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Abstract 12 

Spatial variability of earthquake ground motion (SVEGM) refers to the differences in amplitude and phase 13 

between recordings of the same earthquake at different locations. In the near-surface, geological processes 14 

(sedimentation, erosion) and anthropogenic activities can lead to small scale spatial heterogeneities of soil 15 

mechanical properties, which may affect SVEGM. In this paper, the effect of shallow 2D spatial variability of 16 

the shear wave velocity (Vs) on the surface ground motion is assessed through a set of numerical experiments, 17 

using a  simple 2D velocity structure (a sedimentary layer over a half-space). Non-linearity or damping are not 18 

considered in the wave propagation calculation in order to solely focus on the effects of soil elastic property 19 

variability. Vs is modeled as a random field using the EOLE method (Expansion Optimal Linear Estimation) and 20 

considering three statistical parameters: the coefficient of variation, and the horizontal and vertical 21 

autocorrelation distances.  Seismic ground motions are numerically simulated for a plane wave excitation with 22 

SV polarization. Modeling results clearly highlight the scattering of surface waves by ground heterogeneities, 23 

leading to large spatial variations in surface ground motion. We computed surface ground motion indicators 24 

(resonance frequency, spectral amplification, Arias intensity and duration) and we showed that their spatial 25 
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variability is mainly controlled by the Vs coefficient of variation. A comparison between 2D and 1D ground 26 

motion probabilistic modeling shows that the 1D probabilistic approach may correctly reproduce average 27 

fundamental resonance frequencies and corresponding amplification. However, the 1D approach significantly 28 

under-predicts both ground motion amplification at higher frequencies and related variabilities, as well as Arias 29 

intensities and inferred durations, which are all controlled by the generation of locally diffracted surface waves. 30 

Key words: Seismic response, spatial variability, probabilistic modeling. 31 

1. Introduction 32 

Spatial variation of earthquake ground motion (SVEGM) refers to the differences in amplitude and phase 33 

between recordings of the same earthquake at different locations. This variation is mainly caused by seismic 34 

source rupturing heterogeneities, regional wave propagation scattering and modification of ground motion by 35 

surface geology, most often referred as site effects (Harichandran, 1999). One of the key factor controlling site 36 

effects is the presence of soft deposits overlying a more rigid geological formation. In sedimentary structures 37 

like valleys, soft surficial deposits may exhibit lateral variation in thickness, which lead to significant changes in 38 

surface ground motion even at close distance (e.g. Moczo and Bard, 1993; Field et al., 1996; Graves et al., 1998; 39 

Pagliaroli et al., 2014b). At local scale (tens to hundreds of meters), the spatial heterogeneity of near-surface 40 

material results from the surface natural processes of erosion and sedimentation (Einsele, 2000) and human 41 

activities (construction, mining, …) generating anthropogenic deposits that can reach more than 10 m (e.g. 42 

Jongmans and Campillo, 1990; Pagliaroli et al., 2014a). Additionally, intrinsic variation in properties within the 43 

soil layer contributes to the spatial variability (Jenny, 1941; Burrough, 1993). The soil heterogeneity at various 44 

spatial scales may then have a significant effect on SVGEM, as frequently pointed out by the damage studies 45 

after earthquakes, especially on long-span structures such as dams, bridges and lifeline facilities (Ariman et al., 46 

1981; Anagnostopoulos, 1988; Trifunac et al., 1997; Trifunac, 2009; Bradley et al., 2011; for a summary of 47 

historic observations, refer to Kozák, 2009). In particular, SVGEM has been put forward to explain the damage 48 

to the high rise buildings during the San Fernando earthquake in 1971 (Hart et al., 1975) and to the bridges 49 

during the earthquake of Loma Prieta in 1989 (Kiureghian et al. 1992), of Northridge in 1994 (Hall et al., 1994) 50 

and Christchurch in 2011 (Chouw and Hao, 2012).   51 

There is therefore a need to quantify the soil parameter spatial variability and uncertainty for predicting 52 

SVGEM. To address this issue, probabilistic modeling approaches using random fields (Popescu, 1995) have 53 

been widely used in geotechnical engineering. In particular, such studies have been made on soil liquefaction 54 
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(Lopez-Caballero and Modaressi, 2010), on the stability of soil dams and slopes (Fenton and Griffiths, 1996; 55 

Abdellah et al., 2000; Griffiths and Fenton, 2004), on the analysis of shallow foundations (Youssef Abdel 56 

Massih and Soubra, 2008; Soubra and Youssef Abdel Massih, 2010; Al-bittar and Soubra, 2013 and Al-bittar 57 

and Soubra 2017) and on the analysis of equipartition time and diffusion regime in random heterogeneous media 58 

(Khazaie et al., 2016 and 2017). In contrast, these techniques have aroused only limited interest among the 59 

seismological community, probably because of the difficulty of measuring small spatial scale variation in soil 60 

mechanical properties (Pagliaroli, 2014a; Salloum et al., 2014). The few 2D probabilistic approaches performed 61 

so far in earthquake engineering (Assimaki et al. , 2003; Nour et al. , 2003; Thompson et al., 2009; Pagliaroli et 62 

al., 2014a) have highlighted the influence of the spatial variability of the soil properties on the surface ground 63 

motion. However, these papers mix effect of variable input ground motion with variability of linear and/or non-64 

linear soil properties on different surface ground motion indicators (spectral response, Peak Ground 65 

Acceleration, amplification, Housner intensity), making thus difficult the understanding of the respective impact 66 

of source of variability (input ground motion, linear and non-linear soil spatial variability) on SVGEM. 67 

This paper aims at numerically studying the effect of the 2D soil spatial variability on SVGEM in the linear 68 

domain for a model consisting of one variable soil layer overlying an elastic bedrock, derived from a well-69 

known site (alluvial plain of Beirut, Lebanon).  The chosen random soil parameter is the shear-wave velocity 70 

(Vs), the spatial variability being discretized by random fields using the Expansion Optimal Linear Estimation 71 

method (EOLE) (Li et Der Kiureghian, 1993). Synthetic seismograms at surface receivers are then computed 72 

using the FLAC2D Finite difference code.  First, the effect of the 2D spatial variability of Vs at a single surface 73 

receiver is evaluated on the following scalar indicators: resonance frequency, corresponding amplification, as 74 

well as Arias based intensity and duration. Second, impact of spatially variable ground structure on the spatial 75 

correlation of surface ground motion is studied. Since some authors (Rahtje et al., 2010; Rodriguez-Marek et al., 76 

2014; Haji-Soltani et al., 2017) chose to replace the 2D spatially variable seismic velocity profiles by 1D 77 

spatially variable ones for site-specific hazard assessment, we also compare surface ground motion indicators 78 

and related variability inferred from 2D and 1D modelling by using 1D Vs profiles extracted from the 2D Vs 79 

model.  80 

 81 
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2. Introducing ground structure spatial variability in wave propagation modeling 82 

2.1. Strategy  83 

Spatial variability of soil properties can be modeled by using the random field theory (Vanmarcke, 2010), 84 

defined by two functions (1) a Probability Density Function (pdf), which is usually positive-skewed and non-85 

Gaussian in soils (Popescu, 1995), and (2) an autocorrelation function ρ(x,z). In this paper, the 2D shear-wave 86 

velocity structure, Vs(x,z), is modeled as a random field with µVs  and σVs being the mean and the standard 87 

deviation of the PDF, respectively. The coefficient of variation, COV= µVs/σVs, quantifies the range of dispersion 88 

of Vs around the mean. The autocorrelation function is defined by its spatial fluctuation scale described by the 89 

correlation distances θx and θz along the horizontal and vertical directions, respectively, which are the distances 90 

over which the soil property values are not correlated any more.  91 

A number n of discretized 2D Vs models (called realizations) are generated using the probability density 92 

function and then used to simulate seismic wave propagation. Like any probabilistic modeling, n should be large 93 

enough to ensure the statistical convergence of the surface ground motion indicators (resonance frequency, 94 

spectral amplification, Arias intensity, duration …) in terms of average value and standard deviation. Among the 95 

numerous methods of random field discretization (Sudret et al., 2000), the Expansion Optimal Linear Estimation 96 

method (EOLE) belonging to the family of the series expansion methods (Li and Der Kiureghian, 1993) is used 97 

in this study. The main reason is that the convergence of ground motion indicators is reached after a lower 98 

number of seismic wave propagation simulations, compared to traditional Monte Carlo approaches (Sudret et 99 

al., 2000).  100 

In order to understand near-surface spatial Vs variation effects on surface ground motion, we focus on a 101 

parametric sensitivity study for a simple case of a spatially variable soil layer overlying a bedrock with constant 102 

elastic properties. The Vs structure of the alluvial plain in Beirut (Lebanon) is chosen as a test site since detailed 103 

geotechnical and geophysical campaigns carried out at this site have allowed to image spatial variation of the 104 

underground geological structure (Saloum et al., 2014; Salloum, 2015).   105 

2.2. Soil statistical parameters 106 

In the approach adopted in this paper, the three statistical parameters describing the soil spatial variability are 107 

the coefficient of variation COV and the two autocorrelation distances θx and θz. Numerous studies attempted to 108 

determine these parameters from geotechnical laboratory or in situ tests (for a recent synthesis, see Salloum, 109 
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2015). In contrast, very few studies were made on the quantification of the Vs variability. This probably results 110 

from the difficulty to obtain reliable Vs values through in situ tests.   111 

In geotechnics, penetration tests (SPT – Standard penetration Tests or CPT – Cone penetration Tests) are widely 112 

used for soil investigation (Cornforth, 2005). They provide resistance parameters (N: number of blows for SPT; 113 

qc: cone resistance for CPT) that, like Vs, mainly increase with soil density or compactness if the effect of the 114 

effective stress due to overburden pressure is removed (Karray et al., 2011). For these two parameters, the 115 

coefficient of variation was found to cover a wide range between 5 and 43% (e.g Phoon and Kulhawy, 1999; 116 

Srivastava and Babu, 2009; Zhao et al., 2018). For getting the coefficient of variation (COV) of Vs, Thomson et 117 

al. (2007) compiled results of Vs measurements using different techniques (down-hole tests, seismic cone tests) 118 

in various geologic units (Holzer et al, 2005; Wills and Clahan, 2006; Moss, 2008).  They found that COV 119 

values are generally contained within the interval from14 to 46% for Vs measurements in the same geologic 120 

unit. COV values in a similar range are also reported by Haji-Soltani and Penscheck (2017) for a very soft 121 

sediment (5 to 15%) and by Rodriguez-Marek et al. (2014) for very hard rock site (10 to 25%). Making use of 122 

the Electric Power Research Institute (EPRI, 1993) Vs profile database, Toro (1995) found COV ranging 123 

between about 30% and 45% for various NEHRP site classes.  124 

  125 
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Table 1: Properties in the two layers (soil and bedrock) for the probabilistic modeling. The bedrock properties 126 

are fixed, as well as the density ρ and the P-wave velocity Vp in the soil layer. The soil S-wave velocity is 127 

considered as a random field and characterized by four statistical parameters (µVs, COV, θx, θz). Nine  models 128 

are defined with various COV, θx and  θz (see text for details). The so-called deterministic model is defined by 129 

the values shown in italics in the Table. 130 

 131 

The autocorrelation parameters in a soil layer θx and θz can be estimated by using several methods (e.g. Popescu, 132 

1995; Assimaki et al., 2003; Thomson et al., 2009), depending on the available data and the chosen 133 

autocorrelation function. As most sedimentary layers are characterized by a strong anisotropy resulting from 134 

depositional processes, the horizontal autocorrelation distances are expected to be greater than vertical ones. In-135 

situ geotechnical and Vs tests are usually performed along vertical profiles and most of the available information 136 

is on the vertical autocorrelation distance θz. Thus, θx is usually poorly constrained.  Penetration test analyses 137 

provide a relatively wide range for the vertical autocorrelation distances, from a few cm to a few m, while the 138 

horizontal distances were estimated from around 1 m to more than 100 m (e.g., Alonso et al., 1975; Phoon and 139 

Kulhawy, 1996; Fenton, 1999; Jaksa et al., 1997; Assimaki et al., 2003; see Salloum, 2015 for a synthesis). 140 

Layers 

Properties 

Model # 
ρ (Kg/m3) Vp (m/s) µVs (m/s) 

COV (%) 

θx 

(m) 

θy 

(m) 

S
o

il
 w

it
h

 a
 t

h
ic

k
n

es
s 

o
f 

1
5
.5

 m
 

1600 1500 220 

5 

5 2 1 

10 2 2 

20 

5 2 3 

10 

1 4 

2 5 

20 2 6 

40 

5 2 7 

10 

1 8 

2 9 

Bedrock 
2500 3000 1000 

--- --- --- --- 



7 
 

Using suspension log slowness data, Thomson et al. (2009) determined a maximum θz value of about 5 m; θx 141 

was estimated to 50 m to 100 m, assuming an anisotropy factor of 10 to 20. These results illustrate the wide 142 

scattering of soil statistical parameter values, resulting from the wide variety in geological depositional contexts 143 

(marine, lake, glacial, alluvial sediments), and from the large uncertainty on the horizontal autocorrelation 144 

distance quantification. 145 

As our parametric study is built on the alluvial plain of the river Nahr Beirut (Beirut, Lebanon), the statistical 146 

parameters determined from the extensive near-surface geotechnical (borehole measurements, SPT, laboratory 147 

measurements) and geophysical (seismic, resistivity) campaigns (Salloum et al. , 2014; Salloum, 2015) are used 148 

hereafter. These experiments showed the presence of interbedded Quaternary layers of pebble, gravel, sand and 149 

clay overlying marly limestone of Tertiary age, with strong vertical and horizontal variability. The typical soil 150 

column is, from the surface to depth: (1) a 7.5 m thick gravel layer with Vs=350 m/s, (2) a softer clay layer of 8 151 

m in thickness with Vs=150 m/s and (3) weathered limestone (Vs>400 m/s). Fitting a theoretical lognormal 152 

probability density function on down-hole tests data led to a Vs coefficient of variation (COV) of 13% and 44% 153 

in the clay and gravel layers, respectively (Salloum, 2015). The vertical autocorrelation distance θz was found to 154 

vary between 0.5 m and 2 m in the soil layers, using the same data. ERT (Electrical Resistivity Tomography) 155 

profiles were used to evaluate the horizontal autocorrelation distance θx, which was bracketed between 3.8 and 156 

10.6 m (Salloum, 2015), assuming that the variability is the same for the two geophysical parameters (shear 157 

wave velocity and electrical resistivity).  158 
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 159 

Figure 1: (a) Two-layered ground model composed of a 15,5m thick soil layer overlying bedrock (Vs=1000 160 

m/s). The Vs distribution in the soil layer was computed using the EOLE method with the following statistical 161 

parameters: µVs = 220 m/s; COV= 40%; θx= 10 m; θz =2 m (model # 9 in Table 1).    refers to the distance of 162 

the receiver   from the left side of the model.      refers to the distance between receiver   and  . Synthetic 163 

velocities are computed at 166 surface receivers 1 m apart (some locations are shown with black triangles). (b) 164 

Horizontal input signal (particle velocity) applied at the model base. (c) Fourier amplitude Spectrum of the 165 

input signal. 166 

 167 

For the purpose of simplifying the 2D modeling,  the two soil layers were merged into a unique 15.5 m thick 168 

bed with a mean value µVs = 220 m/s overlying a homogeneous sound bedrock (Vs = 1000 m/s) (Figure 1a). The 169 

statistical parameters in the sedimentary layer are chosen in a range covering the values found during the survey 170 

and in the literature (5% < COV < 40%; 5 < θx < 20 m; 1 < θz <2 m). The 9 probabilistic models used for the 171 

sensitivity analysis are given in Table 1. No attenuation or damping is considered in the analysis in order to 172 
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focus only on the effects of elastic properties variability.  The fundamental resonance frequency of the soil layer 173 

for the mean Vs is f0D= 3.54 Hz, with a theoretical amplification AFD= 7.1 at the resonance frequency. This case 174 

will be referred to as the deterministic model in the following. 175 

2.3. Random field discretization method  176 

The Expansion Optimal Linear Estimation method (EOLE), originally proposed by Li and Der Kiureghian 177 

(1993) is used herein to discretize the random field of Vs(x,z). It is described by a lognormal probability density 178 

function f (Vs) (Eq. 1): 179 

 (  )  
 

     √  
    ( 

(  (  )     ) 

    
 ) 

(1) 

where ln and σln are the mean and the standard deviation of Vs natural logarithm,  respectively, and by an 180 

anisotropic square exponential autocorrelation function  [(   ) (     )] (Eq. 2), which gives the values of the 181 

correlation function between two arbitrary points (x, z) and (x', z'): 182 

 [(   ) (     )]     (  
|    | 

  

   
|    | 

  

) 
(2) 

where θx and θz are the autocorrelation distances along x and z, respectively.  183 

In this discretization method, one should first define a stochastic mesh composed of Nq grid points (or nodes) 184 

and determine the autocorrelation matrix ∑       that gives the correlation between each grid point of the 185 

stochastic mesh and the other grid points using Eq. 2. The stochastic mesh dimensions (     ) are taken equal 186 

to half of the autocorrelation distance of the model in each direction (       ,        ). The random field 187 

Vs(x,z) at any point is estimated by the following equation, using the autocorrelation matrix : 188 

  ̃(   )           ∑
   

√  

 

   

(  )
 ∑  

  (   )    
               

(3) 

where   ̃(   ) is the approximate of the random field,    and    are the mean and standard deviation values of 189 

Vs,    is the vector of independent standard gaussian random variables,     and    are the eigenvalues and 190 

eigenvectors of the autocorrelation matrice ∑      , ∑    (   )   is the correlation vector between the values of the 191 

random field at the different nodes of the stochastic grid and its value at the arbitrary point (x, z) as obtained 192 

using Eq. 2. The series of Eq. 3 is truncated to a number of terms s (expansion order), which is smaller than the 193 
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number of grid points, after sorting the eigenvalues    (j=1… S) in a descending order. This number should 194 

ensure that the variance of the error is smaller than a prescribed tolerance (10% in our study). The variance of 195 

the error on the random field in the EOLE method is given by (Li and Derkiureghian,  1993): 196 

   [  (   )    ̃(   )]    
  

 ∑
 

  

 

   
((  )

 ∑  
  ( )   

)

 

  
(4) 

where   (   ) and   ̃(   ) are the exact and the approximate values of the random fields at a given point (x, z), 197 

respectively.  198 

Each vector of standard Gaussian random variables    (j=1… S) provides (when substituted into Eqs. 3.3 and 199 

3.4) spatial variations in Vs that fulfill the correlation structure of this field and are called Vs realizations. This is 200 

performed by computing, for this vector, the values of Vs at the centroids and the nodes of the different elements 201 

of the stochastic mesh. For each Since the finite difference mesh of FLAC
2D

 used to simulate wave propagation 202 

is much smaller than the stochastic mesh, the kriging method (Sacks et al. 1989) is used for determining Vs at 203 

the centre of each finite difference mesh. In this study, the ordinary kriging and an anisotropic square 204 

exponential function for the correlation function are used. For each model (Table 1), the autocorrelation 205 

distances used for the kriging method are similar to the ones defined in the EOLE method. The lower and upper 206 

boundaries of the autocorrelation distances were taken equal to 0.5 m and 100 m, respectively. Thus, in both 207 

directions, 5 Vs are determined within one autocorrelation distance using the EOLE method and the others are 208 

extrapolated using the ordinary kriging method. By the combination of these two discretization methods, 209 

Figures 2d and 2h show example of one Vs realization for the 2 models  #5 and #9 (Table 1), which have the 210 

same correlation distances (θx=10 m and θz=2 m)  and differ by the COV value (20% and 40%, respectively). In 211 

order to check the accuracy of the generated 2D Vs realizations, the average shear wave velocity (   ) and the 212 

coefficient of variation (   ) are calculated for the two examples. The autocorrelation distances    and    are 213 

then evaluated respectively for the horizontal and vertical 1D samples extracted from the 2D realizations (refer 214 

to the black dashed rectangles in Figures 2d and 2h). The re-estimated statistical parameters are summarized in 215 

Table 2. The results show that the generated 2D realizations have about the same statistical parameters initially 216 

introduced during the random field discretization phase.    217 

 218 
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Table 2: Statistical parameters: the average shear wave velocity (   ), the coefficient of variation (   ) and 219 

the autocorrelation distances (  ,   ) computed for the two Vs realizations shown in Figures 2d and 2h. For 220 

each realization,    and    are estimated, respectively, for the horizontal and vertical rectangle of each figure. 221 

Statistical parameters Model #5 Model #9 

    (m/s) 222 217 

    (%) 20.93 38.81 

   (m) 11.09 10.85 

   (m) 1.91 1.98 

 222 

2.4. Wave propagation simulation 223 

The finite difference code FLAC
2D

 is used to propagate seismic waves in the 2D Vs structures (Bouckovalas et 224 

al., 2005; Pagliaroli, 2006; Stamatopoulos et al., 2007 & 2009). After discretizing Vs for all the models listed in 225 

Table 1, the minimum value of Vs is found to be 50 m/s and the maximum value is 750 m/s. An example of one 226 

realization of the Vs structure obtained for model #9 (Table 1) is shown in Figure 1a.  The source time function 227 

is a pseudo-Dirac having a flat Fourier amplitude spectrum between 1 and 25 Hz (Figures 1b and 1c). According 228 

to the frequency and Vs ranges, the minimum and maximum wavelengths in the sediment layer are 2 m and 750 229 

m, respectively. The mesh size Δl is chosen less than one tenth of the minimum wavelength to avoid numerical 230 

dispersion phenomena (Eq. 5) (Kuhlemeyer, R. L. and Lysmer, 1973): 231 

      
    

  
 

     

       

  
 

(5) 

where ∆lmax is the maximum size of the finite difference mesh, λmin is the minimum wave length, Vsmin is the 232 

minimum shear wave velocity, and fmax is the maximum wave frequency.  233 

With the parameters of this study, the maximum mesh size, ∆lmax, is 0.2 m (      
  

     
).  234 

Zero horizontal displacements are applied along lateral boundaries of the model, while the horizontal and 235 

vertical movements are fixed at its base. Free field boundaries are applied to the side edges of the model. A 236 

quiet boundary (absorbing effect defined in FLAC
2D

 (Itasca, 2011)), is applied to the model base in order to 237 

model a flexible base that absorbs the energy emitted by the waves reflected on the surface and arriving to the 238 

model base. After initializing the stresses, a seismic shear stress excitation consisting of a vertically incident 239 

plane SV-type wave is applied to the base of the model:  240 

       (    )     
(6) 
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Where σs is the applied shear stress, ρ is the soil density, Vs is the medium shear wave velocity and υs is the 241 

horizontal component of the velocity signal. 242 

The 2D soil structure used in the simulation is a 22 m x 165 m model. The width of the model is relatively small 243 

compared to the maximum wavelength of 750 m. Therefore, in order to check that the boundary conditions are 244 

efficient and that such a model size does not affect the wave propagation, we compared seismograms computed 245 

for two different model sizes (750 m and 165 m wide) keeping fixed all the other parameters. The simulations 246 

performed over a duration of 2 seconds show similar results (Appendix 1). Finally, the computation time for one 247 

simulation and 10-second seismograms is around 5 hours on a single processor and a PC having an i7-core and 248 

2.4 Hz CPU frequency, leading to a total computation time of about 4500 hours for all models. 249 

3. Characterization of the ground motion spatial variability  250 

In this section, we present an analysis of the synthetic seismograms computed for two probabilistic models (one 251 

realization), discuss the probalistic simulation stability and provide the definition of the ground motion 252 

indicators extracted from the seismograms.  253 

 254 
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 255 

Figure 2: Seismic responses for the two Vs realizations of models #5 (left column) and # 9 (right column).  (a) 256 

and (e) Fourier amplitude spectra (FAS) for the horizontal velocity seismograms  shown in (b) and (f); (b) and 257 

(f) 3-second horizontal seismograms (H) computed for the Vs realizations shown in (d) and (h), respectively.  (c) 258 

and (g) 3-second vertical seismograms (V)  ; (d) and (h) Vs realizations  for  models #5 (COV=20% θx=10m 259 

and θz=2m) and  #9 (COV=40% θx=10m and θz=2m) (see Table 1). The white dashed lines in (a) and (e) 260 

correspond to the fundamental frequency of the deterministic model, foD. 261 

3.1. Ground motion synthetics and probabilistic simulation stability 262 

3.1.1. Ground motion synthetics 263 

Figure 2 shows the simulation results of one Vs realization for the 2 models #5 and #9 (Table 1). For each case, 264 

the Vs model, the vertical and horizontal surface velocity signals, and the Fourier amplitude spectra of the 265 

horizontal seismograms are shown. The increase in COV (40%) is clearly visible on the Vs model #9 (figure 2h), 266 

which exhibits larger velocity contrasts than model #5 (Figure 2d; COV= 20%). The Vs spatial variation turned 267 

out to have a strong influence on the surface ground motion characteristics: seismograms exhibit larger 268 

amplitude and longer duration at receivers located over near-surface low velocity zones (see Figures 2b, c, f and 269 
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g), especially for the horizontal seismograms and for COV=40%.  The Fourier amplitude spectra (Figures 2a and 270 

2e) show that the amplification at the fundamental resonance frequency occurs at or a little lower the 271 

deterministic 1D resonance frequency (f0=3.54 Hz), with lateral variations resulting from the surface wave 272 

propagation. Amplification at higher frequencies are also spatially variable (Figure 2e).  273 

 274 

Figure 3: (a) 3-second seismograms (horizontal and vertical velocities) simulated for the Vs model shown in 275 

Figure 2d at 3 different locations spotted by black arrows in Figure 2d (curves in black).  Seismograms 276 

computed for the deterministic model are indicated in red. The vertical green lines represent the duration 277 

corresponding to 5 and 95% of the total energy calculated for the seismograms computed for the probabilistic 278 

model (see text for details). (b) Dispersion curves for the vertical component of the synthetic ground motion 279 

obtained for distance between 65 and 115 m between t=0 s and 8 s (refer to rectangle A1 in Figure 2c); the 280 

theoretical dispersion curves for the first three modes of the deterministic model are shown in black. (c) Particle 281 

motion of the 1-5 Hz band-pass filtered velocities recorded at X= 83 m between t=0.1 s and t=0.8 s (top) and 7-282 

11 Hz band-pass filtered velocities recorded at X = 83 m between t=1s and 1.8s (bottom). 283 

 284 

Figure 3a shows the first three seconds of the ground surface seismograms (horizontal and vertical components) 285 

calculated for the model #5 at three distances indicated in Figure 2d. The horizontal signals are compared with 286 

the ones computed for the deterministic model considering no variability in the soil properties (µVs = 220 m/s; 287 

σVs=0). Figure 3a illustrates the motion spatial variability generated by the 2D probabilistic models in terms of 288 

amplitude of the first arrivals (e.g. see the signals at 45 m and 116m) and generation of strong later seismic 289 

waves (e.g. at 45 m) both on the horizontal and vertical components.   290 
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In order to determine the wave types, the particle motions are plotted in Figures 3c and 3d within two time 291 

windows (0.1-0.8s) and (1-1.8s), respectively. As expected, the early seismic waves are horizontally polarized 292 

shear waves, while elliptical motion of the late waves indicate presence of Rayleigh waves. By using the f-k 293 

method (Lacoss et al., 1969), the dispersion characteristics of the surface waves were calculated by using 294 

vertical seismograms recorded at receivers located between 65 m and 115 m. The dispersion diagram shown in 295 

Figure 3b indicates two branches of dispersion curves between 4Hz and 20 Hz, while the image is blurred below 296 

4 Hz. This results from the high-pass filtering of the soil layer (Scherbaum et al. 2003), which leads the energy 297 

vanishing below the soil fundamental frequency (see also the Fourier amplitude spectrum in Figure 2a).  298 

Although the theoretical curves from the deterministic model (first three modes, black curves) do not perfectly 299 

match the dispersion maxima caused by Vs differences between the 2D and the deterministic cases, the 300 

comparison suggests that the first two Rayleigh wave modes have been excited in the 2D probabilistic model. 301 

3.1.2. Convergence of probabilistic ground motion simulations 302 

Probabilistic modeling approaches require simulating ground motion for a large enough number of realizations 303 

of discretized Vs models to ensure the statistical convergence of the average and standard deviation estimators 304 

of any surface ground motion parameter. We define the convergence of a ground motion parameter α as a 305 

fraction of the relative variation of α between realization i and realization i+1: 306 

    ( )  
|       |

|  |
  

(7) 

The convergence is considered to be reached when CONV(α) < 5% (Haldar et al., 2008). For both the average 307 

and standard deviation estimators, the convergence was tested on both surface ground motion parameters in time 308 

(Arias Intensity and duration) and frequency (Fourier amplitude spectra, site fundamental frequency and 309 

corresponding amplification) (see section 3.2 for definition). As an example, the convergence for the Fourier 310 

amplitude spectra (horizontal component) at different frequencies and the duration are shown in Appendix 2 for 311 

model #9 that exhibits the largest Vs range. According to the defined criterion, the convergence is reached after 312 

86 realizations for all frequencies for Fourier amplitude spectra and after 82 realizations for the duration. All the 313 

tests performed on other indicators showed that 100 realizations ensure the convergence. Finally, due to the 314 

presence of absorbent boundaries, receivers located less than 30 m from the borders were omitted in the 315 

analysis.  316 
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3.2. Surface ground motion indicators 317 

In this paper, we consider surface ground motion indicators in time and frequency domain, as described 318 

hereafter. In the frequency domain, the spectral amplification AF(f) is defined as the ratio between the Fourier 319 

amplitude spectra of the signals recorded at the soil surface and at the outcropping bedrock. For vertically 320 

incident waves, this latter is 2 times the spectrum shown in Figure 1c. Two parameters are extracted from the 321 

spectral amplification: the fundamental frequency f0 and the corresponding amplification, AFf0. In the time 322 

domain, we consider the Arias based intensity parameter (AbI) that provides a measure of the shaking intensity 323 

(Arias, 1970), here defined as the integral of the square surface horizontal velocity as function of time. The 324 

second time parameter is the effective duration (DAbI) defined as the difference between the time where 5% and 325 

95% of the total AbI is reached. The durations inferred for models #5 are indicated in Figure 3a. 326 

4. Influence of ground structure variability on surface ground motion indicators at a single 327 

station  328 

4.1. Resonance frequency and related amplification 329 

The amplification AF was calculated at the central receiver (located at x=83 m) for all models (Table 1) from the 330 

10-second seismograms after smoothing the Fourier amplitude spectra by using the Konno and Ohmachi 331 

algorithm with b=50 (Konno and Ohmachi, 1998). Spectral amplifications for the 100 simulations are shown in 332 

Figures 4a and 4b for models #5 (COV=20%) and #9 (COV=40%), respectively. The variability of the 333 

amplification curves increases with COV, both in terms of maximum amplification and corresponding 334 

frequency.  We computed the probability density functions of f0 and AFfo (Figures 4c and 4d) using the non-335 

parametric kernel density estimation technique (Rosenblatt, 1956; Parzen, 1962). Compared to the deterministic 336 

fundamental frequency f0D (dashed red line), the probabilistic f0 values tend to be lower than f0D by about 2% and 337 

20% for COV=20% and 40%, respectively (Figure 4c).  The distribution of amplifications at the fundamental 338 

resonance frequency peaks (AFfo) (Figure 4d) is slightly higher by about 6.7% than the deterministic one (AFfoD) 339 

for COV = 20%, with AFfo values ranging between 3.15 and 12.0, while it is significantly shifted to a lower 340 

amplification values for COV=40% with AFfo values ranging between 1.6 and 17.2. 341 
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 342 

Figure 4 : Amplification functions at the central receiver.  (a) and (b) Amplification curves (100 realizations in 343 

grey) for parameter set #5 (COV=20% θx=10m and θz=2m) and for the parameter set #9 (COV=40% θx=10m 344 

and θz=2m), respectively. The black curve is the theoretical transfer function for the deterministic model 345 

(Vs=220 m/s).  (c) KSdensity of the fundamental resonance frequency f0 computed by considering all 346 

realizations for  parameter set  #5 (in blue) and #9 (in black). The red dashed line indicates the fundamental 347 

resonance frequency f0D of the deterministic model. (d) KSdensity of the amplification AFf0 at the fundamental 348 

resonance frequency for parameter set #5 (in blue) and #9 (in black). The red dashed line indicates the 349 

amplification AFD for the deterministic model. 350 

The average amplification and the standard deviation computed on the natural logarithm of amplifications at the 351 

central receiver (x= 83 m) are shown for all models in Figures 5a and 5b, respectively. The average AF curves 352 

provide fundamental resonance frequencies close to the deterministic one, except for the higher COV (40%). For 353 

that COV, the fundamental frequency f0 is shifted down to values around 3 Hz, as already highlighted in Figure 354 

4c. At frequencies equal or over f0, standard deviations increase with frequency, the higher standard deviation 355 

being found for larger COV values as a consequence of stronger scattering of the AF curves (Figure 5b), which 356 

in turns leads to  a decrease in average amplification values at frequencies larger than f0 (Figure 5a).  357 

  358 
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 359 

 360 

Figure 5 : (a) Average amplification at the central receiver (X=83 m) for different values of COV, θx and θz 361 

obtained by computing the geometric mean of the transfer functions for the 100 realizations. The amplification 362 

and the fundamental frequency for the deterministic model are shown by the black curve and black dashed line, 363 

respectively.  (b)  Standard deviation of the natural logarithm of the Amplification (σln(AF)) at the central 364 

receiver. (c) Standard deviation of σln(AF) obtained by considering  all receivers location. The values of COV, 365 

θx and θz are shown with different colors, symbols and lines, respectively. 366 
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 367 

Figure 6: Synthesis of simulation results for the 9 parameter sets. Left panel: Average values and error bars (+- 368 

one standard deviation) for the four spectral and temporal parameters at the central receiver: (a) average 369 

fundamental frequency (fo), (b) average amplification at the fundamental frequency (AFfo), (c) average of the 370 

Arias based intensity (AIb) and (d) average of the Arias based duration (AbID). The black dashed lines indicate 371 

values of, f0, AFfo, AIb and the related duration of the deterministic model. Right panel: (a) average f0, (b) 372 

average AFfo, (c) average AbI and (d) duration at different locations on the surface for the 100 simulations. The 373 

values of COV, θx and θz are shown with different colors, symbols and lines, respectively. 374 
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 375 

In order to evaluate the effect of the receiver position on amplification, we calculated the standard deviation 376 

σ(ln(AF)) for all receiver locations. The curves are presented in Figure 5c at the same scale as the ones in Figure 377 

5b. The standard deviation is slightly affected by the receiver location at frequencies higher than 15 Hz for the 378 

greatest COV (40%). The main impact of considering all receivers is however observed for frequencies lower 379 

than f0, a range for which the standard deviation is significantly greater, whatever the COV value. Such increase 380 

results from the filtering effect of the sedimentary layer, which yields little energy below the fundamental 381 

frequency (Scherbaum et al., 2003) and greater variability in amplification. Moreover, Appendix 3 compares the 382 

standard deviation of ln(AF) computed by considering, firstly, all the receivers of all the realizations (in dashed 383 

lines) and secondly, the central receiver of each realization (in continuous lines) for the model #6 having 384 

COV=20%, θz=2m and θx=10m and model #9 having COV=40%, θz=2m and θx=10m. The standard 385 

deviations calculated by the two methods are very similar. This observation emphasis the stationarity of ln(AF) 386 

due to the stationary random field generated by the EOLE discretization method.  387 

The simulation results are synthesized for the 9 probabilistic models in Figure 6. First, the average f0 values 388 

along with error bars for all parameter sets are shown as a function of COV at the center receiver in Figure 6a. 389 

As already evidenced in Figure 4 for two models, the average f0 at the central receiver is close to the 390 

deterministic value f0D= 3.54 Hz for low COV but sharply decreases to around 2.8-3 Hz for COV=40%. The two 391 

other probabilistic parameters (θx and θz) do not seem to significantly influence neither the average nor the 392 

dispersion of f0. This significant influence of COV on average f0 values is observed at all receivers (Figure 6e), 393 

θx and θz having little effect.   The variations in f0  over distance are small et remain below 10%.  394 

The same kind of analysis are presented for the average amplification AFfo in Figures 6b and f. At the central 395 

receiver (Figure 6b), the average amplification is close to the deterministic value AFD and, again, θx and θz seem 396 

to have little influence.  However, the average amplification variability increases largely for COV=40% with 397 

values being higher or lower than AFD, depending on the combination of θx and θz. Figure 6f shows that, in 398 

contrast to f0,  AFfo is spatially variable, especially for COV=40%. Such spatial variation is due to large lateral 399 

Vs variation and/or to the presence of a double amplification peak close to the fundamental resonance frequency 400 

on the AF curve at some receiver location. The second peak generated by low Vs superficial zones may exhibit 401 

an amplitude higher than the first one identified as the amplification at the fundamental resonance frequency 402 

(see Figure 2e for receivers located between X=30 m and X=120 m).  403 
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4.2. Arias based intensity and duration  404 

Similarly to the spectral parameters, the results for temporal parameters (Arias intensity AbI and duration AbID) 405 

are synthesized in Figure 6c, d, g and h. The average Arias intensity and duration (Figures 6c and 6d, 406 

respectively) are systematically larger than those corresponding to the deterministic Vs structure, and increase 407 

with COV, as well as the standard deviations. This effect is particularly clear for AbID (Figure 6d), which may 408 

reach values two to three times higher than the deterministic one for COV=20% and 40%, respectively. Also, 409 

these two temporal parameters seem to be slightly influenced by the receiver location, as shown in Figures 6g 410 

and 6h, except AbI for COV=40%. In this case, large lateral variations of 50% can be observed over short 411 

distances.  412 

In summary, this study outlines the predominant influence of COV on the surface ground motion indicators in 413 

terms of average and standard deviation compared to the correlation distances. However, for the largest COV 414 

(40%), ground motion average indicators related to the amplitude of seismic signals (amplification AFfo, Arias 415 

intensity AbI) exhibit larger variation over distance for  θx=5 m and θz=2 m suggesting then an influence of the 416 

size of the heterogeneity, while the average fundamental frequency f0 and duration AbID turned out to be 417 

spatially independent, whatever the COV value. 418 

 419 

5. Effects of spatial ground variability on spatial correlation of indicators 420 

In previous sections, the variability of indicators was analyzed at a single station. However, studying the impact 421 

of spatial ground variations on the spatial correlation of ground motion is also of interest for understanding or 422 

predicting damage to long-span civil engineering structures (e.g. Abrahamson et al., 1990; Schneider et al., 423 

1992; Ancheta et al., 2011; Goda and Atkinson, 2008; Liu and Hong, 2015; Koufoudi et al., 2018). Here, we 424 

focus on investigating the spatial correlation of the four ground motion scalar indicators defined in section 4 425 

(resonance frequency and corresponding amplification, Arias based intensity and duration) and one frequency-426 

dependent indicator (Fourier amplitude spectrum). We estimated the spatial correlation by computing the 427 

absolute differences of indicators between two receivers separated by a distance ΔX, ΔX spanning all possible 428 

inter-receiver distances and being normalized by the horizontal correlation distance θx. 429 
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 430 

Figure 7: Spatial variability of the four scalar indicators as a function of the receiver spacing normalized by the 431 

horizontal autocorrelation distance ΔX/θx. (a), (b), (c) and (d), Variation of the differences in fundamental 432 

resonance frequency f0, related amplification AF, Arias based Intensity AbI and Arias based Intensity duration 433 

AbID using 2D ground motion synthetics. (e), (f), (g) and (h), the same for 1D ground motion synthetics. The 434 

values of COV, θx and θz are shown with different colors, symbols and lines, respectively. 435 
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 436 

5.1. Scalar indicators 437 

We first computed the mean spatial correlation of the 4 scalar indicators for the 100 Vs realizations. Figures 7a, 438 

7b, 7c and 7d display the spatial correlation of the resonance frequency (Δfo), the corresponding amplification 439 

(ΔAFfo), the Arias based intensity (ΔAbI) and the Arias based intensity duration (ΔAbID), respectively, as a 440 

function of ΔX/θx for all the models  (Table 1).  441 

The variability of ΔAbI and ΔAbID increases linearly until reaching a constant value for ΔX larger than 2θx, a 442 

larger variability being systematically observed for larger COV values. This general trend is explained by the 443 

random field discretization in Vs (see section 2). For a given realization, the Vs vertical profiles below receivers 444 

located at X+/-θx are correlated, leading to close seismic responses at the surface. In contrast, the seismic 445 

responses at two receivers with a spacing larger than 2θx are not expected to be similar. Thus, the seismic 446 

indicators ( AbI and AbID) that are strongly controlled by the most energetic seismic phase (the incident SV wave 447 

(Figure 3a), mostly itself influenced by the locally 1D Vs structure) will lead to indicator differences not 448 

correlated anymore for ΔX larger than 2θx and thus constant whatever the receiver spacing. 449 

The spatial correlation of the fundamental resonance frequency (Δf0) and the corresponding amplification 450 

(ΔAFfo) (Figures 7a, 7b and Appendix 4) indicates an increase in variability with distance, reaching constant or 451 

maximum values for ΔX/θx ranging between 2.5 and 4 for θx=20 m, between 6 and 8 for θx=10 m and between 452 

13 and 16 for θx=5 m. These ratios correspond to an absolute value ΔX ranging between 50 and 80 m, i.e. close 453 

to the wavelength at the fundamental resonance frequency for the deterministic Vs structure (λ=62 m). As for 454 

other indicators, the f0 and AFfo variability increases with COV and their convergence seems to be independent 455 

of θx like the time domain parameters (see also Appendix 4 where results are plotted in terms of non-normalized 456 

ΔX). 457 

5.2. Frequency-dependent indicator 458 

Following Abrahamson et al. (1990) and Schneider et al. (1992), we computed the standard deviation of the 459 

absolute difference of the natural logarithms of the Fourier amplitude spectra (σ(Δ|ln(AF)|)). Figures 8a, 8b, 8c 460 

and 8d display σ(Δ|ln(AF)|) versus the receiver spacing ΔX for four frequencies (3.54 Hz, 7 Hz, 10 Hz and 24 461 

Hz, respectively), while Figures 8e and 8f  show σ(Δ|ln(AF)|) as a function of frequency for two receiver 462 

spacing values  (5 and 50 m, respectively). The lowest frequency (3.54 Hz) corresponds to the fundamental 463 

resonance frequency f0D previously defined. For all frequencies, σ(Δ|ln(AF)|) increases with ΔX until reaching a 464 
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constant value that significantly increases with COV (Figures 8a to 8d). For small frequencies (<f0D), the 465 

wavelengths are much larger than θx (5 and 10 m) and θz (1 and 2 m) and the analyzed inter-receivers distances 466 

(ΔX). Then, σ(Δln(AF)) increases with the increase of ΔX and no convergences is observed with ΔX in the range 467 

between  0 and 100m. The correlation distances θx and θz appear to have little influence on the variability, except 468 

for one frequency (7 Hz) for COV=40%. The spatial amplitude variability with frequency shows a different 469 

picture depending on the receiver spacing ΔX (Figures 8e and 8f). For ΔX =5 m, the variability is weak at low 470 

frequency and progressively increases with frequency (see for instance the curve for COV=40%). This shows 471 

the effect of the wavelength. Indeed, for COV=40%, Vs varies from 50 to 750 m/s, corresponding to minimum 472 

wavelengths of 2, 5, 7 and 14 m for Vs = 50 m/s and at 24, 10, 7 and 3.54 Hz, respectively.  For wavelengths 473 

much larger than the size of the heterogeneity (i.e. at low frequency) the amplitude variability is low, while 474 

maximum when wavelength is about the size of the heterogeneity. It could explains that maximum variability is 475 

observed for θx=5m at high frequency (Figure 8e). For large spacing (ΔX =50m > θx.), the Vs structure below 476 

the receivers is not correlated anymore and σ(Δ|ln(AF)|) is maximum at the resonance frequencies (f0D, 3 f0D and 477 

5 f0D), with no clear dependency on θx (Figure 8f). 478 
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 479 

Figure 8: Frequency-dependent indicator variability computed from 2D ground motion synthetics. The standard 480 

deviation of the absolute difference of natural logarithm of Fourier amplitude spectra (σ(Δln(AF))) as a function 481 

of receiver spacing at frequencies equal to (a) 3.54 Hz, (b) 7 Hz, (c) 10 Hz and (d) 24 Hz. σ(Δln(AF)) as a 482 

function of frequency for two receiver spacing values (d) ΔX=5 m and (f) ΔX= 50 m. The values of COV, θx and 483 

θz are shown with different colors, symbols and lines, respectively. 484 

 485 
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6. Can 2D modeling be replaced by 1D modeling?  486 

In order to evaluate the importance of accounting for 2D wave propagation on surface ground motion for site 487 

specific hazard assessment compared to alternative modelling approaches that simplify the 2D spatial variation 488 

of ground structure into a suite of 1D variable soil profiles (e.g. Rahtje et al., 2010; Rodriguez-Marek et al., 489 

2014; Haji-Soltani et al., 2017), we extracted 100 1D soil columns at each receiver from the Vs 2D 490 

discretization. 1D wave propagation simulation was performed and spectral amplification, Arias based intensity 491 

and duration are computed at each receiver and compared to the values obtained from 2D wave propagation 492 

modeling. The 1D and 2D modeling results are compared from various perspectives in Figures 9, 10 and 11, 493 

showing the parameter ratios and standard deviation differences  for all realizations at the central receiver, the 494 

spatial evolution of the four parameters along the profile for one given realization , and the average and standard 495 

deviation of 2D/1D ratio for all realizations, respectively  496 

6.1. Fundamental frequency, corresponding amplification and spectral amplification 497 

Figure 6.1a and b compare in terms of ratio the average fundamental resonance frequency and amplification 498 

together with related standard deviation derived from 1D and 2D modeling approaches. Average resonance 499 

frequencies are very similar for both modeling types (Figure 9a), while standard deviation is larger for 1D 500 

modelling (Figure 9b). Such higher standard deviation comes from 1D resonance frequencies being only 501 

controlled by SH body waves propagating through locally 1D soil profiles, while 2D wave propagation 502 

modeling also incorporates locally diffracted surface waves that sample larger underground volume and lead to 503 

homogenize seismic response. Figure 10a illustrates, for the ground model realization shown in Figure 2d, 504 

differences between spatial distribution of resonance frequency derived from 1D and 2D wave propagation 505 

modeling. The resonance frequency computed from the 2D ground motion synthetics is very weakly sensitive to 506 

the spatial variation of ground velocity structure compared to that computed from 1D synthetics, except when 507 

strong lateral discontinuities of Vs occur (e.g. at X=65 m in Figure 10e). Although average amplification 508 

computed from 1D and 2D ground motion synthetics are very similar, especially for COV of 5% and 20%, 509 

standard deviation of amplification computed from 2D synthetics are significantly larger (by 15% to 40%) than 510 

the one inferred from 1D synthetics, whatever the COV  value. Such a large increase in standard deviation is 511 

easily explained when looking at the spatial variation of 2D amplification for a single Vs realization (Figure 512 

10b). Amplification variation is either due to large lateral Vs variation prone to efficiently generate (or not) 513 

surface waves (Figures 2b and 10b) or the presence at some receivers of a double amplification peak close to the 514 
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resonance frequency, leading in most cases to an amplitude at the fundamental resonance frequency much lower 515 

than the one at the secondary peak (see Figure 2e for receivers located between X=30 m and X=120 m).  516 

In order to analyze the effect of 2D wave propagation modeling approach compared to the 1D one over the 517 

whole frequency range from 1 Hz to 25 Hz, we computed the ratio between Fourier amplitude spectra obtained 518 

from 2D and 1D ground motion synthetics. Accounting for 2D wave propagation modeling in spatially variable 519 

Vs structure obviously leads to larger amplification at frequencies higher than the fundamental resonance 520 

frequency of the  probabilistic model, except for the frequency range in-between the fundamental and first 521 

higher mode (Figure 11a). This increase in amplification, especially significant for COV=20% and COV=40% 522 

(Figure 11a), is also associated with a higher variability (Figure 11b), which increases with COV.  523 

These observations clearly outline that, although the 1D probabilistic approach may correctly reproduce average 524 

fundamental resonance frequencies and corresponding amplification, it under-predicts ground motion 525 

amplification at high frequencies and related variabilities whose origin relates to the presence of locally 526 

diffracted surface waves. 527 
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 528 

Figure 9: Ratio between the parameter extracted from 2D wave propagation modeling and 1D ones at the 529 

central receiver (left column), and the relative difference between standard deviation of this parameter inferred 530 

from 1D and 2D wave propagation modelling (right column): (a) and (b), average fundamental resonance 531 

frequency (c) and (d) average amplification at the fundamental resonance frequency, (e) and (f) average of the 532 

Arias based intensity, (g) and (h) average of Arias based duration.: (e) fundamental resonance frequency, (f) 533 

average amplification at the fundamental resonance frequency, (d) average of the Arias based intensity, e) 534 

average of Arias based duration. The values of COV, θx and θz are shown with different colors, symbols and 535 

lines, respectively. 536 
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 537 

Figure 10: Comparison of 2D (black line) and 1D modeling (blue line) results for the Vs realization shown in 538 

(e). (a) Fundamental resonance frequency (f0), (b) amplification at f0 (AFf0), (c) Arias based Intensity (AbI) and 539 

(d) Arias based Duration. The test parameter is #5 in Table 1 (COV=20% θx=10m and θz=2m). 540 

6.2. Arias based intensity and duration  541 

Average Arias based intensity and duration inferred from 2D ground motion synthetics are systematically higher 542 

than the ones inferred from 1D synthetics, by a factor of 1.2 to 1.6, whatever the considered COV and 543 

autocorrelation distances (Figures 9c and 9d). The increase in intensity and duration for 2D modeling is simply 544 

explained by the presence of the locally generated surface waves that contaminates the strongest S-wave phase 545 

used in the computation (e.g. see Figure 2b for receivers close to X = 50 m, X = 100 m and X = 130 m and the 546 

corresponding Arias intensity increase intensity in Figure 10c). As a consequence, standard deviation of Arias 547 

based intensity is larger for 2D synthetics compared to 1D ones. Interestingly however, the relative difference 548 

between standard deviation of duration is decreasing with COV, reaching values below one for COV=40%. This 549 

feature is explained by the increase of the duration standard deviation in 1D modelling due to the presence of 550 
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overall very stiff or very soft 1D Vs profiles leading to significant change in the duration of S-wave main pulse 551 

at the surface. This is illustrated in Figure 10d with duration derived from 1D synthetics being short above 552 

overall stiff areas while large above overall soft areas (e.g. at receivers located at X = 10 m or X = 45 m). 553 

 554 

Figure 11: Ratio between the Fourier amplitude spectra computed on 2D and 1D probabilistic ground motion 555 

synthetics: (a) average ratio and (b) standard deviation. Colors and symbols refer to the different test 556 

parameters (Table 1). 557 

6.3. Spatial correlation of indicators  558 

Spatial correlation of scalar indicators for the 100 Vs realizations using 1D motion synthetics have been 559 

computed. Figures 7e, 7f, 7g and 7h display the spatial correlation of the resonance frequency (Δfo), the 560 

corresponding amplification (ΔAFfo), the Arias based intensity (ΔAbI) and the Arias based intensity duration 561 

(ΔAbID), respectively, as a function of ΔX/θx for all models (Table 1). The variability of all indicators increases 562 

linearly until reaching a constant value for ΔX larger than 2θx, over which correlation between signals does not 563 

exist anymore.  The larger variability is systematically observed for larger COV values.  This is consistent with 564 

the control of 1D ground motion synthetics by the locally 1D Vs structures. The 1D f0  variability for all COV 565 

values is larger than that computed for 2D synthetics (compare Figures 7a and 7e) in the range  ΔX/θx < 10. This 566 

is due to the presence of surface waves in the 2D seismograms, which are little sensitive to short scale variations 567 

of locally 1D velocity structure but rather to the homogenized ground structure elastic properties. In contrast, the 568 

variability in AFfo is smaller than that observed for 2D synthetics (compare Figures 7b and 7f) for ΔX/θx > 2, 569 

whatever the value of COV. This could be related to energetic diffracted surface waves and the double 570 

amplification peak close to the resonance frequency, as already mentioned in section 4.1. For ΔX>2θx, the 571 
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spatial variability in AbI computed from 2D synthetics is greater than the one derived from 1D synthetics, while 572 

the opposite is observed for AbID. The larger variability in AbI (Figure 7c) results from the presence of body and 573 

surface waves diffracted at near-surface heterogeneities in the early seismic phase (see Figure 3a).  The lower 574 

variability in AbID (Figure 7d) most probably results from the presence of diffracted surface waves in the 575 

analysis time window leading to large duration as shown in Figure 7d.  576 

 577 

7. Discussion and conclusion 578 

In this paper, the effect of the Vs spatial variability on the surface ground motion is assessed through a set of 579 

numerical computations. A simple elastic 2D velocity structure is used for surface ground motion simulations in 580 

order to solely focus on the effects of Vs variability. Vs is modeled as a random field, considering the coefficient 581 

of variation (COV) and the horizontal and vertical autocorrelation distances (θx and θz, respectively) as 582 

parameters.   583 

We show that spatial variation of shear-wave velocity structure efficiently generate locally diffracted surface 584 

waves. Hence, the fundamental resonance frequency is only very weakly sensitive to the local Vs heterogeneities 585 

while the Arias Intensity and derived duration are clearly increased due to the locally diffracted body and 586 

surface waves that contaminate the most energetic phase. Analysis of synthetic seismograms at a single station 587 

clearly outlines that the coefficient of variation on the shear-wave velocity (COV) mostly controls the variability 588 

of the four ground motion indicators (resonance frequency and corresponding amplification, Arias intensity and 589 

duration), as compared to the horizontal and vertical correlation distances.  590 

  591 
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 592 

 593 

Figure 12. Travel-time distribution (blue thick line) in the soil column below the central receiver for the 100 594 

realizations for (a) model #5 (COV=20%) and (b) model #9 (COV=40%) listed in Table 1. The travel time 595 

computed from the deterministic model (td=0.0705 s) is shown a black dashed line. 596 

As regards spectral amplifications, considering shear-wave spatial variability in the modeling leads to reduce 597 

mean amplification, and conversely to increase variability, at frequencies higher than the site fundamental 598 

resonance frequency,  as also observed in Assimaki et al. (2003). A striking result is the 20% decrease in mean 599 

fundamental resonance frequency (fo) for COV = 40% (Figures 5a and 6a) compared to the resonance frequency 600 

of the deterministic model. This reduction of f0, similarly observed on 1D and 2D ground motion probabilistic 601 

modeling, is related to the Vs random field discretization. Indeed, we calculated the SV waves travel time for the 602 

1D soil columns extracted from 2D Vs realizations for two parameter sets with COV = 20% and COV=40%, 603 

respectively (probabilistic models #5 and #9, Table 1). The SV wave travel time for the deterministic 604 

sedimentary layer is td= 0.0705 s. The travel time for the parameter set having a COV= 20 % (Figure 12a) is 605 

found to be almost normally distributed around td, while log-normally distributed for the parameter set with 606 

COV = 40 % (Figure 12b). In this latter case, a larger number of realizations has travel times exceeding the td, 607 

leading to a reduction of the mean fundamental resonance frequency for the 1D ground motion synthetics. 608 

Although the calculation of travel times for heterogeneous 2D soil models from 1D soil columns is approximate, 609 

these results suggest that long travel times in 2D realizations with COV=40% may be the cause of the resonance 610 

frequency drop. Like other authors for 2D probabilistic modeling (Assimaki et al., 2003; Nour et al.; 2003; 611 

Thompson et al., 2009) or 1D modeling (Li and Assimaki, 2010; Rathje et al., 2010; Rodriguez-Marek et al., 612 

2014; Haji-Soltani et al., 2017), we discretized Vs  because it is the physical parameter that can be measured in 613 

the field. Considering however that seismic wave propagation is primarily controlled by travel time, random 614 
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field discretization on travel time would be the most natural and relevant choice. Although such discretization is 615 

easily achievable for 1D body or surface wave propagation modeling (e.g. Pilz and Parolai, 2014; Teague and 616 

Cox, 2016; Pilz and Fäh, 2017; Teague et al., 2018), it remains more complex for body and surface wave 617 

propagation in 2D heterogeneous medium. 618 

Comparison between spectral amplification obtained from 2D and 1D probabilistic modeling synthetics clearly 619 

outlines that, although both modeling approaches predict similar mean fundamental resonance frequency and 620 

corresponding amplification, 2D wave propagation modeling leads to larger amplification and related variability 621 

at frequencies higher than the fundamental resonance frequencies, especially for large COV, compared to 1D 622 

wave propagation probabilistic modeling approach (Figures 9 and 11). This increase in amplification and 623 

standard deviation is definitely caused by the presence of locally diffracted surface waves in 2D wave 624 

propagation modeling and, hence, questions the reliability of using a population of 1D Vs profiles to account for 625 

spatial variability of the seismic properties as proposed for site-specific hazard assessment (Rathje et al., 2010; 626 

Rodriguez-Marek et al., 2014; Haji-Soltani et al., 2017).  627 

Our results also indicate that the indicator spatial variability increases linearly until reaching a constant value, 628 

with greater variability being systematically observed for larger COV. Effect of horizontal correlation distance, 629 

θx, is only observed for frequency dependent (and thus wavelength dependent) indicators (Fourier amplitude 630 

spectra) when receiver spacing, wavelength and lateral size of heterogeneity (θx) are of the same order. 631 

Interestingly, ground motion indicators (Arias Intensity and derived duration) computed on the strongest seismic 632 

phase dominated by S waves are not anymore spatially correlated for receiver spacing larger than two times the 633 

horizontal correlation distance. This opens up interesting perspectives in measuring horizontal autocorrelation 634 

distances from available seismological recordings at dense array data. Maximum of the spatial correlation of the 635 

natural logarithms of the Fourier amplitude spectra obtained on real data (Abrahamson et al., 1990; Schneider et 636 

al., 1992; Ancheta et al., 2011; Goda and Atkinson, 2008; Liu and Hong, 2015; Koufoudi et al., 2018) is close to 637 

1 whatever the site condition, i.e. larger than the constant value obtained in our numerical simulations. This may 638 

be due to the fact that our modeling is not accounting for 3D wave propagation, attenuation and broadband 639 

seismograms.  640 

To sum up, our study clearly outlines the main control of COV on the spatial variability of surface ground 641 

motion indicators and that stochastic ground motion modeling by using 1D variable soil profiles to account for 642 

spatial variation of ground structure properties will underestimate surface ground motion spatial variability as 643 
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compared to full 2D/3D wave propagation modeling. However, the simple case of a sedimentary layer over a 644 

bedrock does not represent the real site conditions. To confirm our results, further numerical simulations should 645 

be carried out for a set of typical ground structure, considering also attenuation and non-linear soil behavior.   646 

8. Appendices 647 

 648 

Appendix 1 : Synthetic horizontal surface obtained for a homogeneous layer over a half-space for a vertically 649 

incident SV plane wave excitation at the base of the homogeneous layer. Source time function is a delta-like with 650 

flat Fourier amplitude spectrum between 1 and 25 Hz.  Shear-wave velocity in the homogeneous layer is 750 651 

m/s and 1000 m/s in the halfspace. The computational model is 15.5 m along depth axis and (a) 165 m and (b) 652 

750 m width along the horizontal direction. In (b), the computed seismograms are only shown for the 265 653 

central receivers out of 750 receivers. 654 
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 655 

Appendix 2 : Convergence of (a) the average, (b) standard deviation of the Fourier amplitude spectra at various 656 

frequencies and (c) the average (in blue) and standard deviation (in red) of the duration as a function of the 657 

number of realizations for the horizontal velocity for model #9  with a COV=40% θx=10 m and θz=2 m. The 658 

dashed black line shows the 5% convergence criteria. 659 
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 660 

Appendix 3 : The standard deviation of ln(AF) obtained by considering all the receivers locations (dashed line) 661 

and the central receiver of each realization (continuous line) for the model #6 (in blue) having COV=20%, 662 

θz=2m and θx=10m and the model #9 (in green) having COV=40%, θz=2m and θx=10m. 663 

 664 

Appendix 4 : Spatial variation of the two scalar indicators as a function of the receiver spacing ΔX. (a) and (b), 665 

Variation of the differences in fundamental resonance frequency f0 and the related amplification AF using 2D 666 

ground motion synthetics. The values of COV, θx and θz are shown with different colors, symbols and lines, 667 

respectively. 668 
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