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Abstract

Nitrogen composition of the grape must has an impact on yeast growth and fermentation

kinetics as well as on the organoleptic properties of the final product. In some technological

processes, such as white wine/rosé winemaking, the yeast-assimilable nitrogen content is

sometimes insufficient to cover yeast requirements, which can lead to slow or sluggish fer-

mentations. Growth is nevertheless quickly restored upon relief from nutrient starvation, e.g.

through the addition of ammonium nitrogen, allowing fermentation completion. The aim of

this study was to determine how nitrogen repletion affected the transcriptional response of a

Saccharomyces cerevisiae wine yeast strain, in particular within the first hour after nitrogen

addition. We found almost 4800 genes induced or repressed, sometimes within minutes

after nutrient changes. Some of these responses to nitrogen depended on the TOR path-

way, which controls positively ribosomal protein genes, amino acid and purine biosynthesis

or amino acid permease genes and negatively stress-response genes, and genes related to

the retrograde response (RTG) specific to the tricarboxylic acid (TCA) cycle and nitrogen

catabolite repression (NCR). Some unexpected transcriptional responses concerned all the

glycolytic genes, carbohydrate metabolism and TCA cycle-related genes that were down-

regulated, as well as genes from the lipid metabolism.

Introduction

The yeast cell Saccharomyces cerevisiae is able to control its growth in response to changes in

nutrient availability. Nitrogen limitation is one of the most frequent limitations observed dur-

ing wine fermentation [1]. The actual nitrogen content in must is dependent on many factors

including rootstock, grape variety, climate, vine growing conditions, and grape processing. In

enological conditions, musts are considered as nitrogen-limited when the yeast assimilable

nitrogen (YAN) content is below 150 mg/L [1]. YAN is a major factor influencing fermenta-

tion kinetics, the maximal fermentative rate being related to the nitrogen level in the must [1].
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In most cases of sluggish fermentations, nitrogen depletion quickly results in cells entering sta-

tionary phase. This phenomenon is not related to a decrease in viability, but could rather be

related to a catabolic inactivation of the hexose transporters [2] or to lower protein synthesis

and cell protein content [3]. Other physiological changes such as autophagy, nitrogen recycling

systems and the reorientation of the carbon flux to promote glycogen and trehalose storage

have also been observed at the onset of nitrogen starvation [4]. In addition, the transcriptional

remodeling associated with the onset of starvation during wine alcoholic fermentations has

been described [3], including the development of a general stress response. These transcrip-

tional changes are mostly controlled by the TOR pathway, sensing cell nitrogen status and

adapting nitrogen metabolism to nutrient availability [5, 6]. Nitrogen limitation stably arrests

the cell cycle in G1/G0, whereas medium replenishment with the limiting nutrient quickly

restores growth. Relief from nitrogen starvation is a way to increase the fermentation rate,

while reducing its duration [7]. In fact assimilable nitrogen addition to nitrogen-deficient

must results in a reactivating protein synthesis and increasing sugar transport speed [7, 8].

Although this nitrogen addition is currently practiced using diammonium phosphate to

reduce the risk of stuck fermentation in white and rosé wines, the molecular mechanisms trig-

gered by nitrogen replenishment are still poorly understood.

The present work complements previous investigations on laboratory [9] or enological [10]

yeast strains with the novelty of transcriptome analysis every 15 min during the first hour fol-

lowing relief of nitrogen starvation in a medium mimicking grape must composition with lim-

iting nitrogen concentration. We report here rapid transcriptional changes that occur in a

wine yeast strain in response to relief from nitrogen starvation. Our goal was to detect new

phenomena appearing quickly after nitrogen addition.

Materials and methods

The experimental design was mapped out on S1 Fig.

Strain and culture conditions

All fermentation experiments were carried out in triplicates (S1 Fig) using the yeast strain Sac-
charomyces cerevisiae Lalvin EC1118, a commercial wine yeast from Lallemand Inc (Canada).

The culture medium was a synthetic medium [1] that mimics a standard natural must. In our

conditions the total concentration of yeast assimilable nitrogen (YAN) was 100 mg/L and we

added 24.1 mg/L � FeCl3 � 6H2O (see S1 Experimental Procedures). Fermentations were con-

ducted in 1 L of medium under constant stirring at 24˚C. Flasks (1.2 L) were equipped with

locks to maintain anaerobiosis. Production of CO2 was monitored by weighing the flasks every

20 min, to determine weight loss. The rate of CO2 production was estimated using a polyno-

mial smoothing as previously described [11]. The number of cells was determined with a parti-

cle counter (Coulter counter, Beckman Coulter). Preliminary experiments have shown that,

under this condition, cells were starved for nitrogen (i.e. reached stationary phase) after 42 h

when 14 g of CO2 has been released [7, 12]. Some cells were collected at this stage as controls

(t = 0), then diammonium phosphate (DAP, (NH4)2HPO4) was added to the culture medium

(300 mg/L final concentration), after removing an equivalent volume of medium to keep the

total volume unchanged. This supplement provides 63 mg/L of atomic nitrogen, entirely

assimilable, corresponding to the maximum nitrogen addition permitted in wine-making.

Sampling was then performed 15, 30, 45 and 60 min after DAP addition and cells were

quickly recovered by filtration and frozen at −80˚C as previously described [9].

Relief from nitrogen starvation in enological Saccharomyces cerevisiae

PLOS ONE | https://doi.org/10.1371/journal.pone.0215870 April 25, 2019 2 / 12

https://doi.org/10.1371/journal.pone.0215870


Labeling and microarray processing

Total RNA extraction was performed with Trizol reagent, and purified with RNeasy kit (Qia-

gen). Spike-in RNAs were added to 100 ng total RNA using the One-color RNA Spike-In kit

(Agilent Technologies) and Cy3-labeled cRNAs were synthesized using the Low Input Quick

Amp Labeling kit (one-color, Agilent Technologies). Labeled probes were purified with

RNeasy kit (Qiagen). Quality and quantity of RNA were controlled at each step by spectrome-

try (NanoDrop 1000, Thermo Scientific). Labeled cRNA were hybridized to custom 8x15K

microarray (Agilent Technologies) containing the Yeast V2 probe-set (Agilent ID: 016322)

together with 39 probes corresponding to Saccharomyces cerevisiae EC1118 specific genes [13].

This design was registered in the Gene Expression Omnibus (GEO) repository under platform

accession number GPL17690. 600 ng of labeled cRNA were hybridized for 17 h at 65˚C in a

rotative hybridization oven (Corning) using the Gene Expression Hybridization kit (Agilent

Technologies). Array digitalization was performed on a GenePix 4000B laser Scanner (Axon

Instruments) using GenePix Pro7 Microarray Acquisition and Analysis Software (Axon

Instruments). Data normalization and statistical analysis were performed using R software

[14] and the limma package [15]. Normalization was performed by the quantile method con-

sidering all arrays. The resulting absolute expression levels were expressed as logarithm (base

2) for each time and replicate. The data were deposited in GEO under accession number

GSE116766 (also available in S1 Table).

Statistical analysis

Normalized data were first converted to fold changes relative to expression at t = 0, then we

analyzed changes over time using a regression based approach to find genes with temporal

expression changes (S2 Fig). We defined a binomial regression model for each gene expression

over 5 time points: Y = b0 + b1t + b2t2 + �, where Y is the normalized expression value, t is the

time (min), b0 is expression at t = 0, b1 is the slope (induction or repression of the gene, linear

effect), b2 is a quadratic effect and � is the residual error term. A variable selection procedure

was applied using step regression (backward method) to find significant coefficients for each

gene. We adjusted this model by the least-squared technique for each gene and only genes

with significant changes over time were selected with an adjusted p-value threshold of 0.01

corrected by the Benjamini-Hochberg method. Distribution of b1 and b2 coefficients is pre-

sented on S2 Fig. The sign of b1 distinguish between up (positive, clusters 1,3,5,7) and down-

regulated (negative, clusters 2,4,6,8) gene expression. Furthermore, the sign of b2 allow us to

distinguish between accelerated (positive, clusters 2,5,7) and decelerated (negative, clusters

1,6,8) expression rate. Genes belonging to clusters 3 and 4 (b2 = 0) have linear expression

profiles.

Functional analysis was performed looking for Gene Ontology (GO) term enrichment (bio-

logical process) using GO Term Finder [16] with the multiple test correction of Benjamini

Hochberg.

Results and discussion

Changes in fermentation kinetics after nitrogen repletion

We investigated the very early events occurring after relief of nitrogen starvation in a wine

strain under enological conditions, by samplings every 15 min during the first hour of replen-

ishment. Fig 1 presents a typical fermentation kinetics in a nitrogen-limited synthetic must

[1]. First a rapid increase of the CO2 production rate was observed, reaching a maximum (0.9

g/L/h) at 25 h after inoculation. Thereafter, the rate decreased sharply indicating an arrest of
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the population growth, the so called stationary phase, where nitrogen was limiting beginning

at 42h (14 g of CO2 released). Then the production rate decreased slowly up to 280 h (corre-

sponding to 93 g of CO2 released), indicating that all glucose had been converted to CO2 and

ethanol. If diammonium phosphate (DAP) was added at the beginning of the stationary phase

(42 h), a very quick restart of the rate of CO2 production which peaked (1.2 g/L/h) higher than

the maximum reached at the beginning of the fermentation (0.7 g/L/h). Fermentation ended

in 190 h, reducing the fermentation duration by almost 30%. As previously described, DAP

addition to nitrogen-starved wine yeast cells resulted in a very quick restart of the rate of CO2

production [7, 17]. During the course of the sampling experiment (every 15 min for 60 min

after DAP addition), nitrogen is not expected to be limiting as it was found that nitrogen was

completely consumed only after 4 hours under the same conditions [17].

Numerous changes in gene expression

Significantly regulated genes. We studied the expression of yeast genes within 1 hour fol-

lowing DAP addition at 0, 15, 30, 45 and 60 min. Step regression analysis revealed numerous

Fig 1. Fermentation profiles. CO2 production rate during fermentation in a nitrogen-depleted synthetic must (black).

In another experiment (red), DAP was added at the beginning of the stationary phase (42 h; 14 g CO2 released).

https://doi.org/10.1371/journal.pone.0215870.g001
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changes during this first hour with almost 4800 nitrogen-regulated genes identified (S2 Table).

This is much higher than the 350 genes regulated after 2 hours upon the addition of DAP to

active dried yeast inoculated in a Riesling must [18], or than the 1000 [19] or 3000 [9] transcripts

altered by the addition of nitrogen to laboratory yeast cells. These differences are probably due

to improvements in the DNA microarray technology, to a reduced time-scale or to the experi-

mental conditions (synthetic versus natural must, industrial versus laboratory yeast strains).

Thereafter, genes were classified using manual clustering (S2 Fig) in 8 expression profiles

(S2 Table). Respectively 2292 (clusters 1, 3, 5, 7; Fig 2) and 2507 (clusters 2, 4, 6, 8; Fig 3) genes

Fig 2. Clusters of up-regulated genes. Clustering of expression pattern and GO-term enrichment were performed as

described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0215870.g002

Relief from nitrogen starvation in enological Saccharomyces cerevisiae

PLOS ONE | https://doi.org/10.1371/journal.pone.0215870 April 25, 2019 5 / 12

https://doi.org/10.1371/journal.pone.0215870.g002
https://doi.org/10.1371/journal.pone.0215870


Fig 3. Clusters of down-regulated genes. Clustering of expression pattern and GO-term enrichment were performed

as described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0215870.g003
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were significantly up- or down-regulated, reflecting a massive change in expression patterns

upon nitrogen repletion. For each cluster, individual gene expression is available in S3 Table.

Up-regulated genes. Among the clusters corresponding to up-regulated genes (Fig 2),

cluster 1 contained 1555 genes exhibiting an initial linear increase (b1 > 0, S2 Fig), sharp but

transient, then a decrease of expression due to the negative quadratic term of the equation

(b2 < 0). Functional analysis using GO-term enrichment (S4 Table) showed that this cluster

contained many genes involved in or related to ribosome biogenesis, RNA processing, tran-

scription, translation, nitrogen compound metabolic process, nuclear transport. Cluster 3 con-

tained 381 genes linearly induced within the first hour following repletion (b1 > 0 and b2 = 0),

encoding proteins involved in the regulation of gene expression and of metabolic and biosyn-

thetic processes. Cluster 5, which contained 292 genes that exhibited an expression accelerat-

ing with time (b1 = 0 and b2 > 0), was enriched in genes involved in amino-acid (TRP2, MET8,
HIS3, LEU4, TRP3, LYS2, HIS5, ARG4, HIS4, ARG7, ARG1) and organic acids biosynthetic

processes. Cluster 7 contained 64 genes that exhibited the highest increase in expression

among all up-regulated genes, following a linear profile (b1 > 0) with a slight acceleration

(b2 > 0). Functional analysis showed that this cluster was similar to cluster 5.

This global response is similar to what was described for the commercial wine yeast strain

VIN13, 2 hours after DAP addition [18], where an up-regulation was observed for genes

involved in amino acid metabolism, de novo purine biosynthesis, and protein synthesis. Such

changes likely corresponded to an activation of the Target of Rapamycin (TOR) signaling

pathway which positively controls ribosomal protein genes [20], amino acid and purine bio-

synthesis or amino acid permease genes [21]. Surprisingly, within 60 min we didn’t find any

change in the expression of genes related to sulfate assimilation, although this had been

observed (after two hours) by [18]. This is probably due to the fact that the authors used true

grape must instead of synthetic grape must, which resulted in a difference in concentration

between sulfur-containing compounds, methionine and cysteine.

Three components of the MCM (mini-chromosome maintenance) hexameric complex

helicase, binding to chromatin as a part of the pre-replicative complex (MCM2, MCM3, and

MCM6), and alsoMAD1 and YCG1, were transiently but sharply induced after relief from

nitrogen starvation. The MCM complex is required for the initiation of eukaryotic replication,

while Mad1p is a coiled-coil protein involved in the spindle-assembly checkpoint. Its phos-

phorylation leads to an inhibition of the activity of the anaphase promoting complex. Ycg1p is

required for establishment and maintenance of chromosome condensation, chromosome seg-

regation and chromatin binding of the condensin complex and is also required for clustering

tRNA genes at the nucleolus. In addition, other cell-cycle related genes were induced, such as

CLN3, SWI6, RAD59, CDC20, RFA3, MSH2 and YHM2. Thus, all these transient inductions

are coherent with a restart of the cell cycle in response to nitrogen replenishment.

Down-regulated genes. Among the clusters corresponding to down-regulated genes (Fig

3), 2235 genes in cluster 2 exhibited an initial linear decrease (b1 < 0), sharp but transient,

then an increase of expression due to the positive quadratic term of the equation (b2 > 0).

Functional analysis (S4 Table) showed that cluster 2 contained many genes involved in protein

catabolic process, proteolysis, organonitrogen compound catabolic process, lipid metabolic

process, response to stress, oxido-reduction process, ATP synthesis, nucleotide metabolic pro-

cess and aerobic respiration. Cluster 4 contained 168 genes that were linearly repressed during

the first hour following repletion (b1 < 0 and b2 = 0). No significant enrichment in GO-terms

was observed for this cluster. Cluster 6 contained 99 genes that exhibited a decelerating expres-

sion with time (b1 = 0 and b2 < 0) and was enriched in genes involved in nucleoside and

ribonucleoside metabolic process, glycolytic process and ATP biosynthetic process. Finally,

cluster 8 contained only 5 genes that exhibited an amplitude of down-regulation similar to the
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previous clusters. This is a linear profile (b1 < 0) with a slightly deceleration (b2 < 0). Func-

tional analysis showed no significant enrichment.

In our conditions (i.e. within one hour after repletion), we found other functions for down-

regulated genes than those described previously [18]. In fact, genes related to cellular transport

were repressed in response to DAP addition (NCE102, POR1, PMA2, ATP19, ATP2, UGA4,
PUT4, GSP2, YPT53). Other most interesting genes were those related to stress response,

those sensitive to the nitrogen catabolite repression (NCR), and those related to the glycolysis.

Another group of genes are related to lipid biosynthesis. Among this last group, we found

ETR1, IFA38, ERG28, ERG4, ERG25, ERG11, NCP1, ERG20, ELO1, FAS1, ERG3, ERG6, ERG5,
LIP1, ERG24, ACC1, POT1, TIP1, OPI3, YML131W, AAD10, GCY1, GRE3, TGL4 and, more

specifically those related to ergosterol biosynthesis (ERG28, ERG4, ERG25, ERG11, NCP1,
ERG20, MCR1, ERG3, ERG6, ERG5, ERG24, ERG10). This discovery could be explained by the

fact that the biosynthesis of lipids requires a lot of energy, unavailable at the resumption of fer-

mentation when the biosynthesis of proteins increases significantly.

Moreover, DAP addition decreased the expression of a large group of genes of the Ras/Pro-

tein Kinase A (PKA) signaling pathway (IRA1, IRA2, GPR1, GPA2, CYR1, TPK1, TPK2, BCY1,
SCH9, YAK1) and genes related to the stress response, such as genes coding the heat-shock

proteins, but also genes related to the seripauperin multigene family (PAU), which mostly

belong to cluster 2. This pattern indicated that the down-regulation of these genes was a rapid

phenomena, largely decreasing within the first 15 min after nitrogen repletion. Other genes

related to stress gene regulation such asHSF1, MSN2, andMSN4 [22] were also down-regu-

lated in our study as well as genes involved in trehalose and glycogen metabolisms (TPS1,
TPS2, TPS3, ATH1, NTH1, NTH2, TSL1, GPH1, GPD1, GSY1, GSY2).

Such changes are also likely related to an activation of the TOR signaling pathway that also

negatively controls stress-response genes, the retrograde response (RTG) specific to the tricar-

boxylic acid (TCA) cycle genes and genes sensitive to the nitrogen catabolite repression (NCR)

[21].

Interestingly, the down-regulation of genes related to glycolysis, which has been previously

reported in similar experimental conditions but on a laboratory strain [9], was confirmed here

in an enological strain (Fig 4). This indicates the conservation of this mechanism indepen-

dently of the yeast strain used. As previously suggested, these unexpected results were probably

revealed by analyzing the very early events following nitrogen replenishment. This repression

of glycolytic genes in wine yeast had already been observed, but in rather different experimen-

tal conditions, such as 1 h after inoculation of a synthetic must [10]. It has been hypothesized

that this destabilization of transcripts know to be stable might be a consequence of the recovery

of protein synthesis upon addition of nitrogen on starved yeasts [9].

Other important changes were also revealed, in the present study, concerning for instance

the down-regulation of genes related to the MAPK signaling pathways, oxidoreductase activity,

or sensitive to NCR. Concerning genes related to stress and NCR, their down-regulation corre-

sponded to a common response to glucose, nitrogen and phosphorous repletion, whereas the

down-regulation of nitrogenous compound catabolism and amino acid derivative transport

were nitrogen-specific [19]. For these authors, both PKA and TOR signaling pathways might

be involved in the responses to all three nutriments viz. glucose, nitrogen and phosphate. Sur-

prisingly, these authors found that genes associated with glycolysis and gluconeogenesis were

specifically repressed by phosphorous, whereas in the present study they were both nitrogen-

and phosphate-regulated (as we used ammonium phosphate).

It was in fact surprising to observe the repression of all the glycolysis-related genes whereas

genes related to ribosomal protein synthesis were up-regulated. This could indicate that the

restart of the fermentative activity shortly after the addition of DAP was unrelated to the
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glycolytic pathway but rather to the cell cycle and protein synthesis activation. In fact, Rim15p,

which gene expression is down-regulated in our study, has been found to integrate signals

derived from PKA, TORC1 and Sch9p, which transmit the information concerning the avail-

ability of nutrients [23]. Rim15p regulates proper entry into G0 via the transcription factors

Msn2/4p and Gis1p whose related genes were also down-regulated. The down-regulation of

RIM15 is thus coherent with the up-regulation of cell-cycle related genes and correspond to

the model previously suggested [9].

Conclusion

The addition of nitrogen to starved wine yeast cells thus contributed to the development of a

favorable environment for wine yeast growth and also to limit the general stress response.

Fig 4. Expression profiles of glycolytic genes. Expression profile of 16 glycolytic genes.

https://doi.org/10.1371/journal.pone.0215870.g004
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During a very short time after the addition of nitrogen to the medium, we found thousands of

genes induced or repressed, sometimes within minutes after nutrient changes. Some of these

responses to nitrogen depended on the TOR pathway, which controls positively ribosomal

protein genes, amino acid and purine biosynthesis or amino acid permease genes and nega-

tively stress-response genes, and genes related to the retrograde response (RTG) specific to

the tricarboxylic acid (TCA) cycle and nitrogen catabolite repression (NCR). Most of these

responses are the opposite of the changes observed in yeasts deprived of nitrogen, when the

cells reach the stage of the stationary phase [4]. But we also detected unexpected transcriptional

responses. These included all glycolytic genes, carbohydrate metabolism and TCA cycle genes

that were downregulated, as well as genes derived from lipid metabolism.
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