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STRONG LOCAL MINIMIZERS IN OPTIMAL CONTROL
PROBLEMS WITH STATE CONSTRAINTS:

SECOND-ORDER NECESSARY CONDITIONS

HÉLÈNE FRANKOWSKA∗ AND NIKOLAI P. OSMOLOVSKII†

Abstract. This paper is devoted to second-order necessary optimality conditions for strong
local minima for a Mayer type optimal control problem with a general control constraint U ⊂ IRm,
and state and final-point constraints described by a finite number of inequalities. We use the second
order linearization of a relaxed differential inclusion associated to the control system to find a convex
subset of second order tangents to the set of its trajectories. This leads to second-order necessary
optimality conditions via a straightforward way, based on separation theorems.

Key words. Optimal control, state constraints, strong local minimum, maximum principle,
second-order necessary conditions, second order tangents, differential inclusion.
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1. Introduction. Consider the Mayer optimal control problem

(1.1) Minimize J(x, u) := g0(x(1))

(1.2) gi(x(1)) ≤ 0, i = 1, . . . , k,

(1.3) ẋ(t) = f(x(t), u(t)), x(0) = x0, u(t) ∈ U a.e. in [0, 1],

(1.4) Φj(x(t)) ≤ 0, for all t ∈ [0, 1], j = 1, . . . , q,

where U is an arbitrary compact subset of IRm, x0 ∈ IRn is given and functions
gi : IRn → IR, f : IRn × IRm → IRn, Φj : IRn → IR are assumed to be twice
continuously differentiable. Even though the approach developed in this work can be
applied to more general initial point constraint, non autonomous control systems and
time dependent control constraint u(t) ∈ U(t) with possibly unbounded sets U(t), to
keep the presentation less technical we do not seek here the most general setting.

A vast literature is devoted to necessary optimality conditions, because many
applied models do involve optimisation and control systems. Due to the appearance
of state and control constraints in these models, such framework was considered by
many authors. The ”pure state constraint” (involving the state variable only) being
particularly difficult to approach, some authors restricted their attention to the so
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called ”finite order pure state constraints”. Then, under several structural assump-
tions, the control problem at hand can be transformed into the one involving the
mixed state-control constraints only, where the situation is rather well understood.

The first results on the maximum principle for “pure” state constraints like (1.4)
go back to Gamkrelidze [11], where it was assumed that the optimal process has a
special structure. Dubovitskii and Milyutin [6] avoided such restrictive requirements,
introducing measures in the definition of costate, leading to an exhaustive form of
the maximum principle that is used in nowadays. The first-order conditions are well
understood even when data are nonsmooth and were generalized in various ways in
thousands of publications (including PDE and stochastic frameworks). In the deter-
ministic control, these necessary conditions were derived for general control sets U and
merely measurable optimal controls. Let us underline that the existence results in op-
timal control of nonlinear systems do not guarantee any regularity of optimal controls,
but only their measurability. Quite strong additional assumptions have to be imposed
to get even continuity (or piecewise continuity) of optimal controls. The interested
reader can find in [12] historical comments and a large bibliography of the earlier
literature on the first and second-order optimality conditions under state constraints.
We also refer to [15] for extended discussions on the constrained maximum principle
in the deterministic case and further references to the earlier Russian literature on
the subject, and to [23] for further developments in the nonsmooth framework.

In contrast with the first-order conditions, when working with second-order condi-
tions, most of the authors suppose that optimal controls are continuous, or piecewise
continuous, see for instance [22, 18, 3] and the references therein. In addition, struc-
tural assumptions and constraint qualifications on optimal trajectory-control pairs
are often imposed. For instance, in [3] weak local minimizers for an optimal control
problem under finite order state constraints are discussed, assuming the Robinson con-
straint qualification and that the optimal trajectory has only finitely many boundary
arcs. Let us recall that it was observed in [19] that, even for a smooth calculus of
variations problem under a very simple state constraint and having a unique optimal
trajectory, the transitions from the interior to the boundary of state constraints may
occur an infinite number of times. More rarely, articles deal with measurable optimal
controls and general control sets, as for instance [21] and [13]. In [21], using the time
transformation introduced in [5], a second-order necessary condition for strong local
minima is derived in a very general setting. However this condition addresses only
a very narrow set of second order variations of controls, because only time transfor-
mations of the optimal control are taken into consideration in the second-order con-
ditions. In [13] second-order conditions for weak minima are derived for an optimal
control problem not involving the end point constraint using second order tangents
to the control set U . In this last paper an ”interiority” assumption is imposed on the
solution set of a second-order linearized system, see also [14] for a further discussion
of this assumption.

The approach we use here has its roots in [13, 8], where controls are assumed to
be merely measurable and second order tangents to the set U are used to state second-
order optimality conditions. This allows to work with very general control constraints
which, in particular, imply known results when U is given by inequality and equality
type constraints (here we only discuss the case of constraints given by inequalities).
Our paper differs however from [13, 14], where only weak minima are investigated,
the final-state constraint is absent, and ”interiority” assumption is imposed, while [8]
requests the strong normal maximum principle to hold true. Also, in the difference
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with [8], we state second-order conditions involving only the critical cone and second
order tangents to the set U , instead of using trajectories of a second order linearization
of control system satisfying some second order “linearized” constraints. The present
paper can be considered as the continuation and the development of [10] dealing with
a general control constraint U , where necessary conditions for a strong local minimum
were obtained for a problem with a final-state inequality constraint. Here, we have
added the running state constraint of inequality type. So, the main novelty of our
work is in the necessary conditions for a strong local minimum in the presence of
a state constraint in combination with the general control constraint and final-state
constraint. Let us also emphasize, that we do not make any hypothesis like the
Mangasarian-Fromovitz or the Robinson constraint qualification (which are related
to the point under the study). Moreover, we investigate the optimality conditions for
an arbitrary measurable optimal control.

Our way of doing essentially differs from the other approaches, used in the theory
of necessary optimality conditions, as for instance, the Ekeland’s variational principle
(often exploited in the proofs of the Pontryagin maximum principle, but seemingly
not applicable to the derivation of the second-order conditions because of the lack of
smoothness of penalty terms), the method of critical directions by Dubovitskii and
Milyutin [6], the theory of higher order conditions in abstract Banach spaces [17], etc.
In our approach we pass from the original control system to the convexified differential
inclusion

(1.5) ẋ ∈ co f(x, U), x(0) = x0

and then use the apparatus of the first and second order tangents and derivatives of
set-valued maps elaborated in Aubin and Frankowska [2]. It may seem that such a
transition from the control system to the differential inclusion considerably coarsens
the problem. But this is not so, because there is a way back which allows to obtain the
necessary optimality condition in the form of non-intersection of a finite number of
convex sets among which all but one are open. This way back relies on some geometric
properties of derivatives of set-valued maps, found in [7] for the first order derivatives
and extended in [8] to second order ones and on associated variational inclusions. Once
such non-intersection condition is obtained, we use a separation theorem in order to
write a dual characterization for it. Then we analyze the obtained dual criterion. As
a result of analysis, we come to the maximum principle and second-order necessary
optimality conditions.

We would like to discuss first the main ideas behind this variational approach
and point out where the difficulties are hidden. Let X be a Banach space, K ⊂ X
be an arbitrary set, ψ : X → IR be a C2-function and let x̄ ∈ K be a point of a
local minimum of ψ on K. If x̄ ∈ IntK, then, by the Fermat rule, ψ′(x̄) = 0. Recall
that when the Fermat rule was discovered, the derivatives were not defined yet (the
infinitesimal calculus was developed by Leibniz and Newton after the Fermat death in
1665). Fermat was reasoning using tangents to the graph of a function. Tangents are
also naturally present when x̄ belongs to the boundary ∂K of K. Denote by T [K(x̄)
the adjacent tangent to K at x̄, consisting of all v ∈ X such that for every ε > 0 there
exists r(ε) ∈ X with x̄+εv+r(ε) ∈ K for some |r(ε)| = o(ε). The first-order necessary
optimality condition takes then the form of a generalized Fermat rule : ψ′(x̄)v ≥ 0 for
all v ∈ T [K(x̄). In [2] the interested reader can find calculus of tangents to sets and,
in particular, the exact expression of tangent cones when K is described by a finite
number of inequalities and equalities under the Mangasarian-Fromovitz constraints’
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qualification assumption. This leads to the celebrated Lagrange multipliers rule of
Mathematical Programming. Further, this rule is abnormal whenever this constraints’
qualification is violated.

Let us have a look on the second-order necessary conditions from this perspective.
If x̄ ∈ IntK, then it is well known that ψ′′(x̄) ≥ 0. When x̄ ∈ ∂K, it may happen
that ψ′′(x̄)(v, v) < 0 for some v ∈ T [K(x̄).

Indeed let X = IR2, K = B (unit ball in IR2) and

ψ(x1, x2) = x1 + 1− (x1 + 1)2 ∀ x = (x1, x2) ∈ IR2.

Then x̄ = (−1, 0) is a local minimizer of ψ over B, T [K(x̄) = IR+ × IR, while ψ′′(x̄) =
(aij) with a11 = −2 and all other coefficients aij being equal to zero. Thus the first-
order necessary condition is verified, while for any (v1, v2) ∈ T [K(x̄) with v1 6= 0 we
have ψ′′(x̄)(v, v) < 0.

It turns out that it is more appropriate to restrict the attention to the elements
of the so called critical cone

C := {v ∈ T [K(x̄) : ψ′(x̄)v = 0},

which, in the above example, is equal to {0} × IR, and moreover ψ′′(x̄)(v, v) = 0 for
all v ∈ C. We would like to underline that even the condition ψ′′(x̄)(v, v) ≥ 0 ∀ v ∈ C
is not necessary for a local minimum at x̄ (the corresponding counterexample can be
constructed).

The second order variational analysis deals with second order tangents to sets:

with any v ∈ T [K(x̄) we associate a second order tangent set T
[(2)
K (x̄, v) consisting of

all w ∈ X such that for every ε > 0 there exists r(ε) ∈ X with x̄+εv+ε2w+r(ε) ∈ K
for some |r(ε)| = o(ε2). Then, thanks to the Taylor formulae, for every v ∈ C,

ψ′(x̄)w +
1

2
ψ′′(x̄)(v, v) ≥ 0 ∀w ∈ T [(2)

K (x̄, v).

This is the second-order necessary condition for a local minimum of ψ on K at x̄

relatively to the critical direction v. The set T
[(2)
K (x̄, v) is closed, in general not convex

and it may be empty. If it is not empty, then the above second-order optimality
condition is meaningful.

Coming back to our control problem, let X be the space C([0, 1], IRn) of contin-
uous functions from [0, 1] into IRn and let the pair (x̄, ū) be a strong local minimizer
of our control problem. Set K = K1 ∩K2 ∩K3, where

K1 = {x ∈ C([0, 1], IRn) : gi(x(1)) ≤ 0, i = 1, . . . , k},

K2 = {x ∈ C([0, 1], IRn) : Φj(x(t)) ≤ 0, ∀ t ∈ [0, 1], j = 1, . . . , q}

and K3 be the set of all absolutely continuous trajectories x(·) of (1.3) corresponding
to some measurable controls u : [0, 1] → U . Then, for every critical element y, the
second-order necessary condition becomes

(1.6) g′0(x̄(1))w(1) +
1

2
〈g′′0 (x̄(1))y(1), y(1)〉 ≥ 0 ∀w ∈ T [(2)

K (x̄, y).

(In Section 3 we consider a particular subset of critical elements y, which is convenient
for the purpose of this work.)

4



If g′0(x̄(1)) = 0, then every y ∈ T [K(x̄) is critical and it is not difficult to realise
that the second-order condition is: 〈g′′0 (x̄(1))y(1), y(1)〉 ≥ 0 for every y ∈ T [K(x̄) (even

if T
[(2)
K (x̄, y) = ∅).
Assume next that g′0(x̄(1)) 6= 0 and fix a critical element y. Then the set

Q̃ := {z ∈ IRn : g′0(x̄(1))z +
1

2
〈g′′0 (x̄(1))y(1), y(1)〉 < 0}

is nonempty, open and convex.
Even though, using [2, p. 177] and a constraint qualification assumption, it is

possible to express T [Ki(x̄) and T
[(2)
Ki

(x̄, y) for i = 1, 2 and to show that they are
convex, in general, we only have the relation

T
[(2)
K (x̄, y) ⊂ T [(2)

K1
(x̄, y) ∩ T [(2)

K2
(x̄, y) ∩ T [(2)

K3
(x̄, y),

that may be strict. For this reason in (1.6) the set T
[(2)
K (x̄, y) can not be replaced by

the intersection of sets T
[(2)
Ki

(x̄, y).

Let us assume that we can find nonempty convex subsets Qi ⊂ T
[(2)
Ki

(x̄, y), i =

1, 2, 3 such that Q := Q1 ∩ Q2 ∩ Q3 ⊂ T
[(2)
K (x̄, y). Define the trace operator γ

on X by γ(x) = x(1) and let γ∗ : IRn → X be its adjoint. Clearly the set γ(Q)
has an empty intersection with Q̃. Thus, denoting by γ−1 the (set-valued) inverse
of γ, we deduce that Q ∩ γ−1(Q̃) = ∅. Moreover γ−1(Q̃) is nonempty, open and
convex. If the interiors of sets Q1, Q2 are also nonempty, then, by a separation
theorem (see Lemma 2.2 below), we get the following necessary optimality condition:
there exist pi ∈ C([0, 1], IRn)∗, i = 1, 2, 3 not vanishing simultaneously such that for
p4 := p1 + p2 + p3 we have

inf p1(Q1) + inf p2(Q2) + inf p3(Q3) ≥ sup p4(γ−1(Q̃)).

Consider the closed convex cone Q4 = {z ∈ IRn : g′0(x̄(1))z ≤ 0} and notice
that its negative polar Q−4 is equal to IR+g

′
0(x̄(1)). Since for every v ∈ Q̃ we have

γ−1(v) + γ−1(Q4) ⊂ γ−1(Q̃), the last inequality yields

sup p4(γ−1(Q4)) ≤ 0.

The operator γ being surjective, this and a well known result of convex analysis imply
p4 = γ∗(p0) for some p0 ∈ Q−4 . Let λ ≥ 0 be such that p0 = λg′0(x̄(1)). Consequently,

inf p1(Q1) + inf p2(Q2) + inf p3(Q3) ≥ λ sup g′0(x̄(1))(Q̃) = −λ
2
〈g′′0 (x̄(1))y(1), y(1)〉.

This general statement has next to be made more precise by finding appropriate
sets Qi and characterizing elements pi involved in the separation theorem. Observe
that the family {p1, p2, p3} depends on the choice of the sets Qi, and that larger are
the sets Qi, more informative are second-order necessary conditions associated to a
fixed critical y. While investigation of second order tangents to K1 and K2 can be
conducted by methods of functional analysis, the set K3 is much more complex, being
the set of trajectories of a nonlinear control system. To get some first-order tangents
to K3 one may consider the classical linearization of the control system at (x̄, ū) with
respect to both states and controls, where ū is a control corresponding to x̄. Then,
by the variational equation, trajectories of the linearized system

y′ = fx(x̄(t), ū(t))y + fu(x̄(t), ū(t))v(t), v(t) ∈ T [U (ū(t)), y(0) = 0
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are tangent to K3 at x̄. This subset of tangents, however, allows to deduce only the
weak form of the maximum principle, see for instance [9], where the Mayer problem
was considered in the absence of state and final-point constraints.

Actually, the first order linearization of the differential inclusion (1.5) at (x̄(·), ˙̄x(·))
provides a larger set of tangents to K3 at x̄ and has led to the strong form of the
maximum principle for a differential inclusion problem, cf. [7]. In the same vein, the
second order linearization was investigated in [8] and did allow to get second order
tangents to K3. This second order linearization involves second order derivatives of
set-valued maps. Let us recall that first order derivatives of set-valued maps can be
defined using tangent cones to their graphs. Such geometric definition of set-valued
derivatives goes back to [1] and takes a direct inspiration from the Fermat approach
to optimization.

We next consider a subsystem of the second order linearization having nice con-
vexity properties and deduce the second-order necessary conditions from a separation
theorem. This approach leads to a unified way to both first- and second-order neces-
sary conditions and also brings some light on their normality, see also [4] for related
first order results.

Our main goal is to derive second-order optimality conditions for strong local
minimum without imposing structural assumptions on optimal control and on control
constraints. In general the obtained maximum principle can be abnormal and even
degenerate. We provide a sufficient condition for its normality in Remark 4.1.

The paper is organized as follows. Section 2 is devoted to some results from
the convex, set-valued and functional analysis which are used in the proof of the
main theorem. Our main result (Theorem 3.3) is given in Section 3 where also a
subset of the critical directions is defined, while Section 4 is devoted to its proof.
First, in subsection 4.1, we associate with a strong local minimizer x̄ and a critical
element y(·) a “second-order variational inclusion” that gives rise to some second

order tangents to K3 at (x̄, y) and introduce a subset of T
[(2)
K3

(x̄, y) whose closure E2

in the space C([0, 1], IRn) is convex. Next, in subsection 4.2, we define open convex
sets of ”second-order decrease” of the cost, of the endpoint constraints, and of the
state constraints, and prove that the intersection of these sets has no common points
with E2. In subsection 4.3 we apply the separation Theorem 2.1 to the system of
disjoint convex sets from subsection 4.2 and analyse the separating functionals. This
allows to complete the proof of the main Theorem 3.3. In Section 5, we consider two
special cases for the set U : when U is a, not necessarily convex, polytope and when
U is given by inequalities with positively independent gradients of active constraints,
where the main result takes a simpler form.

2. Preliminaries.

2.1. Some elements of convex analysis. For a Banach space X we denote
by X∗ its dual and by 〈·, ·〉 the duality pairing on X∗ × X. Consider the following
system in X:

(S)

 〈li, x〉+mi < 0, i = 0, . . . , k,
ϕj(Pjx+ zj) < 0, j = 1, . . . , q,
x ∈M,

where M ⊂ X is a nonempty convex set, li ∈ X∗, mi ∈ IR for each i = 0, . . . , k,
while Pj : X → Zj is a continuous linear operator mapping X into another Banach
space Zj , zj ∈ Zj is a fixed element, ϕj : Zj → IR is a locally bounded, convex and
positively homogeneous mapping for every j = 1, . . . , q.
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For each j = 1, . . . , q denote by ∂ϕj(0) the subdifferential of ϕj at zero, i.e. the
set {z∗j ∈ Z∗j : 〈z∗j , z〉 ≤ ϕj(z) ∀ z ∈ Zj}. Recall that it is a nonempty, convex,
bounded and weakly* closed set.

Theorem 2.1. The system (S) is incompatible if and only if there exist reals
αi ≥ 0, i = 0, . . . , k, βj ≥ 0, j = 1, . . . , q, and linear functionals

x∗ ∈ X∗, z∗j ∈ ∂ϕj(0), j = 1, . . . , q,

such that the following three conditions hold:

k∑
i=0

αi +

q∑
j=1

βj = 1,

k∑
i=0

αili +

q∑
j=1

βjP
∗
j z
∗
j = x∗,

k∑
i=0

αimi +

q∑
j=1

βj〈z∗j , zj〉+ inf〈x∗,M〉 ≥ 0,

where inf〈x∗,M〉 := infx∈M 〈x∗, x〉 = inf x∗(M).
Furthermore, α0 > 0 whenever there exists x ∈M such that

〈li, x〉+mi < 0, i = 1, . . . , k, ϕj(Pjx+ zj) < 0, j = 1, . . . , q.

The last statement of the above theorem allows to get second-order optimality
conditions in the normal form, see Remark 4.1 below. The proof is based on the four
lemmas stated below. Two of them, Lemmas 2.3 and 2.5, first appeared in [16], in
Russian. For the sake of completeness, we provide their proofs in the Appendix.

Lemma 2.2 (Dubovitskii—Milyutin [6]). Let X be a Banach space, M1, . . . ,Mk

be nonempty open convex sets in X, and M be a nonempty convex set in X. Then

(2.1) M1 ∩ . . . ∩Mk ∩M = ∅

if and only if there are x∗1, . . . , x
∗
k, x
∗ ∈ X∗, not vanishing simultaneously, such that

(2.2) x∗1 + . . .+ x∗k + x∗ = 0,

(2.3) inf x∗1(M1) + . . .+ inf x∗k(Mk) + inf x∗(M) ≥ 0.

Remark 2.1. (a) In Lemma 2.2 define Mk+1 := M and x∗k+1 := x∗. If in addition,
for some i ∈ {1, . . . , k + 1}, there is a nonempty cone Ci ⊂ X and xi ∈ X such that
xi + Ci ⊂Mi, then we also have

−x∗i ∈ C−i := {p ∈ X∗ : 〈p, x〉 ≤ 0, ∀x ∈ Ci}.

(b) Lemma 2.2 implies: if (2.2), (2.3) hold true for a nontrivial family x∗1, . . . , x
∗
k, x
∗ ∈

X∗, k ≥ 2, and M2 ∩ . . . ∩Mk ∩M 6= ∅, then x∗1 6= 0.
Proof of Lemma 2.2 We follow [20]. If (2.1) holds, then define the space Xk :=

X ×X × . . .×X︸ ︷︷ ︸
k

and the open convex set

A := {(x1 − x, . . . , xk − x) ∈ Xk : x1 ∈M1, . . . , xk ∈Mk, x ∈M}.
7



Since 0 /∈ A, by the separation theorem, there exists a 0 6= x̂∗ ∈ (Xk)∗ such that
〈x̂∗, a〉 ≥ 0 for every a ∈ A. Let x̂∗ = (x∗1, . . . , x

∗
k), where x∗i ∈ X∗, i = 1, . . . , k. Then

〈x∗1, x1 − x〉+ . . .+ 〈x∗k, xk − x〉 ≥ 0 for all x1 ∈M1, . . . , xk ∈Mk, x ∈M.

Setting x∗ = −
∑k
i=1 x

∗
i yields (2.2) and (2.3).

Vice versa, let (2.2) and (2.3) hold for a nontrivial collection x∗1, . . . , x
∗
k, x
∗, but

there is an element x0 ∈M1 ∩ . . . ∩Mk ∩M . The non-triviality of x∗1, . . . , x
∗
k, x
∗ and

(2.2) imply that the collection x∗1, . . . , x
∗
k is nontrivial. Let x∗j 6= 0. Since the set Mj is

open, we have 〈x∗j , x0〉 > inf〈x∗j ,Mj〉, and then (2.3) implies 〈x∗1, x0〉+ . . .+ 〈x∗k, x0〉+
〈x∗, x0〉 > 0. The latter contradicts (2.2) and ends the proof. �

For a nonempty convex set M ⊂ X define

Md = {x∗ ∈ X∗ : inf x∗(M) > −∞}.

Let F : X → IR be a continuous convex function. The Fenchel conjugate of F is
defined by F ∗(x∗) = supx∈X(〈x∗, x〉−F (x)) for all x∗ ∈ X∗. Recall that the function
F ∗ : X∗ → IR ∪ {+∞} is convex, weakly* lower semicontinuous, and its domain
domF ∗ := {x∗ ∈ X∗ : F ∗(x∗) < +∞} is nonempty.

Lemma 2.3. Suppose that the set M = {x ∈ X : F (x) < 0} is nonempty. Then
for every x∗ ∈ Md there exists an x∗1 ∈ domF ∗ and an α ≥ 0 such that x∗ = −αx∗1
and inf x∗(M) = −αF ∗(x∗1).

The next result follows from Lemmas 2.2 and 2.3. (it was first stated in [17]
without proof.)

Lemma 2.4. Let F0(·), . . . , Fk(·) be convex continuous functions on X, and let
M ⊂ X be a nonempty convex set. The system of conditions

Fi(x) < 0 (i = 0, 1, . . . , k), x ∈M

is incompatible if and only if there is a tuple (α0, . . . , αk, x
∗
0, . . . , x

∗
k, x
∗) such that

(2.4) αi ≥ 0 ∀ i,
k∑
i=0

αi = 1,

(2.5) x∗i ∈ domF ∗i ∀ i, x∗ ∈Md,

(2.6) x∗ =

k∑
i=0

αix
∗
i ,

(2.7) inf x∗(M) ≥
k∑
i=0

αiF
∗
i (x∗i ).

Proof First let us assume that there is j ∈ {0, . . . , k} such that the set {x ∈ X :
Fj(x) < 0} is empty. It means that Fj(x) ≥ 0 for all x ∈ X. Set x∗j = 0. Then
obviously x∗j ∈ domF ∗j and F ∗j (x∗j ) ≤ 0. Take αj = 1, x∗ = 0, and set all other
αi = 0, while choosing x∗i ∈ domF ∗i arbitrary (for all i 6= j). Then all conditions
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(2.4)-(2.7) are fulfilled. Next, if {x ∈ X : Fi(x) < 0} 6= ∅ for all i = 0, . . . , k, then
apply Lemmas 2.2 and 2.3. �

Lemma 2.5. Let X,Y be Banach spaces, ϕ : Y → IR be a continuous convex
function on Y , A : X → Y be a continuous linear operator and y0 ∈ Y . Then the
function F (x) := ϕ(y0+Ax) is continuous and convex on X, and for any x∗ ∈ domF ∗

there exists y∗ ∈ domϕ∗ such that x∗ = A∗y∗ and F ∗(x∗) = ϕ∗(y∗)− 〈y∗, y0〉.
Proof of Theorem 2.1 Note that if ϕ : Y → IR is continuous, convex and positively

homogeneous, then domϕ∗ = ∂ϕ(0), ϕ∗(y∗) = 0 for every y∗ ∈ ∂ϕ(0) and hence in
Lemma 2.5 we have: F ∗(x∗) = −〈y∗, y0〉. Therefore, Lemmas 2.4 and 2.5 imply the
first statement of Theorem 2.1. The last one, follows from Remark 2.1 (b). �

We will also need the following result. In the space C([0, 1]) of real valued con-
tinuous functions, consider a convex and positively homogeneous function

(2.8) ϕ(z) = max
t∈M

z(t) ∀ z ∈ C([0, 1]),

where M⊂ [0, 1] is a given closed set.
Lemma 2.6 ([6]). The sub-differential ∂ϕ(0) of ϕ defined by (2.8) consists of all

probability measures µ with suppµ ⊂M.
Proof We provide here a simpler proof than in [6]. Again we follow [20]. Let

µ ∈ ∂ϕ(0). Since [0, 1] is compact, µ is a Borel measure. Obviously,

(2.9)

∫
[0,1]

z(t) dµ ≤ max
t∈M

z(t), ∀ z ∈ C([0, 1]).

Take any z ∈ C([0, 1]) vanishing onM. Then it follows from (2.9) that
∫

[0,1]
z(t) dµ ≤

0 and similarly
∫

[0,1]
(−z(t)) dµ ≤ 0, whence

∫
[0,1]

z(t) dµ = 0. This means that

suppµ ⊂M. Let z(·) ≥ 0. Then again it follows from (2.9) that
∫

[0,1]
(−z(t)) dµ ≤ 0,

and hence
∫

[0,1]
z(t) dµ ≥ 0 for all z(·) ≥ 0. This implies that µ ≥ 0. Now taking

z(t) ≡ 1 and z(t) ≡ −1, we get from (2.9):
∫

[0,1]
dµ ≤ 1 and

∫
[0,1]

(−1) dµ ≤ −1,

respectively, whence
∫

[0,1]
dµ = 1.

Vice versa, let µ be a probability measure, concentrated on M. Take any z(·) ∈
C([0, 1]) and set c := maxM z(t). Then z(t)−c ≤ 0 onM, and thus

∫
[0,1]

(z(t)−c) dµ ≤
0 since µ is nonnegative and concentrated on M. This implies that∫

[0,1]

z(t) dµ ≤
∫

[0,1]

c dµ = c = max
M

z(t) = ϕ(z),

since
∫

[0,1]
dµ = 1. Hence µ ∈ ∂ϕ(0) and the lemma is proved. �

2.2. Some elements of set-valued analysis. Let X be a Banach space and
∅ 6= K ⊂ X. The distance from x ∈ X to K is defined by dK(x) = infx′∈K |x′ − x|.
For a family {Ah}h>0 of subsets of X the lower set limit is defined by

v ∈ Liminf
h→0+

Ah ⇔ lim
h→0+

dAh(v) = 0.

The adjacent tangent cone to K at x̄ ∈ K is the closed cone

T [K(x̄) = Liminf
h→0+

K − x̄
h

9



and the second-order adjacent set to K at (x̄, v) ∈ K ×X is the closed set

T
[(2)
K (x̄, v) = Liminf

h→0+

K − x̄− hv
h2

.

When K is convex, to be in line with the usual notations of convex analysis, we will
also write TK(x̄) instead of T [K(x̄).

A set-valued map F : IRn  IRm is called locally Lipschitz if for every R > 0
there exists cR ≥ 0 such that F (x) ⊂ F (y) + cR|x−y|Bm for all x, y ∈ B(0, R), where
Bm denotes the closed unit ball in IRm.

Consider a locally Lipschitz set-valued map F : IRn  IRm. Recall that the
adjacent derivative of F at a point (x, y) ∈ IRn × IRm with y ∈ F (x), in the direction
u ∈ IRn, is defined by

dF (x, y)(u) = Liminf
h→0+

F (x+ hu)− y
h

.

For u1 ∈ IRn and v1 ∈ dF (x, y)(u1), the second-order adjacent derivative of F at
(x, y, u1, v1) in the direction u2 ∈ IRn is defined by

d2F (x, y, u1, v1)(u2) = Liminf
h→0+

F (x+ hu1 + h2u2)− y − hv1

h2
.

If, in addition, F (·) has convex values, then the following is true, cf. [7]: for any
u ∈ IRm the set dF (x, y)(u) is convex and

(2.10) dF (x, y)(0) = TF (x)(y), dF (x, y)(u) + TF (x)(y) = dF (x, y)(u).

Moreover, by [8, Proposition 2.11], for all v1 ∈ dF (x, y)(u1) and every u2 ∈ IRn,

(2.11) d2F (x, y, u1, v1)(u2) + TF (x)(y) = d2F (x, y, u1, v1)(u2).

In the above, by convention, ∅+A = ∅ for any set A ⊂ IRm.

3. Main result. Denote by W 1,1([0, 1], IRn) the Sobolev space of absolutely

continuous functions x : [0, 1]→ IRn with the norm ‖x(·)‖1,1 = |x(0)|+
∫ 1

0
|ẋ(t)|dt and

by L∞([0, 1], IRm) the space of measurable essentially bounded functions u : [0, 1] →
IRm with the norm ‖u(·)‖∞ = ess sup[0,1]|u(t)|, where | · | denotes the Euclidean norm.
Define the space

Ξ := W 1,1([0, 1], IRn)× L∞([0, 1], IRm)

with the norm of ξ(·) = (x(·), u(·)) ∈ Ξ given by ‖ξ(·)‖ = ‖x(·)‖1,1 + ‖u(·)‖∞.
Any trajectory-control pair (x, u) ∈ Ξ satisfying (1.2)-(1.4) is called admissible.

Recall that a weak local minimum is a local minimum over admissible pairs in the
space Ξ. Further, an admissible (x̄, ū) is called a strong local minimizer if there
exists an ε > 0 such that J(x, u) ≥ J(x̄, ū) for any admissible (x, u) ∈ Ξ such that
‖x − x̄‖∞ < ε. Obviously, under our assumptions, any strong local minimizer is a
weak local minimizer.
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3.1. First order necessary conditions. The Hamiltonian H : IRn × IRm ×
IRn → IR and the terminal Lagrange function l : IRn × IRk → IR are defined by

H(x, u, p) = pf(x, u), l(x, α) =

k∑
i=0

αigi(x),

where p = (p1, . . . , pn) is considered as a row vector and α = (α0, . . . , αk). Denote by

Kf
i = {x ∈ IRn : gi(x) ≤ 0}, i = 1, ..., k,

Kj = {x ∈ IRn : Φj(x) ≤ 0}, j = 1, ..., q.

Then for every x ∈ ∂Kf
i we have gi(x) = 0 and similarly for Φj .

Let (x̄, ū) be a strong local minimizer in problem (1.1)-(1.4). The first-order
necessary conditions for a strong local minimum are as follows: there exist

(3.1) α = (α0, . . . , αk), α ≥ 0 such that αi = 0 if x̄(1) ∈ IntKf
i , i = 1, . . . , k,

positive Borel measures µj on [0, 1] with

(3.2) suppµj ⊂ {t ∈ [0, 1] : x̄(t) ∈ ∂Kj}, j = 1, . . . , q,

and a right-continuous function of bounded variation p : [0, 1]→ IRn such that

(3.3) − dp(t) = Hx(x̄(t), ū(t), p(t)) dt+

q∑
j=1

Φ′j(x̄(t)) dµj(t),

(3.4) p(1) = lx(x̄(1), α),

(3.5) min
v∈U
H(x̄(t), v, p(t)) = H(x̄(t), ū(t), p(t)) a.e. in [0, 1],

(3.6)

k∑
i=0

αi +

q∑
j=1

µj([0, 1]) = 1.

In (3.3) the equality has to be understood in the sense of measures, and a.e. in (3.5)
refers to the Lebesgue measure.

For µ = (µ1, . . . , µq), denote by M(x̄, ū) the set of all triples (α, p, µ), satisfying
the minimum principle conditions (3.1)-(3.6). The following result is well known.

Theorem 3.1. If (x̄, ū) is a strong local minimizer, then M(x̄, ū) 6= ∅.
Let (α, p, µ) ∈M(x̄, ū). Then the minimum condition (3.5) implies

(3.7) Hu[t]v ≥ 0 ∀ v ∈ T [U (ū(t)) for a.e. t ∈ [0, 1],

where [t] := (x̄(t), ū(t), p(t)). (In what follows we will often use this abbreviation
for, possibly different, sets of time dependent functions.) Denote by Λ(x̄, ū) the set
of all (α, p, µ) satisfying (3.1)-(3.4) and (3.6), (3.7). Clearly, M(x̄, ū) ⊂ Λ(x̄, ū). The
condition Λ(x̄, ū) 6= ∅ is called the “weak local minimum principle”. (It is the first-
order necessary optimality condition for a weak local minimum in our problem.)
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3.2. Second-order conditions.
Critical cone. Denote by C(x̄, ū) the set of all pairs (y(·), u(·)) ∈ Ξ such that

(3.8) g′i(x̄(1))y(1) ≤ 0, i ∈ Ig ∪ {0},

(3.9) Φ′j(x̄(t))y(t) ≤ 0 ∀ t ∈Mj0, j = 1, . . . , q,

(3.10) ẏ(t) = fx[t]y(t) + fu[t]u(t) a.e. on [0, 1], y(0) = 0,

(3.11) u(t) ∈ T [U (ū(t)) a.e. in [0, 1],

where [t] := (x̄(t), ū(t)),

Ig = {i ∈ {1, . . . , k} : x̄(1) ∈ ∂Kf
i }, Mj0 = {t ∈ [0, 1] : x̄(t) ∈ ∂Kj}, j = 1, . . . , q.

C(x̄, ū) is called in this paper the critical cone (it is possible to define larger critical sets
that we do not do here). The elements of the critical cone C(x̄, ū) have the following
important properties.

Lemma 3.2. Let (α, p, µ) ∈ Λ(x̄, ū). Then for any (y, u) ∈ C(x̄, ū),

αig
′
i(x̄(1))y(1) = 0, i = 0, . . . , k; Hu[t]u(t) = 0 a.e. in [0, 1],

Φ′j(x̄(t))y(t) = 0 µj − a.e. in [0, 1], j = 1, . . . , q.

Proof By (3.3), (3.4) (3.10) and the condition y(0) = 0, we get∫ 1

0
Hu[t]u(t) dt −

∑q
j=1

∫
[0,1]

Φ′j(x̄(t))y(t) dµj = p(1)y(1)

= lx(x̄(1), α)y(1) =
∑k
i=0 αig

′
i(x̄(1))y(1).

Consequently,

k∑
i=0

αig
′
i(x̄(1))y(1)−

∫ 1

0

Hu[t]u(t) dt+

q∑
j=1

∫
[0,1]

Φ′j(x̄(t))y(t) dµj = 0.

Since by (3.7), (3.8), and (3.9) all summand in the left-hand side of this equality are
nonpositive, it follows that all of them are equal to zero. Moreover, the conditions∫ 1

0
Hu[t]u(t) dt = 0 and Hu[t]u(t) ≥ 0 a.e. in [0, 1] imply Hu[t]u(t) = 0 a.e. in [0, 1].

Similarly, the conditions
∫ 1

0
Φ′j(x̄(t))y(t) dµj = 0, Φ′j(x̄(t))y(t) ≤ 0 for all t ∈ Mj0

and (3.2) imply Φ′j(x̄(t))y(t) = 0 µj − a.e. in [0, 1], j = 1, . . . , q. �

Consequently, if, for some index i ∈ {0, . . . , k}, there exists (α, p, µ) ∈ Λ(x̄, ū)
such that αi > 0, then the inequality g′i(x̄(1))y(1) ≤ 0 (in the definition of the critical
cone) can be replaced by the equality g′i(x̄(1))y(1) = 0 without affecting C(x̄, ū).
Similarly for any (α, p, µ) ∈ Λ(x̄, ū) the conditions Hu[t]u(t) = 0 a.e. in [0, 1] and
Φ′j(x̄(t))y(t) = 0 µj − a.e. in [0, 1], j = 1, . . . , q, can be added to the definition of
C(x̄, ū) without affecting C(x̄, ū).
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We will also use a smaller cone of critical directions. First consider the following
condition for a function u(·) ∈ L∞([0, 1], IRn):

(3.12)

{
∃h0 > 0, ∃ c(·) ∈ L1([0, 1], IR+) such that ∀h ∈ [0, h0]
dU (ū(t) + hu(t)) ≤ c(t)h2 for a.e. t ∈ [0, 1].

Note that this condition yields (3.11). Denote by CU (x̄, ū) the set of all elements
(y(·), u(·)) ∈ C(x̄, ū) such that u(·) satisfies (3.12) and by CΦ(x̄, ū) the set of all
elements (y(·), u(·)) ∈ C(x̄, ū) such that

(3.13) ∃ δ > 0 satisfying max
t∈Mjδ

Φ′j(x̄(t))y(t) ≤ 0, ∀ j = 1, . . . , q,

where

Mjδ = {t ∈ [0, 1] : Φj(x̄(t)) ≥ −δ, d∂Kj (x̄(t)) ≤ δ}.

Remark 3.1. If for some j, Φ′j(x̄(t))y(t) < 0 for all t ∈ Mj0, then, obviously,
there exists δ > 0 such that Φ′j(x̄(t))y(t) < 0 for all t ∈Mjδ.

Finally, define

(3.14) C0(x̄, ū) := CU (x̄, ū) ∩ CΦ(x̄, ū).

We show next that a second-order necessary optimality condition, can be associated
with every element of the cone C0(x̄, ū).

Main theorem. For any u : [0, 1]→ IRm define

(3.15)
V 2(ū, u) :=

{
v : [0, 1]→ IRm : v(·) is measurable,

fu[·]v(·) is integrable and v(t) ∈ T [(2)
U (ū(t), u(t)) a.e.

}
,

and for any (α, p, µ) ∈M(x̄, ū) and t ∈ [0, 1], set

(3.16) Υ(u(t), p(t)) := inf
{
Hu[t]v : v ∈ T [(2)

U (ū(t), u(t))
}
∈ [−∞,+∞],

where, by convention, inf∅ = +∞. Observe that if T
[(2)
U (ū(t), u(t)) = ∅ on a subset of

[0, 1] of positive measure, then V 2(ū, u) = ∅.
Further, for any (α, p, µ) ∈M(x̄, ū) and ξ = (y, u) ∈ Ξ, set

Ω(ξ, α, p, µ) :=
1

2
〈lxx(x̄(1), α)y(1), y(1)〉+

1

2

∫ 1

0

〈H′′[t]ξ(t), ξ(t)〉dt

(3.17) +
1

2

q∑
j=1

∫
[0,1]

〈Φ′′j (x̄(t)) y(t), y(t)〉dµj ,

where H′′[t] is the Hessian of H(·, ·, p(t)) at (x̄(t), ū(t)). Note that the functional
Ω(ξ, α, p, µ) is quadratic in ξ.

Theorem 3.3 below is the main result of this paper.
Theorem 3.3. If (x̄, ū) is a strong local minimizer, then, for any ξ = (y, u) ∈

C0(x̄, ū) with V 2(ū, u) 6= ∅, there exists (α, p, µ) ∈ M(x̄, ū), for which the function
Υ(u(·), p(·)) is integrable and the following inequality holds true:

(3.18) Ω(ξ, α, p, µ) +

∫ 1

0

Υ(u(t), p(t)) dt ≥ 0.
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Remark 3.2. Note that (α, p, µ) in the above theorem depends on ξ and it can be
stated also in the following way: If (x̄, ū) is a strong local minimizer, then,

inf
ξ = (y, u) ∈ C0(x̄, ū)

V 2(ū, u) 6= ∅

sup
(α,p,µ)∈M(x̄,ū)

(
Ω(ξ, α, p, µ) +

∫ 1

0

Υ(u(t), p(t)) dt

)
≥ 0

with the convention that the supremum over an empty set is equal to −∞.
Remark 3.3. In [10], we provided examples, where, for every critical element

(x, u), the condition V 2(ū, u) 6= ∅ is fulfilled and the term Υ(u(t), p(t)) can be com-
puted explicitly. This is so, e.g., if U is a convex polytope (then we always have
Υ(u(t), p(t)) = 0), or if U is given by the system of inequalities ϕi(u) ≤ 0, i = 1, . . . , r
with C2-functions ϕi : IRm → IR, having positively independent gradients of active
constraints. This last case will be analyzed also in Section 5.2.

4. Proof of Theorem 3.3.

4.1. Set of admissible second-order variations. We first discuss the second
order variations of x̄. For every x ∈ IRn, define the convex compact set

F (x) := co f(x, U).

Then, the set-valued map F is locally Lipschitz continuous and locally bounded.
Let (x̄, ū) ∈ Ξ solve (1.3). Then x̄ satisfies the differential inclusion

ẋ(t) ∈ F (x(t)), for a.e. t ∈ [0, 1], x(0) = x0.

We have shown in [10] that for a.e. t ∈ [0, 1] and any y ∈ IRn, u ∈ T [U (ū(t)), v ∈
T
[(2)
U (ū(t), u), w ∈ IRn,

z := fx[t]y + fu[t]u ∈ dF (x̄(t), ˙̄x(t))(y),

fx[t]w + fu[t]v + 1
2f
′′[t]((y, u), (y, u)) + TF (x̄(t))( ˙̄x(t)) ⊂ d2F (x̄(t), ˙̄x(t), y, z)(w).

The set of all absolutely continuous functions y : [0, 1]→ IRn satisfying
(i) ẏ(t) ∈ dF (x̄(t), ˙̄x(t))(y(t)) for a.e. t ∈ [0, 1], y(0) = 0,

(ii) ∃α ∈ L1([0, 1], IR+), ∃h0 > 0 such that for all h ∈ [0, h0] and a.e. t ∈ [0, 1],

distF (x̄(t)+hy(t))( ˙̄x(t) + hẏ(t)) ≤ α(t)h2

is called the set of admissible first order variations at x̄ and is denoted by V(1)(x̄).
Lemma 4.1 ([10]). Let a pair (y, u) ∈ Ξ solve the system

ẏ(t) = fx[t]y(t) + fu[t]u(t), y(0) = 0,

and u satisfies (3.12). Then y ∈ V(1)(x̄).
In particular, if (y, u) ∈ C0(x̄, ū), then y ∈ V(1)(x̄).
For a fixed y ∈ V(1)(x̄), we abbreviate (x̄(t), ˙̄x(t), y(t), ẏ(t)) by [t] and consider

the set V(2)(x̄, y) of all absolutely continuous functions w : [0, 1]→ IRn satisfying

(4.1) ẇ(t) ∈ d2F [t](w(t)) for a.e. t ∈ [0, 1], w(0) = 0.
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Let ξ = (y, u) be as in Lemma 4.1 and assume that the set V 2(ū, u) (defined by
(3.15)) is nonempty. Consider the closed convex cone

(4.2) K :=
{
η ∈ L1([0, 1], IRn) : η(t) ∈ TF (x̄(t))( ˙̄x(t)) a.e. in [0, 1]

}
and the control system

(4.3) ẇ(t) = fx[t]w(t) + fu[t]v(t) +
1

2
f ′′[t](ξ(t), ξ(t)) + η(t), w(0) = 0,

where controls η ∈ K and v ∈ V 2(ū, u). We introduce next the set of admissible
second order variations
(4.4)
Ṽ(2)(x̄, y) = {w ∈W 1,1([0, 1], IRn) : w solves (4.3) for some η ∈ K, v ∈ V 2(ū, u)}.

Lemma 4.2 ([10]). Let (y, u) be as in Lemma 4.1 and V 2(ū, u) 6= ∅. Then

(4.5) ∅ 6= Ṽ(2)(x̄, y) ⊂ V(2)(x̄, y).

Fix any ξ = (y, u) ∈ C0(x̄, ū) such that V 2(ū, u) 6= ∅ .
Denote by ı : W 1,1([0, 1], IRn)→ C([0, 1], IRn) the natural embedding and define

(4.6) E2 = cl {ı(Ṽ(2)(x̄, y))},

where cl stands for the closure in the space C([0, 1]), IRn).
Lemma 4.3. The closed nonempty set E2 is convex.
Proof We have to prove that E2 = co E2. The inclusion ⊂ is obvious. To prove

the opposite inclusion it is enough to show that E2 ⊃ co{ı(Ṽ(2)(x̄, y))}. For this aim
consider any integer s ≥ 1, reals λi ≥ 0 such that

∑s
i=1 λi = 1 and wi ∈ Ṽ(2)(x̄, y) for

i = 1, ..., s. We verify that

w̄ :=

s∑
i=1

λiwi ∈ E2.

Let vi ∈ V 2(ū, u), ηi ∈ K be controls corresponding to wi. Then η̄ :=
∑s
i=1 λiηi ∈

K, because K is convex. Define the integrable function

γ(t) = max
1≤i≤s

|fu[t]vi(t)|

and the measurable set-valued map

Π(t) = {fu[t]vi(t) : i = 1, ..., s} ∀ t ∈ [0, 1].

Clearly Π(t) ⊂ γ(t)B a.e. (where B denotes the unit ball in IRm) and thus Π is
integrably bounded. Furthermore, w̄ is a trajectory of the affine with respect to
controls π system{

ẇ(t) = fx[t]w(t) + π(t) + 1
2f
′′[t](ξ(t), ξ(t)) + η̄(t), π(t) ∈ co Π(t)

w(0) = 0.
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By the relaxation theorem there exists a sequence of solutions w̄j to the control system{
ẇ(t) = fx[t]w(t) + π(t) + 1

2f
′′[t](ξ(t), ξ(t)) + η̄(t), π(t) ∈ Π(t)

w(0) = 0

converging uniformly to w̄. For every j, let πj ∈ L1([0, 1], IRn) be a control corre-
sponding to w̄j . Since Π(t) = fu[t]{vi(t) : i = 1, ..., s}, by the measurable selection
theorem, for every j there exists a measurable selection v̄j(t) ∈ {vi(t) : i = 1, ..., s} a.e.
such that πj(t) = fu[t]v̄j(t) a.e. Hence v̄j ∈ V 2(ū, u) and therefore w̄j ∈ Ṽ(2)(x̄, y)
for every j, implying that w̄ ∈ E2. �

Finally, we recall one more important fact needed in the proof of the main
theorem. Denote by S the set of all x ∈ W 1,1([0, 1], IRn) such that there exists
u ∈ L∞([0, 1], U) with (x, u) satisfying (1.3). Recall that, by a measurable selection
theorem, see for instance [2, Theorem 8.2.10], the set S coincides with the set of
trajectories of the differential inclusion

ẋ(t) ∈ f(x(t), U) a.e. in [0, 1], x(0) = x0.

Thus, by [8, Theorem 3.3], for every y ∈ V(1)(x̄), w ∈ V(2)(x̄, y) and for any sequence
hs → 0+, there exists a sequence xs ∈ S, s = 1, ..., such that

xs − x̄− hsy
h2
s

→ w uniformly on [0,1] as s→∞.

We would like to underline that in [8] F is supposed to satisfy also a sublinear
growth assumption. However, the same proof as in [8] applies whenever U is compact
and f ∈ C2 and so this last assumption may be skipped. It follows that

(4.7) xs = x̄+ hsy + h2
sw + h2

srs, where ‖rs‖∞ → 0 as s→∞.

Hence the following lemma holds.
Lemma 4.4. Let y ∈ V(1)(x̄), w ∈ V(2)(x̄, y) and hs → 0+ be a sequence of reals.

Then there exists a sequence of elements xs ∈ S, s = 1, ... satisfying (4.7).

4.2. Incompatibility of a second order system. Fix a strong local minimizer
(x̄, ū). Without loss of generality, we may assume that

(4.8) g0(x̄(1)) = 0, x̄(1) ∈ ∂Kf
i , i = 1, . . . , k,

and

(4.9) Mj0 6= ∅, j = 1, . . . , q.

In the other words, we assume that all constraints are active at x̄. It follows that
Ig = {1, . . . , k}.

Lemma 4.5. Let ξ = (y, u) ∈ C0(x̄, ū) and V 2(ū, u) 6= ∅. Then the system of
conditions

(4.10) g′i(x̄(1))w(1) +
1

2
〈g′′i (x̄(1))y(1), y(1)〉 < 0, i = 0, . . . , k,

(4.11) max
t∈Mj0

(
Φ′j(x̄(t))w(t) +

1

2
〈Φ′′j (x̄(t))y(t), y(t)〉

)
< 0, j = 1, . . . , q,
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(4.12) w ∈ V(2)(x̄, y)

is incompatible.
Proof Indeed, by Lemma 4.1, condition (y, u) ∈ C0(x̄, ū) implies that y ∈ V(1)(x̄).

Assume for a moment that there exists an element w satisfying (4.10)-(4.12). Consider
any sequence of reals hs → 0+. Then, by Lemma 4.4, there exists a sequence xs ∈ S
as in (4.7). Let us be such that (xs, us) solves (1.3). Then, for any i = 0, 1, . . . , k,

gi(xs(1)) = gi(x̄(1) + hsy(1) + h2
sw(1) + h2

srs(1)) = gi(x̄(1)) + hsg
′
i(x̄(1))y(1)

+h2
s

(
g′i(x̄(1))w(1) + 1

2 〈g
′′
i (x̄(1))y(1), y(1)〉

)
+ o(h2

s).

Taking into account (4.8), (3.8), and (4.10), we deduce that for some ε > 0 and for
all s large enough, the inequality

(4.13) gi(xs(1)) ≤ −εh2
s + o(h2

s)

is fulfilled. Similarly, for any j = 1, . . . , q, we have

(4.14)

Φj(xs(t)) = Φj(x̄(t) + hsy(t) + h2
sw(t) + h2

srs(t)) =

Φj(x̄(t)) + hsΦ
′
j(x̄(t))y(t) + h2

s

(
Φ′j(x̄(t))w(t) + 1

2 〈Φ
′′
j (x̄(t))y(t), y(t)〉

)
+h2

sζs(t), where ‖ζs‖∞ → 0 as s→∞.

Since Φ′j(x̄(·))w(·) + 1
2 〈Φ

′′
j (x̄(·))y(·), y(·)〉 is continuous, by (4.11), there exists δ > 0

such that the strict inequality

Φ′j(x̄(t))w(t) +
1

2
〈Φ′′j (x̄(t))y(t), y(t)〉 < 0

is fulfilled also on the set Mjδ. Taking, if necessary, a smaller δ > 0, we obtain,
according (3.13), that Φ′j(x̄(t))y(t) ≤ 0 on Mjδ. Since Φj(x̄(t)) ≤ 0 on [0, 1], it
follows from (4.14) that for some ε > 0 and for all small enough δ > 0, we have

max
t∈Mjδ

Φj(xs(t)) ≤ −εh2
s + o(h2

s).

Further, on the set [0, 1] \Mjδ we have either Φj(x̄(t)) < −δ, or d∂Kj (x̄(t)) > δ, and
in the both cases

sup
t∈[0,1]\Mjδ

Φj(xs(t)) ≤ 0

for all s large enough. Hence for all large s,

(4.15) max
t∈[0,1]

Φj(xs(t)) ≤ 0.

The existence of the sequence (xs, us) which solves (1.3), satisfies (4.13) and (4.15),
and such that ‖xs− x̄‖∞ → 0 as s→∞, implies that (x̄, ū) is not a point of a strong
local minimum. The obtained contradiction ends the proof. �

Fix ξ = (y, u) ∈ C0(x̄, ū) with V 2(ū, u) 6= ∅. For any i = 0, . . . , k, define the
following open, possibly empty, affine half-space in the space C([0, 1]), IRn):

Qi =
{
w ∈ C([0, 1]), IRn) : g′i(x̄(1))w(1) +

1

2
〈g′′i (x̄(1))y(1), y(1)〉 < 0

}
.
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Note that Qi is empty if and only if g′i(x̄(1)) = 0 and 〈g′′i (x̄(1))y(1), y(1)〉 ≥ 0. For
any j = 1, . . . , q, define an open convex, possibly empty, subset of C([0, 1]), IRn)

Fj =
{
w ∈ C([0, 1]), IRn) : max

t∈Mj0

(
Φ′j(x̄(t))w(t) +

1

2
〈Φ′′j (x̄(t))y(t), y(t)〉

)
< 0
}
.

Note that Fj is empty if and only if Φ′j(x̄(t)) = 0 and 〈Φ′′j (x̄(t))y(t), y(t)〉 ≥ 0 for
some t ∈Mj0 .

It follows from Lemmas 4.2 and 4.5 that V(2)(x̄, y) 6= ∅ and that

(4.16) (

k⋂
i=0

Qi)
⋂

(

q⋂
j=1

Fj)
⋂
ı(Ṽ(2)(x̄, y)) = ∅.

Hence this condition is necessary for (x̄, ū) to be a strong local minimizer. Recall
that this condition was written for an arbitrary fixed pair ξ = (y, u) ∈ C0(x̄, ū) with
V 2(ū, u) 6= ∅. Since Qi and Fj are open, (4.16) implies

(4.17) (

k⋂
i=0

Qi)
⋂

(

q⋂
j=1

Fj)
⋂
E2 = ∅,

where the nonempty convex (by Lemma 4.2) closed set E2 was defined by (4.6). Now
Theorem 2.1 can be applied.

4.3. Application of Theorem 2.1. We analyze next the necessary optimal-
ity condition (4.17) in the light of Theorem 2.1. First of all, let us establish the
correspondence between notation of condition (4.17) and Theorem 2.1: define

X = C([0, 1], IRn),

li : w(·)→ g′i(x̄(1))w(1), mi = 1
2 〈g
′′
i (x̄(1))y(1), y(1)〉, i = 0, . . . , k,

Zj = C([0, 1], IR), ϕj : z(·)→ maxt∈Mj0 z(t), j = 1, . . . , q,

Pj : w(·)→ Φ′j(x̄(·))w(·), zj(·) = 1
2 〈Φ

′′
j (x̄(·))y(·), y(·)〉, j = 1, . . . , q.

According to Theorem 2.1 and Lemma 2.6, there exist reals αi ≥ 0, i = 0, . . . , k,
βj ≥ 0, j = 1, . . . , q, probability measures µ̃j with supp µ̃j ⊂ M0j , j = 1, . . . , q, and
z∗ ∈ C([0, 1], IRn)∗ such that the following three conditions hold:

k∑
i=0

αi +

q∑
j=1

βj = 1,

k∑
i=0

αig
′
i(x̄(1))w(1) +

q∑
j=1

βj

∫
[0,1]

Φ′j(x̄(t))w(t) dµ̃j = 〈z∗, w〉 ∀w ∈ C([0, 1], IRn),

1

2

k∑
i=0

αi〈g′′i (x̄(1))y(1), y(1)〉+
1

2

q∑
j=1

βj

∫
[0,1]

〈Φ′′j (x̄(t))y(t), y(t)〉dµ̃j + inf〈z∗, E2〉 ≥ 0.

Replacing
∑k
i=0 αig

′
i(x̄(1)) and

∑k
i=0 αig

′′
i (x̄(1)) by lx(x̄(1), α) and lxx(x̄(1), α), re-

spectively, and each product βj dµ̃j by dµj , j = 1, . . . , q, and also using the obvious
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equality inf〈z∗, E2〉 = inf〈z∗, ı(Ṽ(2)(x̄, y))〉, we get the following system of conditions

k∑
i=0

αi +

q∑
j=1

µj([0, 1]) = 1,

(4.18) lx(x̄(1), α)w(1) +

q∑
j=1

∫
[0,1]

Φ′j(x̄(t))w(t) dµj = 〈z∗, w〉 ∀w ∈ C([0, 1], IRn),

(4.19)

1

2
〈lxx(x̄(1), α)y(1), y(1)〉+1

2

q∑
j=1

∫
[0,1]

〈Φ′′j (x̄(t))y(t), y(t)〉dµj+inf〈z∗, ı(Ṽ(2)(x̄, y))〉 ≥ 0.

Let the right-continuous function of bounded variation p solve the adjoint system
(3.3), (3.4). For v ∈ V 2(ū, u) (see (3.15)), η ∈ K (see (4.2)) consider the solution w
of (4.3). Then

d(p(t)w(t)) = −p(t)fx[t]w(t) dt−
∑q
j=1 Φ′j(x̄(t))w(t) dµj(t)

+p(t)
(
fx[t]w(t) + fu[t]v(t) + 1

2f
′′[t](ξ(t), ξ(t)) + η(t)

)
dt

= −
∑q
j=1 Φ′j(x̄(t))w(t) dµj(t) + p(t)(β(t) + η(t)) dt

where

β(t) = fu[t]v(t) +
1

2
f ′′[t](ξ(t), ξ(t)).

Integrating the obtained equality over the interval [0, 1] and taking into account that
w(0) = 0, we get

p(1)w(1) = −
q∑
j=1

∫
[0,1]

Φ′j(x̄(t))w(t) dµj +

∫ 1

0

p(t)(β(t) + η(t)) dt,

or, equivalently,

lx(x̄(1), α)w(1) +

q∑
j=1

∫
[0,1]

Φ′j(x̄(t))w(t) dµj =

∫ 1

0

p(t)(β(t) + η(t)) dt.

Using (4.18), we obtain 〈z∗, w〉 =
∫ 1

0
p(t)(β(t) + η(t)) dt. Consequently, by the defini-

tion of β,

〈z∗, w〉 =

∫ 1

0

Hu[t]v(t) dt+
1

2

∫ 1

0

〈H′′[t]ξ(t), ξ(t)〉 dt+

∫ 1

0

p(t)η(t) dt.

Recall that here η ∈ K and v ∈ V 2(ū, u). Then, according to the definition of Ṽ(2)(x̄, y)
(see (4.4)) and inequality (4.19), we get

Ω(ξ, α, p, µ) + inf
v∈V 2(ū,u)

∫ 1

0

Hu[t]v(t) dt+ inf
η∈K

∫ 1

0

p(t)η(t) dt ≥ 0,
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where Ω is defined by (3.17). Since K is a cone, it follows that

(4.20) Ω(ξ, α, p, µ) + inf
v∈V 2(ū,u)

∫ 1

0

Hu[t]v(t) dt ≥ 0,

(4.21)

∫ 1

0

p(t)η(t) dt ≥ 0 ∀ η ∈ K.

We have shown in [10, Proof of Theorem 3.2] that (4.21) implies the minimum
principle (3.5) and hence (α, p, µ) ∈ M(x̄, ū). Moreover we have shown there that
(4.20) yields (3.18). Theorem 3.3 is completely proved.

Remark 4.1 (Normality of necessary conditions). The above proof and Theorem
2.1 imply that in Theorem 3.3 α0 > 0 whenever there exists w ∈ Ṽ(2)(x̄, y) such that

g′i(x̄(1))w(1) +
1

2
〈g′′i (x̄(1))y(1), y(1)〉 < 0, i = 1, . . . , k,

and

max
t∈Mj0

(
Φ′j(x̄(t))w(t) +

1

2
〈Φ′′j (x̄(t))y(t), y(t)〉

)
< 0, j = 1, . . . , q.

5. Some special cases of U . In this section we consider problem (1.1)-(1.4)
with the set U having a special structure. Then the statement of the main result can
be simplified.

5.1. The case when U is a union of convex polytopes. As usual, we
understand a convex polytope as the convex hull of a finite number of points in
IRm. Consider problem (1.1)-(1.4) with the set U being a union of convex polytopes
Uk ⊂ IRm, k = 1, ..., r. Then U is compact and in general, it is not convex.

Denote by extUk the set of all the extremal points of Uk. Let an admissible pair
(x̄, ū) affords a strong local minimum in our problem with U as above and assume
that

(5.1) ū(t) ∈
r⋃

k=1

extUk a.e. in [0, 1].

Then it is not difficult to realise that C0(x̄, ū) = CΦ(x̄, ū). Let ξ = (y, u) ∈ CΦ(x̄, ū).
Then condition (3.18) holds with some (α, p, µ) ∈ M(x̄, ū). Moreover, it can be
verified, similarly to [10], that the function Υ(u(·), p(·)) appearing in the necessary
condition (3.18) is equal to zero. Thus the following theorem holds.

Theorem 5.1. Let U be a union of convex polytopes, and let (x̄, ū) be a strong
local minimizer of problem (1.1)-(1.4) with ū satisfying condition (5.1). Then, for
any ξ = (y, u) ∈ CΦ(x̄, ū), there exists (α, p, µ) ∈M(x̄, ū), such that

〈lxx(x̄(1), α)y(1), y(1)〉+
∫ 1

0

〈H′′[t]ξ(t), ξ(t)〉dt+
q∑
j=1

∫
[0,1]

〈Φ′′j (x̄(t)) y(t), y(t)〉dµj ≥ 0.
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5.2. The case when U is given by inequalities. Consider now problem (1.1)-
(1.4), with

U = {u ∈ IRm : ϕi(u) ≤ 0, i = 1, . . . , r},

where ϕi : IRm → IR are C2 and at each point u ∈ ∂U the gradients ϕ′i(u), i ∈
Iϕ(u) are positively independent (i.e., independent with nonnegative coefficients in
the definition), where Iϕ(u) = {i : ϕi(u) = 0} is the set of active indices at u and
ϕ = (ϕ1, ..., ϕr). We also assume that U is compact. By [2, Chapter 4], for every
u0 ∈ U ,

T [U (u0) = {u ∈ IRm : ϕ′i(u0)u ≤ 0, i ∈ Iϕ(u0)}.

Such control set U was also considered in [9, Sec. 7] for the Mayer problem in the
absence of state and final-point constraints. Here we pay attention only to the changes
which are introduced due to the presence of these constraints.

Let (x̄, ū) ∈ Ξ be a strong local minimizer in problem (1.1)-(1.4), and hence (3.1)-
(3.6) are satisfied for some (α, p, µ). From [9, Section 5] we know that there exists a
measurable essentially bounded function λ(·) = (λ1(·), . . . , λr(·)) such that

(5.2) λ1(t) ≥ 0, . . . , λr(t) ≥ 0, λi(t)ϕi(ū(t)) = 0, a.e., i = 1, . . . , r,

(5.3) Hu(x̄(t), ū(t), p(t)) +

r∑
i=1

λi(t)ϕ
′
i(ū(t)) = 0 a.e.

The augmented Hamiltonian is defined by Ha : IRn × IRm × IRn × IRr → IR,

Ha(x, u, p, λ) = H(x, u, p) + λϕ(u),

where λ = (λ1, . . . , λr). Then (5.3) yields Hau(x̄(t), ū(t), p(t), λ(t)) = 0 a.e.
Define the set of multipliers

Ma(x̄, ū) = {(α, p, λ, µ) : (α, p, µ) ∈M(x̄, ū), λ ∈ L∞([0, 1], IRr), and (5.2), (5.3) hold}.

Consider the critical cone C(x̄, ū), defined by (3.8)-(3.11), and set

Mϕ
i0 = {t ∈ [0, 1] : ū(t) ∈ ∂U, ϕi(ū(t)) = 0 }, i = 1, . . . , r.

Then (3.11) is equivalent to

(5.4) ϕ′i(ū(t))u(t) ≤ 0 a.e. in Mϕ
i0, i = 1, . . . , r.

Hence
Proposition 5.2. The critical cone C(x̄, ū) is defined by conditions (3.8)-(3.10)

and (5.4).
For any δ > 0, define

Mϕ
iδ = {t ∈ [0, 1] : d∂U (ū(t)) ≤ δ, ϕi(ū(t)) ≥ −δ }, i = 1, . . . , r.

Consider u(·) ∈ L∞([0, 1], IRm) satisfying:

(5.5) ∃ δ > 0 such that ϕ′i(ū(t))u(t) ≤ 0 a.e. on Mϕ
iδ, i = 1, . . . , r.
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Lemma 5.3. Condition (5.5) implies condition (3.12).
The proof is given in [10, Lemma 7.2].
Now consider the function Υ(u(·), p(·)) as in (3.16). It was proved in [9, Section

5] that the set V 2(ū, u) is nonempty, and that λ can be chosen in such a way that it
is essentially bounded, (5.2) and (5.3) are satisfied and

Υ(u(t), p(t)) =
1

2

r∑
i=1

λi(t)〈ϕ′′i (ū(t))u(t), u(t)〉 a.e.

Define

Ωa(ξ, α, p, λ, µ) :=
1

2
〈lxx(x̄(1), α)y(1), y(1)〉+

1

2

∫ 1

0

〈(Ha)′′[t]ξ(t), ξ(t)〉 dt

+
1

2

q∑
j=1

∫
[0,1]

〈Φ′′j (x̄(t)) y(t), y(t)〉dµj .

From Theorem 3.3 we deduce
Theorem 5.4. Let (x̄, ū) be a strong local minimizer. Then Ma(x̄, ū) 6= ∅ and for

any ξ = (y, u) ∈ C(x̄, ū) satisfying (5.5) and (3.13), there exists (α, p, λ, µ) ∈Ma(x̄, ū)
such that Ωa(ξ, α, p, λ, µ) ≥ 0.

6. Appendix.

6.1. Proof of Lemma 2.3. Let x∗ ∈Md. If x∗ = 0, we take α = 0 and choose
x∗1 ∈ domF ∗ arbitrary. So let 0 6= x∗ ∈Md and set inf〈x∗,M〉 = γ. Since M is open,
for any x ∈M we have 〈x∗, x〉 > γ. In the space X × IR consider two sets

Ω0 := {(x, t) ∈ X × IR : F (x) < t}, Ω1 := {(x, t) ∈ X × IR : 〈x∗, x〉 ≤ γ, t = 0}.

Both sets are convex and the first set is open. Moreover Ω0∩Ω1 = ∅. By the separation
theorem, there exist x∗1 ∈ X∗, β ∈ IR, not vanishing simultaneously, and a constant
c ∈ IR such that l(Ω0) < c and l(Ω1) ≥ c, where l(x, t) = 〈x∗1, x〉+βt for x ∈ X, t ∈ IR.
It means that

(6.1) F (x) < t ⇒ 〈x∗1, x〉+ βt < c,

(6.2) 〈x∗, x〉 ≤ γ ⇒ 〈x∗1, x〉 ≥ c.

From (6.1) it follows that β ≤ 0. But if β = 0, then x∗1 6= 0 and from (6.1) we get
〈x∗1, x〉 < c for every x ∈ X, which is impossible. Therefore, β < 0 and then we can
take the pair (x∗1, β) such that β = −1. Then condition (6.1) becomes

(6.3) F (x) < t ⇒ 〈x∗1, x〉 − t < c.

Further, (6.2) implies that there exists α > 0 satisfying x∗ = −αx∗1, γ ≤ −αc, and
from (6.3) we easily get 〈x∗1, x〉 − F (x) ≤ c for all x ∈ X. Thus x∗1 ∈ domF ∗ and
F ∗(x∗1) ≤ c. Consequently, −αF ∗(x∗1) ≥ −αc ≥ γ, and then inf〈x∗,M〉 ≤ −αF ∗(x∗1).

Now we establish the opposite inequality. Since x∗1 ∈ domF ∗, we have 〈x∗1, x〉 −
F ∗(x∗1) ≤ F (x) for all x ∈ X. This implies that 〈x∗1, x〉 − F ∗(x∗1) < 0 for all x ∈ M.
Multiplying by α > 0, we obtain α〈x∗1, x〉−αF ∗(x∗1) < 0 for all x ∈M. Consequently,
〈x∗, x〉 > −αF ∗(x∗1) for all x ∈M. This implies that inf〈x∗,M〉 ≥ −αF ∗(x∗1). �
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6.2. Proof of Lemma 2.5. The continuity and convexity of the function F (x) =
ϕ(y0 + Ax) follow from the same properties of ϕ and the continuity of the operator
A. Let us show, that if y∗ ∈ domϕ∗ and x∗ = A∗y∗, then x∗ ∈ domF ∗ and

(6.4) F ∗(x∗) ≤ ϕ∗(y∗)− 〈y∗, y0〉.

Indeed, if y∗ ∈ domϕ∗, then 〈y∗, y〉−ϕ(y) ≤ ϕ∗(y∗) < +∞ for all y ∈ Y, and therefore

F (x) = ϕ(Ax+ y0) ≥ 〈y∗, y0 +Ax〉 − ϕ∗(y∗) ∀ x ∈ X.

Let x∗ = A∗y∗. Then

〈x∗, x〉 − F (x) ≤ 〈x∗, x〉+ ϕ∗(y∗)− 〈y∗, y0 +Ax〉 = ϕ∗(y∗)− 〈y∗, y0〉 ∀ x ∈ X.

The condition x∗ ∈ domF ∗ and inequality (6.4) follow.
It remains to prove that if x∗ ∈ domF ∗, then there exists y∗ ∈ domϕ∗ such that

x∗ = A∗y∗ and

(6.5) F ∗(x∗) ≥ ϕ∗(y∗)− 〈y∗, y0〉.

To this end, in the space Z = X × Y × IR define three sets:

M = {(x, y, t) ∈ Z : y = Ax+ y0}, M0 = {(x, y, t) ∈ Z : ϕ(y) < t},

M1 = {(x, y, t) ∈ Z : 〈x∗, x〉 − F ∗(x∗) > t}.

Each set is nonempty, convex and moreover M0 and M1 are open. We claim that,

(6.6) M0 ∩M1 ∩M = ∅.

Indeed, if (x, y, t) ∈M0 ∩M1 ∩M , then

y = Ax+ y0, ϕ(y) < t, 〈x∗, x〉 − F ∗(x∗) > t.

Thus,

〈x∗, x〉 − F ∗(x∗) > ϕ(y) = ϕ(Ax+ y0) = F (x),

whence 〈x∗, x〉 − F ∗(x∗) > F (x), which is impossible. Therefore, condition (6.6) is
fulfilled. Also note, that M ∩M0 6= ∅.

By Lemma 2.2, there exist lM ∈Md, l0 ∈Md
0 , l1 ∈Md

1 , not all equal to zero, and
such that

(6.7) lM + l0 + l1 = 0,

(6.8) inf lM (M) + inf l0(M0) + inf l1(M1) ≥ 0.

Since M ∩M0 6= ∅, from Lemma 2.2 we deduce that

(6.9) l1 6= 0.

Set

(6.10) γM = inf lM (M), γ0 = inf l0(M0), γ1 = inf l1(M1),
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and let x∗M , x
∗
0, x
∗
1 ∈ X∗, y∗M , y∗0 , y∗1 ∈ Y ∗, βM , β0, β1 ∈ IR be so that

lM (z) = 〈x∗M , x〉+ 〈y∗M , y〉+ βM t, li(z) = 〈x∗i , x〉+ 〈y∗i , y〉+ βit, i = 0, 1

for all z = (x, y, t) ∈ Z. Then condition (6.7) implies

(6.11) x∗M + x∗0 + x∗1 = 0, y∗M + y∗0 + y∗1 = 0, βM + β0 + β1 = 0,

and from (6.8) and (6.10) we get

(6.12) γM + γ0 + γ1 ≥ 0.

Further, from the definitions of the sets M,M0,M1 it follows that

(6.13) y = Ax+ y0 ⇒ 〈x∗M , x〉+ 〈y∗M , y〉+ βM t ≥ γM ,

(6.14) ϕ(y) < t ⇒ 〈x∗0, x〉+ 〈y∗0 , y〉+ β0t ≥ γ0,

(6.15) 〈x∗, x〉 − F ∗(x∗) > t ⇒ 〈x∗1, x〉+ 〈y∗1 , y〉+ β1t > γ1.

The latter inequality is strict since l1 6= 0 and the set M1 is open. In view of (6.13),

〈x∗M , x〉+ 〈y∗M , Ax+ y0〉+ βM t ≥ γM ∀x ∈ X, ∀ t ∈ IR.

Therefore

(6.16) x∗M +A∗y∗M = 0, βM = 0, γM − 〈y∗M , y0〉 ≤ 0,

and then by the third relation in (6.11), β1 = −β0. Further, (6.14) implies x∗0 =
0, β0 ≥ 0, and then by the first relation in (6.11), x∗M = −x∗1. From (6.15) we get
y∗1 = 0, and therefore (6.15) takes the form

(6.17) 〈x∗, x〉 − t > F ∗(x∗) ⇒ 〈x∗1, x〉+ β1t > γ1,

whence

x∗1 = αx∗, β1 = −α for some α ≥ 0.

If α = 0, then x∗1 = 0, y∗1 = 0, and β1 = 0, whence l1 = 0 which contradicts (6.9).
Therefore α > 0, and then we can take α = 1, because conditions (6.7) and (6.8) are
homogeneous with respect to l0, l1, lM . Then x∗ = x∗1 = −x∗M , β1 = −1, and hence
β0 = 1, and from (6.17) we get

(6.18) γ1 ≤ F ∗(x∗).

Since y∗1 = 0, (6.11) yields y∗0 + y∗M = 0. Thus, condition (6.14) takes the form

(6.19) ϕ(y) < t ⇒ −〈y∗M , y〉+ t ≥ γ0.
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For any y ∈ Y and any ε > 0 let us choose t = ϕ(y) + ε. Then it follows from (6.19)
that −〈y∗M , y〉 + ϕ(y) + ε ≥ γ0 for all y, whence ϕ∗(y∗M ) ≤ −γ0 + ε. Since ε > 0 can
be made arbitrary small, we obtain

(6.20) ϕ∗(y∗M ) ≤ −γ0.

From (6.12), the third condition in (6.16), and (6.18), (6.20) we deduce

〈y∗M , y0〉+ F ∗(x∗)− ϕ∗(y∗M ) ≥ 0.

Set y∗ = y∗M . Then y∗ ∈ domϕ∗, x∗ = A∗y∗, and (6.5) is fulfilled. �
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[3] J.F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure

state constraints and mixed control-state constraints, Ann. Inst. H. Poincaré Anal. Non
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