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INVARIANCE FOR QUASI-DISSIPATIVE SYSTEMS
IN BANACH SPACES

P. CANNARSA, G. DA PRATO, AND H. FRANKOWSKA

Abstract. In a separable Banach space E, we study the invariance of a closed
set K under the action of the evolution equation associated with a maximal
dissipative linear operator A perturbed by a quasi-dissipative continuous term
B. Using the distance to the closed set, we give a general necessary and sufficient
condition for the invariance of K. Then, we apply our result to several examples
of partial differential equations in Banach and Hilbert spaces.

1. Introduction

In a separable Banach space E, consider the Cauchy problem

(1)

{
X ′(t) = AX(t) +B(X(t)), t ≥ 0
X(0) = x,

where A : D(A) ⊂ E → E is the infinitesimal generator of the strongly continuous
semigroup of contractions etA on E and B : E → E is continuous and such that
B−MI is dissipative for some M > 0. As is well known, for every x ∈ E problem
(1) has a unique mild solution

X(t, x) = etAx+

∫ t

0

e(t−s)AB(X(s, x))ds, t ∈ [0, T ]

which belongs to C([0, T ];E). Moreover, when x ∈ D(A), the solution is strict
(see [?] and Proposition 3.1 below).

The main object of this paper is the characterization of those nonempty closed
sets K of E which are invariant for the flow X(·, x), that is, such that x ∈ K
implies X(t, x) ∈ K for all t ≥ 0. Such invariance properties are very useful, for
instance, to obtain relaxation results for semilinear control systems under state
constraints (see [?]).
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There is an extensive literature addressing domain invariance issues for partial
differential equations (see, for instance, [?], [?, ?], and [?]), but most of the ex-
isting results concern sufficient conditions for the invariance of K. Necessary and
sufficient conditions for invariance can be found in the monograph by O. Carja,
M. Necula and K. Vrabie [?]. Such results are, however, completely different from
ours. Indeed, in the aforementioned monograph, the classical condition introduced
by Nagumo [?] is extended to infinite dimensions using as a tool the set FA

K(ξ),
see [?, Definition 8.1.3], which reduces to the contingent cone at ξ when A = 0.
We observe that the definition of such a set is given in terms of the semigroup
etA rather than its infinitesimal generator A. Then, sufficient conditions reduce to
asking that B(ξ) ∈ FA

K(ξ) for all ξ ∈ K (see [?, Theorem 8.1.2]), whereas neces-
sary conditions require some additional compactness assumptions (see [?, Theorem
8.2.1]).

Our main result, Theorem 4.2 below, provides a necessary and sufficient condi-
tion for the invariance of K which is stated in terms of A and B. It essentially
guarantees that K is invariant if and only if, for some C > 0 and δ > 0,

(2) D−dK(x) (Ax+B(x)) 6 C dK(x) ∀x ∈ D(A) ∩Kδ,

where D−dK(x) is the lower Dini derivative of the distance dK(x) of x to K, defined
in Section 2, and

Kδ =
{
x ∈ E \K : dK(x) < δ

}
.

This characterisation, though already quite simple, can be expressed in more geo-
metric forms when K is a convex subset of a Hilbert space. Indeed, in this case,
the lower Dini derivative of the distance can be computed using the orthogonal
projection ΠK onto K. So, (2) becomes

(3)
〈
x− ΠK(x), Ax+B(x)

〉
6 Cd2

K(x) ∀x ∈ D(A) ∩Kδ

where 〈·, ·〉 denotes the scalar product on E. Moreover, if D(A) is invariant for
ΠK , then condition (3) further simplifies into

(4)
〈
p,Ax+B(x)

〉
6 0 ∀x ∈ ∂K ∩D(A) , ∀p ∈ NK(x) ∩D(A),

where NK(x) denotes the normal cone to K at x.
Alltogether, the above results allow us to treat several examples of partial differ-

ential equations of evolution in Hilbert or Banach spaces, including both reaction-
diffusion equations and equations modelling the dynamics of an age-structured
population. For these examples we study, in spaces of continuous functions, the
invariance of the set K of positive functions or, more generally, of functions satis-
fying unilateral constraints like in obstacle problems.

This paper is organized as follows. Section 2 is devoted to some preliminaries
about dissipative operators and derivatives of the norm in a Banach space, fol-
lowing [?]. In Section 3, we gather several properties of solutions to (1) which
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are needed to obtain our main results. Section 4 is devoted to the proof of nec-
essary and sufficient conditions for the invariance of K. Finally, in Section 5, the
invariance of several sets is discussed in Hilbert and Banach spaces.

2. Notation and preliminaries

In this section, we recall some well-known definitions and premilinary results
that can be easily found in the literature (see, for instance, [?]).

Let E be a real separable Banach space with norm ‖ · ‖ and let f : E → R be
a locally Lipschitz function. We define the lower Dini derivative of f at a point
x ∈ E by

D−f(x) v = lim inf
λ↓0

f(x+ λv)− f(x)

λ
∀v ∈ E.

The subdifferential of ‖ · ‖ at a point x ∈ E is defined as

∂‖x‖ =
{
φ ∈ E∗ : 〈φ, y〉 6 D−‖x‖ y , ∀y ∈ E

}
,

where E∗ denotes the dual of E, 〈·, ·〉 the duality between E∗ and E. Observe
that, since x 7→ ‖x‖ is a convex function on E, we have

D−‖x‖ y = lim
λ↓0

‖x+ λy‖ − ‖x‖
λ

.

It is well known that ∂‖x‖ is a nonempty closed convex subset of E∗ for all x ∈ E.
Such a set can be characterized as follows

∂‖x‖ =
{
φ ∈ E∗ : 〈φ, x〉 = ‖x‖ , ‖φ‖∗ 6 1

}
∀x ∈ E ,

where ‖ · ‖∗ denotes the dual norm. Notably, for x 6= 0 we have that ‖φ‖∗ = 1 for
all φ ∈ ∂‖x‖. Moreover, for all x, y ∈ E,

(5) D−‖x‖ y = max
φ∈∂‖x‖

〈φ, y〉.

Example 2.1. Let E = C([a, b]) and let x ∈ E \ {0}. Define

arg max
[0,1]
|x| =

{
ξ ∈ [a, b] : |x(ξ)| = ‖x‖∞

}
.

Then one can prove (see [?]) that φ ∈ ∂‖x‖ if and only if φ is represented by a
signed Radon measure µφ on [a, b], with total variation ‖µφ‖ = 1 and support in
arg max[0,1] |x|, such that, for all Borel sets Ω ⊂ [a, b],∫

Ω

sgn
(
x(ξ)

)
µφ(dξ) > 0

where

sgn(λ) =

{
1 if λ > 0

0 if λ < 0.

The following lemma (see, e.g., [?, Appendix D]) will be used in what follows.
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Lemma 2.2. Let g : [0, T ] → E be differentiable at a point t0 ∈ [0, T ]. Then the
function γ(t) := ‖g(t)‖ is:

(a) right-differentiable at t0 (provided that t0 < T ) and

dγ

dt+
(t0) := lim

t↓t0

γ(t)− γ(t0)

t− t0
= max{〈φ, g′(t0)〉 : φ ∈ ∂‖g(t0)‖},

(b) left-differentiable at t0 (provided that t0 > 0) and

dγ

dt−
(t0) := lim

t↑t0

γ(t)− γ(t0)

t− t0
= min{〈φ, g′(t0)〉 : φ ∈ ∂‖g(t0)‖}.

A mapping F : D(F )→ E, where D(F ) ⊂ E, is called dissipative if

‖x− y‖ 6
∥∥x− y − α(F (x)− F (y))

∥∥ ∀α > 0 , ∀ x, y ∈ D(F ),

and maximal dissipative if it is dissipative and I−F is onto. Moreover, F is called
quasi-dissipative if F −MI is dissipative for some constant M > 0. By using (5),
it is easy to check that F is quasi-dissipative if and only if

(6) 〈φ, F (x)− F (y)〉 6M‖x− y‖
for any x, y ∈ D(F ) and some φ ∈ ∂‖x− y‖.

Clearly, if F is linear, then F is dissipative if and only if

‖x‖ 6
∥∥x− αF (x)

∥∥ ∀α > 0 , ∀ x ∈ D(F ),

or, equivalently,

(7) ∀x ∈ D(F ) ∃φ ∈ ∂‖x‖ such that 〈φ, F (x)〉 6 0.

3. Quasi-dissipative evolution equations

We are here concerned with the Cauchy problem

(8)

{
X ′(t) = AX(t) +B(X(t)), t > 0

X(0) = x

under the following assumptions (H):

(H1) A : D(A) ⊂ E → E is a the infinitesimal generator of a strongly continuous
semigroup of contractions on E, which will be denoted by etA,

(H2) B : E → E is continuous and quasi-dissipative.

As is well known, assumption (H1) is satisfied if and only if A is maximal dissi-
pative on E. The following result guarantees that (8) is well posed.

Proposition 3.1. Assume (H) and fix any T > 0. Then the following holds true.

(I): For every x ∈ E problem (8) has a unique mild solution X(·, x) which
belongs to C([0, T ];E) and satisfies

(9) X(t, x) = etAx+

∫ t

0

e(t−s)AB(X(s, x))ds, ∀t ∈ [0, T ].
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Moreover, for all x, y ∈ E
(10) ‖X(t, x)−X(t, y)‖ 6 eMt‖x− y‖ ∀t ∈ [0, T ].

(II): If, in addition, x ∈ D(A), then X(·, x) ∈ W 1,∞(0, T ;E)∩L∞(0, T ;D(A))
and

(11) X ′(t) = AX(t) +B(X(t)) a.e. on [0, T ].

Furthermore, X(·, x) is differentiable at t = 0 and

(12)
d

dt
X(t, x)|t=0 = Ax+B(x).

Proof. The fact that (8) has a unique mild solution, given by (9), follows from
assumption (H), a result by Webb [?] which ensures that A+B is maximal quasi-
dissipative, and the classical Crandall-Liggett Theorem (see, e.g., [?]).

The fact that X(·, x) ∈ W 1,∞(0, T ;E)∩L∞(0, T ;D(A)) when x ∈ D(A) and (8)
holds a.e. is also well-known, see, e.g., [?, Theorem 4.1.4].

The Lipschitz dependence of the flow with respect to initial data is a direct
consequence of assumption (H) for x, y ∈ D(A). Indeed, using (6) and Lemma 2.2
to compute the derivative of the function t 7→ ‖X(t, x)−X(t, y)‖ (which coincides
with the left-derivative a.e.), we deduce that for a.e. t ∈ [0, T ]

d

dt
‖X(t, x)−X(t, y)‖

= min
φ∈∂‖X(t,x)−X(t,y)‖

〈
φ,A

[
X(t, x)−X(t, y)

]
+B(X(t, x))−B(X(t, y))

〉
6 M‖X(t, x)−X(t, y)‖.

Then, (10) follows by Gronwall’s lemma for all x, y ∈ D(A). Moreover, the same
inequality can be recovered by density for all x, y ∈ H, because X(·, xk)→ X(·, x)
uniformly on [0, T ] whenever D(A) 3 xk → x.

Finally, in order to prove (12), write

(13)

X(t, x)− x
t

=
etAx− x

t
+

1

t

∫ t

0

e(t−s)AB(X(s, x))ds

=
etAx− x

t
+

1

t

∫ t

0

e(t−s)AB(x)ds+
1

t

∫ t

0

e(t−s)A(B(X(s, x))−B(x))ds

=: I1 + I2 + I3.

Then, since x ∈ D(A), we have that I1 → Ax, I2 → B(x), and I3 → 0 as t→ 0. �

4. Invariance results

4.1. Invariance of closed subsets of a Banach space. Let K ⊂ E be a
nonempty closed set.
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Definition 4.1. We say that K is invariant for (8) if X(t, x) ∈ K for all x ∈ K
and all t ≥ 0.

We denote by dK(x) the distance of x from K, that is,

dK(x) = inf
y∈K
‖x− y‖, ∀ x ∈ E.

We recall that dK is Lipschitz continuous (with Lipschitz constant 1) on E, and
convex if K is convex.

We now give a necessary and sufficient condition for the invariance of K. For
any δ > 0 let

Kδ =
{
x ∈ E \K : dK(x) < δ

}
.

Theorem 4.2. Assume (H). Then K is invariant for (8) if and only if there exists
δ > 0 such that

(14) D−dK(x) (Ax+B(x)) 6 C dK(x) ∀x ∈ D(A) ∩Kδ

for some constant C > 0.

Proof. Suppose K is invariant for (8) and let x ∈ D(A) \ K. Then for all t > 0
there exists xt ∈ K such that

(15) ‖x− xt‖ 6 (1 + t2)dK(x).

Since X(t, xt) ∈ K for all t > 0, by (15) and (10) we deduce that

1

t

[
dK(X(t, x))− dK(x)

]
=

1

t

[
dK(X(t, x))− dK(X(t, xt))− dK(x)

]
6

1

t

(
‖X(t, x)−X(t, xt)‖ −

‖x− xt‖
1 + t2

)
6

1

t

(
eMt − 1

1 + t2

)
‖x− xt‖ ∀t > 0

with M given by (6). Hence, again by (15), we obtain

dK(X(t, x))− dK(x)

t
6
(eMt − 1

t
+

t

1 + t2

)
(1 + t2)dK(x) ∀t > 0.

Since dK is Lipschitz and X(·, x) is differentiable at t = 0 by Proposition 3.1, the
lower limit of the left-hand side as t ↓ 0 coincides with D−dK(x)(Ax + B(x)).
Therefore

D−dK(x) (Ax+B(x)) 6M dK(x)

which is (14) with C = M .
Conversely, assume (14) and fix any x ∈ K, T > 0 so that X([0, T ], x) ⊂ K∪Kδ.

Suppose for a moment that X(T, x) ∈ Kδ and let

t0 = max{t ∈ [0, T ] : X(t, x) ∈ K}.
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Without loss of generality, we can assume t0 = 0. Let {xj} ⊂ D(A) be any
sequence converging to x. Then, on account of (10),

(16) X(·, xj)→ X(·, x) uniformly on [0, T ].

Next, fix ε ∈ (0, T ) and observe that, in view of (16), there exist δε > 0 and jε ∈ N
such that

(17) X([ε, T ], xj) ⊂ Kδ, dK(X(t, xj)) > δε ∀t ∈ [ε, T ], ∀j > jε.

Owing to Proposition 3.1, for all such j and a.e. t ∈ [0, T ] we have that the
derivative X ′(t, xj) does exist, X(t, xj) ∈ D(A), and

(18) X ′(t, xj) = AX(t, xj) +B(X(t, xj)) for a.e. t ∈ [0, T ].

Thus, we obtain by (14)

(19) D−dK(X(t, xj)) (AX(t, xj)+B(X(t, xj))) 6 C dK(X(t, xj)) a.e. t ∈ [0, T ].

Now, let j > jε and consider the Lipschitz function

φ(t) = dK(X(t, xj)) (t ∈ [ε, T ]).

Since, φ is a.e. differentiable, for a.e. t ∈ (ε, T ) such that (18) holds true, the
derivative φ′(t) does exist. Fix such t and consider hi → 0+ such that

D−dK(X(t, xj))(AX(t, xj) +B(X(t, xj)))

= limi→∞
1
hi

{
dK
(
X(t, xj) + hi

[
AX(t, xj) +B(X(t, xj))

])
− dK(X(t, xj))

}
.

Then

φ′(t) = lim
h↓0

dK(X(t+ h, xj))− dK(X(t, xj))

h

= lim
i→∞

1

hi

{
dK
(
X(t, xj) + hi

[
AX(t, xj) +B(X(t, xj))

])
− dK(X(t, xj))

}
= D−dK(X(t, xj))

(
AX(t, xj) + b(X(t, xj))

)
.

Therefore, in view of (19), φ′(t) 6 C φ(t) for a.e. t ∈ [ε, T ]. We can then apply
the Gronwall lemma to deduce that

dK(X(t, xj)) 6 eC(t−ε) dK(X(ε, xj)) ∀t ∈ [ε, T ].

Since the above estimate holds for every j > jε we can pass to the limit as j →∞
to obtain

dK(X(t, x)) 6 eC(t−ε) dK(X(ε, x)) ∀t ∈ [ε, T ].

So, taking t = T ,

dK(X(T, x)) 6 lim
ε↓0

eC(T−ε)dK(X(ε, x)) = eCTdK(x) = 0,

which contradicts X(T, x) /∈ K. This shows that X(t, x) ∈ K for all t > 0. �
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Remark 4.3. The above proof shows that, in order to deduce the invariance of
K, it suffices to assume that condition (14) is satisfied for the points x ∈ D(A)\K
which belong to some open neighborhood of K, say V . Consequently, the quasi-
dissipativity of B could also be required just on (D(A) \K) ∩ V .

4.2. Invariance of convex subsets of a Hilbert space. The above invariance
result holds, in particular, when E is a Hilbert space. In this case, we can use
the scalar product on E, denoted by 〈·, ·〉, to characterize dissipative operators.
Indeed, condition (6) reduces to

〈x− y,B(x)−B(y)〉 6M‖x− y‖2 ∀x, y ∈ E.
Similarly, when K is convex, our necessary and sufficient condition for invariance
can be given in terms of the orthogonal projection onto K, denoted by ΠK(·).
We have that dK(x) = ‖x − ΠK(x)‖ for all x ∈ E. Moreover, as is well known,
dK ∈ C1(E \K) and the gradient of dK at x is given by

(20) ∇dK(x) =
x− ΠK(x)

dK(x)
∀x ∈ E \K.

Consequently,

D−dK(x) v = 〈∇dK(x), v〉 ∀x ∈ E \K , ∀v ∈ E.
So, by applying Theorem 4.2 we derive the following necessary and sufficient con-
dition for the invariance of K.

Corollary 4.4. Assume (H). Then a closed convex set K ⊂ E is invariant for
(8) if and only if there exist constants C > 0, δ > 0 such that

(21)
〈
x− ΠK(x), Ax+B(x)

〉
6 Cd2

K(x) ∀x ∈ D(A) ∩Kδ.

When D(A) is invariant for the projection onto K, the above condition for
invariance can be reduced to the one given by the following proposition, where

NK(x) =
{
p ∈ E : 〈p, y − x〉 6 0 , ∀y ∈ K

}
is the normal cone to K at a point x ∈ K.

Proposition 4.5. Assume (H) and suppose that ΠK(D(A)) ⊂ D(A). Then K is
invariant for (8) if and only if

(22)
〈
p,Ax+B(x)

〉
6 0 ∀x ∈ ∂K ∩D(A) , ∀p ∈ NK(x) ∩D(A).

Proof. If K is invariant for (8), then (21) holds true. Let x ∈ ∂K ∩ D(A) and
p ∈ NK(x)∩D(A). Then xλ := x+ λp ∈ D(A) \K and ΠK(xλ) = x for all λ > 0.
Thus (21) yields 〈xλ−x,Axλ+B(xλ)〉 6 Cλ2‖p‖2 for all small λ > 0. So, dividing
by λ,

〈p,Ax+ λAp+B(xλ)〉 6 Cλ‖p‖2.

Passing to the limit as λ ↓ 0 and recalling that B is continuous we obtain (22).
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Next, suppose (22) holds true, let x ∈ D(A) \ K, and set x̄ = ΠK(x). Since
x− x̄ ∈ NK(x̄) ∩D(A), by (22) we have that

〈x− x̄, Ax̄+B(x̄)〉 6 0.

The above inquality, together with assumptions (H) and (7), yields

〈x− x̄, Ax+B(x)〉
6 〈x− x̄, Ax̄+B(x̄)〉+ 〈x− x̄, A(x− x̄)〉+ 〈x− x̄, B(x)−B(x̄)〉
6 M ‖x− x̄‖2 = M d2

K(x) .

We have thus obtained (21), which in turn guarantees the invariance of K. �

5. Examples

5.1. The unit ball in a Hilbert space. Let (E, 〈·, ·〉) be a Hilbert space and let
K be the closed unit ball centered at 0. Then

(23) dK(x) = max{0, ‖x‖ − 1} (x ∈ E),

and

(24) ΠK(x) =


x
‖x‖ , if ‖x‖ > 1

x, if ‖x‖ 6 1.

The necessary and sufficient condition (21) becomes

‖x‖ − 1

‖x‖
〈x,Ax+B(x)〉 6 C(‖x‖ − 1)2, ∀x ∈ D(A) ∩Kδ,

which is equivalent to

(25) 〈Ax+B(x), x〉 6 C‖x‖(‖x‖ − 1) ∀x ∈ D(A) such that 1 + δ > ‖x‖ > 1.

The ”boundary” necessary and sufficient condition for the invariance (22) becomes

(26)
〈
x,Ax+B(x)

〉
6 0 ∀x ∈ D(A) such that ‖x‖ = 1.

Example 5.1. Let us now consider the special case H = L2(O), where O is a
bounded domain of Rn with a smooth boundary ∂O. Let A be given by

(27) Ax(ξ) = ∆x(ξ), ∀ x ∈ D(A) = H2(O) ∩H1
0 (O).

Then the iff condition (21) reduces to

〈B(x), x〉 6 C‖x‖(‖x‖ − 1) + ‖∇x‖2 ∀x ∈ D(A) such that 1 + δ > ‖x‖ > 1,

where we have denoted by ‖∇x‖ the L2-norm of the gradient of x. The necessary
and sufficient condition (26) becomes

(28) 〈B(x), x〉 6 ‖∇x‖2, ∀x ∈ D(A) such that ‖x‖ = 1.



10 P. CANNARSA, G. DA PRATO, AND H. FRANKOWSKA

When B is given by the composition operator B(x)(ξ) = β(x(ξ)), where β ∈ C1(R)
and β(0) = 0, it is easy to see that (28) holds true if

β′(s) 6 λO ∀s ∈ R

where λO is the first eigenvalue of −A.

5.2. Invariance of a half-space in a Hilbert space. Let (E, 〈·, ·〉) be a Hilbert
space and let

K = {x ∈ E : 〈x, a〉 6 0},
where a ∈ E and ‖a‖ = 1. Then we have

(29) dK(x) = max{0, 〈x, a〉} (x ∈ E)

and

(30) ΠK(x) =

 x− 〈x, a〉 a, ∀x /∈ K

x, ∀x ∈ K.

The necessary and sufficient condition (21) becomes

〈x, a〉 〈Ax+B(x), a〉 6 C〈x, a〉2, ∀ x ∈ D(A), δ > 〈x, a〉 > 0,

which is equivalent to

(31) 〈Ax+B(x), a〉 6 C〈x, a〉, ∀ x ∈ D(A), δ > 〈x, a〉 > 0.

5.3. Further examples. In this section, we study three examples: the cone of
nonnegative functions, the convex constraint associated with an obstacle problem
for a parabolic equation, and a first order equation in population dynamics.

Example 5.2 (The positive cone). Let O be a bounded domain in Rn. In the
Hilbert space E = L2(O) consider the cone (with empty interior)

K = {x ∈ H : x(ξ) > 0 a.e. ξ ∈ O}.

Set

(32) x+(ξ) = max{x(ξ), 0}, x−(ξ) = max{−x(ξ), 0}, ∀ξ ∈ O.

Then

dK(x) = ‖x−‖, ΠK(x) = x+, x− ΠK(x) = −x−.
The necessary and sufficient condition (21) becomes

(33) −〈x−, Ax+B(x)〉 6 C‖x−‖2 ∀x ∈ D(A) ∩Kδ.

Assume that A is given by (27). Then we have

〈Ax+, x−〉 = −
∫

O

∇x+(ξ) · ∇x−(ξ)dξ = 0
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and (33) can be recast as follows:

(34) −〈x−, B(x)〉 6 C‖x−‖2 +

∫
O

‖∇x−(ξ)‖2dξ ∀x ∈ D(A) with 0 < ‖x−‖ < δ.

Suppose now B : E → E is given by

(35) B(x)(ξ) = β(x(ξ)) (ξ ∈ [0, 1])

where β : R→ R is a continuous function such that β(0) = 0 and

(36)
(
β(s)− β(r)

)
(s− r) 6M(s− r)2 ∀r, s ∈ R

for some constant M > 0. Then we have that

−〈x−, B(x)〉 = −
∫

O

x−(ξ)β
(
− x−(ξ)

)
dξ 6M‖x−‖2.

So, condition (34) is satisfied with C = M . Consequently, the cone of positive
functions is invariant for the parabolic problem

(37)


∂X
∂t
−∆X − β(X) = 0 in (0,+∞)× O

X = 0 on (0,+∞)× ∂O
X(0, ξ) = x(ξ) ξ ∈ O.

This result also follows from the parabolic maximum principle (see, e.g., [?]).

Example 5.3 (An obstacle problem). Let E be the Banach space

E = {x ∈ C([0, 1]) : x(0) = 0 = x(1)}
with the uniform norm

‖x‖∞ = max
ξ∈[0,1]

|x(ξ)| ∀x ∈ E.

Let f ∈ C2([0, 1]) be a function such that f(0) 6 0 and f(1) 6 0 and consider the
closed convex set

Kf =
{
x ∈ E : x(ξ) > f(ξ) , ∀ξ ∈ [0, 1]

}
.

We observe that the interior of Kf is nonempty if f(0), f(1) < 0.
Define A : D(A) ⊂ E → E by{

D(A) = {x ∈ E ∩ C2([0, 1]) : d2x
dξ2

(0) = 0 = d2x
dξ2

(1)}
Ax(ξ) = d2x

dξ2
(ξ) ∀ξ ∈ [0, 1]

and let B : E → E by given by (35), where β : R → R is a continuous function
satisfying (36) such that β(0) = 0. It is well known that A and B satisfy assump-
tions (H) on E. So, we can use condition (14) to study the invariance of Kf for
the parabolic problem (37) or, equivalently, the solvability of the obstacle problem

x(ξ) > f(ξ) , ∀ξ ∈ [0, 1] =⇒ X(t, ξ) > f(ξ) , ∀(t, ξ) ∈ [0,∞)× [0, 1].
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Noting that

dKf (x) = ‖(x− f)−‖∞ ∀x ∈ E,
for any x ∈ D(A) and δ > 0 we have that

x ∈ Kf
δ ⇐⇒ 0 < ‖(x− f)−‖∞ < δ.

Fix any x ∈ D(A) ∩Kf
δ , y ∈ E, and let hj ↓ 0 be a sequence of positive numbers

such that

(38) D−dKf (x) y = lim
j→∞

‖(x+ hjy − f)−‖∞ − ‖(x− f)−‖∞
hj

.

Let ξj ∈ [0, 1] be such that ‖(x + hjy − f)−‖∞ = (x + hjy − f)−(ξj). Since
(x− f)− 6≡ 0, for j sufficiently large we have that

(39) ‖(x+ hjy − f)−‖∞ = (x− f)−(ξj)− hjy(ξj) 6 ‖(x− f)−‖∞ − hjy(ξj).

By a compactness argument, we can assume that ξj
j→∞→ ξ0 ∈ [0, 1]. Moreover, the

continuity of x ensures that

ξ0 ∈ arg max
[0,1]

(x− f)− =
{
ξ ∈ [0, 1] : (x− f)−(ξ) = ‖(x− f)−‖∞

}
.

Combining (38) and (39) we conclude that

D−dKf (x) y 6 −y(ξ0) 6 max
{
− y(ξ) : ξ ∈ arg max

[0,1]
(x− f)−

}
.

Thus, appealing to (14), we recover the following sufficient condition for the in-
variance of K: for all x ∈ D(A) such that 0 < ‖(x− f)−‖∞ < δ

(40) max
{
− d2x

dξ2
(ξ)− β(x(ξ)) : ξ ∈ arg max

[0,1]
(x− f)−

}
6 C‖(x− f)−‖∞.

Now, observe that argmax[0,1] (x − f)− ⊂ (0, 1) because 0 < ‖(x − f)−‖∞ and
(x− f)−(0) = 0 = (x− f)−(1). Therefore,

d2x

dξ2
(ξ) >

d2f

dξ2
(ξ) ∀ξ ∈ arg max

[0,1]
(x− f)−.

Moreover, owing to (36)

−
(
β(x(ξ))− β(f(ξ))

)
6M‖(x− f)−‖∞ ∀ξ ∈ arg max

[0,1]
(x− f)−.

Thus,

− d
2x

dξ2
(ξ)−β(x(ξ)) 6 − d

2f

dξ2
(ξ)−β(f(ξ))+M‖(x−f)−‖∞ ∀ξ ∈ arg max

[0,1]
(x−f)−,

and we conclude that a sufficient condition for (40) to be satisfied is that

(41)
d2f

dξ2
+ β(f) > 0 in [0, 1].
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In particular, since (41) is satisfied for f ≡ 0, we obtain that the cone of nonneg-
ative functions is invariant for system (37) also when studied in C([0, 1]).

Since (41) implies that f is a subsolution of the boundary value problem in
(37), the invariance result we have just proved could have also been derived by
maximum principle arguments.

Example 5.4 (An age-structured population model). We now discuss the positivity
of solutions to the age-structured population model

(42)



∂X

∂t
(t, a) +

∂X

∂a
(t, a) + µ(a)X(t, a) = φ

(
a,X(t, a)

)
, a ∈ [0, a1], t > 0

X(t, 0) =

∫ a1

0

β(a)X(t, a) da, t > 0

X(0, a) = x0(a). a ∈ [0, a1] .

which was analysed in Lebesgue spaces in [?] (see also [?]). Here, X(t, a) is the
population density of age a at time t, µ is the mortality rate, β the birth rate,
and a1 > 0 is the maximal age. Moreover, φ is a real-valued continuous function
modelling an exterior source, such as (inward or outward) migration. Observe that,
since φ has no prescribed sign, in principle solutions might be forced to assume
negative values, even for positive x0.

We study the above problem in the space E = C([0, a1]), where the positive
cone

K =
{
x ∈ E : x(a) > 0 , ∀a ∈ [0, a1]

}
has nonempty interior. Our assumptions (A) on the data are as follows:

(A1) µ, β ∈ K and

(43)

∫ a1

0

β(a) da < 1

(A2) φ : [0, a1]× R→ R is a continuous function such that φ(0) = 0 and

(44)
(
φ(a, s)− φ(a, r)

)
(s− r) 6M(s− r)2 ∀a ∈ [0, a1], ∀r, s ∈ R

for some constant M > 0.

In order to recast problem (42) as a semilinear evolution equation in E, we define D(A) =
{
x ∈ C1([0, a1]) : x(0) =

∫ a1

0

β(a)x(a) da
}

Ax(a) = − dx
da

(a)− µ(a)x(a) ∀x ∈ D(A), ∀a ∈ [0, a1]

and
f(x)(a) = φ

(
a, x(a)

)
∀x ∈ E, ∀a ∈ [0, a1].

Then, one can show that A : D(A) ⊂ E → E is the infinitesimal generator of a
strongly continuous semigroup of contractions on E. We omit the proof of this
result that can be easily deduced arguing as in [?], but for the dissipativity of A.
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For this, let x ∈ D(A) \ {0} and let ā ∈ arg max[0,a1] |x|. Observe that ā 6= 0 for
otherwise the age relation satisfied by all elements of D(A) would yield

‖x‖∞ = |x(0)| =
∣∣∣ ∫ a1

0

β(a)x(a) da
∣∣∣ 6 ∫ a1

0

β(a)|x(a)| da 6 |x(0)|
∫ a1

0

β(a) da

and (43) would imply that x ≡ 0. So, taking the Dirac delta centered at ā, δā, by
Example 2.1 we have that µx := sgn(x(ā)) · δā ∈ ∂‖x‖. Now, we claim that

〈µx, Ax〉 = − sgn(x(ā))
dx

da
(ā)− µ(ā) |x(ā)| 6 0 .

Indeed, since ā 6= 0, it must be either ā ∈ (0, a1), hence dx
da

(ā) = 0, or ā = a1 and

sgn(x(ā))
dx

da
(ā) > 0 .

Thus, we can use condition (14) to study the invariance of K. Since

dK(x) = ‖x−‖∞ ∀x ∈ E,
arguing as in Example 5.3 we conclude a sufficient condition for the invariance of
K is that, for some ρ > 0 and all x ∈ D(A) such that 0 < ‖x−‖∞ < ρ,

(45) max
{ dx
da

(a) + µ(a)x(a)− φ(a, x(a)) : a ∈ arg max
[0,a1]

x−
}
6 C‖x−‖∞.

The above condition holds true because, as above, 0 /∈ arg max[0,a1] x
− and so

dx

da
(a) + µ(a)x(a) 6 0 ∀a ∈ arg max

[0,a1]
x−,

while
−φ(a, x(a)) 6M‖x−‖∞ ∀a ∈ arg max

[0,a1]
x−

in view of (44). Therefore, K is invariant for problem (42).
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