) 
where K = K + 1. Now

p(τ (x 0 )), ỹ -x = p(τ (x 0 )), ỹ -ȳ1 + p(τ (x 0 )), ȳ1 -x , (33) 
and, combining the inclusion p(τ (x 0 )) ∈ N P A c (x) with (32), it follows that

p(τ (x 0 )), ȳ1 -x σ |ȳ 1 -x| 2 2σ |ȳ 1 -ỹ| 2 + |ỹ -x| 2 2σ K2 e 2 K 2 |ỹ -x| 2 + 2 β2 |f (x, ū(τ (x 0 )))| 2 + |ỹ -x| 2 σ5 β2 + |ỹ -x| 2 , (34) 
for a suitable constant σ5 0. On the other hand,

p(τ (x 0 )), ỹ -ȳ1 = - β 0 p(τ (x 0 )), f (z(s), ū(τ (x 0 ))) ds = - β 0 p(τ (x 0 )), f (x, ū(τ (x 0 ))) ds - β 0 p(τ (x 0 )), f (z(s), ū(τ (x 0 ))) -f (x, ū(τ (x 0 ))) ds = -α β - β 0 p(τ (x 0 )), f (z(s), ū(τ (x 0 ))) -f (x, ū(τ (x 0 ))) ds. (35) 
Furthermore, putting σ = |p(τ (x 0 ))| K,

- β 0 p(τ (x 0 )), f (z(s), ū(τ (x 0 ))) -f (x, ū(τ (x 0 ))) ds |p(τ (x 0 ))| β 0 |f (z(s), ū(τ (x 0 ))) -f (x, ū(τ (x 0 )))| ds σ β 0 |z(s) -x| ds σ β 0 |z(s) -x| ds + β |ỹ -x| σ β 0 (e K |ỹ -x| + s |f (x, ū(τ (x 0 )))|) ds + 1 2 β2 + 1 2 |ỹ -x| 2 σ e K β |ỹ -x| + 1 2 β2 |f (x, ū(τ (x 0 )))| + 1 2 β2 + 1 2 |ỹ -x| 2 σ5 β2 + |ỹ -x| 2 , (36) 
for a suitable constant σ5 0. Now, from (35) and (36) it follows that

p(τ (x 0 )), ỹ -ȳ1 + α β σ5 β2 + |ỹ -x| 2 . (37) 
Hence (31) follows from (33), (34), and (37). Now, consider the solution ξ(•) of ( 22) and put ȳ = ξ(τ (x 0 )) ∈ A c . In a similar fashion as in the previous step, there exists σ 6 0 such that

p(0), y -x 0 p(τ (x 0 )), ȳ -x + σ 6 |y -x 0 | 2 . ( 38 
)
From the dynamic programming principle it follows that if β τ (y) then β -τ (x 0 ) τ (y) -τ (x 0 ) τ (ȳ), so by (31) we have

p(τ (x 0 )), ȳ -x + α (β -τ (x 0 )) σ 5 |ȳ -x| 2 + |β -τ (x 0 )| 2 ,
and, using [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF], we deduce that there exists σ 7 0 not depending on y such that

p(τ (x 0 )), ȳ -x + α (β -τ (x 0 )) σ 7 |y -x 0 | 2 + |β -τ (x 0 )| 2 . (39) 
So, combining (38) and (39), we deduce [START_REF] Lee | Foundations of optimal control theory[END_REF]. Finally, from the dynamic programming principle and with the same technique as those used for the case t = 0, we show that the conclusion holds on the whole time interval [0, τ (x 0 )). 

⊂ R n , with C > 0. Suppose that, for some λ ∈ R, (i) U λ := {x ∈ O | u(x) λ} = ∅ (ii) ∂U λ ∩ O ⊂ O and ∂U λ ∩ O is compact (40) (iii) ∃ α > 0 such that D + u(x) ∩ B α (0) c = ∅ ∀x ∈ O, (41) 
then there exists r > 0 such that for all x ∈ ∂U λ ∩ O we can find vx ∈ S 1 satisfying

B r (x + rv x ) ⊂ U λ .
Proof. We claim the following: if x ∈ ∂U λ ∩ O, p ∈ D + u(x), and R > 0 are such that 

B R (x) ⊂ O & p = 0, (42) 
(x -r p |p| + r v) u(x) + p, r v -r p |p| + Cr 2 v - p |p| 2 λ + r p, v -r |p| + 2Cr 2 1 - p, v |p| = λ + r ( p, v -|p|) 1 - 2Cr |p| λ.
Then there exists C = C(W , B) 0 such that for all t ∈ [0, T ], z, y ∈ B, and

v, w ∈ W |x z,v (t) -x y,w (t)| C ( v -w L 2 + |z -y|) . (49) 
In particular, if W ⊂ B L ∞ (0, R), then there exists C = C(R, B) 0 such that for all t, s ∈ [0, T ], z, y ∈ B, and v, w ∈ W

|x z,v (t) -x y,w (s)| C ( v -w L 2 + |z -y| + |t -s|) .
Proof. Let B ⊂ R n and W ⊂ L 2 (0, T ; R m ) be bounded subsets. We have

|x z,v (t) -x y,w (t)| = t 0 m i=1 v i (s) f i (x z,v (s)) ds - t 0 m i=1 w i (s) f i (x y,w (s)) ds + z -y t 0 m i=1 (v i (s) -w i (s)) f i (x z,v (s)) ds - t 0 m i=1 w i (s) (f i (x y,w (s)) -f i (x z,v (s))) ds + |z -y| m i=1 t 0 |(v i (s) -w i (s))| |f i (x z,v (s))| ds + t 0 |w i (s)| |f i (x y,w (s)) -f i (x z,v (s))| ds + |z -y| . (50) 
From (48) it follows that x z,v (•) takes values in a compact set of R n for all v ∈ W and z ∈ B. Then there exists M = M (W , B) 0 such that W ⊂ B L 2 (0, M ) and for all z, y ∈ B, v, w ∈ W , s ∈ [0, T ], and i = 1, ..., m holds

|f i (x z,v (s))| M & |f i (x z,v (s)) -f i (x y,w (s))| M |x z,v (s) -x y,w (s)| . (51) 
Now, from the Cauchy-Schwarz inequality and since Hence, applying Gronwall's lemma, for some C = C (W , B) 0 we get (49). Finally, if W ⊂ B L ∞ (0, R), the last conclusion follows from (49) and Remark 6.1. Proposition 6.3. Assume (H)-(i). Then E T ∈ C 1,1 loc (R n × L 2 (0, T ; R m )).

m i=1 |v i | √ m |v|, we have m i=1 t 0 |v i (s) -w i (s)| |f i (x z,v (s))| ds M m i=1 t 0 |v i (s) -w i (s)| ds M √ m T 0 |v(s) -w(s)| ds M √ mT v -w L 2 and m i=1 t 0 |w i (s)| |f i (x y,w (s)) -f i (x z,v ( 
Proof. Let (y, u) ∈ R n ×L 2 (0, T ; R m ) and consider a bounded neighbourhood of (y, u) in R n × L 2 (0, T ; R m ) of the form B δ (y) × B L 2 (u, δ), with δ > 0. Set for simplicity ∆x(•) = x y+h,u+v (•) and x(•) = x y,u (•). So 

x
ξ = Aξ + Bv + R, (54) 
where (1 -s)d 2 f i ((1 -s)x(t) + s∆x(t))(∆x(t) -x(t)) 2 ds.

R(t) =
We remark that ∆x and x depend on starting points y + h, y and on controls u + v, u respectively, while the matrices A and B depend only on y and u. By Lemma 6.2, there exists C = C (δ) > 0 such that for all t ∈ [0, T ]

|∆x(t) -x(t)| C(|h| + v L 2 ) ∀(h, v) ∈ B δ (y) × B L 2 (u, δ). ( 55 
)
Observe that there exists M 0 such that, by (55) and (51), (56)

|R(t)|

Solving the system (54) with initial condition ξ(0) = h we have that ξ(t) = X(t)h + t 0 X(t)X(s) -1 B(s)v(s) ds 

1 0

 1 |u β (t)| dt, and the sub-Riemannian distance between x 0 and x, written d SR

Proposition 5 . 4 .

 54 Let u be a C-semiconcave function on an open set O

  then for v := -p/ |p| we have B r (x + r v) ⊂ U λ , where r = min {R /2, |p| /2C}. Indeed, for such r , by (42), we have [x, x -r p |p| + r v] ⊂ O for all v ∈ S 1 , and, applying [14, Proposition 3.3.1], we get u

  s)| |x y,w (s) -x z,v (s)| ds s)| |x y,w (s) -x z,v (s)| ds.On account of the above inequalities, (50) becomes|x z,v (t) -x y,w (t)| M √ mT v -w L 2 + |z -y| + M t 0 m i=1 |w i (s)| |x z,v(s) -x y,w (s)| ds.

v

  i (t) (f i (∆x(t)) -f i (x(t)))

  t)| |f i (∆x(t)) -f i (x(t))| + M C (|h| + v L 2 ) 2 m i=1 |u i (t)| M C (|h| + v L 2 ) m i=1 |v i (t)| + M C (|h| + v L 2 ) 2 m i=1 |u i (t)|.

+ t 0 X 1 T 0 |R(s)| ds C 1 C 2 (

 01012 (t)X(s) -1 R(s) ds(57) where X(•) is the fundamental solution, i.e.,X (t) = A(t)X(t) for a.e. t ∈ [0, T ] X(0) = I. Furthermore, letting C 1 = max { X(T )X(s) -1 | s ∈ [0, T ]} and C 2 = max M C, M C , we have that T 0 X(T )X(s) -1 R(s) ds T 0 X(T )X(s) -1 |R(s)| ds C |h| + v L 2 ) t)| dt + (|h| + v L 2 ) t)| dt L (|h| + v L 2 ) 2 ,where L 0 is a suitable constant depending only on δ. Finally, from (57) it follows that∆x(T ) -x(T ) -X(T )h + T 0 X(T )X(s) -1 B(s)v(s) ds L (|h| + v L 2 ) 2and since(h, v) → X(T )h + T 0 X(T )X(s) -1 B(s)v(s) ds is linear and continuous on R n × L 2 (0, T ; R m ), we get dE T (y, u)(h, v) = X(T )h + T 0 X(T )X(s) -1 B(s)v(s) ds.(58)Now, from (58) and regularity of f i 's it follows that there exists C = C (δ) > 0 such that|dE T (y 1 , u 1 )(ŷ, û) -dE T (y 2 , u 2 )(ŷ, û)| C (|y 1 -y 2 | + u 1 -u 2 L 2 ) (|ŷ| + û L 2 ) ,

  Remark 3.1. Assume (H) and that |L(x, u)| ϕ(x)(1 + |u| 2 ), where ϕ(•) is a locally bounded function on R n . Then (t, x) ∈ D G if for any x 0 ∈ G there exists a square integrable control u : [0, t] → R m steering x 0 to x in time t.

  -s)d 2 f i ((1 -s)x(t) + s∆x(t))(∆x(t) -x(t)) 2 ds.Hence we can rewrite (52) asx y+h,u+v (t) -x y,u (t) -s)d 2 f i ((1 -s)x(t) + s∆x(t))(∆x(t) -x(t)) 2 ds. (t)f i (∆x(t)) = m i=1 v i (t)f i (x(t))+ m i=1 v i (t) (f i (∆x(t)) -f i (x(t))), letting = ∆x(t) -x(t) A(t) = m i=1 u i (t)df i (x(t)) B(t) = (f 1 (x(t))|...|f m (x(t))),the equation (53) becomes

	m
	(52) (1 (53) = df i (x(t))(∆x(t) -x(t)) + Observe that f i (∆x(t)) -f i (x(t)) 1 i=1 v i (t)f i (∆x(t)) + m i=1 u i (t)df i (x(t))(∆x(t) -x(t)) + m i=1 u i (t) 1 0   (1 = Since m i=1 v i    ξ(t)
	0

y+h,u+v (t) -x y,u (t) = m i=1 (u i (t) + v i (t))f i (∆x(t)) -m i=1 u i (t)f i (x(t)) = m i=1 v i (t)f i (∆x(t)) + m i=1 u i (t) (f i (∆x(t)) -f i (x(t))) .
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Semiconcavity Sub-Riemannian So, the claim holds true for v = -p/ |p|. Now, denote R x = sup r > 0 | B r (x) ⊂ O for all x ∈ ∂U λ ∩ O. If R x = +∞ for some x ∈ ∂U λ ∩ O, then O = R n . Otherwise, we claim that there exists R > 0 such that R x R for all x ∈ ∂U λ ∩ O. Indeed, otherwise there exists a sequence {x i } i ⊂ ∂U λ ∩ O such that B Rx i +ε (x i ) ∩ O c = ∅ for all i 1 and R x i → 0 for any ε > 0. Using (40), by further subsequence extraction, we can suppose that x i → x ∈ ∂U λ ∩ O (then x ∈ O), and since d(x i , O c ) R x i +ε, passing to the limit we obtain d(x, O c ) ε. By arbitrariness of ε it follows that d(x, O c ) = 0 and so x ∈ O c . Hence x ∈ O ∩O c = ∂O, in contradiction with (40). So, the claim holds true. We can conclude that for some R > 0, B R (x) ⊂ O for all x ∈ ∂U λ ∩ O. From the first claim, we deduce that for any x ∈ ∂U λ ∩ O and any

. Finally, using (41), we have r x min {R/2, α/2C}, and the conclusion follows with r = min {R/2, α/2C}.

We state next the main result of this section.

Theorem 5.5. Assume (H) . Let Γ ⊂ R n be a compact set and suppose that there are no singular geodesics for Γ. Let x 0 ∈ Γ c and ū be an optimal control for the minimum time function at

Then the solution of the adjoint equation

satisfy the sensitivity relation

and the transversality condition

Proof. First of all we notice that by Corollary 3.8 and Remark 5.1 the minimum time function τ Γ is locally semiconcave on Γ c . Let {λ i } i ⊂ (0, ∞) with λ i → 0+ and write for simplicity Γ i in place of Γ λ i . It is easy to see that the level sets Γ i are compact.

Hence, for all i 1 there exist open sets

, where F (y) is the matrix whose columns are the vectors f 1 (y), ..., f m (y). Since τ Γ is a viscosity solution of such an equation, we have that |F (y) * p| -1 = 0 for all y ∈ Γ c and all p ∈ D * τ (y) (see [START_REF] Cannarsa | Semiconcavity results for optimal control problems admitting no singular minimizing controls[END_REF]Section 5.3]). So, putting M > max F (y) | y ∈ D , from (1) we deduce that for all i 1 and all y ∈ O i there exists p i ∈ D + τ Γ (y) such that |p i | M -1 . Hence, applying Proposition Semiconcavity Sub-Riemannian 5.4, for all i 1 there exists r i > 0 such that for any y ∈ ∂Γ i we can find a unit vector vi (y) satisfying

We note that (46) implies that the set N P Γ c i (y) contains a nonnull vector for all y ∈ ∂Γ i . Furthermore, since τ Γ is locally Lipschitz continuous on Γ c , applying [14, Theorem 8.2.3], we have for all i 1 and all y ∈ ∂Γ i that H(y, ξ) = 0 for any ξ ∈ N P Γ c i (y) ∩ S 1 . We next construct a solution p(•), solving the adjoint equation, associated to the sequence {λ i } i as follows. For all i 1 pick ξ i ∈ N P Γ c i (y i ) ∩ S 1 where y i = x x 0 ,ū (τ ∂Γ i (x 0 )). We denote by p i (•) the solution of ( 15) on [0, τ ∂Γ i (x 0 )], with final condition ξ i H(y i , ξ i ) -1 , and we extend such functions as solutions of the adjoint equation in [START_REF] Chow | Über systeme von linearen partiellen differentialgleichungen erster ordnung[END_REF] to the whole interval [0, τ Γ (x 0 )] (we continue to denote by p i (•) such extended functions). Notice that, since

) is bounded, the sequence {|p i (0)|} i is bounded. So, applying the Ascoli-Arzelà and the Dunford-Pettis theorems, taking a subsequence and keeping the same notations, there exists an absolutely continuous function p(•) on [0, τ Γ (x 0 )] such that p i → p uniformly on [0, τ Γ (x 0 )] and p i p in L 1 (0, τ Γ (x 0 )). Such p(•) satisfies the adjoint equation on [0, τ Γ (x 0 )]. Now, using the closedness of ∂ P τ Γ (y) for any y ∈ Γ c , we get (43) by passing to the limit in (47), and from the definition of upper limit we get (44).

Appendix

Below we assume that T > 0. Remark 6.1. If (H)-(i) holds true and B ⊂ R n , W ⊂ L 2 (0, T ; R m ) are bounded subsets then, by Gronwall's lemma, it follows that there exists r = r (W , B) > 0 such that

and so

Remark 6.4. From the last part of the proof of Proposition 6.3 we deduce that for any τ > 0, r > 0, and R > 0 we can find C = C(τ, r, R) > 0 satisfying

for all s ∈ [0, τ ], u, v ∈ B L 2 (0, R), and z ∈ B(0, r). Corollary 6.5. Assume (H)-(i). Then the map

Proof. Notice that, from continuous dependence on parameters of solutions to ODE's and from the expression of the differential in (58), for any τ > 0 and every bounded subset A ⊂ R n ×L 2 (0, τ ; R m ), the maps {s → dE s (y, u) | s ∈ [0, τ ]} are equicontinuous for (y, u) ∈ A and the constant C that appears in (59) may be taken the same for 0 T τ , (y 1 , u 1 ), (y 2 , u 2 ) ∈ A.

The following result is well known. Lemma 6.6. Let X be a separable normed space and Φ : X → R n be a linear, continuous, and surjective operator. Consider {x i } i dense in X.

Then there exist linearly independent vectors x 1 , ..., x n such that Φ : W → R n is an isomorphism, where W = span {x 1 , ..., x n }.

Proof. Let {x i } i be dense in X. Then there exists a countable increasing family of finite dimensional subspaces W k = span {x i } k i=1 such that ∪ k W k = X. So, Φ(W k ) is a finite dimensional subspace and Φ(W k ) is increasing. Hence there exists k 0 such that Φ(W k 0 ) = R n . So we can choose n linearly independent vectors x 1 , ..., x n in W k 0 such that Φ is onto and injective on W = span {x 1 , ..., x n }.