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STOCHASTIC OPTIMAL CONTROL PROBLEMS WITH CONTROL
AND INITIAL-FINAL STATES CONSTRAINTS

HÉLÈNE FRANKOWSKA∗, HAISEN ZHANG† , AND XU ZHANG‡

Abstract. In this paper, the first and second order necessary optimality conditions are estab-
lished for stochastic optimal control problems with control and initial-final states constraints. The
control regions are allowed to be nonconvex, the diffusion terms contain the control variable and the
final state constraints are defined by finitely many inequality constraints. In the difference with the
existing literatures, the second order variations of the control set are used to derive the second order
necessary conditions. This leads to stronger results under less restrictive, than usual, assumptions.

Key words. Stochastic optimal control, normal first order necessary optimality conditions,
second order necessary conditions, second order tangents.
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1. Introduction. Let d,m, n, k ∈ N, T > 0 and (Ω,F ,F, P ) be a complete
filtered probability space with the filtration F = {Ft}0≤t≤T (satisfying the usual
conditions), on which a d-dimensional standard Wiener process W (·) is defined such
that F is the natural filtration generated by W (·) (augmented by all the P -null sets).
Denote by 〈·, ·〉 and | · | respectively the inner product and norm in Rm or Rn, which
can be identified from the context, and by B(X) the Borel σ-field of a metric space
X.

Let us consider the following controlled stochastic differential equation

(1.1)

{
dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
x(0) = x0,

with the Mayer-type cost functional

(1.2) J(x(·), u(·)) = E φ(x(T ))

and end points constraints

(1.3) x0 ∈ K0, E gi(x(T )) ≤ 0, ∀ i = 1, · · · , k.

Here u(·) ∈ U is the control variable, U is the set of B([0, T ]) ⊗ F-measurable and
F-adapted stochastic processes u(·) with values in a given closed nonempty subset U

of Rm such that E
∫ T

0
|u(t, ·)|2dt <∞, x(·) solves (1.1), b : [0, T ]×Rn×Rm×Ω→ Rn,
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σ = (σ1, · · · , σd) : [0, T ]×Rn×Rm×Ω→ Rn×d, φ : Rn×Ω→ R, and gi : Rn×Ω→ R,
i = 1, · · · , k are given functions (satisfying suitable conditions to be stated later), and
K0 is a nonempty closed set in Rn. As usual, when the context is clear, we omit
explicit writing of the variable ω (∈ Ω).

A state-control pair (x(·), u(·)) is called admissible if u(·) ∈ U and x(·) is the
corresponding solution of (1.1) satisfying the end points constraints (1.3). In this
case, we call u(·) an admissible control. Denote by Pad the set of all admissible pairs.
The optimal control problem considered in this paper is to find a (x̄(·), ū(·)) ∈ Pad

such that

(1.4) J(x̄(·), ū(·)) = inf
(x(·),u(·))∈Pad

J(x(·), u(·)).

Any (x̄(·), ū(·)) ∈ Pad satisfying (1.4) is called an optimal pair, x̄(·) is called an
optimal state and ū(·) is called an optimal control. It is well known that the Bolza
type optimal control problems (involving also an integral cost) can be reduced to the
Mayer problem by adding an extra variable. For this reason we investigate here the
Mayer problem and state the corresponding results for the Bolza problem as well.

Stochastic optimal control problems with end points constraints have many appli-
cations. Here we give a simple example from mathematical finance. Let us consider a
mean-variance portfolio selection problem as follows: Suppose there are m+ 1 assets
whose price processes Si(·), i = 0, 1, . . . ,m are described by the differential equations:

(1.5)

{
dS0(t) = rS0(t)dt, t ∈ [0, T ],
S0(0) = s0,

and, for i = 1, . . . ,m,

(1.6)

 dSi(t) = biSi(t)dt+
d∑
j=1

σijSi(t)dW
j(t), t ∈ [0, T ],

Si(0) = si,

where r ∈ [0,∞), s0, si, bi, σ
ij ∈ R, i = 1, . . . ,m, j = 1, . . . , d, and (W 1(t), · · · ,

W d(t))> = W (t). Denote by x(t) the total wealth of an investor at time t and denote
by ui(t) the market value of its i-th asset at time t, i = 1, . . . ,m. Then, x(·) satisfies
the following controlled stochastic differential equation:

(1.7)

 dx(t) =
[
rx(t) +

m∑
i=1

(bi − r)ui(t)
]
dt+

m∑
i=1

d∑
j=1

σijui(t)dW
j(t), t ∈ [0, T ],

x(0) = x0,

where x0 is the initial wealth.
We call u(·) = (u1(·), . . . , um(·))> a portfolio of the investor. Let U = Rm. The

objective of the investor is to maximize the mean terminal wealth, E x(T ), and at the
same time to minimize the variance Var x(T ) = E x(T )2 − (E x(T ))2 of the terminal
wealth. This can be formulated as the following multi-objective optimization problem:

Minimize (J1(u(·)), J2(u(·))) := (−E x(T ),Var x(T )),

subject to

{
u(·) ∈ U ,
(x(·), u(·)) satisfies the equation (1.7).
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Following Markowitz’s portfolio management theory, we call a portfolio u∗(·) an
efficient portfolio if there exists no portfolio u(·) such that

J1(u(·)) ≤ J1(u∗(·)), J2(u(·)) ≤ J2(u∗(·))

and at least one of the two inequalities is strict. In this case, (−J1(u∗(·)), J2(u∗(·))) is
called an efficient point and the set of all efficient points is called the efficient frontier.

Obviously, every rational investor will choose a portfolio belonging to the efficient
frontier. However, different investors may select different portfolios on the efficient
frontier, depending on their individual risk preferences. If an investor wishes to find
a minimal risk portfolio with the mean terminal wealth no less than a given constant
α, the corresponding optimal portfolio can be find by solving the following optimal
control problem:

Minimize Var x(T )

subject to

(1.8)

 u(·) ∈ U ,
E x(T ) ≥ α,
(x(·), u(·)) satisfies the equation (1.7).

Though Var x(T ) is not the cost functional treated in this paper, it can be shown,
similarly to [23, Theorem 8.2, p. 338], that there exists a constant λ such that any
solution of the problem (1.8) is also a solution to the optimal control problem

Minimize E x(T )2 − λE x(T )

subject to (1.8). Clearly, this new problem is a special case of the optimal control
problem (1.4).

Stochastic optimal control problems with end points constraints have been studied
from the very beginning of the foundation of the stochastic control theory, see [11, 14]
and the references cited therein. However, the early works on this subject considered
only the cases when the controls are absent from the diffusion terms of the control
systems. A stochastic maximum principle (which is a first order necessary condition
for optimal controls) when both the drift and the diffusion are control-dependent and
the control region may be nonconvex was proven in [18], by introducing two adjoint
processes and with the arguments being based on the Ekeland variational principle.
Similarly to its counterpart in the deterministic optimal control, in addition to the
first order necessary condition, some second order necessary conditions should be es-
tablished to distinguish better the optimal controls from other admissible controls.
The integral type second order necessary conditions for optimal controls in the pres-
ence of state constraints have been extensively studied in the deterministic control
problems, see the monograph [16] and the references cited therein for the problems
with end points constrains and [12, 15, 17, 20] and so on for more general pointwise
state constraints. However, to the best of our knowledge, there are only two pa-
pers considering the second order necessary conditions for stochastic optimal control
problems with final state constraints. In [4], the authors discussed the stochastic op-
timal controls with mixed final state constraints but without the control constraints.
While, in [3], the author considered the stochastic optimal controls with linear in-
equality control constraints and mixed final state constraints but with the diffusion
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terms independent from the controls. Moreover, both [3] and [4] require the convexity
of the control regions.

The main purpose of this work is to establish some first and second order necessary
optimality conditions for the problem (1.4) with the control-dependent diffusion term
and in the absence of convexity of U . Some techniques from the classical variational
analysis are introduced to treat the nonconvex control constraints. The main novelties
of this paper are twofold. Firstly, the second order tangent vectors to the control set
are used to formulate the second order necessary conditions. Conditions of this type
are more efficient than those without the second order tangent vectors even when
the control regions are convex, see examples in [10]. Secondly, instead of using the
mathematical programming theory in infinite dimensional vector spaces (as done in
[3, 4]), we derive the desired results from the separation theorem, which makes the
proofs much simpler and direct.

The rest of the paper is organized as follows. In Section 2, we collect some
notations and introduce some preliminary results that will be used later. In Section
3, we derive the first order necessary conditions for stochastic optimal controls, and
finally in Section 4 we establish the second order necessary conditions.

2. Preliminaries. Denote by R+ the set of all nonnegative numbers and by
Rn×m the space of all n × m-real matrices. For any A ∈ Rn×m, denote by A> its
transpose and by |A| =

√
tr(AA>) the norm of A. We use the notation Sn :=

{
A ∈

Rn×n
∣∣ A> = A

}
.

Let ϕ : [0, T ] × Rn × Rm × Ω → R` (for some ` ∈ N) be a given function.
For a.e. (t, ω) ∈ [0, T ] × Ω, we denote by ϕx(t, x, u, ω) and ϕu(t, x, u, ω) respec-
tively the first order partial derivatives of ϕ with respect to x and u at (t, x, u, ω),
by ϕ(x,u)2(t, x, u, ω) the Hessian of ϕ with respect to (x, u) at (t, x, u, ω), and by
ϕxx(t, x, u, ω), ϕxu(t, x, u, ω) and ϕuu(t, x, u, ω) respectively the second order partial
derivatives of ϕ with respect to x and u at (t, x, u, ω).

For any α, β ∈ [1,+∞) and t ∈ [0, T ], we denote by LβFt(Ω;Rn) the space of Rn-

valued, Ft-measurable random variables ξ such that E |ξ|β < +∞; by LβF(Ω;Lα(0, T ;
Rn)) the space of Rn-valued, B([0, T ]) ⊗ F-measurable, F-adapted processes ϕ such

that ‖ϕ‖α,β :=
[
E
( ∫ T

0
|ϕ(t, ω)|αdt

) β
α
] 1
β < +∞. When α = β we simply denote by

‖ϕ‖α the norm of ϕ ∈ LβF(Ω;Lα(0, T ;Rn)). Also, we denote by LβF(Ω;C([0, T ];Rn))
the space of Rn-valued, B([0, T ])⊗F-measurable and F-adapted continuous processes

ϕ such that ‖ϕ‖∞,β :=
[
E
(

supt∈[0,T ] |ϕ(t, ω)|β
)] 1

β < +∞ and by L∞F ([0, T ]× Ω;Rn)
the space of Rn-valued, B([0, T ]) ⊗ F-measurable, F-adapted processes ϕ such that
‖ϕ‖∞ := ess sup(t,ω)∈[0,T ]×Ω|ϕ(t, ω)| < +∞.

Let us recall that on a given filtered probability space, any F-progressively mea-
surable process is B([0;T ])⊗ F-measurable and F-adapted, and every B([0;T ])⊗ F-
measurable and F-adapted process has an F-progressively measurable modification
(see [23, Proposition 2.8, p. 17]).

Next, we recall some concepts and results from the set-valued analysis. We refer
the reader to [2] for more details.

Let X be a Banach space with a norm ‖ · ‖X and the dual X∗. Denote by
BX the closed unit ball in X. For any subset K ⊂ X, denote by ∂K, intK, clK
and coK its boundary, interior, closure and convex hull, respectively. K is called a
cone if αx ∈ K for any α > 0 and x ∈ K. For a cone K, the convex closed cone
K− := {ξ ∈ X∗ | ξ(x) ≤ 0, ∀ x ∈ K} is called the dual cone (or negative polar cone) of
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K. Define the distance between a point x ∈ X and K by dist (x,K) := inf
y∈K
‖y−x‖X .

Definition 2.1. Let K ⊂ X. For x ∈ K, the Clarke tangent cone CK(x) to K
at x is defined by

CK(x) :=
{
v ∈ X

∣∣∣ lim
ε→0+

y∈K, y→x

dist (y + εv,K)

ε
= 0
}
,

the adjacent cone T bK(x) to K at x is defined by

T bK(x) :=
{
v ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv,K)

ε
= 0
}
.

It is well known that CK(x) is a closed convex cone in X and CK(x) ⊂ T bK(x). When

K is convex, CK(x) = T bK(x) = cl
{
α(y − x)

∣∣∣ α ≥ 0, y ∈ K
}
.

Definition 2.2. Let K ⊂ X. For any x ∈ K and v ∈ T bK(x), the second order
adjacent subset to K at (x, v) is defined by

T
b(2)
K (x, v) :=

{
h ∈ X

∣∣∣ lim
ε→0+

dist (x+ εv + ε2h,K)

ε2
= 0
}
.

By [9, Lemma 2.4], if T
b(2)
K (x, v) 6= ∅, then

CK(x) + T
b(2)
K (x, v) = T

b(2)
K (x, v).

The dual cone of the Clarke tangent cone CK(x), denoted by NC
K(x), is called the

Clarke normal cone to K at x, i.e.,

NC
K(x) :=

{
ξ ∈ X∗

∣∣∣ ξ(v) ≤ 0, ∀ v ∈ CK(x)
}
.

When K is convex, NC
K(x) reduces to the normal cone NK(x) of the convex analysis,

defined by NK(x) :=
{
ξ ∈ X∗

∣∣∣ ξ(y − x) ≤ 0, ∀ y ∈ K
}
.

Definition 2.3. Let X, Y be Banach spaces, F : X → Y be a given map and
x ∈ X. The first order contingent variation of F at x is defined by

F (1)(x) :=
{
v ∈ Y

∣∣∣ lim inf
ε→0+

dist
(
v,
F (x+ εBX)− F (x)

ε

)
= 0
}
.

When F is Fréchet differentiable at x, F (1)(x) = cl(Fx(x)(BX)).
The following two elementary lemmas will be useful in the sequel.
Lemma 2.4. Let K1, · · · ,Kq (for some q ∈ N) be convex cones in X and⋂q

i=1 intKi 6= ∅. Then for any convex cone K0 such that K0

⋂(⋂q
i=1 intKi

)
6= ∅,

we have
(⋂q

i=0Ki

)−
=
∑q
i=0K

−
i .

Proof. By the induction argument, it is sufficient to prove this lemma for q = 1.
To show that (K0 ∩ K1)− = K−0 + K−1 , let x̄ ∈ K0 ∩ intK1 and ε > 0 be such
that x̄ + εBX ⊂ intK1. Then, εBX ⊂ K0 −K1 and by [1, page 72], it follows that
(clK0 ∩ clK1)− = (clK0)− + (clK1)− = K−0 +K−1 .

Obviously (clK0 ∩ clK1)− ⊂ (K0 ∩K1)−. It remains to show that (K0 ∩K1)− ⊂
(clK0 ∩ clK1)−. Let ξ ∈ (K0 ∩K1)− and x ∈ clK0 ∩ clK1. Since int clK1 = intK1

and x̄ + εBX ⊂ intK1, we deduce that λx̄ + (1 − λ)x + λεBX ⊂ intK1 for any
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λ ∈ (0, 1). Noting that λx̄ + (1 − λ)x ∈ clK0, there exists a yλ ∈ K0 such that
yλ ∈ λx̄+ (1− λ)x+ λεBX ⊂ K1. Then yλ ∈ K0 ∩K1 and

‖yλ − x‖X ≤ λε+ λ‖x̄− x‖X → 0, as λ→ 0+.

Consequently, ξ(x) = limλ→0+ ξ(yλ) ≤ 0. Since x ∈ clK0 ∩ clK1 is arbitrary, we get
ξ ∈ (clK0 ∩ clK1)−.

Lemma 2.5. Let X be a Hilbert space (with an inner product 〈·, ·〉X), K be a
nonempty closed polyhedra in X, i.e., for some k ∈ N, {a1, · · · , ak} ⊂ X \ {0} and
{b1, · · · , bk} ⊂ R,

K :=
{
x ∈ X | 〈ai, x〉X + bi ≤ 0, ∀ i = 1, · · · , k

}
.

If ξ ∈ H \{0} satisfies supx∈K 〈ξ, x〉H < +∞, then this supremum is attained at some
x̄ ∈ ∂K, and ξ ∈

∑
i∈I(x̄) R+ai, where

I(x̄) :=
{
i ∈ {1, · · · , k}

∣∣ 〈ai, x̄〉H + bi = 0
}
.

Proof. Define X1 = Span{ai | i = 1, · · · , k}. Then, X = X1 ⊕X⊥1 , where X⊥1 is
the orthogonal complement of X1. Let

Q :=
{
x ∈ X1 | 〈ai, x〉X + bi ≤ 0, ∀ i = 1, · · · , k

}
.

It is clear that K = Q+X⊥1 and K 6= ∅ if and only if Q 6= ∅.
We claim that ξ ∈ X1 whenever supx∈K 〈ξ, x〉X < +∞. Indeed, consider ξ1 ∈ X1

and ξ2 ∈ X⊥1 such that ξ = ξ1 + ξ2. Let x1 ∈ Q. Then xλ := x1 + λξ2 ∈ K for any
λ ≥ 0. Consequently,〈

ξ, xλ
〉
X

= 〈ξ, x1〉X + λ‖ξ2‖2X ≤ sup
x∈K
〈ξ, x〉X < +∞.

Since λ ≥ 0 is arbitrary, the above inequality yields ξ2 = 0. Therefore,

sup
x∈K
〈ξ, x〉X = sup

x∈Q
〈ξ, x〉X .

By [19, Corollary 3.53], there exists an x̄ ∈ Q ⊂ K such that supx∈Q 〈ξ, x〉X = 〈ξ, x̄〉X .
Clearly, x̄ ∈ ∂K and 〈ξ, x− x̄〉X ≤ 0 for all x ∈ K. By the definition of the normal

cone, ξ ∈ NK(x̄). It remains to prove that NK(x̄) =
∑
i∈I(x̄) R+ai. Since for any

i ∈ I(x̄) and x ∈ K, 〈ai, x〉X + bi ≤ 0 and 〈ai, x̄〉X + bi = 0, we have

〈ai, x− x̄〉X ≤ 0, ∀ x ∈ K, ∀ i ∈ I(x̄).

This implies that
∑
i∈I(x̄) R+ai ⊂ NK(x̄). If there exists a ζ ∈ NK(x̄)\

∑
i∈I(x̄) R+ai,

then, by the separation theorem, we can find 0 6= y ∈ X such that

sup
ξ∈

∑
i∈I(x̄) R+ai

〈ξ, y〉X < 〈ζ, y〉X .

Since
∑
i∈I(x̄) R+ai is a closed convex cone, we deduce that supξ∈

∑
i∈I(x̄) R+ai 〈ξ, y〉X =

0 and 〈ai, y〉X ≤ 0 for any i ∈ I(x̄). Then, x̃ := x̄ + λy ∈ K for all λ > 0. Hence,
〈ζ, x̃− x̄〉X = λ 〈ζ, y〉X > 0, contradicting to ζ ∈ NK(x̄). Therefore, NK(x̄) =∑
i∈I(x̄) R+ai. This completes the proof of Lemma 2.5.
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Let (Ξ,G ) be a measurable space, Y be a complete separable metric space and
F : Ξ  Y be a set-valued map. For any ξ ∈ Ξ, F (ξ) is called the value or image of
F at ξ. The domain of F is defined by Dom (F ) := {ξ ∈ Ξ | F (ξ) 6= ∅}. The graph of
F is the subset of the product space Ξ× Y defined by

Graph(F ) :=
{

(ξ, y) ∈ Ξ× Y
∣∣ y ∈ F (ξ)

}
.

The inverse F−1 of F is the set-valued map from Y to Ξ defined by

F−1(y) :=
{
ξ ∈ Ξ

∣∣ y ∈ F (ξ)
}
.

Moreover, F is called measurable if F−1(A) := {ξ ∈ Ξ | F (ξ) ∩ A 6= ∅} ∈ G for any
nonempty A ∈ B(Y ). We shall need the following known result.

Lemma 2.6. ([2, Theorem 8.1.4]) Let (Ξ,G , µ) be a complete σ-finite measure
space, and F be a set-valued map from Ξ to Y with nonempty closed images. Then F
is measurable if and only if Graph(F ) ∈ G ⊗ B(Y ).

The following result is in the same spirit as that in [2, Theorem 8.5.1], for which
we shall provide a short proof for readers’ convenience.

Lemma 2.7. Suppose (Ξ,G , µ) is a complete finite measure space, X is a separable
Banach space, p ≥ 1 and K is a closed nonempty subset in X. Define

K :=
{
ϕ(·) ∈ Lp(Ξ,G , µ;X)

∣∣ ϕ(ξ) ∈ K, µ–a.e. ξ ∈ Ξ
}
.

Then for any ϕ(·) ∈ K, the set-valued map CK(ϕ(·)): ξ  CK(ϕ(ξ)) is G -measurable,
and

T :=
{
v(·) ∈ Lp(Ξ,G , µ;X)

∣∣ v(ξ) ∈ CK(ϕ(ξ)), µ–a.e. ξ ∈ Ξ
}
⊂ CK(ϕ(·)).

Proof. Define ψ : K ×X → R ∪ {+∞} as

ψ(x, v) := lim sup
ε→0+

y∈K,y→x

dist(y + εv,K)

ε
.

Then for any x ∈ K, CK(x) = {v ∈ X | ψ(x, v) = 0} and by [5, Proposition 2.1.1], ψ
is upper semicontinuous. Since ϕ(·) is measurable,

Graph(CK(ϕ(·))) :=
{

(ξ, v) ∈ Ξ×X | ψ(ϕ(ξ), v) = 0
}
∈ G ⊗ B(X).

Then, by Lemma 2.6, the set-valued map ξ  CK(ϕ(ξ)) is measurable.
To prove that T ⊂ CK(ϕ(·)), it suffices to show that, for every v(·) ∈ T , for

any sequences {εn} ⊂ R+ and {ϕn(·)} ⊂ K with εn → 0+ and ϕn(·) → ϕ(·) in
Lp(Ξ,G , µ;X) as n→∞, there exists a sequence {vn(·)} ⊂ Lp(Ξ,G , µ;X) such that
vn(·)→ v(·) in Lp(Ξ,G , µ;X) as n→∞ and ϕn(·) + εnvn(·) ∈ K for each n ∈ N.

Fix v, εn, ϕn as above and set

αn(ξ) := dist
(
v(ξ),

K − ϕn(ξ)

εn

)
.

By [2, Theorem 8.2.11], αn(·) is measurable. Since ϕn(·) → ϕ(·) in Lp(Ξ,G , µ;X),
ϕn(·) converge to ϕ(·) in measure. Therefore, for any subsequence {ϕnj (·)}∞j=1 of
{ϕn(·)}∞n=1 there exists a sub-subsequence {ϕnjk (·)}∞k=1 such that ϕnjk (ξ) → ϕ(ξ)
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µ-a.e. as k → ∞. By the definition of the Clarke tangent cone, αnjk (ξ) → 0, µ-
a.e. as k → ∞. Noting that αn(ξ) ≤ ‖v(ξ)‖X , µ-a.e., by the Lebesgue dominated
convergence theorem, αn(·) converge to 0 in Lp(Ξ,G , µ;X). By [2, Corollary 8.2.13
and Theorem 8.2.9], there exists a ϕεn(·) ∈ K such that for any ξ ∈ Ξ,∥∥∥v(ξ)− ϕεn(ξ)− ϕn(ξ)

εn

∥∥∥
X
≤ αn(ξ) + εn.

Define vn(·) =
ϕεn (·)−ϕn(·)

εn
. Then, vn(·) converge to v(·) in Lp(Ξ,G , µ;X) as

n→∞, and ϕεn(·) = ϕn(·) + εnvn(·) ∈ K for any n ∈ N. This completes the proof.
As in [13], we call a measurable set-valued map ζ : (Ω,F)  Rm a set-valued

random variable, and, we call a map Γ : [0, T ] × Ω  Rm a measurable set-valued
stochastic process if Γ is B([0, T ])⊗F-measurable. We say that Γ is F-adapted if Γ(t)
is Ft-measurable for any t ∈ [0, T ]. Define

(2.1) A :=
{
A ∈ B([0, T ])⊗F

∣∣ At ∈ Ft, ∀ t ∈ [0, T ]
}
,

where At := {ω ∈ Ω | (t, ω) ∈ A} is the section of A. Obviously, A is a σ-subalgebra
of B([0, T ])⊗F . As pointed in [13, p. 96], the following result holds.

Lemma 2.8. A set-valued stochastic process Γ : [0, T ]×Ω Rm is B([0, T ])⊗F-
measurable and F-adapted if and only if Γ is A -measurable.

3. First order necessary condition. In this section, we study the first order
necessary optimality conditions for the optimal control problem (1.4). Firstly, we
introduce the notion of local minimizer for (1.4).

Definition 3.1. An admissible pair (x̄, ū) ∈ L2
F(Ω;C([0, T ];Rn))× U is called a

local minimizer for the problem (1.4) if there exists a δ > 0 such that J(x(·), u(·)) ≥
J(x̄(·), ū(·)) for any (x(·), u(·)) ∈ Pad satisfying |x̄0 − x0| < δ and ‖u − ū‖2 < δ,
where x̄0 and x0 are the initial conditions of x̄(·) and x(·), respectively.

We need the following assumptions:
(A1) The control region U is nonempty and closed.
(A2) The functions b, σj (j = 1, · · · , d), φ and gi (i = 1, · · · , k) satisfy the follow-

ing:
(i) For any (x, u) ∈ Rn×Rm, b(·, x, u, ·) : [0, T ]×Ω→ Rn and σj(·, x, u, ·) :

[0, T ] × Ω → Rn (j = 1, · · · , d) are B([0, T ]) ⊗ F-measurable and F-
adapted. For a.e. (t, ω) ∈ [0, T ] × Ω, the functions b(t, ·, ·, ω) : Rn ×
Rm → Rn and σj(t, ·, ·, ω) : Rn × Rm → Rn are differentiable and

(x, u) 7→ (bx(t, x, u, ω), bu(t, x, u, ω)),

(x, u) 7→ (σjx(t, x, u, ω), σju(t, x, u, ω)), j = 1, · · · , d

are uniformly continuous in x ∈ Rn and u ∈ Rm. There exist a con-
stant L ≥ 0 and a nonnegative η ∈ L2

F(Ω;L2(0, T ;R)) such that for a.e.
(t, ω) ∈ [0, T ]× Ω, any (x, u) ∈ Rn × Rm and j = 1, · · · , d,

|b(t, 0, u, ω)|+ |σj(t, 0, u, ω)| ≤ L(η(t, ω) + |u|),
|bx(t, x, u, ω)|+ |bu(t, x, u, ω)| ≤ L,
|σjx(t, x, u, ω)|+ |σju(t, x, u, ω)| ≤ L;
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(ii) For any x ∈ Rn, the random variable φ(x, ·) is FT -measurable. φ(·, ω) :
Rn → R is differentiable a.s., and there exists a nonnegative ηT ∈
L2
FT (Ω;R) such that for any x, x̃ ∈ Rn,{

|φ(x, ω)| ≤ L(ηT (ω)2 + |x|2), |φx(0, ω)| ≤ LηT (ω), a.s.,

|φx(x, ω)− φx(x̃, ω)| ≤ L|x− x̃|, a.s.

(iii) For i = 1, · · · , k, and any x ∈ Rn, the random variable gi(x, ·) is FT -
measurable, gi(·, ω) : Rn → R is differentiable a.s., and for any x, x̃ ∈
Rn, {

|gi(x, ω)| ≤ L(ηT (ω)2 + |x|2), |gix(0, ω)| ≤ LηT (ω), a.s.,

|gix(x, ω)− gix(x̃, ω)| ≤ L|x− x̃|, a.s.

When the conditions (i) and (ii) in (A2) are satisfied, the state x(·) (of (1.1)) is
uniquely defined by any given initial datum x0 ∈ Rn and control u(·) ∈ U , and the
cost functional (1.2) is well-defined. In what follows, C represents a generic positive
constant (depending only on T , η(·), ηT (·) and L), which may be different from one
place to another.

Let (x̄, ū) be a local minimizer for the problem (1.4) with x̄0 being the initial
datum of x̄. For ϕ = b, σj , j = 1, · · · , d, denote

ϕx[t] = ϕx(t, x̄(t), ū(t)), ϕu[t] = ϕu(t, x̄(t), ū(t)).

Let ν0 ∈ T bK0
(x̄0), v ∈ T bU (ū) and consider the following first order linearized stochastic

control system:

(3.1)


dy1(t) =

(
bx[t]y1(t) + bu[t]v(t)

)
dt

+
d∑
j=1

(
σjx[t]y1(t) + σju[t]v(t)

)
dW j(t), t ∈ [0, T ],

y1(0) = ν0.

It is easy to see that, under the assumption (A2), the equation (3.1) admits a unique
solution y1(·) ∈ L2

F(Ω;C([0, T ];Rn)).
Consider νε0 ∈ Rn and vε ∈ L2

F(Ω;L2(0, T ; Rm)) such that x̄0+ενε0 ∈ K0, ū+εvε ∈
U , νε0 → ν0 in Rn and vε → v in L2

F(Ω;L2(0, T ;Rm)) as ε → 0+. For uε := ū + εvε
and xε0 := x̄0 + ενε0 , let xε be the state of (1.1) corresponding to the control uε and
the initial datum xε0, and put δxε = xε − x̄.

The following result, concerning the d-dimensional Wiener process, can be proved
in the same way as that in [10, Lemma 3.2], originally derived for the one-dimensional
Wiener process.

Lemma 3.2. If (A2) (i) holds, then,

‖y1‖2∞,2 ≤ C
(
|ν0|2 + ‖v‖22

)
, ‖δxε‖2∞,2 = O(ε2).

Furthermore,

(3.2) ‖rε1‖∞,2 → 0, as ε→ 0+,

where rε1(t, ω) :=
δxε(t, ω)

ε
− y1(t, ω).
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From now on and till the end of this section we restrict our attention to the Clarke
tangent cones CK0

(x̄0) ⊂ T bK0
(x̄0) and CU (ū) ⊂ T bU (ū).

Define the reachable set of the linearized control system (3.1) as follows:

R(1) :=
{
y1(T ) ∈ L2

FT (Ω;Rn)
∣∣ y1 solves (3.1) with (ν0, v) ∈ CK0

(x̄0)× CU (ū)
}
.

Consider the set

Q(1) :=
⋂

i∈I(x̄(T ))

Qi(1),

where

I(x̄(T )) :=
{
i ∈ {1, · · · , k}

∣∣ E gi(x̄(T )) = 0
}

and

Qi(1) :=
{
z ∈ L2

FT (Ω;Rn)
∣∣ E 〈gix(x̄(T )), z

〉
< 0
}
.

Also, we define

L(1) :=
{
z ∈ L2

FT (Ω;Rn)
∣∣ E 〈φx(x̄(T )), z〉 < 0

}
.

When φx(x̄(T )) = 0 a.s., L(1) = ∅.
Since CK0

(x̄0) and CU (ū(·)) are nonempty convex cones,R(1) is a nonempty convex
cone in L2

FT (Ω;Rn). Furthermore, Q(1) and L(1) are open convex cones in L2
FT (Ω;Rn).

Lemma 3.3. If for some A ∈ FT with P (A) > 0,

(3.3) Z(ω) :=
{
z ∈ Rn

∣∣ 〈gix(x̄(T, ω), ω), z
〉
< 0, ∀ i ∈ I(x̄(T ))

}
6= ∅, a.s. in A,

then Q(1) 6= ∅.
Proof. Define

Γ(ω) :=

 Z(ω), if ω ∈ A and Z(ω) 6= ∅,

Rn, otherwise.

By the assumption (iii) in (A2) and (3.3), Graph(Γ) is FT×B(Rn)-measurable. Then,
by [21, Theorem 5.8], there exists an FT -measurable selection γ(·) of Γ(·). Noting
that γ(ω) 6= 0 a.s. in A, we define

z(ω) :=


γ(ω)

|γ(ω)|
, if ω ∈ A and γ(ω) 6= 0,

0, otherwise.

Then, z ∈ Q(1).
Remark 3.1. If for any x ∈ Rn, the vectors {gix(x, ω)}i∈I(x,ω) are positively

independent a.s. (where I(x, ω) :=
{
i ∈ {1, ..., k}

∣∣ gi(x, ω) = 0
}

), then the condition
(3.3) holds true with A = Ω.

We associate with the first order variational equation (3.1), the following first
order adjoint equation

(3.4)

 dP1(t) = −
(
bx[t]>P1(t) +

d∑
j=1

σjx[t]>Qj1(t)
)
dt+

d∑
j=1

Qj1(t)dW j(t), t ∈ [0, T ],

P1(T ) = ξ,



End points constrained stochastic optimal control problems 11

where ξ is a random variable in L2
FT (Ω;Rn) which will be specified later. Under

the assumption (A2), the backward equation (3.4) admits a unique strong solution
(P1(·), Q1(·)) ∈ L2

F(Ω;C([0, T ];Rn))× L2
F(Ω;L2(0, T ; Rn×d)).

Define the Hamiltonian

(3.5) H(t, x, u, p, q, ω) := 〈p, b(t, x, u, ω)〉+

d∑
j=1

〈
qj , σj(t, x, u, ω)

〉
,

where (t, x, u, p, q, ω) ∈ [0, T ]× Rn × Rm × Rn × Rn×d × Ω, and denote

H[t] = H(t, x̄(t), ū(t), P1(t), Q1(t)), t ∈ [0, T ],

Hu[t], Hxx[t], Hxu[t] and Huu[t] are defined in a similar way.
We have the following result.
Theorem 3.4. Let (A1)–(A2) hold and (x̄, ū) be a local minimizer for the problem

(1.4).
(i) If I(x̄(T )) = ∅ or if I(x̄(T )) 6= ∅ and Q(1) 6= ∅, then there exist λ0 ∈ {0, 1}, λi ≥

0 for i ∈ I(x̄(T )), and a solution (P1, Q1) to the first order adjoint equation
(3.4) corresponding to (x̄, ū) such that λ0 + E |P1(T )| 6= 0,

(3.6) Hu[t] ∈ NC
U (ū(t)), a.e. t ∈ [0, T ], a.s.

and

(3.7) P1(0) ∈ NC
K0

(x̄0), −P1(T ) = λ0φx(x̄(T )) +
∑

i∈I(x̄(T ))

λig
i
x(x̄(T )).

(ii) If I(x̄(T )) 6= ∅ but Q(1) = ∅, then, for each i ∈ I(x̄(T )), there exists a λi ≥ 0
such that

∑
i∈I(x̄(T )) λi > 0 and

∑
i∈I(x̄(T )) λig

i
x(x̄(T )) = 0. In particular, (3.6)–

(3.7) hold with λ0 = 0 and (P1, Q1) ≡ 0.
Furthermore, the above holds with λ0 = 1 if I(x̄(T )) = ∅ or if I(x̄(T )) 6= ∅ and
Q(1) ∩R(1) 6= ∅.

Proof. (i) If I(x̄(T )) = ∅, then E gi(x̄(T )) < 0 for every i = 1, · · · , k, and it is easy
to verify that any (x(·), u(·)) obtained by a sufficiently small perturbation of x̄0 and
ū(·) is still in Pad. Recall that the Clarke tangent cone is a subset of the adjacent cone.
Furthermore, results obtained in [10] for the one dimensional Wiener process can be
extended to the d-dimensional Wiener process by similar proofs. Then, setting λ0 = 1
and P1(T ) = −φx(x̄(T )), it follows from [10, Theorem 3.1] that P1(0) ∈ NC

K0
(x̄0) and

(3.8) E
∫ T

0

〈Hu[t], v(t)〉 dt ≤ 0, ∀ v(·) ∈ CU (ū(·)).

By Lemma 2.7, using the same method in [22, Lemma 4.6] we conclude that

〈Hu[t], v〉 ≤ 0, ∀ v ∈ CU (ū(t)), a.e. t ∈ [0, T ], a.s.,

i.e., (3.6) holds true.
If I(x̄(T )) 6= ∅ and Q(1) 6= ∅, then

R(1) ∩Q(1) ∩ L(1) = ∅.
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Indeed, otherwise, there would exist a solution ȳ1 of (3.1) such that ȳ1(T ) ∈ Q(1)∩L(1).
Let ν̄ ∈ CK0

(x̄0) and v̄(·) ∈ CU (ū(·)) be the initial datum and the control corresponding
to ȳ1. Consider µ(ε) ∈ Rn with |µ(ε)| = o(ε) and η(ε) ∈ L2

F(Ω;L2(0, T ;Rn)) with
‖η(ε)‖2 = o(ε) such that xε0 := x̄0 + εν̄ + µ(ε) ∈ K0 and uε := ū+ εv̄+ η(ε) ∈ U . Let
xε be the solution to the control system (1.1) with the initial datum xε0 and control
uε. By Lemma 3.2, one can find a ρ < 0 such that for any sufficiently small ε > 0,

E gi(xε(T )) = E gi(x̄(T )) + εE
〈
gix(x̄(T )), ȳ1(T )

〉
+ o(ε)

= εE
〈
gix(x̄(T )), ȳ1(T )

〉
+ o(ε) < ερ+ o(ε) ≤ 0, ∀ i ∈ I(x̄(T )),

and, for any i /∈ I(x̄(T )),

E gi(xε(T )) = E gi(x̄(T )) + εE
〈
gix(x̄(T )), ȳ1(T )

〉
+ o(ε)

< ρ+ εE
〈
gix(x̄(T )), ȳ1(T )

〉
+ o(ε) ≤ 0.

Moreover,

E φ(xε(T )) = E φ(x̄(T )) + εE 〈φx(x̄(T )), ȳ1(T )〉+ o(ε)

< E φ(x̄(T )) + ερ+ o(ε) < E φ(x̄(T )),

which contradicts to the local optimality of ū.
Now we consider two different subcases.

Case a: Q(1) ∩ R(1) = ∅. Since Q(1) is a nonempty open convex set and

R(1) is nonempty and convex, by the separation theorem there exists a nonzero
ξ ∈ L2

FT (Ω;Rn) such that

sup
α∈Q(1)

E 〈ξ, α〉 ≤ inf
β∈R(1)

E 〈ξ, β〉 .

Since Q(1) and R(1) are cones, 0 = supα∈Q(1)
E 〈ξ, α〉 = infβ∈R(1) E 〈ξ, β〉 . Therefore,

ξ ∈ Q−(1) and −ξ ∈
(
R(1)

)−
. By Lemma 2.4, Q−(1) =

∑
i∈I(x̄(T ))

(
Qi(1)

)−
, implying

that, for each i ∈ I(x̄(T )), there exists a λi ≥ 0 such that ξ =
∑
i∈I(x̄(T )) λig

i
x(x̄(T )).

Set λ0 = 0 and P1(T ) = −ξ. Then, λ0 + E|P1(T )| 6= 0, and, since −ξ ∈
(
R(1)

)−
,

(3.9) E 〈P1(T ), y1(T )〉 ≤ 0, ∀ y1(T ) ∈ R(1).

By the duality between (3.1) and the (3.4),

E 〈P1(T ), y1(T )〉(3.10)

= 〈P1(0), ν0〉+ E
∫ T

0

(
〈P1(t), bx[t]y1(t)〉+ 〈P1(t), bu[t]v(t)〉

−
〈
bx[t]>P1(t), y1(t)

〉
−

d∑
j=1

〈
σjx[t]>Qj1(t), y1(t)

〉

+

d∑
j=1

〈
Qj1(t), σjx[t]y1(t)

〉
+

d∑
j=1

〈
Qj1(t), σju[t]v(t)

〉)
dt

= 〈P1(0), ν0〉+ E
∫ T

0

(
〈P1(t), bu[t]v(t)〉+

d∑
j=1

〈
Qj1(t), σju[t]v(t)

〉)
dt.
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From (3.9)–(3.10), it follows that

(3.11) 〈P1(0), ν0〉+ E
∫ T

0

〈Hu[t], v(t)〉 dt ≤ 0, ∀ ν0 ∈ CK0(x̄0), ∀ v(·) ∈ CU (ū(·)).

Letting v = 0, we have P1(0) ∈ NC
K0

(x̄0). On the other hand, for ν0 = 0, we get (3.8)
from (3.11). By the same arguments as before, we obtain (3.6).

Case b: Q(1)∩R(1) 6= ∅. Since R(1)∩Q(1)∩L(1) = ∅, we have E 〈φx(x̄(T )), κ〉 ≥ 0

for all κ ∈ Q(1) ∩ R(1). Therefore, −φx(x̄(T )) ∈
(
Q(1) ∩R(1)

)−
. Noting that Q(1) is

an open convex cone, by Lemma 2.4,
(
Q(1)∩R(1)

)−
=
∑
i∈I(x̄(T ))

(
Qi(1)

)−
+
(
R(1)

)−
.

Consequently, there exist ξ ∈
(
R(1)

)− ⊂ L2
FT (Ω;Rn) and λi ≥ 0 for each i ∈ I(x̄(T ))

such that −φx(x̄(T )) = ξ +
∑
i∈I(x̄(T )) λig

i
x(x̄(T )). Set λ0 = 1 and define

(3.12) P1(T ) = ξ = −φx(x̄(T ))−
∑

i∈I(x̄(T ))

λig
i
x(x̄(T )).

Then, λ0 + E |P1(T )| 6= 0. Since ξ ∈
(
R(1)

)−
, it follows that E 〈P1(T ), y1(T )〉 ≤ 0 for

every y1(T ) ∈ R(1). Then, using arguments similar to the Case a, we obtain the first
order necessary condition (3.6) and the transversality condition P1(0) ∈ NC

K0
(x̄0).

(ii) I(x̄(T )) 6= ∅ but Q(1) = ∅.
We prove the desired results in two different cases.

Case 1: There exists an i ∈ I(x̄(T )) such that gix(x̄(T )) = 0 a.s. Set λi = 1 and
λj = 0 for any j 6= i. Then

0 = λig
i
x(x̄(T )) +

∑
j∈I(x̄(T ))\{i}

λjg
j
x(x̄(T )).

Case 2: For any i ∈ I(x̄(T )), gix(x̄(T )) 6= 0 (in the space L2
FT (Ω;Rn)). Then,

Qi(1) 6= ∅, for every i ∈ I(x̄(T )). Since Q(1) = ∅, one can find an i ∈ I(x̄(T )) and a

subset J ⊂ I(x̄(T ))\{i} such that ∩j∈JQj(1) is nonempty and

Qi(1)

⋂( ⋂
j∈J
Qj(1)

)
= ∅.

By the separation theorem, there exists a nonzero ξ ∈ L2
FT (Ω;Rn) such that

sup
α∈Qi

(1)

E 〈ξ, α〉 ≤ inf
β∈

⋂
j∈J Q

j
(1)

E 〈ξ, β〉 .

Since the involved sets are cones, ξ ∈
(
Qi(1)

)−
and −ξ ∈

(⋂
j∈J Q

j
(1)

)−
. By Lemma

2.4, ξ = λig
i
x(x̄(T )) for some λi > 0 and for each j ∈ J , there exists a λj ≥ 0 such

that −ξ =
∑
j∈J λjg

j
x(x̄(T )). Setting λj = 0 for j ∈ I(x̄(T ))\(J ∪ {i}), we arrive at

the desired result. The proof of Theorem 3.4 is complete.
Remark 3.2. When the diffusion in the control system depends on the control

variable, to establish the stochastic maximum principle using the needle variations,
more smoothness of data has to be assumed and two adjoint processes have to be
introduced, see [18, 23] . When K0 = {x0}, the first order necessary condition (3.6)



14 H. Frankowska, H. Zhang and X. Zhang

can be deduced from the maximum principle [23, Theorem 6.1]. The advantage of our
approach is due to the fact that it leads to the first order necessary condition (3.6)
using only the first order adjoint process (P1, Q1), even if the control region is not
convex. In addition, the proof of [23, Theorem 6.1] does not allow to get a geometric
meaning of the finial datum P1(T ) of the first order adjoint process, while, from the
proof of Theorem 3.4 we know that, P1(T ) is a normal vector at zero to the reachable
set R(1) (of the first order linearized system (3.1)).

To end this section, we give two simple examples to show how to use the first
order necessary condition to distinguish the local minimizer from other admissible
controls.

Example 3.1. Let T = 1, m = 2, n = 1, k = 1, K0 = (−∞,−1] ∪ [1,+∞) and

U =
{

(u1, u2) ∈ R2
∣∣ |u1| ≥ 1, |u2| ≥ 1

}
.

Consider the control system

(3.13)

{
dx(t) = u1(t)dt+ u2(t)dW (t), t ∈ [0, 1],
x(0) = x0

with the cost functional

E φ(x(1)) = E |x(1)|2

and the end points constraints

x0 ∈ K0, E g(x(1)) = E x(1) ≤ 0.

Let x̄0 = 1 and ū(t) = (ū1(t), ū2(t)) ≡ (−1, 1). Then, the corresponding solution
of (3.13) is x̄(t) = 1− t+W (t). In particular, E x̄(1) = E W (1) = 0. In this case,

CK0(x̄0) = [0,+∞), CU ((−1, 1)) =
{

(v1, v2) ∈ R2
∣∣ v1 ≤ 0, v2 ≥ 0

}
and

Q(1) =
{
z ∈ L2

FT (Ω;R)
∣∣E z < 0

}
.

Letting ν0 = 0, v1(t) < 0, a.e. t ∈ [0, 1], a.s., v2(t) ≡ 0 and y1(·) be the solution
to the first order linearized control system

(3.14)

{
dy1(t) = v1(t)dt+ v2(t)dW (t), t ∈ [0, 1],
y1(0) = ν0.

we have y1(1) ∈ R(1) ∩Q(1).
Define the Hamiltonian for this optimal control problem:

(3.15) H(t, x, (u1, u2), p, q) := pu1 +qu2, (t, x, (u1, u2), p, q) ∈ [0, 1]×R×R2×R×R.

Assume for a moment that (x̄, ū) is a local minimizer. By Theorem 3.4, there exists
λ1 ≥ 0 such that the solution (P1, Q1) to the backward stochastic differential equation

(3.16)

{
dP1(t) = Q1(t)dW (t), t ∈ [0, 1],
P1(1) = −φx(x̄(1))− λ1gx(x̄(1)) = −2W (1)− λ1
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satisfies P1(0) ∈ NC
K0

(x̄0) and

(3.17) Hu[t] = (P1(t), Q1(t))> ∈ NC
U (ū(t)), a.e. t ∈ [0, 1], a.s.

By (3.16), (P1(t), Q1(t)) = (−2W (t)− λ1,−2). Then, for any t ∈ [0, 1], choosing
v = (v1, v2) ∈ CU (ū(t)) such that v1 < 0 and v2 = 0, we have

P (〈Hu[t], v〉 = −2W (t)v1 − λ1v1 > 0) 6= 0,

contradicting to (3.17). Therefore, ū(t) ≡ (−1, 1) is not a local minimizer.
Example 3.2. Consider the optimal control problem from Example 3.1 with U

replaced by

Û =
{

(u1, u2) ∈ R2
∣∣ |u1| ≥ 1

}
.

Let x̂0 = 1 and û(t) ≡ (−1, 0). Then,

CK0
(x̄0) = [0,+∞), CÛ ((−1, 0)) =

{
(v1, v2) ∈ R2

∣∣ v1 ≤ 0
}

and the corresponding solution of (3.13) is x̂(t) = 1 − t. Furthermore, x̂(1) = 0 and
therefore, û(·) is a global minimizer.

Next, let us verify that ū(·) satisfies the conditions (3.6)–(3.7).
Similarly to Example 3.1, choosing ν0 = 0, v1(t) < 0, a.e. t ∈ [0, 1], a.s., v2(t) ≡ 0

and letting y1(·) be the solution to (3.14), we have y1(1) ∈ R(1) ∩ Q(1). Let the
Hamiltonian be defined by (3.15), λ0 = 1, λ1 = 0 and (P1, Q1) be the solution to the
backward stochastic differential equation{

dP1(t) = Q1(t)dW (t), t ∈ [0, 1],
P1(1) = −φx(x̂(1)) = 0.

Clearly, (P1(t), Q1(t)) ≡ (0, 0) and the conditions (3.6)–(3.7) trivially hold.

4. Second order necessary conditions. We investigate next second order
necessary conditions for a local minimizer (x̄, ū) for the problem (1.4). Throughout
this section, we assume that ū ∈ L4

F(Ω;L4(0, T ;Rm)) and define

V := U ∩ L4
F(Ω;L4(0, T ;Rm)).

In addition to the assumptions (A1) and (A2), we suppose that
(A3) The functions b, σj (j = 1, · · · , d), φ and gi (i = 1, · · · , k) satisfy the follow-

ing:
(i) For a.e. (t, ω) ∈ [0, T ]×Ω, b(t, ·, ·, ω) : Rn×Rm → Rn and σj(t, ·, ·, ω) :

Rn × Rm → Rn (j = 1, · · · , d) are twice differentiable and

(x, u) 7→ b(x,u)2(t, x, u, ω), (x, u) 7→ σj(x,u)2(t, x, u, ω), j = 1, ..., d

are uniformly continuous in x ∈ Rn and u ∈ Rm, and,

|b(x,u)2(t, x, u, ω)|+
d∑
j=1

|σj(x,u)2(t, x, u, ω)| ≤ L, ∀ (x, u) ∈ Rn × Rm;

(ii) φ(·, ω) : Rn → R is twice differentiable a.s., and for any x, x̃ ∈ Rn,

|φxx(x, ω)| ≤ L, |φxx(x, ω)− φxx(x̃, ω)| ≤ L|x− x̃| a.s.
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(iii) For any i = 1, · · · , k, gi(·, ω) : Rn → R are twice differentiable a.s.,
and for any x, x̃ ∈ Rn,

|gixx(x, ω)| ≤ L, |gixx(x, ω)− gixx(x̃, ω)| ≤ L|x− x̃| a.s.

For ϕ = b, σj (j = 1, · · · , d), write

ϕxx[t] = ϕxx(t, x̄(t), ū(t)), ϕxu[t] = ϕxu(t, x̄(t), ū(t)), ϕuu[t] = ϕuu(t, x̄(t), ū(t)).

Let ν0 ∈ T bK0
(x̄0), v ∈ T bV(ū), W(x̄0, ν0) be a convex subset of T

b(2)
K0

(x̄0, ν0) and

M(ū, v) be a convex subset of T
b(2)
V (ū, v) (Here, for the definitions of T bV(ū) and

T
b(2)
V (ū, v), V is viewed as a subset of L4

F(Ω;L4(0, T ;Rm))). For any $0 ∈ W(x̄0, ν0)
and h ∈M(ū, v), similarly to [12], we introduce the following second-order variational
equation:

(4.1)



dy2(t) =
(
bx[t]y2(t) + bu[t]h(t) + 1

2y1(t)>bxx[t]y1(t) + v(t)>bxu[t]y1(t)

+ 1
2v(t)>buu[t]v(t)

)
dt+

d∑
j=1

(
σjx[t]y2(t)+σju[t]h(t)+ 1

2y1(t)>σjxx[t]y1(t)

+v(t)>σjxu[t]y1(t) + 1
2v(t)>σjuu[t]v(t)

)
dW j(t), t ∈ [0, T ],

y2(0) = $0,

where y1 is the solution of the linearized system (3.1).
Then there exist $ε

0 ∈ Rn and hε ∈ L4
F(Ω;L4(0, T ;Rm)) such that x̄0 + εν0 +

ε2$ε
0 ∈ K0, ū+εv+ε2hε ∈ V, $ε

0 → $0 in Rn and hε converges to h in L4
F(Ω;L4(0, T ;

Rm)) as ε → 0+. Set uε := ū + εv + ε2hε, x
ε
0 := x̄0 + εν0 + ε2$ε

0 and denote by xε

the solution of (1.1) corresponding to the initial datum xε0 and the control uε. Put
δxε = xε − x̄. The next result for d-dimensional Wiener process follows by the same
arguments as those used to prove [10, Lemma 4.1].

Lemma 4.1. Let the assumptions (A2) (i) and (A3) (i) hold. Then, for any
v, h, hε ∈ L4

F(Ω;L4(0, T ;Rm)) and ν0, $0, $
ε
0 ∈ Rn as above, we have

‖y2‖2∞,2 ≤ C(|$0|2 + |ν0|4 + ‖v‖44 + ‖h‖22).

Furthermore,

(4.2) ‖rε2‖∞,2 → 0, ε→ 0+,

where rε2(t, ω) :=
δxε(t, ω)− εy1(t, ω)− ε2y2(t, ω)

ε2
.

Denote

(4.3)
Y(x̄, ū) :=

{
(y1(·), v(·), ν0)∈L4

F(Ω;C([0, T ];Rn))×T bV(ū)×T bK0
(x̄0)

∣∣∣
y1 solves (3.1) and E

〈
gix(x̄(T )), y1(T )

〉
≤0, ∀ i∈I(x̄(T ))

}
and define the critical cone by

(4.4) Υ(x̄, ū) :=
{

(y1(·), v(·), ν0) ∈ Y(x̄, ū)
∣∣∣ E 〈φx(x̄(T )), y1(T )〉 = 0

}
.

For any fixed (y1(·), v(·), ν0) ∈ Υ(x̄, ū), consider the reachable set of the affine control
system (4.1), defined by

R(2)(y1, v) :=
{
y2(T )∈L2

FT (Ω;Rn)
∣∣∣ y2 is the solution of (4.1)(4.5)
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corresponding to some ($0, h) ∈ W(x0, ν0)×M(ū, v)
}
.

Let

I(x̄(T ), y1(T )) :=
{
i ∈ I(x̄(T ))

∣∣ E 〈gix(x̄(T )), y1(T )
〉

= 0
}

and consider the set

(4.6) Q(2)(y1(T )) :=
⋂

i∈I(x̄(T ),y1(T ))

Qi(2)(y1(T )),

where

Qi(2)(y1(T )) :=
{
z ∈ L2

FT (Ω;Rn)
∣∣ E 〈gix(x̄(T )), z

〉
+

1

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
< 0
}
.

Furthermore, we introduce the set

L(2)(y1(T )) :=
{
z ∈ L2

FT (Ω;Rn)
∣∣ E 〈φx(x̄(T )), z〉+ 1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉 < 0

}
.

Remark 4.1. For any (y1(·), v(·), ν0) ∈ Υ(x̄, ū), if I(x̄(T ), y1(T )) 6= ∅ and{
gix(x̄(T )) ∈ L2

FT (Ω;Rn)
∣∣ i ∈ I(x̄(T ), y1(T ))

}
are positively independent, then Q(2)(y1(T )) 6= ∅.

Indeed, under the positive independence assumption, it follows that

0 /∈ co
{
gix(x̄(T )) ∈ L2

FT (Ω;Rn)
∣∣ i ∈ I(x̄(T ), y1(T ))

}
.

Let I(x̄(T ), y1(T )) = {i1, ..., iq} for an integer q ≥ 1. Define A : L2
FT (Ω;Rn)→ Rq by

Az =
(
E
〈
gi1x (x̄(T )), z

〉
, ...,E

〈
giqx (x̄(T )), z

〉 )>
, ∀ z ∈ L2

FT (Ω;Rn),

and denote Rq− = {(x1, ..., xq) ∈ Rq | xi < 0, i = 1, ..., q},

b =
1

2

(
E
〈
gi1xx(x̄(T ))y1(T ), y1(T )

〉
, ...,E

〈
giqxx(x̄(T ))y1(T ), y1(T )

〉 )>
.

Assume otherwise that Q(2)(y1(T )) = ∅. Then {Az + b | z ∈ L2
FT (Ω;Rn)} ∩ Rq− = ∅.

By the separation theorem, there would exist a ξ = (ξ1, ..., ξq) 6= 0 such that

sup
α∈Rd−

〈α, ξ〉 ≤ inf
z∈L2

FT
(Ω;Rn)

〈Az + b, ξ〉 .

Hence ξl ≥ 0, l = 1, ..., q and 0 = supα∈Rd− 〈α, ξ〉 ≤ infz∈L2
FT

(Ω;Rn) 〈Az + b, ξ〉 . Then,

0 ≤ 〈Az + b, ξ〉 = E
〈∑q

l=1 ξlg
il
x (x̄(T )), z

〉
+ 〈b, ξ〉 for all z ∈ L2

FT (Ω;Rn), implying

that
∑q
l=1 ξlg

il
x (x̄(T )) = 0 and leading to a contradiction.

For ζ ∈ L2
FT (Ω;Sn) (which will be specified later), we introduce the following

adjoint equation to (4.1):

(4.7)



dP2(t) = −
(
bx[t]>P2(t) + P2(t)bx[t] +

d∑
j=1

σjx[t]>P2(t)σjx[t]

+
d∑
j=1

σjx[t]>Qj2(t) +
d∑
j=1

Qj2(t)σjx[t] +Hxx[t]
)
dt

+
d∑
j=1

Qj2(t)dW j(t), t ∈ [0, T ],

P2(T ) = ζ.
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Clearly, under the assumptions (A2) (i) and (A3) (i), the equation (4.7) admits a

unique strong solution (P2(·), Q2(·))∈L2
F(Ω;C([0, T ]; Sn))×

(
L2
F(Ω;L2(0, T ;Sn))

)d
.

To simplify the notation, we define

S(t, x, u, y1, z1, y2, z2, ω) := Hxu(t, x, u, y1, z1, ω) + bu(t, x, u, ω)>y2

+

d∑
j=1

σju(t, x, u, ω)>zj2 +

d∑
j=1

σju(t, x, u, ω)>y2σ
j
x(t, x, u, ω),

where (t, x, u, y1, z1, y2, z2, ω) ∈ [0, T ]×Rn×Rm×Rn×Rn×d×Sn× (Sn)d×Ω. Write

(4.8) S[t] = S(t, x̄(t), ū(t), P1(t), Q1(t), P2(t), Q2(t)), t ∈ [0, T ],

where (P1(·), Q1(·)) and (P2(·), Q2(·)) solve the equations (3.4) and (4.7), respectively.
Theorem 4.2. Let (A1)–(A3) hold and (x̄, ū) be a local minimizer for the problem

(1.4) with the initial datum x̄0 and the control ū ∈ U ∩ L4
F(Ω;L4(0, T ;Rm)). Then

for any (y1(·), v(·), ν0) ∈ Υ(x̄, ū) with W(x̄0, ν0) 6= ∅ and M(x̄0, ν0) 6= ∅, there exist
λ0 ∈ {0, 1}, λi ≥ 0 (for each i ∈ I(x̄(T ), y1(T ))) not vanishing simultaneously, and
adjoint processes (P1, Q1), (P2, Q2) corresponding to (x̄, ū) and the final datum

P1(T ) = −λ0φx(x̄(T ))−
∑

i∈I(x̄(T ),y1(T ))

λig
i
x(x̄(T )),(4.9)

P2(T ) = −λ0φxx(x̄(T ))−
∑

i∈I(x̄(T ),y1(T ))

λig
i
xx(x̄(T ))(4.10)

such that for any $0 ∈ W(x̄0, ν0) and h(·) ∈M(ū, v),

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+ E

∫ T

0

(
〈Hu[t], h(t)〉+

1

2
〈Huu[t]v(t), v(t)〉(4.11)

+
1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

)
dt ≤ 0.

Moreover, the first order adjoint process (P1, Q1) with the finial datum defined by (4.9)
also satisfies the first order necessary condition (3.6) and the transversality condition
P1(0) ∈ NC

K0
(x̄0).

Furthermore, λ0 = 1 if I(x̄(T ), y1(T )) = ∅.
Proof. Fix (y1(·), v(·), ν0) ∈ Υ(x̄, ū). We first prove the desired second order

necessary condition (4.11) by considering several cases.

Case 1: I(x̄(T ), y1(T )) = ∅. In this case, E 〈φx(x̄(T )), y1(T )〉 = 0 and for any
i ∈ I(x̄(T )), E

〈
gix(x̄(T )), y1(T )

〉
< 0. Then, for any $0 ∈ W(x̄0, ν0), h ∈ M(ū, v)

and ε > 0, there exist µ(ε) ∈ Rn with |µ(ε)| = o(ε2) and η(ε) ∈ L4
F(Ω;L4(0, T ;Rm))

with ‖η(ε)‖4 = o(ε2) such that xε0 = x̄0 + εν0 + ε2$0 + µ(ε) ∈ K0 and uε = ū+ εv +
ε2h + η(ε) ∈ V. Let xε be the solution to the control system (1.1) corresponding to
the initial datum xε0 and the control uε. Then, by Lemma 4.1, for some ρ < 0 and all
sufficiently small ε > 0 and for any i ∈ I(x̄(T )) ,

E gi(xε(T )) = E gi(x̄(T )) + εE
〈
gix(x̄(T )), y1(T )

〉
+ ε2E

〈
gix(x̄(T )), y2(T )

〉
+
ε2

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+ o(ε2)
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= ε
(
E
〈
gix(x̄(T )), y1(T )

〉
+ εE

〈
gix(x̄(T )), y2(T )

〉
+
ε

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+ o(ε)

)
< ερ ≤ 0,(4.12)

while for any i /∈ I(x̄(T )),

E gi(xε(T )) = E gi(x̄(T )) + εE
〈
gix(x̄(T )), y1(T )

〉
+ ε2E

〈
gix(x̄(T )), y2(T )

〉
+
ε2

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+ o(ε2)

< ρ+ ε
(
E
〈
gix(x̄(T )), y1(T )

〉
+ εE

〈
gix(x̄(T )), y2(T )

〉
+
ε

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+ o(ε)

)
≤ 0,(4.13)

i.e., (xε, uε) ∈Pad. Since (x̄, ū) is locally optimal, for all sufficiently small ε > 0,

0 ≤ E φ(xε(T ))− E φ(x̄(T ))

ε2
=

1

ε
E 〈φx(x̄(T )), y1(T )〉+ E 〈φx(x̄(T )), y2(T )〉

+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉+

o(ε2)

ε2

→ E 〈φx(x̄(T )), y2(T )〉+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉 , (as ε→ 0+).(4.14)

On the other hand, for any solutions (P1, Q1) and (P2, Q2) of (3.4) and (4.7)
respectively, by Itô’s formula, we have

E 〈P1(T ), y2(T )〉(4.15)

= 〈P1(0), $0〉+ E
∫ T

0

(
〈P1(t), bu[t]h(t)〉+

1

2

〈
P1(t), y1(t)>bxx[t]y1(t)

〉
+
〈
P1(t), v(t)>bxu[t]y1(t)

〉
+

1

2

〈
P1(t), v(t)>buu[t]v(t)

〉
+

d∑
j=1

〈
Qj1(t), σju[t]h(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), y1(t)>σjxx[t]y1(t)

〉
+

d∑
j=1

〈
Qj1(t), v(t)>σjxu[t]y1(t)

〉
+

1

2

d∑
j=1

〈
Qj1(t), v(t)>σjuu[t]v(t)

〉)
dt,

and

E 〈P2(T )y1(T ), y1(T )〉 = 〈P2(0)ν0, ν0〉+ E
∫ T

0

(
2 〈P2(t)y1(t), bu[t]v(t)〉(4.16)

+2

d∑
j=1

〈
P2(t)σjx[t]y1(t), σju[t]v(t)

〉
+

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+2

d∑
j=1

〈
Qj2(t)y1(t), σju[t]v(t)

〉
− 〈Hxx[t]y1(t), y1(t)〉

)
dt.

Letting P1(T ) = −φx(x̄(T )), P2(T ) = −φxx(x̄(T )) (i.e., λ0 = 1, λi = 0 for each
i ∈ I(x̄(T ))) and substituting (4.15)–(4.16) into (4.14), we obtain (4.11).

Case 2: I(x̄(T ), y1(T )) 6= ∅. Firstly, we claim that

L(2)(y1(T )) ∩Q(2)(y1(T )) ∩R(2)(y1, v) = ∅.
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Indeed, if the above intersection was nonempty, then there would exist $0 ∈ W(x̄0, ν0)
and h ∈ M(ū, v) such that the corresponding solution y2(·) of the second order
variational equation (4.1) satisfies

E
〈
gix(x̄(T )), y2(T )

〉
+

1

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
< 0, ∀ i ∈ I(x̄(T ), y1(T ))

and

E 〈φx(x̄(T )), y2(T )〉+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉 < 0.

Let µ(ε) ∈ Rn with |µ(ε)| = o(ε2) and η(ε) ∈ L4
F(Ω;L4(0, T ;Rm)) with ‖η(ε)‖4 =

o(ε2) satisfy xε0 = x̄0 + εν0 + ε2$0 + µ(ε) ∈ K0 and uε = ū + εv + ε2h + η(ε) ∈ V,
and let xε be the solution to the control system (1.1) corresponding to the initial
datum xε0 and the control uε. Similarly to Case 1, one has for all ε > 0 small
enough E gi(xε(T )) ≤ 0 for every i /∈ I(x̄(T ), y1(T )). Also, by Lemma 4.1, for any
i ∈ I(x̄(T ), y1(T )), there exists a ρ < 0 such that for all sufficiently small ε,

E gi(xε(T ))=E gi(x̄(T )) + εE
〈
gix(x̄(T )), y1(T )

〉
+ ε2E

〈
gix(x̄(T )), y2(T )

〉
+
ε2

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+ o(ε2)

=ε2
(
E
〈
gix(x̄(T )), y2(T )

〉
+

1

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
+
o(ε2)

ε2

)
<ε2ρ ≤ 0,

This proves that (xε, uε) ∈Pad. On the other hand,

E φ(xε(T ))=E φ(x̄(T )) + εE 〈φx(x̄(T )), y1(T )〉+ ε2E 〈φx(x̄(T )), y2(T )〉

+
ε2

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉+ o(ε2)

=E φ(x̄(T )) + ε2
(
E 〈φx(x̄(T )), y2(T )〉

+
1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉+

o(ε2)

ε2

)
<E φ(x̄(T )) + ε2ρ < E φ(x̄(T )),

contradicting the local optimality of (x̄, ū) and proving our claim.
Next, we consider two subcases.

(i): L(2)(y1(T ))
⋂
Q(2)(y1(T )) 6= ∅.

Since L(2)(y1(T ))∩Q(2)(y1(T ))∩R(2)(y1, v) = ∅, by the separation theorem, there
exists a nonzero ξ ∈ L2

FT (Ω;Rn) such that

sup
α∈L(2)(y1(T ))

⋂
Q(2)(y1(T ))

E 〈ξ, α〉 ≤ inf
β∈R(2)(y1,v)

E 〈ξ, β〉 .

By the first conclusion of Lemma 2.5, for some

α0 ∈ cl
(
L(2)(y1(T ))

⋂
Q(2)(y1(T ))

)
= cl

(
L(2)(y1(T ))

)⋂( ⋂
i∈I(x̄(T ),y1(T ))

cl
(
Qi(2)(y1(T ))

))
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we have E 〈ξ, α0〉 = supα∈L(2)(y1(T ))
⋂
Q(2)(y1(T )) E 〈ξ, α〉 .

Denote by I0(x̄(T ), y1(T )) the set of all indices i ∈ I(x̄(T ), y1(T )) such that

E
〈
gix(x̄(T )), α0

〉
+

1

2
E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
= 0.

By the second conclusion of Lemma 2.5, there exist λi ≥ 0 (for each i ∈ I0(x̄(T ), y1(T )))
and λ0 ≥ 0 (λ0 = 0 if E 〈φx(x̄(T )), α0〉+ 1

2E 〈φxx(x̄(T ))y1(T ), y1(T )〉 < 0) such that

ξ = λ0φx(x̄(T )) +
∑

i∈I0(x̄(T ),y1(T ))

λig
i
x(x̄(T )).

Consequently,

E 〈ξ, α0〉=−
1

2

(
λ0E 〈φxx(x̄(T ))y1(T ), y1(T )〉+

∑
i∈I0(x̄(T ),y1(T ))

λiE
〈
gixx(x̄(T ))y1(T ), y1(T )

〉)
.

Setting

P1(T ) = −λ0φx(x̄(T ))−
∑

i∈I0(x̄(T ),y1(T ))

λig
i
x(x̄(T )),

P2(T ) = −λ0φxx(x̄(T ))−
∑

i∈I0(x̄(T ),y1(T ))

λig
i
xx(x̄(T )),

we find that, for any y2(T ) ∈ R(2)(y1, v),

1

2
E 〈P2(T )y1(T ), y1(T )〉

= −1

2

(
λ0E 〈φxx(x̄(T ))y1(T ), y1(T )〉+

∑
i∈I0(x̄(T ),y1(T ))

λiE
〈
gixx(x̄(T ))y1(T ), y1(T )

〉 )
= E 〈ξ, α0〉 ≤ −E 〈P1(T ), y2(T )〉 .

This combined with (4.15)–(4.16) implies the second order necessary condition (4.11).

(ii): L(2)(y1(T ))
⋂
Q(2)(y1(T )) = ∅.

To simplify the notation set g0(·) = φ(·), J = {0} ∪ I(x̄(T ), y1(T )) and

Q0
(2)(y1(T )) =

{
z ∈ L2

FT (Ω;Rn) | E 〈φx(x̄(T )), z〉+ 1

2
E 〈φxx(x̄(T ))y1(T ), y1(T )〉 < 0

}
.

Clearly, Q0
(2)(y1(T )) = L(2)(y1(T )).

If there exists an i ∈ J such that Qi(2)(y1(T )) = ∅, then, gix(x̄(T )) = 0 a.s. and

(4.17) E
〈
gixx(x̄(T ))y1(T ), y1(T )

〉
≥ 0.

Let λi = 1 and λj = 0 for j ∈ J\{i}. Then 0 = λig
i
x(x̄(T ))+

∑
j∈J\{i} λjg

j
x(x̄(T )). Let

P1(T ) = 0, P2(T ) = −gixx(x̄(T )), it is easy to verify that (P1(t), Q1(t)) ≡ 0, H[t] ≡ 0,
Hxx[t] ≡ 0 and, by (4.17), E 〈P2(T )y1(T ), y1(T )〉 ≤ 0. Then, by Itô’s formula, the
condition (4.11) holds true and it reduces to

〈P2(0)ν0, ν0〉+ E
∫ T

0

( d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 2 〈S[t]y1(t), v(t)〉

)
dt ≤ 0,
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where, in this case,

S[t] = bu[t]>P2(t) +

d∑
j=1

σju[t]>Qj2(t) +

d∑
j=1

σju[t]>P2(t)σjx[t].

If Qi(2)(y1(T )) 6= ∅ for any i ∈ J , then, one can find an i0 ∈ J and a subset J0 ⊂ J
with i0 /∈ J0, such that ∩j∈J0Qj(2)(y1(T )) is nonempty and

Qi0(2)(y1(T ))
⋂( ⋂

j∈J0

Qj(2)(y1(T ))
)

= ∅.

By the separation theorem, there exists a nonzero ξ ∈ L2
FT (Ω;Rn) such that

sup
α∈Qi0

(2)
(y1(T ))

E 〈ξ, α〉 ≤ inf
β∈

⋂
j∈J0

Qj
(2)

(y1(T ))
E 〈ξ, β〉 .

By the first conclusion of Lemma 2.5, for some α0 ∈ cl
(
Qi0(2)(y1(T ))

)
and β0 ∈⋂

j∈J0

cl
(
Qj(2)(y1(T ))

)
we have

(4.18) E 〈ξ, α0〉 = sup
α∈Qi0

(2)
(y1(T ))

E 〈ξ, α〉 ≤ inf
β∈

⋂
j∈J0

Qj
(2)

(y1(T ))
E 〈ξ, β〉 = E 〈ξ, β0〉 .

Moreover, by the second conclusion of Lemma 2.5, there exists a λi0 > 0 such that
ξ = λi0g

i0
x (x̄(T )),

(4.19) 0 = E
〈
gi0x (x̄(T )), α0

〉
+

1

2
E
〈
gi0xx(x̄(T ))y1(T ), y1(T )

〉
and, for some j ∈ J0,

(4.20) 0 = E
〈
gjx(x̄(T )), β0

〉
+

1

2
E
〈
gjxx(x̄(T ))y1(T ), y1(T )

〉
.

Denote by J1 the set of all indices j ∈ J0 satisfying (4.20). Then, by the second
conclusion in Lemma 2.5 again, for each j ∈ J1 , there exists a λj ≥ 0 such that

(4.21) −ξ = −λi0gi0x (x̄(T )) =
∑
j∈J1

λjg
j
x(x̄(T )).

Combining (4.18)–(4.21), we arrive at

0 ≤ λi0E
〈
gi0xx(x̄(T ))y1(T ), y1(T )

〉
+
∑
j∈J1

λjE
〈
gjxx(x̄(T ))y1(T ), y1(T )

〉
.

Set P1(T ) = 0 and P2(T ) = −λi0gi0xx(x̄(T ))−
∑
j∈J1

λjg
j
xx(x̄(T )). Then, (P1(t), Q1(t)) ≡

0, H[t] ≡ 0, Hxx[t] ≡ 0 and, E 〈P2(T )y1(T ), y1(T )〉 ≤ 0. Proceeding as before, we
obtain the second order necessary condition (4.11).

Finally, we prove that λi for i ∈ I(x̄(T ), y1(T ))) ∪ {0} can be chosen so that, the
first order adjoint process (P1, Q1) also satisfies the first order necessary condition
(3.6) and the transversality condition P1(0) ∈ NC

K0
(x̄0).
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Since the Clarke tangent cone is convex, CK0(x̄0) +W(x̄0, ν0) (⊂ T
b(2)
K0

(x̄0,ν0))

and CV(ū) +M(ū, v) (⊂ T
b(2)
V (ū, v)) are also convex. The above proof applied to

CK0(x̄0) +W(x̄0, ν0), CV(ū) +M(ū, v) (instead of W(x̄0, ν0),M(ū, v)) implies that
{λi} can be chosen so that, the second order necessary condition (4.11) holds true
for any $0 ∈ CK0

(x̄0) +W(x̄0, ν0) and any h ∈ CV(ū) +M(ū, v). Therefore, for all
ν̂0 ∈ CK0

(x̄0), $0 ∈ W(x̄0, ν0), v̂ ∈ CV(ū), h ∈M(ū, v) and % > 0,

〈P1(0), %ν̂0 +$0〉+
1

2
〈P2(0)ν0, ν0〉(4.22)

+E
∫ T

0

(〈
Hu[t], %v̂(t) + h(t)

〉
+

1

2
〈Huu[t]v(t), v(t)〉

+
1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

)
dt ≤ 0,

where (P1, Q1) and (P2, Q2) are solutions to the adjoint equations (3.4) and (4.7) with
the final data given by (4.9) and (4.10), respectively. Dividing by % the both sides of
(4.22) and letting %→ +∞, we get

(4.23) 〈P1(0), ν̂0〉+ E
∫ T

0

〈Hu[t], v̂(t)〉 dt ≤ 0.

By the arbitrariness of ν̂0 and v̂, we deduce from (4.23) that P1(0) ∈ NC
K0

(x̄0) and

E
∫ T

0

〈Hu[t], v̂(t)〉 dt ≤ 0, ∀ v̂ ∈ CV(ū).

This, combined with Lemma 2.7, yields (3.6).
Remark 4.2. Similarly to the deterministic framework, the second order necessary

condition is valid only for critical directions. In particular, Y(x̄, ū) (defined by (4.3))
has to be a nonempty set. If Q(1) 6= ∅, U = Rm and the linear control system (3.1) (in
which v(·) is regarded as a control variable) is exactly controllable, then Y(x̄, ū) 6= ∅.

Remark 4.3. Since the second order adjacent set of the convex set is convex,
when both K0 and U are convex, for any ν0 ∈ T bK0

(x̄0) and v ∈ T bV(ū), we can choose

W(x̄0, ν0) = T
b(2)
K0

(x̄0, ν0) and M(ū, v) = T
b(2)
V (ū, v).

When both K0 and U are convex, for any x0 ∈ K0 and u ∈ V, x0− x̄0 ∈ T bK0
(x̄0),

0 ∈ T b(2)
K0

(x̄0, x0 − x̄0), u− ū ∈ T bV(ū) and 0 ∈ T b(2)
V (ū, u− ū). In particular, choosing

W(x̄0, x0− x̄0) = {0},M(ū, u− ū) = {0}, as a consequence of Theorem 4.2, we obtain
immediately the following result.

Corollary 4.3. Let (A1)–(A3) hold and (x̄, ū) be a local minimizer for the
problem (1.4) with the initial datum x̄0 and the control ū ∈ U∩L4

F(Ω;L4(0, T ;Rm)). If
the initial state constraint set K0 and the control set U are closed and convex, then, for
any u ∈ V and x0 ∈ K0 with the corresponding y1 satisfying (y1(·), u(·)−ū(·), x0−x̄0) ∈
Υ(x̄, ū) (as in (4.4)), there exist λ0 ∈ {0, 1}, λi ≥ 0 (for each i ∈ I(x̄(T ), y1(T ))) not
vanishing simultaneously, and adjoint processes (P1, Q1) and (P2, Q2) corresponding
to (x̄, ū) and the final datum given by (4.9)–(4.10) such that

〈P2(0)(x0 − x̄0), (x0 − x̄0)〉+ E
∫ T

0

(
〈Huu[t](u(t)− ū(t)), u(t)− ū(t)〉
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+

d∑
j=1

〈
P2(t)σju[t](u(t)− ū(t)), σju[t](u(t)− ū(t))

〉
+ 2 〈S[t]y1(t), u(t)− ū(t)〉

)
dt ≤ 0.

In what follows, we refine the second order necessary condition (4.11) by using
first and second order adjacent vectors to U at ū(t, ω), which is more convenience in
applications than the ones defined in the function space.

Let v∈L4
F(Ω;L4(0, T ;Rm)). If there exist a nonnegative η(·)∈L4

F(Ω;L4(0, T ;R))
and an ε0 > 0 such that

(4.24) dist(ū(t, ω) + εv(t, ω), U) ≤ ε2η(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω, ∀ ε ∈ [0, ε0],

then, similarly to the proof of [10, Theorem 4.1], we deduce that v ∈ T bV(ū) and

that every h(·)∈L4
F(Ω;L4(0, T ;Rm)) satisfying h(t, ω) ∈ T b(2)

U (ū(t, ω), v(t, ω)) for a.e.

(t, ω) ∈ [0, T ]× Ω belongs to T
b(2)
V (ū, v).

Let Ψ : [0, T ]×Ω Rm be a B([0, T ])⊗F-measurable, F-adapted set-valued map
with nonempty closed convex values satisfying

Ψ(t, ω) ⊂ T b(2)
U (ū(t, ω), v(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω.

We underline that for an arbitrary U , in general, such Ψ may not exist, for instance

when the sets T
b(2)
U (ū(t, ω), v(t, ω)) are empty on a subset of [0, T ] × Ω of positive

measure (When U is equal to the intersection of a finite family of sets desribed by
the equality and inequality constraints, then, under the Mangasarian-Fromowitz type

constraints qualification assumptions, Ψ(t, ω) := T
b(2)
U (ū(t, ω), v(t, ω)) is as requested,

see the proof of Corollary 4.5 below). Define
(4.25)

M̃(ū, v) :=
{
h(·) ∈ L4

F(Ω;L4(0, T ;Rm))
∣∣ h(t, ω) ∈ Ψ(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω

}
.

Clearly, M̃(ū, v) is a nonempty convex subset of T
b(2)
V (ū, v), providing that Ψ has a

measurable selection belonging to L4
F(Ω;L4(0, T ;Rm)).

Remark 4.4. More generally, when T
b(2)
U (ū(t, ω), v(t, ω)) is a nonempty closed

convex subset of Rm for a.e. (t, ω) ∈ [0, T ]×Ω, we can select Ψ(·) = T
b(2)
U (ū(·), v(·)).

Indeed, by arguments similar to the proof of [2, Theorem 8.5.1], one can show that

T
b(2)
U (ū(·), v(·)) is A ∗-measurable, where A ∗ is the completion of A (defined in (2.1)).

Then, for any selection h∗(·) of T
b(2)
U (ū(·), v(·)) there exists a A -measurable mod-

ification h(·) of h∗(·). Therefore, M̃(ū, v) defined by (4.25) with Ψ(·) replaced by

T
b(2)
U (ū(·), v(·)) is a convex subset (might be empty) of T

b(2)
V (ū, v).

The following result is another immediate consequence of Theorem 4.2.
Corollary 4.4. Let (A1)–(A3) hold and (x̄, ū) be a local minimizer for the

problem (1.4) with the initial datum x̄0 and the control ū ∈ U ∩ L4
F(Ω;L4(0, T ;Rm)).

Then, for any (y1(·), v(·), ν0) ∈ Υ(x̄, ū) such that v satisfies the condition (4.24),
the conclusion of Theorem 4.2 is valid for any nonempty convex subset W(x̄0, ν0)

of T
b(2)
K0

(x̄0, ν0) and a nonempty convex subset M̃(ū, v) of T
b(2)
V (ū, v) as in (4.25),

provided that there exists Ψ as described above.
We give next a sufficient condition for some v ∈ T bU (ū) to satisfy (4.24) when the

control set U is described by finitely many mixed constraints.
Example 4.1. Let p, r ∈ N and

(4.26) U =
{
u ∈ Rm

∣∣ϕθ(u) = 0, ∀ θ = 1, . . . , p, ψ`(u) ≤ 0, ∀ ` = 1, . . . , r
}
,
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where ϕ1, . . . , ϕp : Rm → R and ψ1, . . . , ψr : Rm → R are twice continuously differen-
tiable functions. We admit that either equality or inequality constraints may be absent
and then they should be simply skipped in the expressions below.

Set Fw := (ϕ1
u(w), . . . , ϕpu(w))> (i.e., Fw is a p×m-matrix whose rows are ϕθu(w),

θ = 1, . . . , p). Let ū ∈ U and assume that
(B1) For any w ∈ U ,

p∑
θ=1

(
|ϕθu(w)|+ |ϕθuu(w)|

)
+

r∑
`=1

(
|ψ`u(w)|+ |ψ`uu(w)|

)
≤ L.

(B2) There exists a ρ > 0 such that for a.e. (t, ω) ∈ [0, T ]× Ω

ρBRp ⊂ Fū(t,ω)BRm .

(B3) For some δ > 0, e > 0 and for a.e. (t, ω) ∈ [0, T ]×Ω, we can find a v̄t,ω ∈ BRm

satisfying〈
ϕθu(ū(t, ω)), v̄t,ω

〉
=0, ∀ θ=1, . . . , p,

〈
ψ`u(ū(t, ω)), v̄t,ω

〉
≤−e, ∀ ` ∈ Iδ(ū(t, ω)),

where Iδ(ū(t, ω)) := {` | ψ`(ū(t, ω)) ∈ [−δ, 0], ` = 1, . . . , r}.

We claim that any v(·) ∈ L∞F ([0, T ]× Ω;Rm) such that〈
ϕθu(ū(t, ω)), v(t, ω)

〉
= 0, a.e. (t, ω) ∈ [0, T ]× Ω, ∀ θ = 1, . . . , p,(4.27) 〈

ψ`u(ū(t, ω), v(t, ω)
〉
≤ 0, a.e. (t, ω) ∈ [0, T ]× Ω, ∀ ` ∈ Iδ(ū(t, ω))(4.28)

satisfies the condition (4.24).
Clearly, (B2) implies that Fū(t,ω) is surjective and (B3) is a uniform Mangasarian-

Fromowitz condition. We do not request any measurability of the selection v̄t,ω.
We first deduce from (B1)–(B3) that for some ε̃ > 0 and for a.e. (t, ω) ∈ [0, T ]×Ω,

(4.29)
3ρ

4
BRp ⊂ FuBRm , ∀ u ∈ ū(t, ω) + ε̃BRm ,

and for any u ∈ ū(t, ω) + ε̃BRm one can find a v̄ ∈ BRm satisfying

(4.30)
〈
ϕθu(u), v̄

〉
= 0, ∀ θ = 1, . . . , p and

〈
ψ`u(u), v̄

〉
≤ −e

4
, ∀ ` ∈ Iδ(ū(t, ω)).

Indeed, we may assume that ρ < 1 < L and e < 1. By (B1) and (B2), we can find
0 < ε̃ < eρ/8L2(1 + e) independent of (t, ω), such that (4.29) holds true for a.e.
(t, ω) ∈ [0, T ] × Ω. Fix a (t, ω) ∈ [0, T ] × Ω such that (4.29) is satisfied. Also, we fix
a u ∈ ū(t, ω) + ε̃BRm . Define a map G : Rm → Rp by G(v) = Fuv for any v ∈ Rm.
Noting that G(1)(v) = FuBRm for any v ∈ Rm (with G(1)(·) as in Definition 2.3) and
applying [6, Theorem 3.1] to G, we obtain that

dist(v̄t,ω, G
−1(0)) ≤ 4

3ρ
|G(v̄t,ω)− 0|.

Then, there exists a v′ such that G(v′) = 0 and

|v̄t,ω − v′| ≤
2

ρ
|G(v̄t,ω)− 0| = 2

ρ
|Fuv̄t,ω − Fū(t,ω)v̄t,ω| ≤

2L

ρ
|u− ū(t, ω)| ≤ e

4L
.
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Thus |v′| ≤ 1 + e and for every ` ∈ Iδ(ū(t, ω)),〈
ψ`u(u), v′

〉
=
〈
ψ`u(u)− ψ`u(ū(t, ω)), v′

〉
+
〈
ψ`u(ū(t, ω)), v̄t,ω

〉
+
〈
ψ`u(ū(t, ω)), v′ − v̄t,ω

〉
≤ L|u− ū(t, ω)|(1 + e)− e+

e

4
≤ −e

2
.

Hence v̄ := 1
2v
′ ∈ BRm satisfies (4.30).

Let v(·) ∈ L∞F ([0, T ] × Ω;Rm) be as in (4.27)–(4.28). We derive next from
(4.29)–(4.30) that v(·) satisfies the condition (4.24) provided that Iδ(ū(t, ω)) 6= ∅.
Let Iδ(ū(t, ω)) = {`1, . . . , `k′} (for some k′ ∈ N). Observe that for any ` ∈ Iδ(ū(t, ω)),
[−e/4, e/4] ⊂

〈
ψ`u(u), v̄

〉
+ [0, 2L]. Let ṽ := 1

4Lk′ v̄. Then, |ṽ| ≤ 1
4Lk′ . By (4.30) we

have, for any θ = 1, . . . , p,

(4.31)
〈
ϕθu(u), ṽ

〉
= 0,

[
− e

16Lk′
,

e

16Lk′

]
⊂
〈
ψ`u(u), ṽ

〉
+

[
0,

1

2k′

]
∀ ` ∈ Iδ(ū(t, ω)).

Fix a (t, ω) ∈ [0, T ]×Ω such that (4.29) is satisfied, and let ε̃ > 0 and ṽ be as above.

Define a map G̃ : Rm → Rp+k′ by G̃(w) := (ϕ1(w), . . . , ϕp(w), ψ`1(w), . . . , ψ`k′ (w))>

and a map Ĝ : Rm×Rk′+ → Rp+k′ by Ĝ(w, q) := G̃(w) + (0Rp , q). Then (4.31) implies

that for all u ∈ ū(t, ω) + ε̃BRm and any q ∈ Rk′+ ,

(4.32) {0Rp} × [−e/16Lk′, e/16Lk′]k
′
⊂ Ĝ(1)(u, q).

Clearly for every % ∈ (0, 1] and u, q as above,

(4.33) %G̃u(u)BRm ⊂ Ĝ(1)(u, q).

Hence, taking the convex combination of (4.32) and (4.33), we obtain

(4.34)
%

2
G̃u(u)BRm + {0Rp} ×

[
− e

32Lk′
,

e

32Lk′

]k′
⊂ co Ĝ(1)(u, q).

Setting % = e/32L2k′, from (4.29) and (4.34) we deduce that

(4.35)
3%ρ

8
BRp ×

e

64Lk′
BRk′ ⊂ co Ĝ

(1)(u, q).

Observe that % and ε̃, do not depend on (t, ω).

Let q̄ be such that Ĝ(ū(t, ω), q̄) = 0. Applying [6, Theorem 3.2] at (ū(t, ω), q̄),
we deduce that, there is a constant c > 0 depending only on %, ρ, L and e but

independent of (t, ω) so that for every (u, q) ∈ (ū(t, ω), q̄) +
ε̃

4
BRm×k′ with |Ĝ(u, q)| <

ε̃c

4
we have

(4.36) dist((u, q), Ĝ−1(0)) ≤ 1

c
|Ĝ(u, q)− 0|.

It is sufficient to consider the case ‖v‖∞ > 0. By (B1), for all ε > 0, G̃(ū(t, ω) +

εv(t, ω)) = G̃(ū(t, ω)) + εG̃u(ū(t, ω))v(t, ω) + O(ε2), where |O(ε2)| ≤ Lε2‖v‖2∞. Let

(0Rp , qε) = −G̃(ū(t, ω)) − εG̃u(ū(t, ω))v(t, ω) ∈ {0Rp} × Rk′+ . Then |Ĝ(ū(t, ω) +
εv(t, ω), qε)| = |O(ε2)|.
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Let ε > 0 be small enough so that ε‖v‖∞(1 + L) < ε̃
8 and Lε2‖v‖2∞ < ε̃c

4 . Then,

(ū(t, ω) + εv(t, ω), qε) ∈ (ū(t, ω), q̄) +
ε̃

4
BRm×k′ and |Ĝ(ū(t, ω) + εv(t, ω), qε)| <

ε̃c

4
,

and, by (4.36), there exists a (uε, q̃ε) ∈ Rm × Rk′+ such that

Ĝ(uε, q̃ε) = 0, |ū(t, ω) + εv(t, ω)− uε| ≤
1

c
|Ĝ(ū(t, ω) + εv(t, ω), qε)| ≤

L

c
ε2‖v‖2∞.

Consequently, in order to prove that v satisfies the condition (4.24) with η(t, ω) =
L
c ‖v‖

2
∞, we only need to check that uε ∈ U . Since q̃ε ∈ Rk′+ , we have

(4.37) ϕθ(uε) = 0, θ = 1, · · · , p and ψ`(uε) ≤ 0, ` ∈ Iδ(ū(t, ω)).

Further, for all ` /∈ Iδ(ū(t, ω)),

ψ`(uε) ≤ ψ`(ū(t, ω)) + |ψ`(uε)− ψ`(ū(t, ω))| < −δ + L|uε − ū(t, ω)|
≤ −δ + Lε‖v‖∞ + L|uε − ū(t, ω)− εv(t, ω)|

≤ −δ + Lε‖v‖∞ +
L2ε2

c
‖v‖2∞.

Therefore, uε ∈ U whenever ε is so that Lε‖v‖∞ + L2ε2

c ‖v‖
2
∞ < δ. This proves

that there exist constants C > 0 and ε0 > 0 independent of (t, ω) such that for all
ε ∈ (0, ε0) and for almost all (t, ω) satisfying Iδ(ū(t, ω)) 6= ∅,

dist(ū(t, ω) + εv(t, ω), U) ≤ Cε2.

It remains to consider the case Iδ(ū(t, ω)) = ∅. For this aim it is enough to apply
the same arguments as above omitting functions ψ`, ` = 1, . . . , r. This completes the
proof of our claim.

In what follows, we shall give a consequence of Theorem 4.2 for the case when U
is represented by (4.26). We need the following assumption.
(B4) For any w ∈ U with the active indices I(w) := {` ∈ {1, · · · , r} |ψ`(w) = 0} ={

`1, . . . , `k0} (for some k0 ∈ N),
(4.38)
{ϕ1

u(w), ..., ϕpu(w)} ∪ {ψ`ju (w) | j = 1, . . . , k0} are linearly independent.

Furthermore, there exists a constant ρ > 0 such that for every w ∈ U ,

(4.39) ρBIm(ΓI(w)) ⊂ ΓI(w)BRp+k0 ,

where ΓI(w) := (ϕ1
u(w), . . . , ϕpu(w), ψ`1u (w), . . . , ψ

`k0
u (w)), and, BIm(ΓI(w)) is

the closed unit ball in the image space of ΓI(w).
Corollary 4.5. Let U be given by (4.26), the assumptions (A1)–(A3), (B1)

and (B4) hold and (x̄, ū) be a local minimizer for the problem (1.4) with the initial
datum x̄0 and the control ū ∈ U∩L4

F(Ω;L4(0, T ;Rm)). Then, for any (y1(·), v(·), ν0) ∈
Υ(x̄, ū) such that v ∈ L∞F ([0, T ] × Ω;Rm) satisfies (4.24) and any nonempty convex

subset W(x̄0, ν0) of T
b(2)
K0

(x̄0, ν0), there exist µθ(·) ∈ L2
F(Ω;L2(0, T ;R)), θ = 1, . . . , p,

γ`(·) ∈ L2
F(Ω;L2(0, T ; R+)), ` = 1, . . . , r and λ0 ∈ {0, 1}, λi ≥ 0 for each i ∈

I(x̄(T ), y1(T )) not vanishing simultaneously such that for every $0 ∈ W(x̄0, ν0),

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+ E

∫ T

0

(1

2
〈Huu[t]v(t), v(t)〉(4.40)
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+
1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

−1

2

p∑
θ=1

µθ(t)
〈
ϕθuu(ū(t))v(t), v(t)

〉
− 1

2

∑
`∈Iv(ū(t))

γ`(t)
〈
ψ`uu(ū(t))v(t), v(t)

〉)
dt ≤ 0.

Here, (P1, Q1) and (P2, Q2) are respectively the adjoint processes corresponding to
(x̄, ū) with the final datum (4.9) and (4.10), and

Iv(ū(t)) =
{
` ∈ I(ū(t))

∣∣ 〈ψ`u(ū(t)), v(t)
〉

= 0
}
.

Proof. By the linear independence assumption (4.38),

T bU (ū(t, ω)) =
{
v ∈ Rm

∣∣ 〈ϕθu(ū(t, ω)), v
〉

= 0, θ = 1, . . . , p,

and
〈
ψ`(ū(t, ω)), v

〉
≤ 0, ` ∈ I(ū(t, ω))

}
, a.e. (t, ω) ∈ [0, T ]× Ω.

Furthermore, for any v(t, ω) ∈ T bU (ū(t, ω)), we have T
b(2)
U (ū(t, ω), v(t, ω)) 6=∅, and,

T
b(2)
U (ū(t, ω), v(t, ω))

=

{
h ∈ Rm

∣∣∣∣〈ϕθu(ū(t, ω)), h〉+ 1

2
〈ϕθuu(ū(t, ω))v(t, ω), v(t, ω)〉=0, θ = 1, . . . , p,

and 〈ψ`u(ū(t, ω)), h〉+ 1

2
〈ψ`uu(ū(t, ω))v(t, ω), v(t, ω)〉≤0, `∈Iv(ū(t, ω))

}
.

Obviously, T
b(2)
U (ū(t, ω), v(t, ω)) is nonempty and convex. Let M̃(ū, v) be the set

defined by (4.25) with Ψ(t, ω) = T
b(2)
U (ū(t, ω), v(t, ω)). Under condition (B1) and

(B4), using a similar discussion in the below, we have M̃(ū, v) is nonempty. By
Corollary 4.4, there exist λ0 ∈ {0, 1}, λi ≥ 0 (for each i ∈ I(x̄(T ), y1(T ))) not
vanishing simultaneously, and adjoint processes (P1, Q1) and (P2, Q2) corresponding
to (x̄, ū) and the final datum defined respectively by (4.9) and (4.10) such that, for

every $0 ∈ W(x̄0, ν0) and h ∈ M̃(ū, v),

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+ E

∫ T

0

(
〈Hu[t], h(t)〉+

1

2
〈Huu[t]v(t), v(t)〉(4.41)

+
1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+ 〈S[t]y1(t), v(t)〉

)
dt ≤ 0

and

(4.42) P1(0) ∈ NC
K0

(x̄0) and Hu[t] ∈ NC
U (ū(t)), a.e. t ∈ [0, T ], a.s.

Since in this special case CU (ū(t, ω)) = T bU (ū(t, ω)),

Hu[t] ∈
p∑
θ=1

Rϕθu(ū(t)) +
∑

`∈I(ū(t))

R+ψ
`
u(ū(t)), a.e. t ∈ [0, T ], a.s.



End points constrained stochastic optimal control problems 29

By the condition (4.39) and using the same arguments as that in [10, Corollary 4.1],
we deduce that, there exist processes µθ(·) ∈ L2

F(Ω;L2(0, T ;R)), θ = 1, . . . , p and
γ`(·) ∈ L2

F(Ω;L2(0, T ;R+)), ` = 1, . . . , r such that

(4.43) Hu[t] =

p∑
θ=1

µθ(t)ϕθu(ū(t)) +
∑

`∈I(ū(t))

γ`(t)ψ`u(ū(t)), a.e. t ∈ [0, T ], a.s.

On the other hand, by the definition of Υ(x̄, ū),

E 〈φx(x̄(T )), y1(T )〉 = 0, E
〈
gix(x̄(T )), y1(T )

〉
≤ 0, ∀ i ∈ I(x̄(T )).

Then,

〈P1(T ), y1(T )〉 = −

〈
λ0φx(x̄(T )) +

∑
i∈I(x̄(T ),y1(T ))

λig
i
x(x̄(T )), y1(T )

〉
≥ 0,

which, by the Ito formula, implies that

〈P1(0), ν0〉+ E
∫ T

0

〈Hu[t], v(t)〉 dt ≥ 0.

This, together with (4.42) and Lemma 2.7, gives

(4.44) 〈P1(0), ν0〉 = 0, and 〈Hu[t], v(t)〉 = 0, a.e. t ∈ [0, T ], a.s.

Combining (4.43) with (4.44), we obtain that,∑
`∈I(ū(t))

γ`(t)
〈
ψ`u(ū(t), v(t)

〉
= 0, a.e. t ∈ [0, T ], a.s.

Therefore, for any ` /∈ Iv(ū(t)), γ`(t) = 0, a.e. t ∈ [0, T ], a.s.
For every (t, ω) ∈ [0, T ] × Ω, let `1, . . . , `τ be all the elements of Iv(ū(t, ω)) (for

some integer τ ≤ r). Denote

ζ(t, ω) :=−1

2

( 〈
ϕ1
uu(ū(t, ω))v(t, ω), v(t, ω)

〉
, . . . , 〈ϕpuu(ū(t, ω))v(t, ω), v(t, ω)〉 ,〈

ψ`1uu(ū(t, ω))v(t, ω), v(t, ω)
〉
, . . . ,

〈
ψ`τuu(ū(t, ω))v(t, ω), v(t, ω)

〉 )
,

A :=
{

(t, ω) ∈ [0, T ]× Ω | ζ(t, ω) 6= 0
}
,

and,

ΓIv(ū(t,ω)) := (ϕ1
u(ū(t, ω)), . . . , ϕpu(ū(t, ω)), ψ`1u (ū(t, ω)), . . . , ψ`τu (ū(t, ω))).

It is clear that the set A ∈ A with A defined by (2.1). Define a set-valued map by

Φ(t, ω) :=
{
h ∈ BRm

∣∣∣ h>ΓIv(ū(t,ω)) =
ρζ(t, ω)

|ζ(t, ω)|

}
, (t, ω) ∈ A.

By the condition (4.39), for any (t, ω) ∈ A, Φ(t, ω) 6= ∅ and the graph of Φ is A ⊗
B(Rm)-measurable. Therefore, there exists an A -measurable map h(·) (making a
completion argument if necessary) such that, h(t, ω) ∈ Φ(t, ω), a.e. (t, ω) ∈ A. Set

h̃(t, ω) :=


|ζ(t, ω)|h(t, ω)

ρ
, if (t, ω) ∈ A,

0, otherwise.



30 H. Frankowska, H. Zhang and X. Zhang

Then h̃ is A -measurable and, by Lemma 2.8, h̃ is B([0, T ]) ⊗ F-measurable and F-
adapted. Moreover, ζ(t, ω) = h̃(t, ω)>ΓIv(ū(t,ω)), i.e.,

(4.45)
〈
ϕθu(ū(t, ω)), h̃(t, ω)

〉
= −1

2

〈
ϕθuu(ū(t, ω))v(t, ω), v(t, ω)

〉
, ∀ i = 1, . . . , p,

and

(4.46)
〈
ψ`u(ū(t, ω)), h̃(t, ω)

〉
= −1

2

〈
ψ`uu(ū(t, ω))v(t, ω), v(t, ω)

〉
, ∀ ` ∈ Iv(ū(t, ω)).

In addition, by the condition (B1),

|h̃(t, ω)| =
∣∣∣ |ζ(t, ω)|h(t, ω)

ρ

∣∣∣ ≤ |ζ(t, ω)|
ρ

≤ C‖v‖2∞, a.e. (t, ω) ∈ [0, T ]× Ω.

Therefore, h̃(·) ∈ L∞F ([0, T ]×Ω;Rm) ⊂ L4
F(Ω;L4(0, T ;Rm)). This yields h ∈ M̃(ū, v).

Moreover, by (4.45) and (4.46),

〈
Hu[t], h̃(t)

〉
=−1

2

p∑
θ=1

µθ(t)
〈
ϕθuu(ū(t))v(t), v(t)

〉
− 1

2

∑
`∈Iv(ū(t))

γ`(t)
〈
ψ`uu(ū(t))v(t), v(t)

〉
.

Substituting this equality into (4.41), we obtain (4.40).
Because the Bolza problem can be reformulated as the Mayer one, the first and

second order necessary conditions obtained in this paper can be extended to the Bolza
problem. Actually, for the Bolza type cost function

(4.47) J(x(·), u(·)) = E
[ ∫ T

0

f(t, x(t), u(t))dt+ φ(x(T ))
]
,

where the function φ : Rn × Ω → R satisfies the conditions (A2) (ii) and (A3) (ii),
and f : [0, T ]× Rn × Rm × Ω→ R is a given function satisfying :
(A4) For any (x, u) ∈ Rn × Rm, f(·, x, u, ·) : [0, T ] × Ω → R is B([0, T ]) ⊗ F-

measurable and F-adapted. For a.e. (t, ω) ∈ [0, T ] × Ω, f(t, ·, ·, ω) : Rn ×
Rm → R is twice continuously differentiable, and for a.e. (t, ω) ∈ [0, T ]× Ω,
any x, x̃ ∈ Rn and u, ũ ∈ Rm,

|f(t, 0, u, ω)| ≤ L(η(t, ω) + |u|),
|fx(t, x, u, ω)|+ |fu(t, x, u, ω)| ≤ L,
|f(x,u)2(t, x, u, ω)| ≤ L,
|f(x,u)2(t, x, u, ω)− f(x,u)2(t, x̃, ũ, ω)| ≤ L(|x− x̃|+ |u− ũ|).

As usual, if we introduce the following extended control system

(4.48)

 dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
dy(t) = f(t, x(t), u(t))dt, t ∈ [0, T ],
x(0) = x0, y(0) = 0.

Then the cost function (4.47) can be written in the Mayer form:

J(x(·), u(·)) = E φ̂(x(T ), y(T )),

where φ̂(x, y) = φ(x) + y. Under the assumptions (A1)–(A4), the new control system
is well-defined and so does the cost function.
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Let K̂0 = K0 × {0}. For λ0 ∈ {0, 1}, define the generalized Hamiltonian

(4.49) Hλ0(t, x, u, p, q, ω) := 〈p, b(t, x, u, ω)〉+
d∑
j=1

〈
qj , σj(t, x, u, ω)

〉
−λ0f(t, x, u, ω),

where (t, x, u, p, q, ω) ∈ [0, T ]× Rn × Rm × Rn × Rn×d × Ω.
Let ū ∈ U and (P1, Q1) be the solution to the following adjoint equation:

(4.50)


dP1(t) = −

(
bx[t]>P1(t) +

d∑
j=1

σjx[t]>Qj1(t)− λ0fx[t]
)
dt+

d∑
j=1

Qj1(t)dW j(t)

P1(T ) = −λ0φx(x̄(T ))−
k∑
i=1

λig
i
x(x̄(T )),

where λi ≥ 0, i = 1, . . . , k (which will be specified later), and denote

Hλ0 [t] = Hλ0(t, x̄(t), ū(t), P1(t), Q1(t)),

Hλ0
u [t], Hλ0

xx [t], Hλ0
xu[t] and Hλ0

uu[t] are defined in a similar way.
Similarly, we introduce the following second order adjoint equation

(4.51)



dP2(t) = −
(
bx[t]>P2(t) + P2(t)bx[t] +

d∑
j=1

σjx[t]>P2(t)σjx[t]

+
d∑
j=1

σjx[t]>Qj2(t) +
d∑
j=1

Qj2(t)σjx[t] +Hλ0
xx [t]

)
dt

+
d∑
j=1

Qj2(t)dW j(t), t ∈ [0, T ],

P2(T ) = −λ0φxx(x̄(T ))−
k∑
i=1

λig
i
xx(x̄(T )),

and set Sλ0 [t] := Hλ0
xu[t] + bu[t]>P2(t) +

∑d
j=1 σ

j
u[t]>Qj2(t) +

∑d
j=1 σ

j
u[t]>P2(t)σjx[t].

Let Y(x̄, ū) be as in (4.3) and define

Υ̂(x̄, ū) :=
{

(y1(·), v(·), ν0) ∈ Y(x̄, ū)
∣∣∣ E ∫ T0 ( 〈fx[t], y1(t)〉+

〈fu[t], v(t)〉
)
dt+ E 〈φx(x̄(T )), y1(T )〉 = 0

}
.

As a consequence of Theorems 3.4 and 4.2, we have the following first and second order
necessary condition for the Bolza optimal control problem, where we used notations
of Theorems 3.4 and 4.2:

Corollary 4.6. Let (A1)–(A4) hold and (x̄, ū) be a locally optimal pair for the
problem (1.4) with the control system (1.1) and the cost function (4.47).

(i) If I(x̄(T )) = ∅ or if I(x̄(T )) 6= ∅ and Q(1) 6= ∅, then there exist λ0 ∈ {0, 1}
and λi ≥ 0 for i ∈ I(x̄(T )), and the solution (P1, Q1) to the first order adjoint
equation (4.50) corresponding to (x̄, ū) such that λ0 + E |P1(T )| 6= 0,

(4.52) P1(0) ∈ NC
K0

(x̄0) and Hλ0
u [t] ∈ NC

U (ū(t)), a.e. t ∈ [0, T ], a.s.,

(ii) If I(x̄(T )) 6= ∅ but Q(1) = ∅, then for each i ∈ I(x̄(T )), there exists a λi ≥ 0
such that

∑
i∈I(x̄(T )) λi > 0,

∑
i∈I(x̄(T )) λig

i
x(x̄(T )) = 0 and the same relations

as above hold with λ0 = 0 and (P1, Q1) ≡ 0.
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Moreover the above holds true with λ0 = 1 if I(x̄(T )) = ∅ or if I(x̄(T )) 6= ∅ and
Q(1) ∩R(1) 6= ∅.

Furthermore, if ū ∈ U ∩ L4
F(Ω;L4(0, T ;Rm)), then, for any (y1(·), v(·), ν0) ∈

Υ̂(x̄, ū) with W(x̄0, ν0) 6= ∅, M(ū, v) 6= ∅, there exist λ0 ∈ {0, 1}, λi ≥ 0 (for each
i ∈ I(x̄(T ), y1(T ))) not vanishing simultaneously and adjoint processes (P1, Q1) and
(P2, Q2) defined by (4.50)–(4.51) corresponding to (x̄, ū) such that (4.52) holds true
and for every $0 ∈ W(x̄0, ν0) and h(·) ∈M(ū, v),

〈P1(0), $0〉+
1

2
〈P2(0)ν0, ν0〉+ E

∫ T

0

( 〈
Hλ0
u [t], h(t)

〉
+

1

2

〈
Hλ0
uu[t]v(t), v(t)

〉
+

1

2

d∑
j=1

〈
P2(t)σju[t]v(t), σju[t]v(t)

〉
+
〈
Sλ0 [t]y1(t), v(t)

〉 )
dt ≤ 0.

REFERENCES

[1] J. -P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis, Second edition,
Springer-Verlag, Berlin, 1998.

[2] J. -P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Berlin, 1990.
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[17] Z. Páles and V. Zeidan, First- and second-order necessary conditions for control problems
with constraints, Trans. Amer. Math. Soc., 346 (1994), pp. 421–453.

[18] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control
Optim., 28 (1990), pp. 966–979.

[19] R. T. Rockafellar and R. J.-B. Wets, (1998), Variational Analysis, Gründlehren der Math-
ematischen Wissensschaften, vol. 317, Springer Verlag, New York.

[20] J. Warga, A second-order condition that strengthens Pontryagin’s maximum principle, J. Dif-
ferential Equations , 28 (1978), pp. 284–307.



End points constrained stochastic optimal control problems 33

[21] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977),
pp. 859–903.

[22] T. Wang and H. Zhang, Optimal control problems for forward-backward stochastic Volterra
integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574–
2602.

[23] J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,
Springer-Verlag, New York, Berlin, 2000.


