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Abstract—In this paper, we consider a delay differential
inclusion ẋ(t) ∈ F (t, xt), where xt denotes the history
function of x(t) along an interval of time. We extend
the celebrated Filippov’s theorem to this case. Then, we
further generalize this theorem to the case when the state
variable x is constrained to the closure of an open subset
K ⊂ Rn. Under a new “inward pointing condition”, we
give a relaxation result stating that the set of trajectories
lying in the interior of the state constraint is dense in the
set of constrained trajectories of the convexified inclusion
ẋ(t) ∈ coF (t, xt).

Index Terms—Delay differential inclusions, relaxation,
state constraints, inward pointing conditions.

I. INTRODUCTION

Mathematical models arising in population dynamics
or engineering sciences often involve control systems
with delays (see, e.g., [6], [24]). Systems with delays,
express that at each instant the velocity of the state
depends upon the history of its evolution up to this
instant [23]. Such control systems can be described as
follows: ẋ(t) = f(t, xt, u(t)), a.e. t ∈ [t0, T ],

u(t) ∈ U ⊂ Rq, a.e. t ∈ [t0, T ],
xt0 = ϕ,

(1)

where x(t) ∈ Rn, represents the state at time t,
xt : [−τ, 0]→ Rn is the standard notation for the history
function defined by xt(θ) = x(t + θ), for τ > 0 and
−τ ≤ θ ≤ 0, u(·) is a Lebesgue measurable function,
f is a mapping from [0, T ] × C([−τ, 0],Rn) × U into
Rn, 0 ≤ t0 ≤ T , and ϕ is the initial condition taken in
C([−τ, 0],Rn). In the above, C([−τ, 0],Rn) denotes the
Banach space of continuous functions from [−τ, 0] into
Rn, with the usual norm.

This work was partially funded by the DeMagma project of Pro-
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When the trajectories of (1) are subject to the state
constraint

x(t) ∈ K ∀ t ∈ [t0, T ], (2)

where K is a closed subset of Rn, the viability the-
ory [2] provides adequate mathematical tools to study
the existence of feasible (or viable) solutions of such
systems. Thanks to this theory, a necessary and sufficient
condition (linking the dynamics of system (1) to the
geometry of the constraint set K) for the existence
of feasible solutions is known. Under some regularity
assumptions on f , this condition was first given in [21]:

∀ t ∈ [0, T ],∀ψ ∈ C([−τ, 0],Rn) such that ψ(0) ∈ K,
f(t, ψ, U) ∩ TK(ψ(0)) 6= ∅,

(3)
where TK(ψ(0)) is the contingent cone to K at ψ(0). In
the framework of this theory, convexity conditions are
imposed on the set-valued map F (t, ψ) := f(t, ψ, U),
i.e. for every t ∈ [0, T ] and every ψ ∈ C([−τ, 0],Rn),
F (t, ψ) is a convex subset of Rn. This convexity hypoth-
esis may fail in some mathematical models and may be
even difficult to verify.
In the case of delay-free control systems, a vast literature
(see, e.g., [8], [9], [10], [13], [15], [19], [20]) allows
to relax this convexity hypothesis, by assuming, as a
counterpart, stronger tangential conditions and stronger
regularity of F . These conditions rely on the possibility
of directing a velocity into the interior of the constraint
K whenever approaching the boundary of K. Known as
inward pointing conditions, they allow to approximate
relaxed feasible trajectories by feasible trajectories and
provide estimates on the distance of a given trajectory
of unconstrained control system from the set of feasible
trajectories, see for instance [8], [9], [15], [17], [19].
In the literature, these estimates have been referred to
as neighboring feasible trajectory (NFT) estimates. In
the case when F is Lebesgue measurable with respect



to the time and Lipschitz with respect to the state,
NFT estimates result from the following inward pointing
condition (see [16], [17]):



∀ t ∈ [0, T ],∀x ∈ ∂K,∀ v ∈ F (t, x)

such that max
n∈N1

K(x)
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,y)→(t,x)coF (s, y)

satisfying max
n∈N1

K(x)
〈n,w − v〉 < 0,

(4)

where coF (s, y) is the convex hull of F (s, y), Lim-
inf denotes the Kuratowski lower set limit (see [3]),
N1
K(x) := NK(x) ∩ Sn−1, Sn−1 is the unit sphere

and NK(x) denotes the Clarke normal cone to K at
x (see [11]). The above condition takes sometimes a
simpler form depending on the regularity assumptions
on F and the smoothness of the boundary ∂K (see, e.g.,
[8], [9], [10], [17], [20]).
When the viability condition fails to be fulfilled on the
boundary of K, the largest subset of initial conditions
starting from which at least one viable solution exists
(called viability kernel) is considered. In the case of
delay-free control systems, viability algorithms provid-
ing constructive methods for the computation of the
viability kernel, have been developed (see, e.g., [18],
[28]). Thanks to these algorithms, efficient numerical
methods have been established (see, e.g., [27]) and used
in order to exhibit approximating viability kernels for
numerous examples coming from different fields (see,
e.g., [4], [7], [29], [25], [22], [26]). We would like to
underline that these algorithms are developed for set-
valued maps with convex values. Two steps are needed
to extended these numerical methods to delay differential
inclusions: adapt the viability algorithms to this case and
obtain relaxation theorems under state constraints. This
latter point is the purpose of this paper.
To our knowledge, NFT estimates for delay differential
inclusions are not yet obtained in the literature. Here, we
propose to extend such results to this case. Inspired by
the viability condition given by (3), we propose to adapt
the inward pointing condition (4) to delay differential
inclusions.
Let λ > 0. Define the set

Kλ := {ψ ∈ C([−τ, 0],Rn) : ψ is λ-Lipschitz
and ψ(0) ∈ ∂K} , (5)

and consider the following relaxed inward pointing con-
dition:

(IPλrel)



∀ t ∈ [0, T ],∀ψ ∈ Kλ,∀ v ∈ F (t, ψ)

such that max
n∈N1

K(ψ(0))
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,φ)→(t,ψ)coF (s, φ)

satisfying max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0.

Assuming (IPλrel), we give a relaxation result stating
that the set of feasible trajectories is dense in the set of
relaxed feasible ones. This is proved by using several
preliminary results. The first one is an extension of the
Filippov theorem, given by [12], to delay differential
inclusions, which is an essential step to construct feasible
trajectories. Then, we provide NFT estimates on the
distance of a given trajectory from the set of feasible
trajectories.

The paper is organized as follows. Section II presents
the list of notations, definitions and assumptions in use.
In Section III we state our main results. The proofs and
useful technical tools are postponed to Section V. In
Section IV we discuss an example, where the model
corresponds to the problem considered in the present
work.

II. PRELIMINARIES

In this section we list the notations and the main
assumptions in use.

A. Notations and definitions

Consider the Euclidean space (Rn, ‖ · ‖), where n is
a positive integer. We denote by 〈·, ·〉 the inner product,
by B(x, r) the closed ball of center x ∈ Rn and radius
r > 0 and by B the closed unit ball in Rn centered at 0.
Let coA stands for the convex hull of a subset A ⊂ Rn.
For every pair (a, b) ∈ R2, set a ∨ b = max{a, b} and
a ∧ b = min{a, b}.

Given I ⊂ R, (C(I,Rn), ‖ · ‖C) denotes the Banach
space of continuous functions from I into Rn, where
‖ · ‖C is the norm of uniform convergence. Given
τ > 0, BC(ϕ, r) denotes the closed ball of center
ϕ ∈ C([−τ, 0],Rn) and radius r > 0 and BC is the
closed unit ball in C([−τ, 0],Rn) centered at 0. Given
t ∈ R, we denote by B((t, ϕ), r) the closed ball
B(t, r)×BC(ϕ, r).

We denote by µ the Lebesgue measure on the real
line, and by L1(I,Rn) the space of Lebesgue integrable
functions from I to Rn.
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Let K be a nonempty closed subset of Rn, IntK be its
interior and ∂K its boundary, d̃K is the oriented distance
from x ∈ Rn to K defined by

d̃K(x) =

{
dK(x) if x /∈ K
−dRn\K(x) otherwise,

where dK(x) = infy∈K ‖x− y‖.
We will use the following notion of solution:
Definition 1: Let 0 ≤ t0 ≤ T , τ > 0 and ϕ ∈

C([−τ, 0],Rn). A function x ∈ C([t0 − τ, T ],Rn) is
called an F -trajectory, if x(·) is absolutely continuous
on [t0, T ] and

ẋ(t) ∈ F (t, xt) a.e. t ∈ [t0, T ], (6)
xt0 = ϕ. (7)

An F -trajectory which verifies the state constraint (2)
is called feasible F -trajectory. A trajectory associated to
the relaxed differential inclusion{

ẋ(t) ∈ coF (t, xt), a.e. t ∈ [t0, T ],
xt0 = ϕ

(8)

is called relaxed F -trajectory, and relaxed feasible F -
trajectory if in addition (2) holds true.

B. Assumptions

Let 0 ≤ t0 ≤ T , τ > 0 and F : [t0, T ] ×
C([−τ, 0],Rn)  Rn be a set-valued map with non-
empty closed images. In our main theorems, we will
assume the following regularity conditions on F :

(H1) for every ψ ∈ C([−τ, 0],Rn)

the set-valued map F (·, ψ) is measurable;

(H2) the set-valued map F (t, ·) is locally
Lipschitz in the following sense: ∀R > 0,
∃ ζR(·) ∈ L1([t0, T ],R+) such that, for a.e.
t ∈ [t0, T ] and any ϕ,ψ ∈ RBC

F (t, ϕ) ⊂ F (t, ψ) + ζR(t)‖ϕ− ψ‖CB;

(H3) the set-valued map F has a sublinear growth, i.e.
there exists σ > 0 such that, for a.e. t ∈ [t0, T ] and
any ψ ∈ C([−τ, 0],Rn)

F (t, ψ) ⊂ σ (1 + ‖ψ‖C)B;

(H4) for a given λ > 0, the set-valued map F is
upper semicontinuous on [t0, T ] × Kλ, i.e. for all
t ∈ [t0, T ] and all ϕ ∈ Kλ, we have F (t, ϕ) 6= ∅
and for every ε > 0 there exists δ > 0 such that

F (s, ψ) ⊂ F (t, ϕ) + εB ∀ (s, ψ) ∈ B((t, ϕ), δ).

III. MAIN RESULTS

A. Filippov’s Theorem

The following theorem extends the celebrated Filip-
pov’s theorem, given by [12], to differential inclusions
of type (6).

Theorem 1: Let β > 0 and δ0 ≥ 0 and assume (H1),
(H2). Let y ∈ C([t0− τ, T ],Rn) be such that y(·) is ab-
solutely continuous on [t0, T ]. Set R = max

t∈[t0−τ,T ]
‖y(t)‖,

γ1(t) = dF (t,yt)(ẏ(t)),

γ2(t) = exp
{∫ t

t0

ζR+β(s)ds

}
,

γ3(t) = γ2(t)

(
δ0 +

∫ t

t0

γ1(s)ds

)
.

(9)

If γ3(T ) < β, then for all ϕ ∈ C([−τ, 0],Rn) with
‖ϕ− yt0‖C ≤ δ0, there exists x ∈ C([t0 − τ, T ],Rn)
such that x(·) is an F -trajectory and for all t ∈ [t0, T ]

‖xt − yt‖C ≤ γ3(t)

and for almost every t ∈ [t0, T ],

‖ẋ(t)− ẏ(t)‖ ≤ ζR+β(t)γ3(t) + γ1(t).

The following theorem establishes the possibility of ap-
proximating any relaxed F -trajectory by an F -trajectory
starting from the same initial condition.

Theorem 2: Let y(·) be a relaxed F -trajectory. Assume
(H1), (H2) and (H3). Then for every δ > 0 there
exists an F -trajectory x(·) satisfying xt0 = yt0 and
supt∈[t0,T ] ‖x(t)− y(t)‖ ≤ δ.

B. Neighboring feasible trajectories theorems

Let λ > 0. Consider the following inward pointing
condition:

(IPCλ)



∀ t ∈ [0, T ],∀ψ ∈ Kλ,∀ v ∈ F (t, ψ)

such that max
n∈N1

K(ψ(0))
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,φ)→(t,ψ) F (s, φ)

satisfying max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0,

where Kλ is defined by (5). Before stating our first NFT
theorem, a crucial result is given by the following lemma
which shows that (IPCλ) implies an uniform inward
pointing condition on a neighborhood of Kλ.

Lemma 1: Let λ > 0 and assume (H1)–(H4)
and (IPCλ). Then ∀R > 0, ∃ ρ > 0 and η > 0 such
that for every t ∈ [0, T ], ψ ∈ (Kλ + ηBC) ∩ RBC and
for every v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),η)
〈n, v〉 ≥ 0
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we can find w ∈ F (t, ψ) satisfying{
〈n,w〉 ≤ −ρ and 〈n,w − v〉 ≤ −ρ
∀n ∈ N1

K(x),∀x ∈ ∂K ∩B(ψ(0), η).
(10)

The following theorem shows the existence of a feasible
F -trajectory and provides an estimate of the distance (in
the norm of uniform convergence) of this trajectory from
a specified F -trajectory.

Theorem 3: Assume (H1)–(H3). Let τ > 0, r0 > 0 and
λ0 > 0 and suppose that, for

λ = max{λ0, (1 + (1 + λ0τ + r0)eσT )σ}, (11)

assumptions (H4) and (IPCλ) hold true. Then there
exists a constant C > 0 such that for any t0 ∈ [0, T ] and
every F -trajectory x̂(·) on [t0 − τ, T ] with λ0-Lipschitz
x̂t0 and x̂(t0) ∈ K ∩ r0B, and for any ε0 > 0, we
can find a feasible F -trajectory on [t0− τ, T ] satisfying
xt0 = x̂t0 , x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C
(

max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (12)

Theorem 3 together with Theorem 2 imply that under
the inward pointing condition (IPCλ), the set of F -
trajectories lying in the interior of the constraint set K,
for t ∈ (t0, T ] and starting at x̂t0 , is dense in the set
of feasible relaxed F -trajectories. This results from the
following corollary:

Corollary 1: Under all the assumptions of Theo-
rem 3, for any feasible relaxed F -trajectory x̄(·) with
λ0-Lipschitz x̄t0 and x̄(t0) ∈ K ∩ r0B, and any
δ > 0, there exists a feasible F -trajectory x(·) such that
xt0 = x̄t0 , x((t0, T ]) ∈ IntK and ‖xt − x̄t‖C < δ for
all t ∈ [t0, T ].
Now, assume the relaxed inward pointing condition given
by (IPλrel). As before, we have the following lemma
which is similar to Lemma 1 but in the framework of
the relaxed set-valued map.

Lemma 2: Let λ > 0 and assume (H1)–(H4)
and (IPλrel). Then ∀R > 0, ∃ ρ > 0 and η > 0 such
that for every t ∈ [0, T ], ψ ∈ (Kλ + ηBC) ∩ RBC and
for every v ∈ coF (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),η)
〈n, v〉 ≥ 0,

we can find w ∈ coF (t, ψ) satisfying{
〈n,w〉 ≤ −ρ and 〈n,w − v〉 ≤ −ρ
∀n ∈ N1

K(x),∀x ∈ ∂K ∩B(ψ(0), η).

The following theorem is related to Theorem 3, however
neither one is contained in another.

Theorem 4: Assume (H1)–(H3). Let τ > 0, r0 > 0
and λ0 > 0 and suppose that, for λ given by (11),

assumptions (H4) and (IPλrel) hold true. Then there
exists a constant C > 0 such that for any t0 ∈ [0, T ] and
every relaxed F -trajectory x̂(·) on [t0 − τ, T ] with λ0-
Lipschitz x̂t0 and x̂(t0) ∈ K ∩ r0B, and for any ε0 > 0,
we can find a relaxed feasible F -trajectory on [t0−τ, T ]
satisfying xt0 = x̂t0 , x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C
(

max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (13)

The proof of Theorem 4 is a straightforward consequence
of Lemma 2, together with Theorem 3 applied with
coF instead of F . Theorem 4 and the constructive
argument of [9, Proof of Lemma 5.2] imply the following
Corollary:

Corollary 2: Under all the assumptions of Theo-
rem 4, for any relaxed feasible F -trajectory x̄(·) with
λ0-Lipschitz x̄t0 and x̄(t0) ∈ K ∩ r0B, and any
δ > 0, there exists a feasible F -trajectory x(·) such that
xt0 = x̄t0 , x((t0, T ]) ∈ IntK and ‖xt − x̄t‖C < δ for
all t ∈ [t0, T ].

C. Neighboring feasible trajectories theorem: constant
delay case

Consider the constant-delay differential inclusion{
ẋ(t) ∈ F(t, x(t), x(t− τ)), a.e. t ∈ [t0, T ],
xt0 = ϕ,

(14)
where F : [0, T ]× Rn × Rn  Rn is a set-valued map
having closed nonempty images and ϕ ∈ C([−τ, 0],Rn).
Let λ > 0. Consider the following inward pointing
condition:

(IPλeq)



∀ t ∈ [0, T ],∀x ∈ ∂K,∀ y ∈ x+ τλB,

∀ v ∈ F(t, x, y) such that max
n∈N1

K(x)
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,z,ξ)→(t,x,y)coF(s, z, ξ)

satisfying max
n∈N1

K(x)
〈n,w − v〉 < 0.

Assume the following regularity conditions on F :
(A1) for every X = (x, y) ∈ Rn × Rn the set-valued

map F(·, X) is measurable;
(A2) the set-valued map F(t, ·) is locally Lipschitz, i.e.

∀R > 0, ∃ ζR(·) ∈ L1([t0, T ],R+) such that,
for a.e. t ∈ [t0, T ] and any X = (x1, y1), Y =
(x2, y2) ∈ RB ×RB

F(t,X) ⊂ F(t, Y ) + ζR(t)‖X − Y ‖B;

(A3) there exists σ > 0 such that, for a.e. t ∈ [t0, T ] and
any X = (x, y) ∈ Rn × Rn

F(t,X) ⊂ σ(1 + |X|)B;
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(A4) for a given λ > 0, the set-valued map F is upper
semicontinuous on [t0, T ]× (∂K + τλB).

Theorem 5: Assume (A1)–(A3). Let τ > 0, r0 > 0
and λ0 > 0 and suppose that, for λ given by (11),
assumptions (A4) and (IPλeq) hold true. Then there exists
a constant C > 0 such that for any t0 ∈ [0, T ] and every
F-trajectory x̂(·) on [t0−τ, T ] with λ0-Lipschitz x̂t0 and
x̂(t0) ∈ K ∩ r0B, and for any ε0 > 0, we can find a
feasible F-trajectory on [t0− τ, T ] satisfying xt0 = x̂t0 ,
x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C
(

max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (15)

IV. EXAMPLE: POPULATION DYNAMICS

Here, we present an example that motivated us for
this study. It concerns the management of urban pigeon
population. In fact, urban pigeon population can reach
high densities in cities and disturb the cohabitation with
urban citizens. In view of some ecological considera-
tions, this increased population may lead to a citizen
dissatisfaction. A model describing the evolution of
such population which is subject to some management
strategies is proposed in [22], and the urban citizen
tolerance formulated as a state constraint. The population
dynamics is given by1

ẋ1 = n(x2, u)x2 −m1(x1, u)x1 − p1(x1, u)x1

ẋ2 = −m2 (x2, u)x2 + p1(x1, u)x1,
(16)

where x1 and x2 denote the size of juvenile and adult
pigeon populations and u is the control parameter rel-
ative to a management strategy (resource limitation,
egg removal, sterilization, capturing). The function n(·)
describes the reproduction of adult pigeon; m1(·) and
m2(·) describe the mortality of juvenile and adult pi-
geons. The function p1(·) represents the transfer rate
from juvenile to adult class. The urban citizen tolerance
is described through the following state constraints set

K =

{
M ≤ x1 + x2 ≤M, ∀t ≥ 0,

x1 ≥ 0, x2 ≥ 0, ∀t ≥ 0,

where M and M represent the lower (the presence of
some pigeons) and upper (not too many pigeons) limits.
Thanks to the viability theory, viability kernels describ-
ing the existence of efficient management strategies are
calculated (see [22] for more details).
The model (16) is not sufficiently precise, because it

1By abuse of notation, we omit writing explicitly the dependence of
ẋi, xi, and u on t, for i = 1, 2.

does not take into account the fact that juvenile pigeons
start to reproduce only after becoming adults. This leads
naturally to a model with time delay that we describe
next. Actually, the transfer from juvenile to adult class
is modeled as a function with a delay involving the adult
pigeons, taking into account the following observation:
the juveniles which born a time t − τ and survive to
time t exit to adult pigeon class, where τ is the time
from birth to maturity. This can be formulated by the
following equations (see [1] for more details)

ẋ1 = n(x2, u)x2 −m1(x1, u)x1 − p2x2(t− τ)

ẋ2 = −m2(x2, u)x2 + p2x2(t− τ),
(17)

where p2 is the corresponding survival rate of juvenile
pigeons born at τ -time ago, which is taken constant
in order to simplify the presentation (in fact, it de-
pends on x2(t − τ) and u). Let x = (x1, x2) and
y = (y1, y2) ∈ R2. System (17) can be written in the
form of (14), where the set-valued map F : R2 ×R2  
R2 is given by

F(x, y) =
⋃
u∈U

(
n(x2, u)x2 −m1(x1, u)x1 − p2y2

−m2 (x2, u)x2 + p2y2

)
.

To extend the study realized in [22] to the time delayed
case, Corollary 2 is crucial. Indeed, viability algorithms
are conceived for convex maps. In the case of (17),
in general, F is not convex. Knowing that n(·),m1(·)
and m2(·) are sufficiently regular then F fulfills the as-
sumption of Theorem 5. Thus, if condition (IPλeq) holds
true on the boundary of K, Corollary 2 guaranties the
existence of feasible trajectories for (17), approximating
a feasible relaxed trajectory of the convexified problem.

V. PROOFS

A. Proof of Theorem 1

We need the following lemma from [14]:
Lemma 3: Let X be a separable Banach space, G be

a set-valued map from [t0, T ]×X into closed nonempty
subsets of X and z : [t0, T ] → X be a continuous
function such that

1) ∀x ∈ X the set-valued map G(·, x) is measurable.
2) ∃β > 0, ζ̄(·) ∈ L1([t0, T ],R+) such that for almost

all t ∈ [t0, T ] the map G(t, ·) is ζ̄(t)-Lipschitzian
on z(t) + βBX , where BX is the closed unit ball
in X centered at 0.

Let x ∈ C([t0, T ], X) be such that ‖x− z‖C ≤ β. Then
the set-valued map t G(t, x(t)) is measurable.
In addition to Lemma 3, the proof of Theorem 1 requires
the following two lemmas. The first one states that, for
every x ∈ C([t0 − τ, T ],Rn) taken in a neighborhood
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of the reference trajectory y, the map t  F (t, xt) is
measurable.

Lemma 4: Let β > 0. Assume (H1), (H2) and let y
be as in Theorem 1. Let x ∈ C([t0 − τ, T ],Rn) be such
that ‖x(t) − y(t)‖ ≤ β, for every t ∈ [t0 − τ, T ]. Then
the set-valued map t F (t, xt) is measurable.
Proof. Since x and y are continuous on [t0 − τ, T ],
we can easily prove (see [23, Lemma 2.1] for more
details) that xt and yt are also continuous functions of
t on [t0, T ]. By (H2), F (t, ·) is ζ̄(t)-Lipschitzian on
yt + βBC with the Lipschitz constant ζ̄(·) = ζR+β(·).
Then, by Lemma 3 (with X = C([−τ, 0],Rn), G = F
and z(·) = y(· + θ), θ ∈ [−τ, 0]), we obtain that
the set-valued function [t0, T ] 3 t  F (t, xt) is
measurable, which concludes the proof. �

The following lemma proves that, starting from a
reference trajectory y, we can construct a sequence
(xn)n≥0 in C([t0 − τ, T ],Rn) approximating a solution
of (6)–(7).

Lemma 5: Let β > 0 and δ0 ≥ 0. Assume (H1), (H2)
and let y, γ1, γ2, γ3 be as in Theorem 1. If γ3(T ) < β,
then for any ϕ ∈ C([−τ, 0],Rn) with ‖ϕ− yt0‖C ≤ δ0
there exist sequences xn ∈ C([t0 − τ, T ],Rn) and
fn ∈ L1([t0, T ],Rn), for n ≥ 0, such that

x0,t = yt, f0 = ẏ, t ∈ [t0, T ], (18)

‖f1(t)− f0(t)‖ = γ1(t), a.e. t ∈ [t0, T ]; (19)

and for n ≥ 1 xn(t) = ϕ(0) +

∫ t

t0

fn(s)ds, t ∈ [t0, T ],

xn,t0 = ϕ,

(20)

fn(t) ∈ F (t, xn−1,t), t ∈ [t0, T ], (21)

with

‖fn+1(t)− fn(t)‖ ≤ ζR+β(t)‖xn,t − xn−1,t‖C , (22)

for almost every t ∈ [t0, T ].
Proof. By Lemma 4, the set-valued map t F (t, yt) is
measurable. Since the function t→ γ1(t) is measurable
(see, [14, Lemma 1.5]), the set-valued map U1 defined
by

U1(t) := {v ∈ F (t, yt) : ‖v − f0(t)‖ = γ1(t)}

is measurable (see, e.g., [3]). Hence, by the measurable
selection theorem the set-valued map U1 admits a mea-
surable selection f1 : [t0, T ] 7→ Rn. From the definition
of U1, we have f1(t) ∈ F (t, yt) for t ∈ [t0, T ] and

‖f1(t)− f0(t)‖ = γ1(t) a.e. t ∈ [t0, T ]. (23)

Let ϕ ∈ C([−τ, 0],Rn) be such that ‖ϕ − yt0‖C ≤ δ0
and define x1 ∈ C([t0 − τ, T ],Rn) by x1(t) = ϕ(0) +

∫ t

t0

f1(s)ds, t ∈ [t0, T ],

x1(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0].

Observe that

‖x1,t − yt‖ ≤ δ0 +

∫ t

t0

γ1(s)ds, t ∈ [t0, T ]. (24)

Indeed, for θ ∈ [−τ, 0] and t ∈ [t0, T ] such that
t+ θ ≥ t0, we have

‖x1(t+ θ)− y(t+ θ)‖

≤ ‖ϕ(0)− y(t0)‖+ ‖
∫ t+θ

t0

f1(s)− ẏ(s)ds‖

≤ ‖ϕ− yt0‖C +

∫ t+θ

t0

γ1(s)ds

≤ δ0 +

∫ t

t0

γ1(s)ds.

In the case when t + θ < t0, we have
‖x1(t+ θ)− y(t+ θ)‖ = ‖ϕ− yt0‖C ≤ δ0.
With x1, we associate the set-valued map
[t0, T ] 3 t U2(t) defined by U2(t) := {v ∈
F (t, x1,t) : ‖v − ẋ1(t)‖ = dF (t,x1,t)(ẋ1(t))}.
By (24), ‖x1,t − yt‖C ≤ β and, since F (t, ·) is
ζR+β-Lipschitz on yt + βBC , we deduce (using
the same arguments as before) the existence of a
measurable selection f2 : [t0, T ] 7→ Rn of U2 such that
‖f2(t) − f1(t)‖ ≤ ζR+β(t)‖x1,t − x0,t‖C , for almost
every t ∈ [t0, T ]. Then, we conclude that (20)–(22) hold
true for n = 1.
Assume that we already have constructed
xn ∈ C([t0 − τ, T ],Rn) and fn ∈ L1([t0, T ],Rn),
for n = 1, · · · , N , verifying (20), (21) and (22). Before
extending to n = N + 1, we prove that the constructed
sequence xn verifies the following:

Claim 1: ‖xn,t − yt‖C ≤ β, ∀ t ∈ [t0, T ],∀n =
1, · · · , N.
In fact, for n = 1, the claim follows directly from (24).
For n ≥ 2, (22) implies the following inequalities:

‖xn,t − xn−1,t‖C ≤
∫ t

t0

‖fn(s1)− fn−1(s1)‖ds1

≤
∫ t

t0

ζR+β(s1)‖xn−1,s1 − xn−2,s1‖Cds1,
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which can be repeated recursively (see the proof of [14,
Theorem 1.2] for more details) to obtain the following
property:

‖xn,t − xn−1,t‖C ≤ (δ0 +

∫ t

t0

γ1(s)ds)
[ln(γ2(t))]

n

n!
,

(25)
for every n ∈ {2, · · · , N}. From (24) and the last
inequality, we get (see the proof of [14, Theorem 1.2]
for more details)

‖xN,t − yt‖C ≤
∑N
i=1 ‖xi,t − xi−1,t‖C

≤ γ3(t) ≤ β. (26)

Again, define the set-valued map [t0, T ] 3 t UN+1(t)
by UN+1(t) := {v ∈ F (t, xN,t) : ‖v − ẋN (t)‖ =
dF (t,xN,t)(ẋN (t))}. Knowing that ‖xN,t − yt‖C ≤ β
and using the same reasoning as before, we
deduce the existence of fN+1 : [t0, T ] 7→ Rn,
a measurable selection of UN+1, such that
‖fN+1(t) − fN (t)‖ ≤ ζR+β(t)‖xN,t − xN−1,t‖C ,
for almost every t ∈ [t0, T ]. The function xN+1,
associated to fN+1, is defined by (20), for n = N + 1.
�

Proof of Theorem 1. By (25), for each t ∈ [t0, T ],
the sequence {xn,t} is Cauchy in the Banach space
C([−τ, 0],Rn). Thus, for each t ∈ [t0, T ] we may define
xt ∈ C([−τ, 0],Rn) as the limit of xn,t. In addition,
by (22), for almost every t ∈ [t0, T ] the sequence
{fn(t)} is Cauchy in Rn. Furthermore, from (22) and
(23), it follows that for n ≥ 1

‖fn(t)− ẏ(t)‖ ≤
n−1∑
i=0

‖fi+1(t)− fi(t)‖

≤ γ1(t) + ζR+β(t)

n−1∑
i=1

‖xi,t − xi−1,t‖C

≤ γ1(t) + ζR+β(t)γ3(t) a.e. t ∈ [t0, T ],

(27)

from which we conclude that the sequence {fn}
is integrably bounded. Thus we may define
f ∈ L1([t0, T ],Rn) by f(t) = limn→+∞ fn(t).
By arguments similar to [14, Theorem 1.2], we obtain
that x(·) is an F -Trajectory satisfying ẋ(t) = f(t) a.e.
in [t0, T ]. Passing to the limits in (26) and (27) yields
the desired estimations on x and ẋ. �

B. Proof of Theorem 2

Fix δ > 0 and let R := maxt∈[t0−τ,T ] ‖y(t)‖. It is not
restrictive to assume that t0 = 0 and

∫ T
0
ζR+δ(t)dt > 0.

Choose any positive α such that

α < min

{
δ

2
,

δ

2γ2(T )
∫ T

0
ζR+δ(t)dt

}
, (28)

where γ2(·) is as in Theorem 1, with β = δ. Let
n ≥ 1 be so large such that σ(1 + R)/n < α/2,
where σ is given by (H3). Let Ij be the interval
[(j − 1)Tn , j

T
n ], for j = 1, · · · , n. By Lemma 4, the

set-valued map t F (t, yt) is measurable. In addition,
by (H3), t F (t, yt) is integrably bounded because for
almost every t ∈ [0, T ], F (t, yt) ⊂ σ(1 +R)B. Then,
by Aumann’s Theorem [5], there exists a measurable
selection fj(t) ∈ F (t, yt) such that∫

Ij

fj(t)dt =

∫
Ij

ẏ(t)dt, j = 1, · · · , n.

Let f be the function which is equal to fj on Ij , and
define the continuous function z : [−τ, T ]→ Rn by z(t) = y(0) +

∫ t

0

f(s)ds, t ∈ [0, T ],

z0 = y0.

Observe that

‖zt − yt‖C < α, ∀ t ∈ [0, T ].

Indeed, for every t ∈ [0, T ] and every θ ∈ [−τ, 0] such
that t + θ ≥ 0, there exists j ∈ {1, · · · , n} for which
t+ θ ∈ Ij and

‖z(t+ θ)− y(t+ θ)‖ = ‖
∫ t+θ

0

(f(s)− ẏ(s)) ds‖

≤
∫
Ij

‖f(s)− ẏ(s)‖ds < α.

If t+ θ < 0, then ‖z(t+ θ)− y(t+ θ)‖ = 0.
Since for almost every t ∈ [0, T ], F (t, ·) is ζR+δ(t)-
Lipschitz on yt + δBC , we obtain

dF (t,zt)(ż(t)) ≤ sup{dF (t,zt)(ξ) : ξ ∈ F (t, yt)}
+dF (t,yt)(ż(t)) (29)

≤ ζR+δ(t)‖zt − yt‖C ≤ αζR+δ(t).

Inequality (29) together with (28) imply that
γ2(T )

∫ T
0
αζR+δ(t)dt < δ/2. Then, by Theorem 1

applied with β = δ and δ0 = 0, there exists a trajectory
x of (6) satisfying x0 = z0 = y0 and

‖xt − zt‖C ≤ γ2(T )

∫ T

0

αζR+δ(s)ds <
δ

2
.

Finally, we obtain

‖xt − yt‖C ≤ ‖xt − zt‖C + ‖zt − yt‖C <
δ

2
+
δ

2
= δ,

which concludes the proof. �
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C. Proof of Lemma 1.

We proceed in three steps.
Step 1. Let R > 0, t̄ ∈ [0, T ] and ψ̄ ∈ Kλ ∩ RBC
be fixed. Knowing that F is locally bounded and using
exactly the same argument as [17, Lemma 3.5], we
prove the existence of ρt̄,ψ̄ > 0 such that for all
v ∈ F (t̄, ψ̄) with max

n∈N1
K(ψ̄(0))

〈n, v〉 ≥ 0, there exists

w ∈ Liminf(s,φ)→(t̄,ψ̄) F (s, φ) satisfying

max
{
〈n,w〉, 〈n,w − v〉 | n ∈ N1

K(ψ̄(0))
}
≤ −2ρt̄,ψ̄.

(30)
Step 2. We show the existence of ηt̄,ψ̄ > 0 such that for
every t ∈ B(t̄, ηt̄,ψ̄), for every ψ ∈ Kλ∩BC(ψ̄, ηt̄,ψ̄)+
ηt̄,ψ̄BC and for every v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ F (t, ψ) satisfying{
〈n,w〉 ≤ −ρt̄,ψ̄ and 〈n,w − v〉 ≤ −ρt̄,ψ̄
∀n ∈ N1

K(x),∀x ∈ ∂K ∩B(ψ(0), ηt̄,ψ̄).
(31)

Suppose by contradiction that there exist ti → t̄, ψi → ψ̄
in C([−τ, 0],Rn), vi ∈ F (ti, ψi), xi →∂K ψ̄(0) and
ni ∈ N1

K(xi) such that 〈ni, vi〉 ≥ 0 and for every
wi ∈ F (t, ψi) we can find x′i →∂K ψ̄(0), n′i ∈ N1

K(x′i)
satisfying

〈n′i, wi〉 ∨ 〈n′i, wi − vi〉 > −ρt̄,ψ̄. (32)

Since F is upper semicontinuous at every point of
[0, T ] × Kλ, taking subsequences and keeping the
same notations we may assume that vi converge to
some v ∈ F (t̄, ψ̄), ni → n and n′i → n′.
Since the map x  N1

K(x) is upper semicontin-
uous, we have n, n′ ∈ N1

K(ψ̄(0)) and 〈n, v〉 ≥ 0.
Then max

n∈N1
K(ψ̄(0))

〈n, v〉 ≥ 0. Consider w as in (30)

corresponding to this v and let wi ∈ F (t, ψi) be
such that wi → w. From (32) we deduce that
〈n′, w〉 ∨ 〈n′, w − v〉 ≥ −ρt̄,ψ̄ , contradicting the choice
of w.
Step 3. Consider a covering of [0, T ]× (Kλ ∩ 2RBC) by
the open balls B̊((t̄, ψ̄), ηt̄,ψ̄) satisfying the following
requirement:

[0, T ]× (Kλ ∩ 2RBC) ⊂⋃
(t̄,ψ̄)∈[0,T ]×Kλ∩2RBC

B̊((t̄, ψ̄), ηt̄,ψ̄)

such that for every t ∈ B(t̄, ηt̄,ψ̄), for ev-
ery ψ ∈ Kλ ∩BC(ψ̄, ηt̄,ψ̄) + ηt̄,ψ̄BC and for every
v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ F (t, ψ) satisfying (31).
We claim that the set Kλ ∩ 2RBC is compact. Indeed,
Thanks to Ascoli’s Theorem, we know that a subset of
C([−τ, 0],Rn) is compact if and only if it is closed,
bounded, and equicontinuous. The set Kλ is closed (the
uniform limit of λ-Lipschitz functions is λ-Lipschitz)
and equicontinuous (by assumption). The boundedness
follows from the fact that for all θ ∈ [−τ, 0]

‖ψ(θ)‖ ≤ ‖ψ(θ)− ψ(0)‖+ ‖ψ(0)‖ ≤ λτ +R.

Now, consider a finite subcovering

[0, T ]× (Kλ ∩ 2RBC) ⊂
⋃

i=1··· ,N
B̊((ti, ψi), ηti,ψi).

Then, for ρ = min{ρti,ψi , i = 1 · · · , N}, for some 0 <
η < min{R, ηti,ψi , i = 1 · · · , N} and for all (t, ψ) ∈
[0, T ] × (Kλ + ηBC) ∩ RBC , there exists 1 ≤ i ≤ N
such that (t, ψ) ∈ B(ti, ηti,ψi)× (Kλ∩BC(ψi, ηti,ψi) +
ηti,ψiBC). This complete the proof. �

D. Proof of Theorem 3.

The proof is inspired by the construction proposed
in [16].

Lemma 6: Assume (H1)–(H3). Let τ > 0, r > 0
and λ0 > 0 and suppose that, for λ given by (11),
assumptions (H4) and (IPCλ) hold true. Then there
exist positive constants δ and c such that for every
t̄ ∈ [0, T ] and every F -trajectory x̂(·) on [t̄− τ, T ] with
λ0-Lipschitz x̂t̄ and x̂(t̄) ∈ K ∩ rB, and for any ε > 0,
we can find an F -trajectory on [t̄− τ, T ] satisfying

xt̄ = x̂t̄,
x(t) ∈ IntK, ∀ t ∈ (t̄, (t̄+ δ) ∧ T ]
‖xt − x̂t‖C ≤ c max

t∈[t̄,T ]
dK(x̂(t)) + ε.

Proof. Let R := (1 + λ0τ + r)eσT , R̃ := (1 + R)σ and
R̄ := 2R̃T + R, where σ is as in (H3). Fix t̄ ∈ [0, T ]
and an F -trajectory x̂(·) on [t̄− τ, T ] such that x̂t̄ is λ0-
Lipschitz and x̂(t̄) ∈ K ∩ rB. Let δ > 0 and 0 < β < ρ
be such that δ < η

4σ(1+R) (where ρ and η are given by
Lemma 1) and

ν(δ) := 2R̃ exp

(∫ T

t̄

ζR̄+β(s)ds

)
ωζR̄(δ) < β,

where ζR̄(·) and ζR̄+β(·) are as in (H2), and ωζR̄(·) is
the modulus of continuity of the map t 7→

∫ t
t̄
ζR̄(s)ds.

Consider Γ > 0 such that Γ(ρ − ν(δ)) > 1 and call
δ̄ := (t̄+ δ) ∧ T .
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We proceed in four steps.
Step 1. We have ‖x̂t‖C ≤ R for every t ∈ [t̄, T ]. Indeed,
for t ∈ [t̄, T ] and θ ∈ [−τ, 0], we have

x̂(t+ θ) =

 x̂(t̄) +

∫ t+θ

t̄

˙̂x(s)ds, if t+ θ ≥ t̄

x̂t̄(t+ θ − t̄), if t+ θ < t̄.

Then,

‖x̂(t+ θ)‖ ≤ ‖x̂t̄‖C +

∫ max{t̄,t+θ}

t̄

σ(1 + ‖x̂s‖C)ds.

Hence

‖x̂t‖C ≤ ‖x̂t̄‖C +

∫ max{t̄,t+θ}

t̄

σ(1 + ‖x̂s‖C)ds.

Thanks to Gronwall’s Lemma, we can easily verify that
for any t ∈ [t̄, T ]

‖x̂t‖C ≤ (1 + ‖x̂t̄‖C)eσ(t−t̄), (33)

from which conclude that ‖x̂t‖C ≤ R for every
t ∈ [t̄, T ].
Step 2. If d̃K(x̂(t̄)) < −η

4
, then x(·) = x̂(·) satisfies our

lemma. Indeed, if d̃K(x̂(t̄)) < −η
4

, then for all t ∈ [t̄, δ̄],
we have

d̃K(x̂(t)) ≤ d̃K(x̂(t̄)) + |d̃K(x̂(t))− d̃K(x̂(t̄))|

< −η
4

+ ‖x̂(t)− x̂(t̄)‖ ≤ −η
4

+

∫ t

t̄

‖ ˙̂x(s)‖ds

< −η
4

+ (1 +R)σδ < 0,

and x(·) = x̂(·) is as required.
Step 3. If −η

4
≤ d̃K(x̂(t̄)) ≤ 0, we define the measurable

set
S := {s ∈ [t̄, δ̄] : ∃x ∈ ∂K ∩B(x̂(s), η), n ∈ N1

K(x),

〈n, ˙̂x(s)〉 ≥ 0}.
Fix any ε > 0 and ε′ > 0 such that

0 < ε′ <
ε

2R̃

[
1 + exp

(∫ T
0
ζR̄+β(s)ds

)∫ T

0

ζR̄(s)ds

] ,
and let κ ∈ [t̄, δ̄] be defined as follows:
• If µ(S) ≤ Γ max

s∈[t̄,T ]
dK(x̂(s)) + ε′ then set κ = δ̄.

• If µ(S) > Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′ then take κ be

the smallest number in [t̄, δ̄] such that

µ(S ∩ [t̄, κ]) = Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′.

For each s ∈ S, we have x̂s ∈ (Kλ + ηBC) ∩ RBC .
Indeed, let z ∈ ∂K be such that ‖z−x̂(s)‖ = dK(x̂(s)).
Let us define the function ψ ∈ C([−τ, 0],Rn) by

ψ(θ) = x̂(s+ θ)− x̂(s) + z, θ ∈ [−τ, 0].

The function ψ belongs to Kλ. In addition, we have

‖x̂s(θ)− ψ(θ)‖ = ‖x̂(s)− z‖ = dK(x̂(s))

≤ dK(x̂(t̄)) + |dK(x̂(s))− dK(x̂(t̄))| < η.

Then x̂s ∈ (Kλ+ηBC)∩RBC . Thanks to Lemma 1, for
each s ∈ S, we can find w ∈ F (s, x̂s) satisfying (10). By
the measurable selection theorem [3], there exists a mea-
surable function w : S → Rn such that w(s) ∈ F (s, x̂s),
and for a.e. s ∈ S{

〈n,w(s)〉 ≤ −ρ, and 〈n,w(s)− ˙̂x(s)〉 ≤ −ρ
∀x ∈ ∂K ∩B(x̂(s), η),∀n ∈ N1

K(x).
(34)

Define the absolutely continuous function y : [t̄−τ, T ] 7→
Rn by yt̄ = x̂t̄ and

ẏ(t) :=

{
w(t) if t ∈ S ∩ [t̄, κ]
˙̂x(t) if t ∈ ([t̄, T ] \ S) ∩ [t̄, κ].

(35)
For t ∈ [t̄, T ] and θ ∈ [−τ, 0], we have

‖yt(θ)− x̂t(θ)‖ ≤ ‖
∫ max{t̄,t+θ}

t̄

(
ẏ(s)− ˙̂x(s)

)
ds‖

≤
∫ t

t̄

‖ẏ(s)− ˙̂x(s)‖ds =

∫
S∩[t̄,t∧κ]

‖w(s)− ˙̂x(s)‖ds

≤ 2R̃µ(S ∩ [t̄, t ∧ κ])

implying that,

‖yt − x̂t‖C ≤ 2R̃µ(S ∩ [t̄, t ∧ κ]). (36)

Moreover, for a.e. t ∈ [t̄, T ],

dF (t,yt)(ẏ(t)) ≤
sup{dF (t,x̂t)(ξ) : ξ ∈ F (t, yt)}+ dF (t,x̂t)(ẏ(t))

≤ ζR̄(t)‖yt − x̂t‖ ≤ 2R̃µ(S ∩ [t̄, t ∧ κ])ζR̄(t).

Hence, thanks to Theorem 1 applied with δ0 = 0, there
exists an F -trajectory x(·) on [t̄−τ, T ] such that xt̄ = yt̄
and for every t ∈ [t̄, T ]

‖xt − yt‖C ≤

2R̃ exp

(∫ T

0

ζR̄+β(s)ds

)
ωζR̄(|t− t̄|)µ(S ∩ [t̄, t ∧ κ]).

By the definition of κ, the inequality (36) and the triangle
inequality, we have

‖xt − x̂t‖C ≤ ε

ε′
µ(S ∩ [t̄, κ])

≤ c max
t∈[t̄,T ]

dK(x̂(t)) + ε,

for a constant c independent from t̄ and x̂(·).
Step 4. We show next that {x(t) : t ∈ (t̄, δ̄]} ⊂ IntK.
We distinguish two different cases:
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Case 1. t ∈ (t̄, κ]: The mean-value theorem (see, e.g.,
[11, Theorem 2.3.7]), affirms the existence of some
z(t) ∈ [y(t̄), y(t)] and ξ(t) ∈ ∂d̃K(z(t)), such that

d̃K(y(t)) = d̃K(y(t̄)) + 〈ξ(t), y(t)− y(t̄)〉.

Then,

d̃K(x(t)) ≤ d̃K(y(t)) + ‖x(t)− y(t)‖

≤ d̃K(y(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ d̃K(y(t̄)) + 〈ξ(t), y(t)− y(t̄)〉+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤
∫
S∩[t̄,t]

〈ξ(t), w(s)〉ds

+

∫
[t̄,t]\S

〈ξ(t), ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ]).

(37)
As in the proof of [16, Theorem 5], it follows that ξ(t)
is a convex combination of m vectors ξα ∈ N1

K(yα),
with yα ∈ π∂K(z(t)), such that for all s ∈ [t̄, κ] and
α ∈ {1, · · · ,m} we have ‖yα − x̂(s)‖ ≤ η, where
1 ≤ m ≤ n+ 1. Then, from (37) together with (34), we
obtain that

d̃K(x(t)) ≤
m∑
α=1

λα

∫
S∩[t̄,t]

〈ξα, w(s)〉ds

+

m∑
α=1

λα

∫
[t̄,t]\S

〈ξα, ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ (ν(δ)− ρ)µ(S ∩ [t̄, t]) < 0.

Case 2. t ∈ (κ, δ̄]: By the mean-value theorem, for some
z(t) ∈ [x̂(t), y(t)] and ξ(t) ∈ ∂d̃K(z(t)),

d̃K(y(t)) = d̃K(x̂(t)) + 〈ξ(t), y(t)− x̂(t)〉.

Then,

d̃K(x(t)) ≤ d̃K(y(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) + 〈ξ(t), y(t)− x̂(t)〉
+ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) +

∫ t

t̄

〈ξ(t), ẏ(s)− ˙̂x(s)〉ds

+ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) +

∫
S∩[t̄,t]

〈ξ(t), w(s)− ˙̂x(s)〉ds

+ν(δ)µ(S ∩ [t̄, t ∧ κ])

(38)

As in the first case, ξ(t) is a convex combination of
m vectors ξα ∈ N1

K(yα), with yα ∈ π∂K(z(t)), such
that for all s ∈ [t̄, κ] and α ∈ {1, · · · ,m} we have

‖yα−x̂(s)‖ ≤ η, where 1 ≤ m ≤ n+1. Then, from (38),
we obtain that

d̃K(x(t)) ≤ d̃K(x̂(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

+

m∑
α=1

λα

∫
S∩[t̄,t]

〈ξα, w(s)− ˙̂x(s)〉ds

≤ d̃K(x̂(t))− ρµ(S ∩ [t̄, κ]) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ d̃K(x̂(t))− (ρ− ν(δ))

[
Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′
]

< 0.

This completes the proof. �

Proof of Theorem 3. Let r := (1 + λ0τ + r0)eσT and
δ = δ(r), c = c(r) > 0 be as in Lemma 6. Fix t0 ∈ [0, T ]
and an F−trajectory x̂(·) such that x̂t0 is λ0-Lipschitz
and x̂(t0) ∈ K ∩ r0B. Let N be the smallest integer
satisfying (t0+Nδ)∧T = T . Set ti = (t0+iδ)∧T for all
i = 1, · · ·N . Fix any ε0 > 0. Lemma 6 assures that, for
any sequence of positive numbers ε1, · · · , εN−1, there
exists a sequence of F−trajectories {x0(·) = x̂(·), xi(·) :
i = 1, · · · , N} such that for all i = 1, · · · , N

xi(t) = xi−1(t), ∀ t ∈ [t0 − τ, ti−1]
x(t) ∈ IntK, ∀ t ∈ (t0, ti]
‖xi,t − xi−1,t‖C ≤ c max

t∈[t0,T ]
dK(xi−1(t)) + εi−1.

Lemma 6 is applied recursively on the interval
[(ti−1 − τ) ∧ T, T ] with reference trajectory xi−1(·) re-
stricted to this interval, for i = 1, · · · , N . Note that,
at each stage of this recursive construction, the same
constant δ and c are used; this is justified by the fact
that xi−1,ti−1

∈ rBC , for all i = 1, · · · , N . Call
x(·) = xN (·), then xt0 = x̂t0 and x(t) ∈ IntK for
every t ∈ (t0, T ]. Using the same arguments as in [16,
Theorem 5], we prove the existence of some C > 0,
independent from t0, x̂(·) and ε0 such that

‖xt − x̂t‖C ≤ C
(

max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
.

This completes the proof. �

E. Proof of Corollary 1.

Fix a relaxed feasible F -trajectory x̄(·) such that x̄t0
is λ0-Lipschitz and x̄(t0) ∈ K ∩ r0B, and δ > 0.
Let C be as in Theorem 3. By Theorem 2, there exists
an F -trajectory x̂(·) on [t0 − τ, T ] satisfying x̂t0 = x̄t0
and ‖x̂t − x̄t‖C ≤ δ/3C for all t ∈ [t0, T ]. By
Theorem 3, for every ε0 > 0, there exists a feasible F -
trajectory x(·) such that xt0 = x̂t0 , x((t0, T ]) ∈ IntK
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and ‖xt − x̂t‖C < C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. Remark

that dK(x̂(t)) ≤ dK(x̄(t)) + ‖x̂t − x̄t‖C < δ/3C. Set
ε0 = δ/3C. Then, ‖xt − x̄t‖C ≤ δ for all t ∈ [t0, T ].�

F. Proof of Lemma 2.

Lemma 7: Let λ > 0 and assume (H1)–(H4)
and (IPλrel). Then for every R > 0, ψ̄ ∈ Kλ ∩ RBC
and every t̄ ∈ [0, T ] there exists ρt̄,ψ̄ > 0 such that
∀ v ∈ coF (t̄, ψ̄) with max

n∈N1
K(ψ̄(0))

〈n, v〉 ≥ 0 we can find

w ∈ Liminf(s,φ)→(t̄,ψ̄)coF (s, φ) satisfying

max
{
〈n,w〉, 〈n,w − v〉 | n ∈ N1

K(ψ̄(0))
}
≤ −2ρt̄,ψ̄.

(39)
Proof. The proof follows the same lines as [17, Proof
of Lemma 3.7]. �

Proof of Lemma 2. Let R > 0, t̄ ∈ [0, T ] and
ψ̄ ∈ Kλ ∩RBC be fixed and let ρt̄,ψ̄ be as in Lemma 7.
We claim the existence of ηt̄,ψ̄ > 0 such that for every
t ∈ B(t̄, ηt̄,ψ̄), every ψ ∈ Kλ ∩ BC(ψ̄, ηt̄,ψ̄) + ηt̄,ψ̄BC
and every v ∈ coF (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ coF (t, ψ) satisfying{
〈n,w〉 ≤ −ρt̄,ψ̄ and 〈n,w − v〉 ≤ −ρt̄,ψ̄
∀n ∈ N1

K(x),∀x ∈ ∂K ∩B(ψ(0), ηt̄,ψ̄).

Suppose by contradiction that there exist
ti → t̄, ψi → ψ̄, vi ∈ coF (ti, ψi), xi →∂K ψ̄(0)
and ni ∈ N1

K(xi) such that 〈ni, vi〉 ≥ 0
and for every wi ∈ coF (t, ψi) we can find
x′i →∂K ψ̄(0), n′i ∈ N1

K(x′i) satisfying

〈n′i, wi〉 ∨ 〈n′i, wi − vi〉 > −ρt̄,ψ̄. (40)

Since F is upper semicontinuous at every point of
[0, T ] × Kλ, so is coF . taking subsequences and
keeping the same notations we may assume that
vi converge to some v ∈ coF (t̄, ψ̄), ni → n and
n′i → n′. Since the map x  N1

K(x) is upper
semicontinuous, we have n, n′ ∈ N1

K(ψ̄(0)) and
〈n, v〉 ≥ 0. Then max

n∈N1
K(ψ̄(0))

〈n, v〉 ≥ 0. Consider w as

in (39) corresponding to this v and let wi ∈ coF (t, ψi)
be such that wi → w. From (40) we deduce that
〈n′, w〉 ∨ 〈n′, w − v〉 ≥ −ρt̄,ψ̄ , contradicting the choice
of w. The rest of the proof is similar to Step 3 of
Lemma 1. �

G. Proof of Theorem 5.

The proof of Theorem 5 is a straightforward con-
sequence of Theorem 4. Indeed, fix t0 ∈ [0, T ]
and let us introduce for every (t, ψ) ∈ [t0, T ] ×
C([−τ, 0],Rn) the set-valued map F defined by
F (t, ψ) := F(t, ψ(0), ψ(−τ)). It is easy to see
that under the assumptions (A1)–(A4), the set-valued
map F verifies (H1)–(H4). In addition, we can show
that, under (IPλeq), condition (IPλrel) holds true.
In fact, let ψ ∈ Kλ. By definition of Kλ, we
have ψ(0) ∈ ∂K and ψ(−τ) ∈ ψ(0) + λτB.
Then, from (IPλeq), for every v ∈ F (t, ψ) ≡
F(t, ψ(0), ψ(−τ)) such that max

n∈N1
K(ψ(0))

〈n, v〉 ≥ 0 there

exists w ∈ Liminf(s,z,ξ)→(t,ψ(0),ψ(−τ))coF(s, z, ξ) sat-
isfying

max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0.

From the inclusion

Liminf(s,z,ξ)→(t,ψ(0),ψ(−τ))coF(s, z, ξ) ⊂
Liminf(s,φ)→(t,ψ)coF (s, φ),

we deduce that (IPλrel) holds true. Hence, Theorem 4
concludes the proof. �
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(Canada), International Institute for Ap-
plied Systems Analysis (Austria); Istituto
Nazionale di Alta Matematica “F. Severi”,

Roma (Italy); Scuola Normale Superiore di Pisa (Italy); Scuola In-
ternazionale Superiore di Studi Avanzati, Trieste (Italy); Università
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