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Abstract. Partial and full sensitivity relations are obtained for nonauto-
nomous optimal control problems with infinite horizon subject to state con-

straints, assuming the associated value function to be locally Lipschitz in the

state. Sufficient structural conditions are given to ensure such a Lipschitz regu-
larity in presence of a positive discount factor, as it is typical of macroeconomics

models.

1. Introduction. Consider the infinite horizon optimal control problem B∞

minimize

∫ ∞
t0

L(t, x(t), u(t)) dt (1)

over all the trajectory-control pairs subject to the state constrained control system
x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0

u(t) ∈ U(t) a.e. t ∈ [t0,∞)

x(t) ∈ A t ∈ [t0,∞)

(2)

where f : [0,∞)×Rn ×Rm → Rn and L : [0,∞)×Rn ×Rm → R are given, A is a
nonempty closed subset of Rn, U : [0,∞)⇒ Rm is a Lebesgue measurable set valued
map with closed nonempty images and (t0, x0) ∈ [0,∞) × A is the initial datum.
Every trajectory-control pair (x(·), u(·)) that satisfies the state constrained control
system (2) is called feasible. We refer to such x(·) as a feasible trajectory. The
infimum of the cost functional in (1) over all feasible trajectory-control pairs, with
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the initial datum (t0, x0) or if the integral in (1) is not well defined for every feasible
trajectory-control pair (x(·), u(·)), is denoted by V (t0, x0) (if no feasible trajectory-
control pair exists at (t0, x0), or if the integral in (1) is not defined for every feasible
pair, we set V (t0, x0) = +∞). The function V : [0,∞) × A → R ∪ {±∞} is called
the value function of problem B∞.

Infinite horizon problems have a very natural application in mathematical eco-
nomics (see, for instance, the Ramsey model in [14]). In this case the planner
seeks to find a solution to B∞ (dealing with a maximization problem instead of a
minimization one) with

L(t, x, u) = e−λtl(ug(x)) & f(t, x, u) = f̃(x)− ug(x)

where l(·) is called the “utility” function, f̃(·) the “production” function, and
g(·) the “consumption” function, while the variable x stands for the “capital” (in
many applications one takes as constraint set A = [0,∞) with U(·) ≡ [−1, 1]).
The approach used by many authors to address this problem is to find necessary
conditions of the first or second order (cfr. [1], [6], [9], [18]).

It happens quite often, in mathematical economics papers, that one considers
as candidates for optimal solutions only trajectories satisfying simultaneously the
unconstrained Pontryagin maximum principle and the state constraints. Such an
approach, however, is incorrect as there are cases (see, e.g., Example 1) where no
optimal trajectory exists in this class. There is, therefore, the need of a constrained
maximum principle for infinite horizon problems with sufficiently general structure.

The literature dealing with necessary optimality conditions for unconstrained in-
finite horizon optimal control problems is quite rich (see, e.g., [3] and the reference
therein), mostly under assumptions on f and L that guarantee the Lipschitz regu-
larity of V (·, ·). On the contrary, recovering optimality conditions in the presence
of state constraints appears quite a challenging issue for infinite horizon problems,
despite all the available results for constrained Bolza problems with finite horizon
(cfr. [19]).

As a matter of fact, necessary conditions in the form of the maximum princi-
ple and partial sensitivity relations have been obtained for infinite horizon convex
problems under smooth functional constraints such as h(t, x(t)) ≥ 0 (see, e.g., [16]).
In this paper we prefer to deal with the constraint h(t, x(t)) ≤ 0 (without loss of
generality). For instance, suppose (x̄, ū) is optimal at (t0, x0) for the problem

maximize
∫∞
t0
L(t, x(t), u(t)) dt

x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0

u(t) ∈ U a.e. t ∈ [t0,∞)

h(t, x(t)) ≤ 0 t ∈ [t0,∞),

with U a closed convex subset of Rm, h ∈ C2, f and L continuous together with
their partial derivatives with respect to x and u, and assume the inward pointing
condition

inf
u∈U
〈∇xh(t, x̄(t)), f(t, x̄(t), u)− f(t, x̄(t), ū(t))〉 < 0 ∀t > t0.

If h(t0, x0) < 0, then one proves that there exist q0 ∈ {0, 1}, a co-state q(·), and
a nondecreasing function µ(·), constant on any interval where h(t, x̄(t)) < 0, such
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that (q0, q(t0)) 6= (0, 0), µ(t0) = 0, and q(·) satisfies the adjoint equation

q(t) = q(t0)−
∫ t

t0

∇xH(s, x̄(s), q(s), ū(s)) ds−
∫

[t0,t]

∇xh(s, x̄(s)) dµ(s)

and the maximum principle

H(t, x̄(t), q(t), ū(t)) = max
u∈U

H(t, x̄(t), q(t), u) a.e. t ∈ [t0,∞),

where H(t, x, p, u) := 〈 p, f(t, x, u)〉 + q0L(t, x, u). Furthermore in [7], using the
language of the calculus of variations, the authors show that, under some very
restrictive assumptions on f , if A is convex and intA 6= ∅ then, for any optimal
trajectory x̄(·) of problem B∞, there exists an absolutely continuous arc q(·) which
satisfies the adjoint equation and the partial sensitivity relation q(t) ∈ ∂xV (t, x̄(t))
for all t ∈ [t0,∞).

In the present work, for the first time we provide the normal maximum principle
(i.e. q0 = 1) together with partial and full sensitivity relations and a transversality
condition at the initial time, under mild assumption on dynamics and constraints.
To describe our results, assume for the sake of simplicity that L(t, x, u) = e−λtl(x, u)
is smooth, U(·) ≡ U is a closed subset of Rm, V (t, ·) is continuously differentiable,
and denote by NA(y) the limiting normal cone to A at y. If (x̄, ū) is optimal for
B∞ at (t0, x0) ∈ [0,∞) × intA, then Theorem 4.2 below guarantees the existence
of a locally absolutely continuous co-state p(·), a nonnegative Borel measure µ on
[t0,∞), and a Borel measurable selection ν(·) ∈ coNA(x̄(·)) ∩ B such that p(·)
satisfies the adjoint equation

−p′(t) = dxf(t, x̄(t), ū(t))∗ (p(t) + η(t))− e−λt∇xl(x̄(t), ū(t)) a.e. t ∈ [t0,∞),

the maximality condition

〈 p(t) + η(t), f(t, x̄(t), ū(t))〉 − e−λtl(x̄(t), ū(t))

= max
u∈U

{
〈 p(t) + η(t), f(t, x̄(t), u)〉 − e−λtl(x̄(t), u)

}
a.e. t ∈ [t0,∞),

and the transversality and sensitivity relations

−p(t0) = ∇xV (t0, x̄(t0)), − (p(t) + η(t)) = ∇xV (t, x̄(t)) a.e. t ∈ (t0,∞), (3)

where η(t0) = 0 and η(t) =
∫

[t0,t]
ν(s) dµ(s) for all t ∈ (t0,∞). Observe that, if

x̄(·) ∈ intA, then ν(·) ≡ 0 and the usual maximum principle holds true. But if
x̄(t) ∈ ∂A for some time t, then a measure multiplier factor,

∫
[0,t]

ν dµ, may arise

modifying the adjoint equation.
Furthermore, the transversality condition and sensitivity relation in (3) lead to a

significant economic interpretation (see [2], [17]): the co-state p+η can be regarded
as the “shadow price” or “marginal price” , i.e., (3) describes the contribution to
the value function (the optimal total utility) of a unit increase of capital x.

From the technical point of view, this paper relies on two main ideas. The first
one consists in reformulating the infinite horizon problem as a Bolza problem on
each finite time interval, which can be analyzed in detail by appealing to the existing
theory for finite horizon problems. More precisely, fixing any T > 0, we have that

V (s, y) = inf

{
V (T, x(T )) +

∫ T

s

L(t, x(t), u(t)) dt

}
∀(s, y) ∈ [0, T ]×A,

where the infimum is taken over all the feasible trajectory-control pairs (x, u) sat-
isfying (2) with initial datum (s, y) (Lemma 4.1). Hence, problem B∞ becomes
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a Bolza problem on [0, T ] with the additional final cost φT (·) = V (T, ·). Then,
assuming the local Lipschitz regularity of V (T, ·), we derive uniform bounds for the
truncated co-states (Lemma 3.4) which in turn allow to pass to the limit as t→∞
in the necessary conditions (Theorem 4.2). The second key point is Therem 5.1
which provides structural assumptions on the data for V to be Lipschitz. A typical
dynamic programming argument is used to obtain such a property for certain classes
of Lagrangians, which include problems with a sufficiently large discount factor or
a periodic dependence on time.

The outline of the paper is as follows. In Section 2, we provide basic definitions,
terminology, and facts from nonsmooth analysis. In Section 3, we give a bound
on the total variation of measures associated to Mayer problems under state con-
straints. In Section 4, we focus on the main result, investigating problem B∞ and
stating sensitivity relations and transversality condition for the co-state. Finally, in
the last Section, we prove the uniform Lipschitz continuity of a large class of value
functions when A is compact.

2. Preliminaries on nonsmooth analysis. We denote by B the closed unit ball
in Rn and by |·| the Euclidean norm. The interior of C ⊂ Rn is written as intC.
Given a nonempty subset C and a point x we denote the distance from x to C by
dC(x) := inf {|x− y| : y ∈ C}, the convex hull of C by coC, and its closure by
coC. Take a family of sets {S(y) ⊂ Rn : y ∈ D} where D ⊂ Rn and x ∈ Rn. The
sets1

Lim inf
y→x
D

S(y) := {ξ ∈ Rn : ∀xi −→
D

x, ∃ξi → ξ s.t. ξi ∈ S(xi) for all i},

Lim sup
y→x
D

S(y) := {ξ ∈ Rn : ∃xi −→
D

x, ∃ξi → ξ s.t. ξi ∈ S(xi) for all i}

are called, respectively, the lower and upper limits in the Kuratowski sense. Ob-
serve that these upper and lower limits are closed, possibly empty, and verify
Lim inf
y→x
D

S(y) ⊂ Lim sup
y→x
D

S(y).

We denote by W 1,1(a, b;Rn) the space of all absolutely continuous Rn-valued

functions u : [a, b]→ Rn endowed with the norm ‖u‖W 1,1(a,b) = |u(a)|+
∫ b
a
|u′(t)| dt.

Let u : [a,∞) → Rn, we write u ∈ W 1,1
loc (a,∞;Rn) if u|[a,b] ∈ W 1,1(a, b;Rn) for

all b > a. Let I be a compact interval in R. We denote by C(I;Rn) the set
of all continuous Rn-valued functions endowed with the uniform norm ‖u‖∞,I =

sup {|u(t)| : t ∈ I}.
Let G : [a, b] × Rn ⇒ Rn be a multifunction taking nonempty values. We say

that G(·, x) is absolutely continuous from the left, uniformly on R ⊂ Rn, if for any
ε > 0 there exists δ > 0 such that for any finite partition a 6 t1 < τ1 6 t2 < τ2 6
... 6 tm < τm 6 b of [a, b] satisfying

∑m
1 (τi − ti) < δ and for any x ∈ R we have∑m

1 dG(τi,x)(G(ti, x)) < ε, where for any E,E′ ⊂ Rn

dE(E′) := inf {β > 0 : E′ ⊂ E + βB} .

Take a closed set E ⊂ Rn and x ∈ E. The regular normal cone N̂E(x) to E at
x and the limiting normal cone NE(x) to E at x are defined, respectively, by

1we write yi −→
E

x for yi → x and yi ∈ E for any i.
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N̂E(x) :=

p ∈ Rn : lim sup
y→x
E

〈 p, y − x〉
|y − x|

6 0


NE(x) := Lim sup

y→x
E

N̂E(y).

We denote by TCE (x) := (NE(x))− the Clarke tangent cone to E at x, where “− ”
stands for the negative polar of a set. It is well known that coNE(x) = NC

E (x) where
NC
E (x) := (TCE (x))− denotes the Clarke normal cone to E at x (cfr. [15, Chapter

6]). Take an extended-valued function f : Rn → R∪ {+∞} and define the effective
domain of f by dom f := {x ∈ Rn : f(x) < +∞}. We denote by epi f and hypo f
the epigraph and hypograph of f respectively. The subdifferential, the limiting
subdifferential and the limiting superdifferential of an extended real function f at
x ∈ dom f are defined respectively by

∂̂f(x) :=
{
ξ ∈ Rn : (ξ,−1) ∈ N̂epi f (x, f(x))

}
∂f(x) := {ξ ∈ Rn : (ξ,−1) ∈ Nepi f (x, f(x))}

∂+f(x) := {ξ ∈ Rn : (−ξ, 1) ∈ Nhypo f (x, f(x))} .
If f is Lipschitz continuous on a neighborhood of x ∈ dom f , then ∂f(x) and ∂+f(x)

are nonempty. It is well known that ∂̂f(x) 6= ∅ on a dense subset of dom f , whenever
f is lower semicontinuous.

3. The value function. Let τ > 0 and gτ : Rn → R be a locally Lipschitz
continuous function. Consider the problem M (gτ , τ) on [0, τ ]

minimize gτ (x(τ)) (4)

over all the trajectories of the following differential inclusion under state constraints
x′(t) ∈ F (t, x(t)) a.e. t ∈ [t0, τ ]

x ∈W 1,1(t0, τ ;Rn)

x(t0) = x0

x(t) ∈ Ω t ∈ [t0, τ ]

(5)

with the initial datum (t0, x0) ∈ [0, τ ] × Ω, where F : [0,∞) × Rn ⇒ Rn is a
multifunction and Ω ⊂ Rn a nonempty closed set. Every trajectory x(·) that satisfies
the state constrained differential inclusion (5) is called feasible. The infimum of the
cost in (4) over all feasible trajectories, with the initial datum (t0, x0), is denoted
by V τ (t0, x0) (if no feasible trajectory does exist, we define V τ (t0, x0) = +∞). The
function

V τ : [0, τ ]× Ω→ R ∪ {±∞}
is called the value function of problem M (gτ , τ). We say that x̄(·) is a minimizer for
problem M (gτ , τ) at (t0, x0) if x̄ is feasible, x̄(t0) = x0 and V (t0, x0) = gτ (x̄(τ)).

We start with the main assumptions on F (·, ·) and Ω.
Hypothesis (H1):

• F (·, ·) takes closed nonempty values and F (·, x) is Lebesgue measurable for
any x ∈ Rn;

• there exists k ∈ L∞([0,∞);R+) such that F (t, x) ⊂ k(t)(1 + |x|)B for any
x ∈ Rn, a.e. t ∈ [0,∞);
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• for all R > 0 there exists γR ∈ L1
loc([0,∞);R+) such that F (t, x) ⊂ F (t, x′) +

γR(t) |x− x′|B for any x, x′ ∈ B(0, R), a.e. t ∈ [0,∞);
• (Relaxed Inward Pointing Condition-IPC ′) For any (t, x) ∈ [0,∞)× ∂Ω there

exists a set Ωt,x ⊂ [0,∞) with null measure such that for any v ∈ Rn satisfying

v ∈ Lim sup
(s,y)→(t,x)
s/∈Ωt,x

F (s, y) and max
n∈NΩ(x)∩Sn−1

〈n, v〉 > 0

we can find w ∈ Rn such that

w ∈ Lim inf
(s,y)→(t,x)
s/∈Ωt,x

coF (s, y) and max
n∈NΩ(x)∩Sn−1

〈n,w − v〉 < 0.

Let us denote by (H2) the hypothesis as in (H1) under an additional assumption

• For any R > 0 there exists r > 0 such that F (·, x) is absolutely continuous
from the left, uniformly over x ∈ (∂Ω + rB) ∩B(0, R),

and with the Relaxed Inward Pointing Condition (IPC′) replaced by

• (Relaxed Inward Pointing Condition-IPC) For any (t, x) ∈ [0,∞)× ∂Ω

Lim inf
(t′,x′)→(t,x)

(t′,x′)∈[0,∞)×Ω

coF (t′, x′)
⋂

intTCΩ (x) 6= ∅.

Remark 1. We note that, if F is continuous, then the IPC condition reduces to

coF (t, x)
⋂

intTCΩ (x) 6= ∅ ∀(t, x) ∈ [0,∞)× ∂Ω. (6)

Define the Hamiltonian

H(t, x, p) = max
v∈F (t,x)

〈 p, v〉 ∀ (t, x, p) ∈ R+ × Rn × Rn.

Then, by the separation theorem, (6) is equivalent to

H(t, x,−p) > 0 ∀ 0 6= p ∈ NC
Ω (x).

Theorem 3.1 ([8]). Assume (H1), let g : Rn → R be a locally Lipschitz continuous
function and consider the problem M (g, τ) with τ > 0. Then V τ (·, ·) is locally
Lipschitz continuous on [0, τ ]× Ω.

Moreover, if x̄(·) is a minimizer for M (g, τ) with initial condition (t0, x0) ∈
[0, τ ] × Ω, then there exists p ∈ W 1,1(t0, τ ;Rn), a different from zero nonnegative
Borel measure µ on [t0, τ ] and a Borel measurable function ν : [t0, τ ] → Rn such
that, letting

q(t) = p(t) + η(t)

with

η(t) =

{∫
[t0,t]

ν(s) dµ(s) t ∈ (t0, τ ]

0 t = t0,

the following holds true:

(i) ν(t) ∈ coNΩ(x̄(t)) ∩ B µ− a.e. t ∈ [t0, τ ];
(ii) p′(t) ∈ co

{
r : (r, q(t)) ∈ NGrF (t,·)(x̄(t), x̄′(t))

}
for a.e. t ∈ [t0, τ ];

(iii) −q(τ) ∈ ∂g(x̄(τ)), −q(t0) ∈ ∂+
x V

τ (t0, x̄(t0));
(iv) 〈 q(t), x̄′(t)〉 = max {〈 q(t), v〉 : v ∈ F (t, x̄(t))} for a.e. t ∈ [t0, τ ];
(v) −q(t) ∈ ∂0

xV
τ (t, x̄(t)) for a.e. t ∈ (t0, τ ];

(vi) (H(t, x̄(t), q(t)),−q(t)) ∈ ∂0V τ (t, x̄(t)) for a.e. t ∈ (t0, τ ],
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where

∂0
xV

τ (t, x) := Lim sup
x′→x
int Ω

co ∂xV
τ (t, x′),

∂0V τ (t, x) := Lim sup
(t′,x′)→(t,x)
[t0,τ ]×int Ω

co ∂V τ (t, x′).

Remark 2. We would like to acknowledge here that the proof of the above result
in [8] contains an erroneous claim which however does not have any impact neither
on the rest of the proof nor on the final result. Namely on p. 373 the correct
expression is ∂h>(x̄(t), f̄(t)) = (0, 0, 0, 0, 0, 0,−1) whenever x̄(t) ∈ intA and so the
claim (27) is not correct. This does not influence however the rest of the arguments
of the proof.

Theorem 3.2 ([8]). The conclusion of Theorem 3.1 is also valid if we assume (H2)
instead of (H1).

Definition 3.3. A family G of R-valued functions defined on E ⊂ Rk is uniformly
locally Lipschitz continuous on E if for all R > 0 there exists LR > 0 such that

|ϕ(z)− ϕ(z̃)| 6 LR |z − z̃|

for all z, z̃ ∈ E ∩B(0, R) and ϕ ∈ G .

Lemma 3.4. Assume (H1) or (H2). For all j ∈ N let gj : Rn → R be a locally
Lipschitz continuous function. Fix (t0, x0) ∈ [0,∞)× int Ω, T > t0 and consider the
problems M (gj , j). Assume also that

{
V j(·, ·)

}
j>T

are uniformly locally Lipschitz

continuous on [0, T ] × Ω. Let x̄ ∈ W 1,1
loc (t0,∞; Ω) be such that for any j > T the

restriction x̄|[t0,j](·) is a minimizer for problem M (gj , j) with initial datum (t0, x0).
Let, for every j ∈ N, pj, qj, νj, and µj be as in the conclusion of Theorem 3.1 for
the problem M (gj , j).

Then

(i) {pj}j>T and {qj}j>T are uniformly bounded on [t0, T ];

(ii) the total variation of the measures {µ̃j}j>T on [t0, T ] is uniformly bounded,

where µ̃j is defined by µ̃(dt) = |νj(t)|µj(dt).

The proof of the above lemma relies on the following proposition, which can be
in turn justified following the same reasoning as in the proof of [11, Lemma 4.1].

Proposition 1. Let I ⊂ R be an interval and G : I ⇒ Rn be a lower semicontinuous
set valued map such that G(t) is a closed convex cone and intG(t) 6= ∅ for all t ∈ I.
Then for every ε > 0 there exists a continuous function f : I → Rn such that for
all t ∈ {s ∈ I : G(s) 6= Rn}

sup
n∈G(t)−∩Sn−1

〈n, f(t)〉 6 −ε.

Proof of the Lemma 3.4. Since x̄(·) is continuous, hence locally bounded, by the
uniform local Lipschitz continuity of

{
V j
}
j

we deduce that

sup
{
|ξ| : ξ ∈

⋃
t∈[t0,T ]

∂0
xV

j(t, x̄(t)) ∪ ∂+
x V

j(t0, x̄(t0)), j > T
}
<∞. (7)

By Theorem 3.1-(iii), (v) we know that

−qj(T ) ∈ ∂gj(x̄(T )), −qj(t0) = −pj(t0) ∈ ∂+
x V

j(t0, x̄(t0))
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and

−qj(t) ∈ ∂0
xV

j(t, x̄(t)) a.e. t ∈ (t0, T ]

for all j > T . Since qj are right continuous on (t0, T ), from (7), it follows that{
‖qj‖∞,[t0,T ]

}
j>T

is bounded. (8)

Now, by a well-known property of Lipschitz multifunctions (cfr. [19, Proposition
5.4.2]), from (ii) of Theorem 3.1 and assumptions (H1) (respectively (H2)) it
follows that there exists ξ ∈ L1

loc[t0,∞) such that
∣∣p′j(t)∣∣ 6 ξ(t) |qj(t)| for a.e.

t ∈ [t0, T ] and all j > T . Hence, in view of (8),{
‖pj‖∞,[t0,T ]

}
j>T

is bounded. (9)

So, the conclusion (i) follows. Also, since qj(t) = pj(t) + ηj(t), from (8) and (9) we
deduce that {

‖ηj‖∞,[t0,T ]

}
j>T

is bounded. (10)

Now let Γ := {s ∈ [t0, T ] : x̄(s) ∈ ∂Ω}. From the Relaxed Inward Pointing Condi-
tion, it follows that intTCΩ (x̄(t)) is nonempty for all t ∈ Γ and so intTCΩ (x̄(t)) is
nonempty for all t ∈ [t0, T ]. Furthermore, this implies that the set valued map t 
TCΩ (x̄(t)) is lower semicontinuous on [t0, T ]. Since Γ =

{
s ∈ [t0, T ] : TC

Ω (x̄(s)) 6= Rn
}
,

we can apply Proposition 1 with ε = 2 to conclude that there exists a continuous
function f : [t0, T ]→ Rn such that

sup
n∈NC

Ω (x̄(t))∩Sn−1

〈 f(t), n〉 6 −2 ∀t ∈ Γ.
(11)

We remark that the function f does not depend on j but only on x̄(·) and T . Now,

consider f̃ ∈ C∞([t0, T ];Rn) such that
∥∥∥f − f̃∥∥∥

∞,[t0,T ]
6 1. We obtain from (11)

sup
n∈NC

Ω (x̄(t))∩Sn−1

〈 f̃(t), n〉 6 −1. (12)

Then, from (12) we deduce that for all j > T ,∫
[t0,T ]

〈 f̃(s), νj(s)〉 dµj(s)

=

∫
[t0,T ]∩{s : νj(s) 6=0}

〈 f̃(s), νj(s)〉 dµj(s)

=

∫
[t0,T ]∩{s : νj(s) 6=0}

〈 f̃(s),
νj(s)

|νj(s)|
〉 |νj(s)| dµj(s)

6 −
∫

[t0,T ]∩{s : νj(s) 6=0}
|νj(s)| dµj(s)

= −
∫

[t0,T ]

|νj(s)| dµj(s).

So, ∫
[t0,T ]

|νj(s)| dµj(s) 6
∫

[t0,T ]

〈−f̃(s), νj(s)〉 dµj(s). (13)
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Furthermore, from (10), integrating by parts, we obtain that, for some constant
C > 0 and all j > T , ∫

[t0,T ]

〈−f̃(s), νj(s)〉 dµj(s)

=

∫
[t0,T ]

−f̃(s) dηj(s)

= −ηj(T )f̃(T ) +

∫
[t0,T ]

ηj(s)f̃
′(s) ds

6 C
(∥∥∥f̃∥∥∥

∞
+ (T − t0)

∥∥∥f̃ ′∥∥∥
∞

)
.

(14)

Now, since f̃ does not depend on j, from (13) and (14) we deduce (ii).

4. The infinite horizon optimal control problem. Consider the infinite hori-
zon optimal control problem with state constraints B∞ as in (1)-(2). We define the
Hamiltonian function on [0,∞)× Rn × Rn by

H(t, x, p) = sup {〈 p, f(t, x, u)〉 − L(t, x, u) : u ∈ U(t)} .

Let us denote by (h) the following assumptions:

• there exist two locally essentially bounded functions b, θ : R+ → R+ and a
nondecreasing function Ψ : R+ → R+ such that for a.e. t ∈ R+ and for all
x ∈ Rn, u ∈ U(t)

|f(t, x, u)| 6 b(t) (1 + |x|) ,
|L(t, x, u)| 6 θ(t)Ψ(|x|);

• for any R > 0 there exist two locally integrable functions cR, αR, : R+ → R+

such that for a.e. t ∈ R+ and for all x, y ∈ B(0, R), u ∈ U(t),

|f(t, x, u)− f(t, y, u)| 6 cR(t)|x− y|,
|L(t, x, u)− L(t, y, u)| 6 αR(t) |x− y| ;

• for all x ∈ Rn the mappings f(·, x, ·), L(·, x, ·) are Lebesgue-Borel measurable;
• For a.e. t ∈ R+, and for all x ∈ Rn the set

{(f(t, x, u), L(t, x, u)) : u ∈ U(t)}

is closed;
• the Relaxed Inward Pointing Condition-IPC ′ is satisfied;

• for all (t0, x0) ∈ [0,∞) × A the limit limT→∞
∫ T
t0
L(t, x(t), u(t)) dt exists for

all trajectory-control pairs (x, u) satisfying (2) with initial datum (t0, x0);
• V (t0, x0) 6= −∞ for all (t0, x0) ∈ [0,∞)×A.

Remark 3. A sufficient condition to guarantee that the last two hypothesis in (h)
are satisfied is to assume that L takes nonnegative values. Alternatively, we may
assume that for any initial datum (t0, x0) there exists a function φt0,x0 ∈ L1(0,∞)
such that L(t, x(t), u(t)) > φt0,x0

(t) a.e. t ∈ [t0,∞) for all trajectory-control pairs
(x, u) satisfying (2).

The above hypotheses guarantee the existence and uniqueness of the solution to
the differential equation in (2) for every initial datum x0 and every control. So,
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denoting by xx0,u0(·) such solution starting from x0 at time t0, associated with a
control u0(·), by Gronwall’s lemma and our growth assumptions

|xx0,u0
(t)| 6

(
|x0|+ (t− t0) ‖b‖∞,[t0,t]

)
e(t−t0)‖b‖∞,[t0,t] ∀t > t0. (15)

In particular, feasible trajectories are uniformly bounded on every compact time
interval. Moreover, setting

Mt0,R(t) =
(
R+ (t− t0) ‖b‖∞,[t0,t]

)
e(t−t0)‖b‖∞,[t0,t] ,

by (15), Gronwall’s lemma, and our assumptions we have that for all R, t > 0, all
t0 ∈ [0, t], and all x0, x1 ∈ B(0, R)

|xx1,u(s)− xx0,u(s)| 6 |x1 − x0| e
∫ s
t0
cMt0,R(t)(ξ) dξ ∀s ∈ [t0, t]. (16)

Define the extended value function V : [0,∞)×A→ R∪ {+∞} of problem B∞ by

V (t0, x0) := inf

∫ ∞
t0

L(t, x(t), u(t)) dt,

where the infimum is taken over all trajectory-control pairs (x, u) that satisfy (2)
with the initial datum (t0, x0) ∈ [0,∞)×A.

We denote by domV the set {(t0, x0) ∈ [0,∞)×A : V (t0, x0) < +∞}, and we
say that a pair (x̄, ū) is optimal for B∞ at (t0, x0) ∈ domV if∫ ∞

t0

L(t, x̄(t), ū(t)) dt 6
∫ ∞
t0

L(t, x(t), u(t)) dt

for any feasible trajectory-control pair (x, u) starting from x0 at time t0.

Lemma 4.1. Let T > 0 and assume (h). Consider the Bolza problem BT

minimize

{
V (T, x(T )) +

∫ T

t0

L(t, x(t), u(t)) dt

}
over all the trajectory-control pairs satisfying the state constrained equation

x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0, T ]

x(t0) = x0

u(t) ∈ U(t) a.e. t ∈ [t0, T ]

x(t) ∈ A t ∈ [t0, T ].

Denote by VBT
: [0, T ] × A → R ∪ {+∞} the value function of the above problem.

Then

VBT
(·, ·) = V (·, ·) on [0, T ]×A. (17)

Furthermore, if (x̄, ū) is optimal at (t0, x0) ∈ [0, T ]×A for B∞, then the restriction
of (x̄, ū) to the time interval [t0, T ] is optimal for the Bolza problem BT too.

Proof. Let (t0, x0) ∈ [0, T ] × A and ε > 0. If V (t0, x0) = +∞, then V (t0, x0) >
VBT

(t0, x0). Otherwise, there exists a feasible trajectory-control pair (xε, uε) for
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problem B∞ at (t0, x0) such that

V (t0, x0) >
∫ T

t0

L(s, xε(s), uε(s)) ds+

∫ ∞
T

L(s, xε(s), uε(s)) ds− ε

>
∫ T

t0

L(s, xε(s), uε(s)) ds+ V (T, xε(T ))− ε

> VBT
(t0, x0)− ε.

(18)

Since ε is arbitrary, we obtain V (t0, x0) > VBT
(t0, x0).

On the other hand, if VBT
(t0, x0) = +∞, then VBT

(t0, x0) > V (t0, x0). Oth-
erwise, there exists a feasible trajectory-control pair (x̃ε, ũε) for problem BT at
(t0, x0) such that

VBT
(t0, x0) >

∫ T

t0

L(s, x̃ε(s), ũε(s)) ds+ V (T, x̃ε(T ))− ε.

By (15) and our assumptions on L,
∫ T
t0
|L(s, x̃ε(s), ũε(s))| ds <∞. Hence (T, x̃ε(T )) ∈

domV . So, there exists a feasible trajectory-control pair (x̂ε, ûε) for problem B∞
at (T, x̃ε(T )) such that

VBT
(t0, x0) >

∫ T

t0

L(s, x̃ε(s), ũε(s)) ds+

∫ ∞
T

L(s, x̂ε(s), ûε(s)) ds− 2ε

=

∫ ∞
t0

L(s, x(s), u(s)) ds− 2ε,

(19)

where x(·) is the trajectory starting from x0 at time t0 satisfying the ordinary
differential equation in (2) with the control u given by

u(s) :=

{
ũε(s) s ∈ [t0, T ]

ûε(s) s ∈ (T,∞).

Since u(·) ∈ U(·) and x([t0,∞)) ⊂ A, (x, u) is feasible for problem B∞ at (t0, x0).
Then, by (19), VBT

(t0, x0) > V (t0, x0)− 2ε and, since ε is arbitrary, VBT
(t0, x0) >

V (t0, x0).
The last part of the conclusion follows from (18), by setting ε = 0, (xε, uε) =

(x̄, ū), and using that VBT
(t0, x0) = V (t0, x0).

Theorem 4.2. Assume (h) and suppose that V (i, ·) is locally Lipschitz continuous
on A for all large i ∈ N. Then V is locally Lipschitz continuous on [0,∞)×A.

Moreover, if (x̄, ū) is optimal for B∞ at (t0, x0) ∈ [0,∞) × int Ω, then there

exist p ∈ W 1,1
loc (t0,∞;Rn), a nonnegative Borel measure µ on [t0,∞), and a Borel

measurable function ν : [t0,∞)→ Rn such that, setting

q(t) = p(t) + η(t)

with

η(t) =

{∫
[t0,t]

ν(s) dµ(s) t ∈ (t0,∞)

0 t = t0,

the following holds true:

(i) ν(t) ∈ coNA(x̄(t)) ∩ B µ− a.e. t ∈ [t0,∞);
(ii) p′(t) ∈ co

{
r : (r, q(t),−1) ∈ NGrF (t,·)(x̄(t), x̄′(t), L(t, x̄(t), ū(t)))

}
for a.e. t

∈ [t0,∞) where F (t, x) = {(f(t, x, u), L(t, x, u)) : u ∈ U(t)};
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(iii) −p(t0) ∈ ∂+
x V (t0, x̄(t0)), −q(t) ∈ ∂0

xV (t, x̄(t)) for a.e. t ∈ (t0,∞);
(iv) 〈 q(t), f(t, x̄(t), ū(t))〉 − L(t, x̄(t), ū(t)) = max

u∈U(t)
〈 q(t), f(t, x̄(t), u)〉 − L(t, x̄(t), u) for

a.e. t ∈ [t0,∞);
(v) (H(t, x̄(t), q(t)),−q(t)) ∈ ∂0V (t, x̄(t)) for a.e. t ∈ (t0,∞).

Remark 4. (a) Define G(t, x) = {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} and assume
that for all R > 0 there exists r > 0 such that G(·, x) is absolutely continuous
from the left uniformly over (∂A + rB) ∩ B(0, R). Then the conclusion of
Theorem 4.2 holds if IPC ′ is replaced by IPC;

(b) Theorem 4.2 implies a weaker hamiltonian inclusion

(−p′(t), x̄′(t)) ∈ co ∂(x,p)H(t, x̄(t), q(t)) a.e. t ∈ [t0,∞)

(cfr. comment (e)-[8, p. 362]);
(c) If V (i, ·) is locally Lipschitz continuous on A for all large i, then, under as-

sumptions of Theorem 4.2, V (t, ·) is locally Lipschitz on A for every t ≥ 0;
(d) See Section 5 for sufficient conditions for Lipschitz continuity of V (t, ·) in

the autonomous case when A is compact. Also, sufficient conditions for the
Lipschitz continuity of V (t, ·) in the nonautonomous case for unbounded A
were recently investigated in [5].

Proof of Theorem 4.2. For any j ∈ N such that j > t0 consider the Bolza problem
Bj . We can rewrite the problem as a Mayer one on Rn+1: keeping the same notation
as in Section 3, consider the Mayer problems M (gj , j) on Rn+1 with

gj(ξ, z) := V (j, ξ) + z,

F̃ (t, x, z) := {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} and Ω = A× R.
Denoting by V j the extended value function on [0, j] × Ω for problem M (gj , j)

it follows, by standard arguments (cfr. [10, Chapter 7]), that

V j(t, x, z) = VBj (t, x) + z (20)

for all (t, x, z) ∈ [0, j] × A × R. Since, for all large j, V (j, ·) is locally Lipschitz
continuous on A, also gj is locally Lipschitz on A×R. For every j consider a locally
Lipschitz function ḡj : Rn+1 → R that coincides with gj on A × R. Note that
replacing gj by ḡj does not change the value function of the Bolza problem Bj . So,
applying Theorem 3.1, it follows that V j is locally Lipschitz on [0, j]×A×R for all
large j. Then VBj is locally Lipschitz on [0, j]×A and so, by Lemma 4.1, the value
function V is locally Lipschitz on [0, j] × A. By the arbitrariness of j, V is locally
Lipschitz continuous on [0,∞) × A. Hence, if T > 0, from (20) and (17) it follows
that V j ’s are uniformly locally Lipschitz continuous on [0, T ]×A×R for all j > T .

Since the restriction of (x̄, ū) to [t0, j] is optimal for VBj
at (t0, x0), setting

z̄(t) =

∫ t

t0

L(s, x̄(s), ū(s)) ds,

we have that the restriction of (X̄ := (x̄, z̄), ū) to [t0, j] is optimal for V j at
(t0, (x0, 0)) too. So, we may apply Theorem 3.1 with ḡj instead of gj on each
time interval [t0, j] with j ∈ N ∩ [t0,∞). Denoting by X the pair (x, z) in Rn+1,
we obtain that there exist absolutely continuous arcs {Pj}j and functions {Φj}j of

bounded variation defined on [t0, j], and nonnegative measures {µj}j on [t0, j] such

that {Φj}j are continuous from the right on (t0, j) and
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(a) Qj(t) = Pj(t) + Φj(t), where Φj(t0) = 0, Φj(t) =
∫

[t0,t]
Πj(s) dµj(s) for all

t ∈ (t0, j] for some Borel measurable selections Πj(s) ∈ coNΩ(X̄(s)) ∩ B
µj−a.e. s ∈ [t0, j];

(b) P ′j(t) ∈ co
{
R : (R,Qj(t)) ∈ NGr F̃ (t,·)(X̄(t), X̄ ′(t))

}
for a.e. t ∈ [t0, j];

(c) −Qj(t0) ∈ ∂+
XV

j(t0, X̄(t0));

(d) 〈Qj(t), X̄ ′(t)〉 = max
{
〈Qj(t), v〉 : v ∈ F̃ (t, X̄(t))

}
for a.e. t ∈ [t0, j];

(e) −Qj(t) ∈ ∂0
XV

j(t, X̄(t)) for a.e. t ∈ (t0, j];

(f) (H̃(t, X̄(t), Qj(t)),−Qj(t)) ∈ ∂0V j(t, X̄(t)) for a.e. t ∈ (t0, j],

where H̃(t,X, P ) = maxv∈F̃ (t,X)〈P, v〉.
Let Pj(t) = (pj(t), p

0
j (t)), Qj(t) = (qj(t), q

0
j (t)), Φj(t) = (ηj(t), η

0
j (t)), and

Πj(t) = (νj(t), ν
0
j (t)). Using the definition of limiting normal vectors as limits of

strict normal vectors, relations (a)-(c), and the fact that NΩ(X̄(·)) = NA(x̄(·))×{0}
we obtain

p′j(t) ∈ co
{
r : (r, qj(t), q

0
j (t)) ∈ NGrF (t,·)(x̄(t), x̄′(t), L(t, x̄(t), ū(t)))

}
a.e. t ∈ [t0, j],

(p0
j )
′ ≡ 0, p0

j (t0) = −1, ν0
j ≡ 0, η0

j ≡ 0, q0
j ≡ −1.

Thus, on account of (d)-(f), for a.e. t ∈ [t0, j] we derive the extended Euler-
Lagrange condition

p′j(t) ∈ co
{
r : (r, qj(t),−1) ∈ NGrF (t,·)(x̄(t), x̄′(t), L(t, x̄(t), ū(t)))

}
(21)

where qj(t) = pj(t) + ηj(t), with

ηj(t) =

{∫
[t0,t]

νj(s) dµj(s) t ∈ (t0, j]

0 t = t0,
(22)

and νj(t) ∈ coNA(x̄(t)) ∩ B µj−a.e. on [t0, j], satisfy the maximum principle

〈 qj(t), f(t, x̄(t), ū(t))〉 − L(t, x̄(t), ū(t))

= max
u∈U(t)

〈 qj(t), f(t, x̄(t), u)〉 − L(t, x̄(t), u) a.e. t ∈ [t0, j],
(23)

the transversality condition in terms of limiting superdifferential

−pj(t0) ∈ ∂+
x V (t0, x0), (24)

and the sensitivity relations

−qj(t) ∈ ∂0
xV (t, x̄(t)) a.e. t ∈ (t0, j], (25)

(H(t, x̄(t), qj(t)),−qj(t)) ∈ ∂0V (t, x̄(t)) a.e. t ∈ (t0, j]. (26)

We extend the functions pj and ηj to whole interval (j,∞) as the constants pj(j)
and ηj(j), respectively. We denote again by pj and ηj such extensions.

We divide the proof into three steps. Let k be an integer such that k > t0.

Step 1. Applying Lemma 3.4 to problems M (gj , j), we known that {pj}j>k and

{qj}j>k are uniformly bounded on [t0, k]. Furthermore, for some ξ ∈ L1
loc([0,∞);

R+) and a.e. t ∈ [t0, j], we have
∣∣p′j(t)∣∣ 6 ξ(t) |qj(t)| for all j. So, by the Ascoli-

Arzelà and Dunford-Pettis theorems we have, taking a subsequence and keeping the
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same notation, that there exists an absolutely continuous function pk : [t0, k]→ Rn
such that

pj → pk uniformly on [t0, k]

p′j ⇀ (pk)′ in L1(t0, k).

Furthermore, from Lemma 3.4 again, we known that {ηj}j>k is uniformly bounded

on [t0, k] and the total variation of such functions is uniformly bounded on [t0, k].
So, applying Helly’s selection theorem, taking a subsequence and keeping the same
notation, we deduce that there exists a function of bounded variation ηk on [t0, k]
such that ηj → ηk pointwise on [t0, k] (notice that since ηj(t0) = 0 for all j then
ηk(t0) = 0). Furthermore, from Lemma 3.4-(ii) we deduce that there exists a
nonnegative measure µk on [t0, k] such that, by further extraction of a subsequence,
µ̃j ⇀

∗ µk in C([t0, k];R)∗, where µ̃j(dt) = |νj(t)|µj(dt). Let

γj(t) :=


νj(t)

|νj(t)|
νj(t) 6= 0

0 otherwise.

Since γj(t) ∈ coNA(x̄(t)) ∩ B µ̃j−a.e. t ∈ [t0, k] is a Borel measurable selection,
applying [19, Proposition 9.2.1], we deduce that, for a subsequence ji, there exists
a Borel measurable function νk such that

νk(·) ∈ coNA(x̄(·)) ∩ B µk-a.e. on [t0, k]

and for all φ ∈ C([t0, k];Rn)∫
[t0,k]

〈φ(s), γji(s)〉 dµ̃ji(s)→
∫

[t0,k]

〈φ(s), νk(s)〉 dµk(s) as i→∞. (27)

Now since for t ∈ (t0, k]

ηji(t) =

∫
[t0,t]

νji(s) dµji(s) =

∫
[t0,t]∩{s : νji (s)6=0}

νji(s) dµji(s)

=

∫
[t0,t]

γji(s) dµ̃ji(s),

from (27) it follows that for all t ∈ (t0, k]

ηk(t) =

∫
[t0,t]

νk(s) dµk(s).

By Mazur’s theorem, as in [4, Theorem 7.2.2], using the closedness of ∂+
x V (t0, x0),

∂0
xV (t, x̄(t)) and convexity in (21), passing to the limit in (24), (21), and (23) on

[t0, k], and in (25) and (26) on (t0, k], we obtain condition (iv) on [t0, k], inclusions
(ii) on [t0, k], (iii) and (v) at t0 and on (t0, k].

Step 2. Consider now the interval [t0, k+ 1]. By the same argument as in the first
step, taking suitable subsequences {pjil }l ⊂ {pji}i and {ηjil }l ⊂ {ηji}i, we deduce

that there exist an absolutely continuous function pk+1, a function of bounded
variation ηk+1, and a nonnegative measure µk+1 which satisfy condition (iv) on
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[t0, k+1], inclusions (ii) on [t0, k+1], (iii) and (v) at t0 and on (t0, k+1]. Moreover

pjil → pk+1 uniformly on [t0, k + 1]

p′jil
⇀ (pk+1)′ in L1(t0, k + 1)

pk+1|[t0,k] = pk,

and for all t ∈ [t0, k + 1]

ηjil (t)→ ηk+1(t) =

{∫
[t0,t]

νk+1(s) dµk+1(s) t ∈ (t0, k + 1]

0 t = t0,

where νk+1(·) ∈ coNA(x̄(·)) ∩ B µk+1-a.e. on [t0, k + 1] is a Borel measurable
selection. Furthermore, since ηk+1|[t0,k] = ηk and µk+1|[t0,k] = µk, we have that

νk+1|[t0,k] = νk µk-a.e. on [t0, k].

We see that the functions pk+1, ηk+1, and νk+1 extend the functions pk, ηk, and νk

respectively, and measure µk+1 extends measure µk.

Step 3. Repeating the argument of the second step for any interval [t0, k+ s] with
s ∈ N, we can extend pk, ηk, νk and µk to the whole interval [t0,∞), extracting
every time a subsequence of the previously constructed subsequence. Finally, we
conclude that there exists a locally absolutely continuous function p : [t0,∞)→ Rn,
a function of locally bounded variation η : [t0,∞)→ R, a nonnegative measure µ on
[t0,∞), and a Borel measurable selection ν(t) ∈ coNA(x̄(t))∩B µ−a.e. t ∈ [t0,∞)
satisfying the conclusion of the therorem.

5. Uniform Lipschitz continuity of a class of value functions. We now in-
vestigate the uniform Lipschitz continuity of a class of value functions. In this
section, we assume that f is time independent, i.e., f(t, x, u) = f(x, u), U(·) ≡ U
is closed, A is compact, and assumptions (h) hold true. Then, thanks to Remark 4
(a) and to (6), (IPC′) can be replaced by the simpler condition

max
u∈U
〈−p, f(x, u)〉 > 0 ∀ 0 6= p ∈ NC

A (x) ∀ x ∈ ∂A.

Theorem 5.1. Assume that

L(t, x, u) = e−λtl(x, u).

Then the function v(·) := V (0, ·) is Lipschitz continuous on A for all large λ > 0.
Consequently, the value function V (t, x) of problem B∞, which is equal to

e−λtv(x), is Lipschitz continuous on A uniformly in t > 0 for all large λ > 0.

Proof. By our assumptions, dom v = A and v is bounded. For any x̃ ∈ A let us
denote by Ux̃ the set of all Lebesgue measurable functions u : [0, 1]→ Rm such that
u(t) ∈ U a.e. t ≥ 0 and xx̃,u(s) ∈ A for all s ∈ [0, 1]. By the dynamic programming
principle it follows that for any distinct x1, x0 ∈ A there exists a control u0 feasible
at x0 for problem B∞, such that

v(x0) + |x1 − x0| >
∫ 1

0

e−λsl(xx0,u0(s), u0(s)) ds+ e−λv(xx0,u0(1)).



16 VINCENZO BASCO, PIERMARCO CANNARSA AND HÉLÈNE FRANKOWSKA

Thus, applying again the dynamic programming principle, it follows that for any
u1 ∈ Ux1

v(x1)− v(x0) 6 |x1 − x0|+
∣∣∣∣∫ 1

0

e−λs [l(xx1,u1
(s), u1(s))− l(xx0,u0

(s), u0(s))] ds

∣∣∣∣
+ e−λ |v(xx1,u1

(1))− v(xx0,u0
(1))|

6 |x1 − x0|+
∣∣∣∣∫ 1

0

e−λs [l(xx1,u1
(s), u1(s))− l(xx1,u0

(s), u0(s))] ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

e−λs [l(xx1,u0
(s), u0(s))− l(xx0,u0

(s), u0(s))] ds

∣∣∣∣
+ e−λ |v(xx1,u1

(1))− v(xx0,u0
(1))| .

(28)

By (15), there exists a constant M > 0 such that for all x ∈ A and all Lebesgue
measurable u : [0, 1] → Rm with u(t) ∈ U a.e., the trajectories xx,u(·) take values
in B(0,M) on the time interval [0, 1]. Let C ′ > 0 be a Lipschitz constant for l on
B(0,M), with respect to the space variable. Then, by (16), there exists c > 1 such
that for all x1, x0 ∈ A∫ 1

0

e−λs |l(xx1,u0
(s), u0(s))− l(xx0,u0

(s), u0(s))| ds

6 C ′
∫ 1

0

e−λs |xx1,u0
(s)− xx0,u0

(s)| ds

6 C ′ · c |x1 − x0| .

(29)

So, putting C = C ′ · c+ 1, from (28) it follows that

v(x1)− v(x0) 6 C |x1 − x0|+
∣∣∣∣∫ 1

0

e−λs [l(xx1,u1
(s), u1(s))− l(xx1,u0

(s), u0(s))] ds

∣∣∣∣
+ e−λ |v(xx1,u1

(1))− v(xx0,u0
(1))| .

(30)

Now we claim that there exist a constant β = β(f, l) > 1 and a control u1 ∈ Ux1

such that∣∣∣∣∫ 1

0

e−λs [l(xx1,u1
(s), u1(s))− l(xx1,u0

(s), u0(s))] ds

∣∣∣∣ 6 β |x1 − x0| ,

|xx1,u1
(1)− xx0,u0

(1)| 6 β |x1 − x0| .
(31)

Indeed, if maxs∈[0,1] dA(xx1,u0
(s)) = 0 then u0 ∈ Ux1

. So, (31) follows taking
u1 = u0. Otherwise, suppose maxs∈[0,1] dA(xx1,u0(s)) > 0 and consider the following

control system in Rn+1

x′(s) = f(x(s), u(s)) a.e. s ∈ [0, 1]

z′(s) = e−λsl(x(s), u(s)) a.e. s ∈ [0, 1]

x(0) = x̃, z(0) = 0

u(·) is Lebesgue measurable

u(s) ∈ U a.e. s ∈ [0, 1].

(32)
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Let us denote by (Xx̃,u, u) the trajectory-control pair that satisfies (32) where
Xx̃,u(·) := (xx̃,u(·), z0,u(·)). Set Ω := A × R. By the neighbouring feasible tra-
jectory theorem [12, Theorem 3.3], there exists a constant β > 1 (depending only
on f and l) and a control u1 ∈ Ux1

such that

‖Xx1,u1
−Xx1,u0

‖∞,[0,1] 6 β

(
max
s∈[0,1]

dΩ(Xx1,u0
(s))

)
. (33)

Since dΩ(Xx1,u0
(·)) = dA(xx1,u0

(·)) and xx0,u0
(·) ∈ A we have

‖Xx1,u1
−Xx1,u0

‖∞,[0,1]

6 β max
s∈[0,1]

{
inf
γ∈Ω
|Xx1,u0

(s)− γ|
}

6 β max
s∈[0,1]

{|xx1,u0
(s)− xx0,u0

(s)|}

6 β · c |x1 − x0| .
Furthermore∣∣∣∣∫ 1

0

e−λs [l(xx1,u1(s), u1(s))− l(xx1,u0(s), u0(s))] ds

∣∣∣∣ 6 ‖Xx1,u1 −Xx1,u0‖∞,[0,1]

|xx1,u1
(1)− xx0,u0

(1)| 6 ‖Xx1,u1
−Xx1,u0

‖∞,[0,1] + c |x1 − x0| .

So, replacing β with 2β · c, (31) follows.
Now, let 0 6 r 6 1. Combining the inequalities in (30) and (31) we obtain that

for all x1, x0 ∈ A with |x1 − x0| 6 r
v(x1)− v(x0) 6 (C + β) r + e−λω(βr)

where
ω(r) := sup

|h−h′|6r
h,h′∈A

|v(h)− v(h′)| .

By the symmetry of the previous inequality with respect to x1 and x0 we have that

|v(x1)− v(x0)| 6 (C + β) r + e−λω(βr). (34)

Letting θ := e−λ and α := C + β, we deduce from (34) that for all 0 6 r 6 1

ω(r) 6 αr + θ ω(βr). (35)

So, Lemma 5.2 below yields the Lipschitz continuity of v for λ > log β.
The last part of the conclusion follows observing that V (t, ·) = e−λtv(·).

The next lemma (proved in the Appendix) extends [13, Lemma 2.1].

Lemma 5.2. Let R > 0 and ω : [0, R] → [0,∞) be a nondecreasing function.
Suppose that there exists 0 < θ < 1, α > 0, β > 1 such that

ω(r) 6 αr + θω(βr) ∀ 0 6 r 6 R/β. (36)

Let m > 1 be a real number such that θmβ < 1. Then there exists a constant C > 0
such that

ω(r) 6 Cr1/m ∀ 0 6 r 6 R.

Remark 5. (a) From Theorem 5.1 and Theorem (4.2)-(iii), since V (t, ·) =
e−λtv(·), it follows that

lim
t→∞

q(t) = 0.
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(b) From (35) and Lemma 5.2 it follows that, given any λ > 0, {V (t, ·)}t>0 are

uniformly Hölder continuous on A of exponent 1/m for all m ≥ 1 such that
m > (log β)/λ, where β is as in the above proof.

Corollary 1. Assume that L(t, x, u) = e−λtl(t, x, u) and there exists T > 0 such
that l is time independent for all t > T . Then {V (t, ·)}t>0 are uniformly Lipschitz
continuous on A for all large λ > 0.

Corollary 2. Assume that L(t, x, u) = e−λtl(t, x, u) with the further assumption:
l(·, x, u) is T -periodic, i.e. there exists T > 0 such that l(t+ T, x, u) = l(t, x, u) for
all t > 0, x ∈ Rn and u ∈ Rm. Then {V (t, ·)}t>0 are uniformly Lipschitz continuous
on A for all large λ > 0.

Proof. Fix t ∈ [0,∞). Then, by the dynamic programming principle, for any x, x0 ∈
A there exists u0 feasible for B∞ at x0 such that

V (t, x1)− V (t, x0)

6 |x1 − x0|+

∣∣∣∣∣
∫ t+T

t

e−λs [l(s, xx1,u1
(s), u1(s))− l(s, xx0,u0

(s), u0(s))] ds

∣∣∣∣∣
+ |V (t+ T, xx1,u1

(t+ T ))− V (t+ T, xx0,u0
(t+ T ))|

for any u1 feasible for B∞ at x1. Now, the periodicity of l in the time variable
implies that V (s + T, x) = e−λTV (s, x). From the previous inequality it follows
that

V (t, x1)− V (t, x0)

6 |x1 − x0|+

∣∣∣∣∣
∫ t+T

t

e−λs [l(s, xx1,u1
(s), u1(s))− l(s, xx0,u0

(s), u0(s))] ds

∣∣∣∣∣
+ e−λT |V (t, xx1,u1

(t+ T ))− V (t, xx0,u0
(t+ T ))| .

Proceeding as in the proof of Theorem 5.1, by the neighbouring feasible trajectory
theorem [12, Theorem 3.3] there exist two constants β > 1 and C > 0 (depending
only on f, l, and T ) such that, for all |x1 − x0| 6 r 6 1, we have that

|V (t, x1)− V (t, x0)| 6 (C + β) r + e−λT sup
|h−h′|6βr
h,h′∈A

|V (t, h)− V (t, h′)|.

The conclusion follows applying Lemma 5.2 for λ > (log β)/T .

Example 1. In this example we will show the fallacy of applying the unconstrained
Pontryagin maximum principle to B∞ in order to obtain candidates for optimality
that satisfy some given state constraints.

Consider the following infinite horizon optimal control problem:

maximize J(u) =

∫ ∞
0

e−λt(x(t) + u(t)) dt

over all trajectory-control pairs (x, u) satisfying
x′(t) = −au(t) a.e. t > 0

x(0) = 1

u(t) ∈ [−1, 1] a.e. t > 0

x(t) ∈ (−∞, 1] t > 0,

(37)
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with a > λ > 0.
Applying the Pontryagin maximum principle for unconstrained problems, it fol-

lows that any optimal trajectory-control pair satisfies one of the following three
relations:

(i) x−(t) = 1 + at associated with u−(t) ≡ −1;
(ii) x+(t) = 1− at associated with u+(t) ≡ +1;

(iii) x±(t) = (1− at)χ[0,t̄](t) + (1− at̄+ a(t− t̄))χ(t̄,∞)(t) associated with u±(t) =
χ[0,t̄](t)− χ(t̄,∞)(t), for some t̄ > 0.

Excluding now the trajectories x− and x±, since they are not feasible, this analysis
leads to the conclusion that x+ is the only candidate for optimality. But one can
easily see that the feasible trajectory x̄(t) ≡ 1, associated with the control u(t) ≡ 0,
verifies

J(ū) > J(u+).

Appendix.

Proof of Lemma 5.2. Suppose first that m = 1. Let θ < τ < 1 be such that τβ 6 1.

Then τR 6
R

β
and by the growth assumption in (36) and the monotonicity of ω,

we have that

ω(τR) 6 ατR+ θω(βτR)

6 ατR+ θω(R).
(38)

Applying again (36), the monotonicity of ω, and (38) we obtain

ω(τ2R) 6 ατ2R+ θω(τR)

6 ατ2R+ θ [ατR+ θω(R)]

= ατR(τ + θ) + θ2ω(R).

So, by induction on k ∈ N it is straightforward to show that

ω(τkR) 6 ατR(τk−1 + θτk−2 + ...+ θk−1) + θkω(R)

= αRτk

[
1 +

θ

τ
+ ...+

(
θ

τ

)k]
+ θkω(R)

< αRτk
1

1− θ/τ
+ θkω(R)

=
αR

τ − θ
τk+1 + θkω(R).

Now let r ∈ [0, R]. Then there exists k ∈ N such that τk+1R < r 6 τkR. Finally

ω(r) 6
αR

τ − θ
τk+1 + θkω(R)

6
α

τ − θ
τk+1R+ τk+1R

ω(R)

τR

6

(
α

τ − θ
+
ω(R)

τR

)
r.

The conclusion holds true with C =
α

τ − θ
+
ω(R)

τR
.
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If m > 1, by the growth assumption in (36) and the monotonicity of ω we have
that

ω(θmR) 6 αθmR+ θω(βθmR)

6 αθmR+ θω(R).
(39)

Applying again (36), monotonicity, and (39) we obtain

ω(θ2mR) 6 αθ2mR+ θω(θmR)

6 αθ2mR+ θ [αθmR+ θω(R)]

= αθm+1R(1 + θm−1) + θ2ω(R).

So, by induction on k ∈ N it is straightforward to show that

ω(θkmR) 6 αθm+k−1R(1 + θm−1 + ...+ θ(k−1)(m−1)) + θkω(R)

< αRθm+k−1 1

1− θm−1
+ θkω(R)

=

(
αRθm−1

1− θm−1
+ ω(R)

)
θk.

Now let r ∈ [0, R]. Then there exists k ∈ N such that θ(k+1)mR < r 6 θkmR.
Thus,

ω(r) 6 ω(θkmR) 6 C̃θk <
C̃

θ

( r
R

)1/m

=

(
C̃

θR1/m

)
r1/m

where C̃ =
αRθm−1

1− θm−1
+ ω(R). The conclusion follows with C = C̃/θR1/m.
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