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The Poincaré-Miranda theorem and Viability condition

Hélène Frankowska∗

March 27, 2018

Abstract

The aim of this note is to discuss the relation between the assumptions of the Poincaré-Miranda
theorem and the viability condition, first used by Nagumo to prove existence of a solution to ODEs
under state constraints (viable solutions). An interesting consequence of this observation is an
extension of the Poincaré-Miranda theorem to arbitrary convex compact sets in locally convex
Hausdorff vector spaces (instead of a parallelotope in an Euclidean space). We also recall a very
short proof of this extension based on a Ky Fan inequality. This proof is not new, but seems to
have passed unnoticed in the literature devoted to the Poincaré-Miranda theorem. In fact, recent
variations of this theorem in `2 follow then in a simple straightforward way. The above extension
also implies a generalization of the Lax intermediate value theorem to infinite dimensional spaces.
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1 Introduction

In [20] H. Poincaré stated the following result. Let K = [−L,L]× ....× [−L,L]︸ ︷︷ ︸
n

⊂ Rn, where L > 0 is

given and let f = (f1, ..., fn) : K → Rn be a continuous function such that

fi(x) ≥ 0, ∀x ∈ {(x1, ..., xn) ∈ K : xi = −L}

fi(x) ≤ 0, ∀x ∈ {(x1, ..., xn) ∈ K : xi = L}.
(1)

Then f has an equilibrium in K, in the sense that f(x̄) = 0 for some x̄ ∈ K (in [20] the above
inequalities are strict).

This statement was accompanied by a comment that it follows from an important theorem of L.
Kronecker and was rediscovered by S. Cinquini [5] with an incomplete proof. In [17] C. Miranda has
shown its equivalence to the Brouwer fixed point theorem. It entered into the literature under the
name of the Poincaré-Miranda theorem and sometimes has devoted sections in monographs on fixed
point theory, see for instance [22]. We refer to J. Mawhin [15] for a passionate history of rediscovery
of this result and also to [16] for its analytical proof using differential forms and for its extension to
the Hilbert hypercube in `2. Further references can be found in [9, 16].

This note is not intended to be an exhaustive account on various generalizations and applications
that appeared in the rich literature on this subject. Our aim is to link assumptions of this theorem
to the so-called viability (tangential) condition and to show how some recent generalisations of the
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Poincaré-Miranda theorem can be deduced from it. Though [12] contains a similar observation (cf.
Remarks 2.4 and 2.6 from [12]), it lacks details and refers to [10], while the proof we recall here is
much simpler than the one given in [10].

The above mentioned tangential condition was used first in a paper by M. Nagumo [19] to in-
vestigate existence of solutions to ordinary differential equations under (not necessarily convex) state
constraints and was extended later on to differential inclusions under state constraints. Viability the-
ory was actively developing since 1978 with various applications to control theory, Hamilton-Jacobi
equations, traffic control, etc. and the tangential condition was renamed the viability condition. As
a bi-product of these studies, in the context of set-valued maps, a particularly simple proof based on
a powerful Ky Fan inequality was found to deduce that a map satisfying the viability condition on
a convex compact set has an equilibrium, cf. [2, Theorem 15.1.1 and Proposition 15.1.1]. Possibly,
because of its set-valued character and assumptions involving the support functions, this proof passed
unnoticed by those generalizing the Poincaré-Miranda theorem, even though [2, Corollary 15.1.4] cor-
responding to this theorem was deduced. The Ky Fan theorem [7], see also [8] for extensions and
applications, is equivalent to a generalization of the KKM principle from [6] and, in particular, it
implies the Brouwer and Kakutani fixed point theorems. Let us recall that the Brouwer fixed point
theorem, the Sperner lemma, the KKM principle, and many results in topology and nonlinear analy-
sis are mutually equivalent. A general result leading to a unified approach to the Poincaré-Miranda
theorem, the Lax intermediate value theorem and fixed point theorems is particularly useful.

There are various proofs in the literature of the Poincaré-Miranda theorem, cf. [1, 9, 13, 16, 22,
23, 24], based on the degree theory, the Sperner lemma and its variations, the Steinhaus chessboard
theorem, monotone operators theory, differential forms in Rn, topological methods. The interest of
applying instead the Ky Fan inequality lies in a very short argument from [2], simpler and much more
general than those being used to prove the Poincaré-Miranda theorem. We included it here because
it is particularly straightforward for single-valued maps. In many situations the viability condition is
easy to verify. To illustrate it we provide very short proofs of some known results.

2 An extension of the Poincaré-Miranda theorem

In this note X is a real locally convex Hausdorff vector space, X∗ is its continuous dual space and 〈·, ·〉
is the duality pairing. For a set C ⊂ X, ∂C denotes its boundary, C its closure and IntC its interior.
R+ and R− stand, respectively, for all the non-negative and non-positive reals and B for the closed
unit ball in Rn. Let K be a nonempty convex subset of X. Recall that for any x ∈ K the tangent
cone to K at x is defined by

TK(x) =
⋃
λ≥0

λ(K − x).

Then TK(x) is a closed convex cone and TK(x) = X for every x ∈ IntK. Note that λ(K−x) ⊂ µ(K−x)
for all 0 ≤ λ ≤ µ. The normal cone to K at x is defined by NK(x) := {q ∈ X∗ | 〈q, y−x〉 ≤ 0 ∀ y ∈ K}.

A mapping f : K → X satisfies the viability condition if f(x) ∈ TK(x) for every x ∈ K or,
equivalently, if 〈p, f(x)〉 ≤ 0 for all x ∈ ∂K and p ∈ NK(x).

Example 2.1 (Paralelotope) Consider z = (z1, ..., zn) ∈ Rn, reals Li ≥ 0, i = 1, ..., n, the convex
compact set K = [z1 − L1, z1 + L1]× ....× [zn − Ln, zn + Ln] ⊂ Rn and let x = (x1, ..., xn) ∈ K. For
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every i ∈ {1, ..., n} define the cone in R

Mi =


R+ if xi = zi − Li, and Li 6= 0
R− if xi = zi + Li, and Li 6= 0
{0} if Li = 0
R if xi ∈]zi − Li, zi + Li[

Then, by the very definition of the tangent cone, TK(x) = M1 × ....×Mn.
In particular, if z = 0 and for some L ≥ 0 we have Li = L for all i, then any f : K → Rn as in

(1) satisfies the viability condition.

Example 2.2 (Hilbert cube in `2) Let X = `2 and K = {(x1, x2, ...) ∈ `2 : |xi| ≤ 1/i}. Then K
is convex and compact. Fix any x = (x1, x2, ...) ∈ K. For every integer i ≥ 1 define the set Mi as in
Example 2.1 with zi = 0 and Li = 1/i.

Then M1×....×Mn×{0}×{0}×.... ⊂ TK(x) for every n ≥ 1. Consider any v = (v1, v2, ...) ∈ `2 such
that vi ∈ Mi. Since TK(x) is closed, taking the limit of wn := (v1, ..., vn, 0, 0, ....) ∈ `2 when n → ∞
we deduce that v ∈ TK(x). Conversely, for any λ ≥ 0 and v ∈ λ(K − x) we have v ∈ M1 ×M2 × ... .
Hence TK(x) ⊂ {v ∈ `2 : vi ∈Mi} and, therefore, TK(x) = {v ∈ `2 : vi ∈Mi}.

Example 2.3 Let X = `2, z = (z1, z2, ...) ∈ `2, (L1, L2, ...) ∈ `2. Consider the convex compact
set K = {(x1, x2, ...) ∈ `2 : |xi − zi| ≤ Li} ⊂ `2. If z = 0 and Li = 1/i we get the Hilbert
hypercube. Fix any (x1, x2, ...) ∈ K and define Mi as in Example 2.1. Exactly as before we obtain
TK(x) = {(v1, v2, ...) ∈ `2 : vi ∈Mi}.

The next theorem can be seen as an extension of the Poincaré-Miranda theorem to arbitrary convex
compact sets. It is a counterpart of the fixed point theorem from [10].

Theorem 2.4 Consider a nonempty convex compact subset K ⊂ X and a continuous mapping f :
K → X satisfying the viability condition. Then f(x̄) = 0 for some x̄ ∈ K.

By Example 2.1, Theorem 2.4 implies the Poincaré-Miranda theorem. From Theorem 2.4 and Exam-
ples 2.2, 2.3 we deduce the following result.

Corollary 2.5 ([16, 21]) Let K ⊂ `2 be as in Example 2.3 and f = (f1, f2, ....) : K → `2 be continu-
ous and satisfy the following condition: for every integer i ≥ 1, fi(x) ≥ 0 if xi = zi−Li and fi(x) ≤ 0
if xi = zi + Li. Then there exists x̄ ∈ K such that f(x̄) = 0.

Remark 2.6 (i) Assume that for every integer i ≥ 1 : either (a) fi(x) ≥ 0 if xi = zi − Li and
fi(x) ≤ 0 if xi = zi + Li or (b) fi(x) ≤ 0 if xi = zi − Li and fi(x) ≥ 0 if xi = zi + Li. Define for
every i the function f̄i = fi if (a) holds true and f̄i = −fi in the case of (b). By Corollary 2.5, f̄ has
an equilibrium in K. Since any equilibrium of f̄ is also an equilibrium of f we deduce [21, Theorem
2.1] and [16, Theorem 5.1].

(ii) In the same vein, [11, Theorem 2] follows from Theorem 2.4.

To prove Theorem 2.4 we recall the celebrated Ky Fan inequality. A real valued function defined on
a convex set K is called quasi-concave if for every r ∈ R the set {x ∈ K | f(x) > r} is convex.

Theorem 2.7 ([7]) Let K ⊂ X be a nonempty convex compact set and g : K ×K → R be such that
g(·, y) is lower semicontinuous for each y ∈ K and g(x, ·) is quasi-concave for each x ∈ K. Then there
exists x̄ ∈ K satisfying supy∈K g(x̄, y) ≤ supy∈K g(y, y).
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Proof of Theorem 2.4. The proof follows the lines of [2, Proof of Theorem 15.1.1] that we simplify
thanks to the single-valuedness of f .

Assume for a moment that f(x) 6= 0 for every x ∈ K. Then, by the separation theorem for
every x ∈ K there exists px ∈ X∗ such that 〈px, f(x)〉 > 0. We associate with every p ∈ X∗ the set
U(p) = {y ∈ K : 〈p, f(y)〉 > 0}. By the continuity of f it is open. Then K ⊂

⋃
p∈X∗ U(p). Consider

p1, ...., pk ∈ X∗ such that Vi := U(pi) i = 1, ..., k form a finite open subcovering of K. Let ψi be a
partition of unity subordinated to {Vi}ki=1 and define g : K ×K → R by

g(x, y) =
k∑
i=1

ψi(x)〈pi, y − x〉.

Continuity of ψi and pi imply that g is continuous with respect to x. Clearly it is also concave in y
and g(y, y) = 0. By Theorem 2.7 there exists x̄ ∈ K such that

∑k
i=1 ψi(x̄)〈pi, y − x̄〉 ≤ 0 for every

y ∈ K. Thus p̄ :=
∑k

i=1 ψi(x̄)pi satisfies 〈p̄, v〉 ≤ 0 for every v ∈ TK(x̄). In particular 〈p̄, f(x̄)〉 ≤ 0.
On the other hand if i is so that x̄ /∈ Vi, then ψi(x̄) = 0 and if i is so that x̄ ∈ Vi, then 〈pi, f(x̄)〉 > 0.

Since
∑k

i=1 ψi(x̄) = 1 and ψi ≥ 0, we get
∑k

i=1 ψi(x̄)〈pi, f(x̄)〉 > 0, leading to a contradiction. 2

Corollary 2.8 ([10]) Consider a nonempty convex compact subset K ⊂ X and a continuous mapping
f : K → X such that f(x) − x ∈ TK(x) for all x ∈ K (or x − f(x) ∈ TK(x) for all x ∈ K). Then
f(x̄) = x̄ for some x̄ ∈ K. In particular, if f(K) ⊂ K, then f has a fixed point in K.

Remark 2.9 The proof of Theorem 2.4 uses a partition of unity similarly to [4], where assumptions
like in Corollary 2.8 involve

⋃
λ≥0 λ(K − x) in the place of TK(x) (but in [4] the Brouwer fixed point

theorem is applied instead of the Ky Fan inequality). Taking TK(x) strengthens results of [4]. Indeed,
if f : K → X satisfies assumptions of [4, Theorem 1], then f̄(x) := f(x) − x is as in Theorem 2.4.
Thus f̄ has an equilibrium in K and therefore f has a fixed point in K. Similarly, if f : K → X
satisfies assumptions of [4, Theorem 2], then, by Theorem 2.4, f has a fixed point in K. On the other
hand, let K be the closed unit ball in Rn, and f : K → Rn be continuous, not identically zero on ∂K
and such that 〈x, f(x)〉 = 0 for all x ∈ ∂K. By Theorem 2.4, f has an equilibrium at some x̄ ∈ K.
Thus x̄ is a fixed point of the mapping K 3 x 7→ f̄(x) := x−f(x). Such f̄ does not satisfy assumptions
of [4, Theorems 1, 2]. In [10], the results of [4] were improved using the tangent cones TK(x) with
more complicated proofs than the one recalled above.

3 Some consequences of Theorem 2.4

Corollary 2.8 yields the Schauder fixed point theorem. The following covering property proved in [10]
is very important in many applications. We provide below a different proof of it.

Theorem 3.1 Consider a nonempty convex compact set K ⊂ X and a continuous mapping ϕ : K →
X satisfying x− ϕ(x) ∈ TK(x). Then K ⊂ ϕ(K).

Proof. Fix any z ∈ K and define f(x) = z − ϕ(x) for all x ∈ K. Then f is continuous from K
into X. Moreover z − x ∈ TK(x) for any x ∈ K. Since the set TK(x) is a convex cone we have
f(x) = (z − x) + (x − ϕ(x)) ∈ TK(x). Hence f satisfies the viability condition and therefore there
exists x̄ ∈ K such that f(x̄) = 0. Consequently, ϕ(x̄) = z. 2

The second statement of the result below is due to Bohl [3].
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Corollary 3.2 Let Ω ⊂ Rn be convex, open and bounded, and ϕ : Ω→ Rn be continuous and satisfy
ϕ(x) = x for every x ∈ ∂Ω. Then Ω ⊂ ϕ(Ω) and Ω ⊂ ϕ(Ω).

In particular, if K = [−L1, L1]× ....× [−Ln, Ln] for some Li ≥ 0, i = 1, ..., n, and ϕ : K → Rn is
continuous and satisfies ϕ(x) = x for every x ∈ ∂K, then K ⊂ ϕ(K) and IntK ⊂ ϕ(Int (K)).

Proof. Since 0 = x− ϕ(x) ∈ TΩ(x) for every x ∈ ∂Ω, Theorem 3.1 yields the first inclusion. Fix any
z ∈ Ω and consider x ∈ Ω such that z = ϕ(x). If x ∈ ∂Ω, then z = x ∈ ∂Ω leading to a contradiction.
Hence z ∈ ϕ(Ω). 2

We next extend a result of Lax [14].

Corollary 3.3 (Intermediate Value Theorem) Let ϕ be a continuous map from the closed unit
ball B ⊂ Rn into Rn such that 〈x, ϕ(x)〉 ≥ 1 for all x ∈ ∂B. Then B ⊂ ϕ(B).

In [14] it is assumed that ϕ(x) = x for all x ∈ ∂B, that naturally satisfies our assumption.
Proof. For any x ∈ ∂B, TB(x) = {v ∈ Rn : 〈x, v〉 ≤ 0}. By the assumption on ϕ, 〈x, x − ϕ(x)〉 =
|x|2 − 〈x, ϕ(x)〉 ≤ 0 for every x ∈ ∂B. Hence ϕ satisfies assumptions of Theorem 3.1. 2

The second statement of the result below is due to Bohl, [3].

Corollary 3.4 Let K be as in Corollary 3.2. There is no continuous ϕ : K → Rn that does not
vanish on K and satisfies −ϕ(x) ∈ TK(x) for every x ∈ ∂K.

In particular, there is no continuous ϕ : K → Rn that does not vanish on K and satisfies ϕ(x) = x
for every x ∈ ∂K.

Proof. Observe that f := −ϕ satisfies assumptions of Theorem 2.4. Thus f vanishes at some point
in K and so does ϕ. 2

Corollary 3.5 ([18]) Let B(0, r) be the closed ball in Rn of center zero and radius r > 0 and f :
B(0, r) → Rn be a continuous mapping satisfying the following condition: 〈x, f(x)〉 ≤ 0 for all x ∈
∂B(0, r). Then there exists x̄ ∈ B(0, r) such that f(x̄) = 0.

Proof. Set K = B(0, r). Since TK(x) = {v ∈ Rn : 〈x, v〉 ≤ 0} for every x ∈ ∂B(0, r), f satisfies the
viability condition. Theorem 2.4 completes the proof. 2
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[20] H. Poincaré, Sur certaines solutions particulières du problème des trois corps, C. R. Acad. Sci.
Paris, 97 (1883), 251-252
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