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frouvelle@ceremade.dauphine.fr

4 University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
sara.merino@univie.ac.at

University of Sussex, Department of Mathematics, Falmer BN1 9RH, UK,
s.merino-aceituno@sussex.ac.uk

Abstract

In this article we investigate the phase transition phenomena that occur in a model of
self-organisation through body-attitude coordination. Here, the body-attitude of an agent
is modelled by a rotation matrix in R3 as in [14]. The starting point of this study is a
BGK equation modelling the evolution of the distribution function of the system at a kinetic
level. The main novelty of this work is to show that in the spatially homogeneous case,
self-organisation may appear or not depending on the local density of agents involved. We
first exhibit a connection between body-orientation models and models of nematic alignment
of polymers in higher dimensional space from which we deduce the complete description of
the possible equilibria Then, thanks to a gradient-flow structure specific to this BGK model,
we are able to prove the stability and the convergence towards the equilibria in the different
regimes. We then derive the macroscopic models associated to the stable equilibria in the
spirit of [14] and [13].
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1 Introduction

The model studied in the present work is a new elaboration of the work initiated in [14]
to model collective behaviour of agents described by their position and body-attitude. New
results about emergence of phenomena of body-attitude coordination are presented in the
context of a Bhatnagar-Gross-Krook (BGK) model. Such models can be applied to many
biological systems such as flocking birds [37], fish school [35, 36] or sperm motion [20]. These
systems are constituted by a large number of self-propelled agents which move at a constant
speed and try to imitate their neighbours by moving in the same direction and trying to
coordinate their body attitude. The agents are modelled by a moving frame in dimension 3,
i.e. three orthogonal axes, one of which gives the direction of the motion and the two others
the body orientation. In this work, as in [14], the body attitude is modelled by a rotation
matrix in dimension 3, i.e. an element of the special orthogonal group SO3(R). In [17] agents
are modelled by quaternions.

Collective behaviour in many-agent systems has been a thoroughly studied subject in the
mathematical literature, from both theoretical and applied points of view. Among the mod-
els which have received the most attention, one can cite the Cucker-Smale model [10, 31, 47],
attractive-repulsive models [7] or the Vicsek model for self-propelled particles [54]. The
present work belongs to the class of Vicsek-inspired models. Such models have two main
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1 Introduction

distinctive features, first the assumption that the particles are self-propelled and secondly
a geometrical constraint: in the original work of Vicsek, the velocities of the particles have
constant norm and the dynamics therefore takes place on the sphere Sn−1 in dimension n
(n = 2 in [54]). Here the dynamics takes place on the Riemannian manifold SO3(R).

The tools used to study models of collective behaviour are generally borrowed from the
mathematical kinetic theory of gases which gives a mathematical framework to study many-
particle systems. At a microscopic scale, the motion of each particle is detailed (Individual
Based Model, IBM) through Ordinary Differential Equations (ODE) coming from Newton’s
laws or through stochastic processes. When the number of particles is large, the whole sys-
tem is described at a mesoscopic scale by a kinetic partial differential equation such as the
Boltzmann, Fokker-Planck or BGK equation. Finally, large-scale dynamics is described by
macroscopic equations (Euler, Navier-Stokes. . . ). A review of the main results of kinetic
theory of gases can be found in [11]. In particular the BGK equation (for Bhatnagar-Gross-
Krook) was introduced in [3] as a substitute for the Boltzmann equation in the context of
gas dynamics. The BGK operator is a relaxation operator towards a Maxwellian having the
same moments as the distribution function of the system. Its mathematical properties and
relevance in the mathematical kinetic theory of gases have been studied in particular in [49]
and [51]. The BGK operator has been used in a model of collective dynamics of self-propelled
particles in [22]. However, together with [16], it is the first time that it is rigorously studied
in a body-attitude coordination model.

The main mathematical challenge in classical kinetic theory is the rigorous derivation of
the kinetic equations from the IBM and of the macroscopic models from the kinetic equations.
These questions are at the core of Hilbert’s sixth problem and have received much attention
in the last decades. Many different techniques have been developed to derive kinetic equa-
tions from hard-sphere gases (Boltzmann-Grad limit [25, 44]), from systems of interacting
particles (mean-field limit and propagation of chaos [34, 40, 53]) or from stochastic processes
(and in particular jump processes [43, 46]). Some of these techniques have been adapted to
problems arising in the study of collective behaviour [4, 5, 9]. The passage from kinetic equa-
tions to macroscopic models generally depends on physical constraints and in particular on
conservation laws (hydrodynamic limits, Hilbert and Chapman-Enskog methods, see [8, 11]
for a review) and is still an active research field [6, 23, 29, 30]. In the context of self-propelled
particles, due to the lack of conservation laws which normally hold in the classical kinetic
theory of gases, specific tools are needed. In [18], a methodological breakthrough has been
achieved by introducing the so called Generalised Collisional Invariants (GCI) to rigorously
link kinetic and macroscopic equations in the context of collective behaviour of self-propelled
particles. This technique is now rigorously justified [42] and has already been successfully
applied to a wide range of problems [41, 56]. It will be the key here to derive the macroscopic
model in Section 6. This will lead to a system of partial differential equations on the mean
density and body attitude, referred as the Self-Organised Hydrodynamics for Body-attitude
coordination (SOHB) in [14].

The aim of this work is to show the emergence of collective behaviour and self-organisation
which give rise to macroscopic scale patterns such as clusters, travelling bands etc. These
patterns emerge from the collective interactions and are not directly encoded in the behaviour
of the individual particles as described by the IBM. The continuum version of the Vicsek
model [18] named the Self-Organised Hydrodynamics (SOH) model is an exemple of a model
able to describe such emergence of self-organised dynamics. The Vicsek model describes a
system where agents try to imitate their neighbours by adapting their direction of motion to
the average direction of their neighbours. It has been shown that, in a certain scaling and
when the equilibrium of the system is reached, the directions of motion of the agents are not
uniformly distributed but follow a von Mises distribution. For κ ∈ R+ and Ω ∈ Sn−1 the
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1 Introduction

von Mises distribution of parameters κ and Ω is the Probability Density Function (PDF) on
Sn−1 defined by:

MκΩ(ω) :=
eκΩ·ω∫

Sn−1 eκΩ·ω′ dω′
,

where the dot product is the usual dot product in Rn. This model [18] has been the starting
point of many other models of self-organised dynamics, including [14] for the body-attitude
coordination. In this context, we define the von Mises distribution of parameter J ∈M3(R)
(a 3× 3 real matrix) as the following PDF on SO3(R):

MJ(A) :=
eJ·A∫

SO3(R)
eJ·A′ dA′

,

where the dot product and the measure on SO3(R) come from the Riemannian structure of
SO3(R) detailed in Section 3.

In the present work, we focus on phase transition phenomena between non-organised and
organised dynamics (collective motion). We will prove that the spatial density of agents
is the key parameter which encodes the main features of phase transitions: in low density
regions, no self-organised dynamics appears but when the density crosses a critical value,
self-organised dynamics, given by a von Mises distribution for the body-attitude, becomes a
stable equilibria of the system. This phase transition in the dynamics is purely an emergent
phenomena, in the sense that at the macroscopic scale, different equations are required to
describe the dynamics for different values of the density of agents, whereas for the IBM and
at a mesoscopic level, the dynamics is described by one unique (system of) equation(s).

The starting point of this study is the BGK equation

∂tf + (Ae1 · ∇x)f = ρfMJf − f,

where f(t, x,A) is a probability measure which gives the distribution of agents at position
x ∈ R3 with body-orientation A ∈ SO3(R) at time t ∈ R+ and where:

ρf (t, x) =

∫
SO3(R)

f(t, x,A) dA and Jf =

∫
SO3(R)

f(t, x,A)AdA

are the respective local density and flux. The measure on SO3(R) is the normalised Haar
measure, the main properties of which are summarised in Section 3.

The left-hand side of the equation models the transport phenomenon: an agent with
body orientation A ∈ SO3(R) moves in the direction Ae1 where e1 is the first vector of
the canonical basis of R3. The right-hand side of the equation is the BGK operator which
models the interactions between the agents: here we assume that f relaxes towards a “mov-
ing equilibrium” which takes the form of a von Mises distribution. In particular, the von
Mises distribution appears as the analog of the Maxwellian distribution of the classical gas
dynamics. The flux Jf plays the same role as the momentum density for gas dynamics or the
average flux for the Vicsek model. The term ρfMJf can therefore be seen as the analog of
the “Maxwellian distribution with same moments as f” in the context of the BGK equation
for gas dynamics.

The main results of this work are (informally) summarised in the two following theorems.

Theorem 1. Let us consider the spatially homogeneous BGK equation:

∂tf = ρMJf − f,

where ρ ∈ R+ is a given density of agents.
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1 Introduction

1. The equilibria f eq of the spatially homogeneous BGK model are either the uniform
equilibrium f eq = ρ or of the form f eq = ρMαΛ or f eq = ρMαp⊗q where Λ ∈ SO3(R)
and p, q ∈ S2 and where α ∈ R and ρ are linked by a compatibility equation to be defined
later (see Section 4 and equations (20) and (21)).

2. Depending on the density of agents ρ ∈ R+, the only stable equilibria are either the uni-
form equilibrium f eq = ρ or the equilibria of the form f eq = ρMαΛ where Λ ∈ SO3(R)
and where α ∈ R+ is linked to ρ by a compatibility equation to be defined later.

The first point of this theorem is detailed in Section 4 (see in particular Theorem 5 and
Corollary 4.2). The second point is detailed in Section 5 (see in particular Theorem 7). We
will then prove the following result.

Theorem 2 (Formal). Let us consider the rescaled spatially inhomogeneous problem

∂tf
ε + (Ae1 · ∇x)fε =

1

ε

(
ρfεMJfε − f

ε
)
,

where

ρf (t, x) =

∫
SO3(R)

f(t, x,A) dA and Jf (t, x) =

∫
SO3(R)

f(t, x,A)AdA.

1. We assume that in a disordered region, fε converges as ε → 0 towards a density
ρ = ρ(t, x) uniform in the body-attitude variable. Then the density ρε ≡ ρfε satisfies
at first order the following diffusion equation:

∂tρ
ε = ε∇x ·

(
1
3∇xρ

ε

1− ρε

ρc

)
, ρc = 6.

2. We assume that in an ordered region, fε converges as ε → 0 towards an equilibrium
of the form ρMαΛ with ρ ∈ R+, α ∈ R+ and Λ ∈ SO3(R) defined above. Then the
density ρ = ρ(t, x) and mean body attitude Λ = Λ(t, x) ∈ SO3(R) satisfy the SOHB
model given by the following system of partial differential equations:

∂tρ+∇x · (ρc1(α(ρ))Λe1) = 0, (1a)

ρ(∂tΛ + c̃2((Λe1) · ∇x)Λ) + c̃3[(Λe1)×∇xρ]×Λ

+ c4ρ[−rx(Λ)× (Λe1) + δx(Λ)Λe1]×Λ = 0. (1b)

where α = ρc1(α) and c̃2, c̃3, c4 are functions of ρ to be defined later and δ and r are
the “divergence” and “rotational” operators defined in [14] (see Section 6)

This theorem is detailed in Section 6 (see in particular Proposition 6.1 and Theorem 9).

The phase transition problem has been completely treated in the space-homogeneous
case for the Vicsek model in [13] but the geometrical structure inherent to body-orientation
models requires specific tools and techniques. In particular, the rotation group SO3(R) is
a compact Lie group, endowed with a Haar measure. The links between this topological
structure and the Riemannian structure (detailed in Section 3 and Appendix B) will be the
key to reduce the problem to a form that shares structural properties with the models of
nematic alignment of polymers, studied in a completely different context to model liquid
crystals [1, 2, 32, 55, 57]. These two worlds will be formally linked through the isomorphism
between SO3(R) and the group of unit quaternions detailed in Section 4.2 and Appendix A.
It will lead to the first point of Theorem 1 (the complete description of the equilibria, Section
4). As in [55] we will see that there exist a class of equilibria which cannot be interpreted as
equilibria around a mean-body orientation. These equilibria were not studied in [14, 17]. A
key point of the proof will be the reduction to a problem for diagonal matrices which will be
a consequence of the left and right invariance of the Haar measure together with an adapted
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1 Introduction

version of the Singular Value Decomposition of a matrix (Definition 3.2).

The stability of the different equilibria, are studied in Section 5.2. We will show that
our model has an underlying gradient-flow structure which will allow us to determine the
asymptotic behaviour of the system after a reduction to an ODE in R3. This is a specificity
of the BGK model which doesn’t hold for the other models of body-attitude coordination
[14, 17] and allows us to use different and simpler techniques. In particular, we will prove
that the equilibria which cannot be interpreted as equilibria around a mean body-orientation
are always unstable, which tends to justify the analysis carried out in [14] for a model where
only equilibria around a mean body-orientation were considered.

Finally, the SOHB model (Section 6) will be obtained as in [14] by using the GCI. How-
ever, compared to [14], additional terms appear which require a specific treatment and in
particular the coefficient c̃3 that appears in Theorem 2 is different from the one that appears
in [14]. The SOHB model (42) raises many questions, most of which are still open, and its
mathematical and numerical analyses are still in progress. In particular, the hyperbolicity
of the model is currently under study [15] and has been shown when c̃3 is constant.

The organisation of the work is the following: in Section 2 we will give a review of the
existing models at a microscopic and mesoscopic scales and motivate the study of the BGK
equation among them. In Section 3, we gather the main technical results we will constantly
use throughout this work. In Section 4, we will describe, depending on the density, all the
possible equilibria of the system. We will use the tools developed to mathematically study
the alignment of polymers [55, 57]. In Section 5 we will describe the asymptotic behaviour
of the system and in particular which equilibria are attained, leading to a self-organised
dynamics or not. This will be based on a specific underlying gradient-flow structure of the
BGK equation. Finally in Section 6 we will write the macroscopic models for the stable
equilibria.

Notations. For the convenience of the reader, we collect here the main notations we will
use in the following.

• Mn(R) is the set of n× n real matrices.

• Dn(R) ⊂Mn(R) is the subspace of n× n diagonal real matrices.

• Tr(M) denotes the trace of the matrix M ∈Mn(R) and MT its transpose.

• In denotes the identity matrix in dimension n.

• diag : Rn → Dn(R) is the vector space isomorphism such that for (d1, . . . , dn) ∈ Rn,
D = diag(d1, . . . , dn) is the diagonal matrix, the (i, i)-th coefficient of which is equal
to di for i ∈ {1, . . . , n}.

• Sn(R) and An(R) denote respectively the sets of symmetric and skew-symmetric ma-
trices of dimension n.

• SOn(R) is the special orthogonal group in dimension n, i.e. the group of matrices
P ∈Mn(R) such that PPT = In and detP > 0.

• Sn ⊂ Rn+1 is the sphere of dimension n.

• H is the group of unitary quaternions.

• 〈·〉g denotes the mean for the probability density g on SOn(R). We will simply write
〈·〉 when g is the uniform probability (g ≡ 1).

• A will generically be a rotation matrix in SO3(R) and aij its (i, j) coefficient.

• PD(M) is the orthogonal part of the polar decomposition of M ∈ Mn(R) when
detM 6= 0 : there exists a unique couple (PD(M), S) ∈ On(R) × Sn(R) such that

M = PD(M)S. The matrix PD(M) is given by PD(M) = M
(√

MTM
)−1

.
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2 The BGK equation and other related models of self-organisation

• For a matrix M ∈M3(R), the orbit Orb(M) ⊂M3(R) is defined by:

Orb(M) := {PMQ, P,Q ∈ SO3(R)}. (2)

• R+ := [0,+∞), R∗+ := (0,+∞)

2 The BGK equation and other related models of self-
organisation

In this section we give a review of the different existing models of collective dynamics at both
microscopic and mesoscopic levels and emphasise the singularity of the BGK model among
them.

2.1 A review of the different IBM

The rigorous proofs of the two following theorems (Theorems 3 and 4) can be found in [21]
in a more general framework.

At a microscopic level, we fix a reference frame given by the canonical basis (e1, e2, e3) of
R3. The agents are described by their position X ∈ R3 and their body-attitude A ∈ SO3(R)
which can be seen as a moving frame. We assume that an agent with body attitude
A ∈ SO3(R) moves at a constant speed in the direction of the first vector of A : the
instantaneous velocity of the agent is Ae1.

In the following we consider an increasing sequence of jump times (Tn)n such that the
increments between two jumps are independent and follow an exponential law of parameter
N ∈ N∗ (their expectation is 1/N). The N agents are described at time t ∈ R+ by their

positions and body-attitudes ZNt =
{

(Xi,N
t , Ai,Nt )

}
i∈{1,...,N} ∈

(
R3 × SO3(R)

)N
. The inter-

actions between the agents can be modelled by the following Piecewise Deterministic Markov
Process (PDMP) which has already been described heuristically in [16, 22]:

1. Between two jump times (Tn, Tn+1), the systems evolves in a deterministic way:

∀i ∈ {1, . . . , N}, dXi,N
t = (Ai,Nt e1)dt, dAi,Nt = 0.

2. At time Tn+1, a particle i ∈ {1, . . . , N} is chosen uniformly among the N particles. At
time T+

n+1, the new body-orientation of particle i is sampled from the PDF M
Ji
(
ZN
T
−
n+1

)
where for ZN ∈ (R3 × SO3(R))N we define the flux:

J i(ZN ) :=
1

N

N∑
j=1

K
(
|Xi,N −Xj,N |

)
Aj,N ∈M3(R),

and where K is a smooth observation kernel.

The following theorem describes the limiting behaviour of the laws of the particles when
N → +∞ under the assumption that the empirical measure of the N processes converges
(weakly) towards a smooth function f (propagation of chaos property). The equation on f
can be derived as in [16, Section 4.2].

Theorem 3. Let f0 be a probability measure on the space R3×SO3(R) and let ZN0 ∈ (R3×
SO3(R))N be an initial state given by N independent random variables, identically distributed

with law f0. Then for any t ∈ R+, the law fNt of any of one of the processes (Xi,N
t , Ai,Nt )t

7



2 The BGK equation and other related models of self-organisation

at time t converges weakly towards the solution ft of the following BGK equation with initial
condition f0:

∂tf + (Ae1 · ∇x)f = ρfMJK∗f − f

where JK∗f is a matrix-valued function of the space variable x ∈ R3 defined by

JK∗f (x) :=

∫∫
R3×SO3(R)

K(x− y)Af(y,A)dydA ∈M3(R).

In the previous works, the IBM were typically given as in [14] by a system of stochastic
differential equations such as the following:

dXk = Ak(t)e1 dt, (3a)

dAk = PTAk ◦

(( 1

N

N∑
i=1

K(|Xi −Xk|)Ai
)
dt+ 2

√
DdBt

)
. (3b)

where PTAk denotes the projection on the tangent space of SO3(R) at Ak ∈ SO3(R) (see
Section 3). In this case, the resulting equation when N → +∞ is a non-linear Fokker-Planck
equation (see [5] for a rigorous proof in the Vicsek case).

In the spatially homogeneous case, we can take the observation kernel K to be constantly
equal to 1 to prove the mean-field limit. The agents are described at time t ∈ R+ only
by their body-attitudes

{
Ai,N

}
i∈{1,...,N} ∈ SO3(R)N and they follow the following jump

process: at each jump time Tn, compute the flux

JNt =
1

N

N∑
i=1

Ai,Nt ,

choose a particle i ∈ {1, . . . N} uniformly among the N particles and draw the new body-

orientation Ai,N
T+
n

after the jump according to the law given by the PDF MJN
T
−
n

. The following

theorem describes analogously the limiting behaviour of the laws of the particles as N → +∞.

Theorem 4. Let
{
Ai,N0

}
i∈{1,...,N} ∈ SO3(R)N be an initial state given by N independent

random variables, identically distributed according to a law f0 on SO3(R). Then for any

t ∈ R+, the law fNt of any of one of the processes (Ai,Nt )t at time t converges weakly towards
the solution ft of the following spatially homogeneous BGK equation with initial condition
f0:

∂tf = MJf − f.

2.2 A review of the different kinetic equations

The model studied in the present article belongs to a class of models, the study of which
has been initiated in [18] as a continuum version of the Vicsek model [54]. These models
can be classified in two types. First, in the Vicsek-type models, the agents are described by
their orientation defined as a unit vector in Sn−1. In the second type of models, we take into
account their body-orientation, defined as a rotation matrix in SO3(R). Our study enters
into this second framework.

The kinetic version of the Vicsek-type or Body-Orientation-type models is given either
by a Fokker-Planck equation or by a BGK equation. In this work we will focus on the BGK
equation

∂tf + (Ae1 · ∇x)f = ρfMJf − f, (4)

8



2 The BGK equation and other related models of self-organisation

where

ρf (t, x) =

∫
SO3(R)

f(t, x,A) dA and Jf =

∫
SO3(R)

f(t, x,A)AdA.

The Fokker-Planck version of our model corresponds to:

∂tf + (Ae1 · ∇x)f = ∇A ·
[
MJf∇A

(
f

MJf

)]
, (5)

where ∇A and ∇A· are respectively the gradient and the divergence in SO3(R) for the Rie-
mannian structure detailed in Section 3. Apart from the fact that the underlying interaction
process [16, 22] which leads to the BGK model is different from the one that leads to the
Fokker-Planck model, the BGK model is structurally different and can be treated indepen-
dently by using specific and simpler mathematical techniques presented in the next sections.
Nevertheless, the BGK and Fokker-Planck models share important properties. For instance,
the following functional is a free-energy for both the spatially homogeneous BGK equation
and the spatially homogeneous Fokker-Planck equation (though with a different dissipation
term):

F [f ] :=

∫
SO3(R)

f log f − 1

2
|Jf |2. (6)

It satisfies in both cases:
d

dt
F [f ] = −D[f ] ≤ 0,

where D[f ] is the dissipation term which is equal for the BGK model to:

D[f ] =

∫
SO3(R)

(f − ρMJf )(log f − log(ρMJf )) ≥ 0.

In the context of the Vicsek model, this free energy was the key to study the phase transition
phenomena [13] and we believe that the same kind of study can be made in the body-attitude
coordination dynamics modelled by a Fokker-Planck equation (5). Moreover, in the Fokker-
Planck case this dissipation inequality implies a gradient flow structure in the Wasserstein-2
distance which has been studied (in the Vicsek case) in [24]. However, the BGK model has
another underlying gradient-flow dynamics (studied in Section 5) on which the present study
will be based, and we will therefore not use this free-energy in the present work.

Both models (BGK and Fokker-Planck) have a normalised and a non-normalised version.
The model (4) will be referred as the non-normalised BGK model. A normalised model is
a model where the flux Jf is replaced by the orthogonal part of its polar decomposition
Λf := PD(Jf ) as defined in the introduction and under the assumption that det Jf > 0.
The normalised Fokker-Planck model is the model studied in [14]:

∂tf + (Ae1 · ∇x)f = ∇A ·
[
MΛf∇A

(
f

MΛf

)]
.

This terminology comes from the continuum version of the Vicsek model [18] where either
the total flux

Jf =

∫
Sn−1

f(t, x, v)v dv,

or its normalisation

Ωf =

∫
Sn−1 f(t, x, v)v dv∣∣∫
Sn−1 f(t, x, v)v dv

∣∣ ∈ Sn−1,

is considered. A mathematical analysis of the normalised Vicsek model can be found in
[24, 26]. The importance of this distinction in the context of phase transitions has been
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2 The BGK equation and other related models of self-organisation

shown in [13] and [12]: phase transitions appear only in non-normalised models.

The following chart (Figure 1) shows the different models and gives references where they
are studied (when such references exist).

Model

[18, 24, 26]

[5, 12, 13]

[22]

In progress

[14, 16]

In progress

[16]

Present work

Vicsek

Fokker-Planck

Normalised

Non-normalised

BGK
Normalised

Non-normalised

Body-Orientation

Fokker-Planck

Normalised

Non-normalised

BGK
Normalised

Non-normalised

Figure 1: The map of the different models

Finally, in Sections 4 and 5, we will focus on the spatially homogeneous version of the
BGK model (4) given by:

∂tf = ρMJf − f, (7)

where the probability distribution f(t, A) only depends on the body-orientation variable and
time. In the spatially homogeneous case, the local density of agents previously denoted by
ρf does not depend on f in the sense that an initial density ρf0

∈ R+ associated to the initial
distribution f0 is preserved by the dynamics:

∀t ∈ R+, ρf (t) = ρf0
,

as it can be seen by integrating the equation over SO3(R). We therefore take ρ ∈ R+ as
a fixed parameter of the problem. Note also that the well-posedness of (7) directly follows
from Duhamel’s formula:

f(t) = e−tf0 + ρ

∫ t

0

e−(t−s)MJf(s)
ds,

since Jf is given as the solution of the following differential equation on M3(R):

d

dt
Jf = ρ〈A〉MJf

− Jf , Jf (t = 0) = Jf0
,

as it can be seen by multiplying (7) by A and integrating over SO3(R). Note that it contrasts
with the Fokker-Planck case where even the well-posedness of the spatially-homogeneous
equation would require further investigations. This will be part of future work.
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3 Preliminaries: structure and calculus in SOn(R)

3 Preliminaries: structure and calculus in SOn(R)

This paragraph collects the main properties of the Riemannian manifold SOn(R) and other
technical results. In this paragraph n ≥ 3 denotes the dimension, we will mainly consider
the case n = 3 in the next sections.

3.1 Structure and Haar measure on SOn(R)
Lemma 3.1. The following is an inner product on Mn(R) :

A ·B :=
1

2
Tr(ATB), (8)

and the following properties hold:

• Endowed with this metric, SOn(R) is a topological group and a Riemannian manifold.

• The sets Sn(R) and An(R) of symmetric and skew-symmetric matrices are orthogonal
and Mn(R) = Sn(R)⊕An(R).

• For A ∈ SOn(R), the tangent space to SOn(R) at A is denoted by TA and

M ∈ TA if and only if there exists P ∈ An(R) such that M = AP.

The norm on Mn(R) associated to the inner product (8) will be denoted by ‖ · ‖.

The general theory of locally compact topological groups ensures the existence of a Haar
measure µ on SOn(R) which satisfies for all P ∈ SOn(R) and all Borel set E of the Borel
σ-algebra of SOn(R):

µ(PE) = µ(EP ) = µ(E),

where PE = {PA, A ∈ E} and EP = {AP, A ∈ E}. We will assume that µ is the unique
Haar measure which is a probability measure and simply write∫

SOn(R)

f(A) dµ(A) ≡
∫
SOn(R)

f(A) dA.

As a consequence if P ∈ SOn(R), A 7→ PA and A 7→ AP are two changes of variable with
unit Jacobian. We will constantly use the following changes of variable :

Definition 3.1 (Useful changes of variable). Let us define the following matrices:

• For i 6= j ∈ {1, . . . , n}, Dij ∈ SOn(R) is the diagonal matrix such that all its coefficients
are equal to 1 except at positions i and j where they are equal to −1.

• For i 6= j ∈ {1, . . . , n}, P ij ∈ SOn(R) is the matrix such that P ijii = P ijjj = 0, P ijkk = 1

for k 6= i, j, P ijij = 1 and P ijji = −1. The other coefficients are equal to 0.

Then we define the following changes of variable with unit Jacobian:

• A′ = DijA multiplies the rows i and j by −1. Everything else remains unchanged.

• A′ = ADij multiplies the columns i and j by −1. Everything else remains unchanged.

• A′ = DijADij multiplies the elements (k, i), (k, j) and (i, k), (j, k) by −1 for k 6= i, j.
Everything else remains unchanged

• A′ = P ijA multiplies row i by −1 and permutes the rows i and j.

• A′ = P ijA(P ij)T exchanges the diagonal coefficients (i, i) and (j, j) (and involves other
changes).

The two following lemmas are important applications of these results.
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3 Preliminaries: structure and calculus in SOn(R)

Lemma 3.2. Let D ∈Mn(R) be a diagonal matrix and MD the von Mises distribution with
parameter D, then

〈A〉MD
:=

∫
SO3(R)

AMD(A) dA

is diagonal.

Proof. Let k 6= ` and m 6= k, `. The change of variable A 7→ DkmADkm gives:∫
SOn(R)

ak,` e
D·A dA = −

∫
SO3(R)

ak,` e
D·A dA = 0,

where we have used that Dk,mDDk,m = D.

Lemma 3.3. For any n ≥ 3 and any J ∈Mn(R),∫
SOn(R)

(J ·A)AdA =
1

2n
J.

Lemma 3.4. Let n ≥ 3, n 6= 4. Let g : SOn(R) → R such that for all A,P ∈ SOn(R),
g(A) = g(AT ) = g(PAPT ). For all J ∈Mn(R) we have:∫

SOn(R)

(J ·A)Ag(A) dA = aTr(J)In + bJ + cJT ,

for given a, b, c ∈ R depending on g and on the dimension, the expressions of which can be
found in the proof.

The proof of these lemmas and other technical results about SO3(R) and SOn(R) are
postponed to Appendix B.

3.2 Volume forms in SO3(R)
When an explicit calculation will be needed, we will use one of the two following parametri-
sations of SO3(R) which give two explicit expressions of the normalised Haar measure in
dimension 3.

• To a matrix A ∈ SO3(R) there is an associated angle θ ∈ [0, π] and a vector n ∈ S2

such that A is the rotation of angle θ around the axis n. Rodrigues’ formula gives a
representation of A knowing θ and n = (n1, n2, n3) :

A = A(θ,n) = I3 + sin θ[n]× + (1− cos θ)[n]2× = exp(θ[n]×), (9)

where

[n]× :=

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 ,

and we have:
[n]2× = n⊗ n− I3.

If f(A(θ,n)) = f̄(θ,n) the volume form of SO3(R) is given by:∫
SO3(R)

f(A) dA =
2

π

∫ π

0

sin2(θ/2)

∫
S2

f̄(θ,n) dn dθ.

With the usual parametrisation of the sphere S2 we can take n = (n1, n2, n3)T with n1 = sinψ cosϕ,
n2 = sinψ sinϕ,
n3 = cosψ,
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where ψ ∈ [0, π] and ϕ ∈ [0, 2π]. The volume form for the sphere is given by:

dn =
1

4π
sinψdψdϕ.

• We have the following one to one map :

Ψ :

∣∣∣∣ SO2(R)× S2 −→ SO3(R)
(A, p) 7−→ M(p)Aa

(10)

where

Aa :=

(
A 0
0 1

)
∈ SO3(R),

and for p = (sinφ1 sinφ2, cosφ1 sinφ2, cosφ2)T in spherical coordinates φ1 ∈ [0, 2π]
and φ2 ∈ [0, π], we define:

M(p) :=

 cosφ1 sinφ1 cosφ2 sinφ1 sinφ2

− sinφ1 cosφ1 cosφ2 cosφ1 sinφ2

0 − sinφ2 cosφ2

 ∈ SO3(R).

The matrix Aa performs an arbitrary rotation of the first 2 coordinates and the matrix
M(p) ∈ SO3(R) maps the vector e3 to p ∈ S2. A matrix A ∈ SO3(R) can thus be
written as the product: cosφ1 sinφ1 cosφ2 sinφ1 sinφ2

− sinφ1 cosφ1 cosφ2 cosφ1 sinφ2

0 − sinφ2 cosφ2

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


where φ1, θ ∈ [0, 2π] and φ2 ∈ [0, π]. With this parametrisation:

∫
SO3(R)

f(A)dA =
1

2π

∫ 2π

0

∫
S2

f

M(p)

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 dθ dp, (11)

and the volume form on the sphere is given by:

dp =
1

4π
sinφ2 dφ1 dφ2.

This parametrisation can be extended in any dimension and comes from the Lie groups
quotient:

SOn(R)

SOn−1(R)
∼= Sn−1.

3.3 Singular Value Decomposition (SVD)

We recall the following classical result proved in [50, Section 1.9].

Proposition 3.1 (Singular Value Decomposition, SVD). Any square matrix M ∈ Mn(R)
can be written:

M = PDQ

where P,Q ∈ On(R) and D diagonal with nonnegative coefficients listed in decreasing order.

In order to use the properties of the Haar measure, we will need the matrices P and Q to
belong to SO3(R) (not only O3(R)) and we define therefore another decomposition, called
the Special Singular Value Decomposition (SSVD) in the following.
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4 Equilibria of the BGK operator

Definition 3.2 (SSVD in SO3(R)). Let M ∈M3(R). A Special Singular Value Decomposi-
tion (SSVD) of M is a decomposition of the form

M = PDQ

where P,Q ∈ SO3(R) and D = diag(d1, d2, d3) with

d1 ≥ d2 ≥ |d3|.

The existence of a SSVD follows from Proposition 3.1. Let us start from a SVD

M = P ′D′Q′.

• If detM > 0, either P ′, Q′ ∈ SO3(R) and the SVD is a SSVD or P ′, Q′ have both
negative determinant and in this case we can take

P = P ′D̃, Q = D̃Q′ and D = D′

where D̃ = diag(1, 1,−1).

• If detM < 0, either P ′ ∈ SO3(R) or Q′ ∈ SO3(R) (only one of them). Assume without
loss of generality that Q′ ∈ SO3(R). Then we can take:

P = P ′D̃, D = D̃D and Q = Q′.

• If detM = 0, then the last coefficient of D′ is equal to 0 so D̃D′ = D′ and D′D̃ = D′.
We can take D = D′. If P ′ /∈ SO3(R) we can take P = P ′D̃ and if Q′ /∈ SO3(R) we
can take Q = D̃Q′.

Remark 3.1. As for the polar decomposition and the standard SVD, the matrix D is always
unique. However the matrices P and Q may not be unique.

The subset D ⊂M3(R) of the diagonal matrices which are the diagonal part of a SSVD
is the cone delimited by the image by the isomorphism diag of the three planes {d1 = d2},
{d2 = d3} and {d2 = −d3} in R3 and depicted in Figure 3 :

D = diag(d1, d2, d3) ∈ D if and only if d1 ≥ d2 ≥ |d3|. (12)

4 Equilibria of the BGK operator

In this section we determine the equilibria for the BGK operator:

QBGK(f) := ρMJf − f, (13)

that is to say the distributions f such that QBGK(f) = 0. In Section 4.1 we characterise
these equilibria (Theorem 5) and show that for them to exist, compatibility equations must
be fulfilled. These compatibility equations depend on the density ρ. Therefore, for different
values of the density ρ, there exists different equilibria. These will be determined in Section
4.2 by studying the compatibility equations. A full description of the equilibria of the BGK
operator is finally given in Corollary 4.2.

4.1 Characterisation of the equilibria and compatibility equations

The main result of this section is Theorem 5 which gives all the equilibria of the BGK
operator (13). Before stating and proving it we will need the following lemma which is the
analog of lemma 4.4 in [14]. The proof of this lemma is an application of the results presented
in Section 3.
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4 Equilibria of the BGK operator

Lemma 4.1 (Consistency relations). The following holds:

(i) There exists a function c1 = c1(α) defined for all α ∈ R such that for all Λ ∈ SO3(R),

c1(α)Λ = 〈A〉MαΛ
. (14)

The function c1 can be explicitly written c1(α) = 1
3

{
(2 cos θ + 1)

}
α

where {·}α denotes
the mean with respect to the probability density

θ ∈ [0, π] 7−→ sin2(θ/2)eα cos θ∫ π
0

sin2(θ′/2)eα cos θ′ dθ′
. (15)

(ii) Consider the set B ⊂M3(R) defined by:

B :=

B = P

 1
0

0

Q, P,Q ∈ SO3(R)

 = {p⊗ q, p, q ∈ S2}.

There exists a function c2 = c2(α) defined for all α ∈ R such that for all B ∈ B,

c2(α)B = 〈A〉MαB
. (16)

The function c2 can be explicitly written: c2(α) = [cosφ]α, where [·]α denotes the mean
with respect to the probability density

ϕ ∈ [0, π] 7−→ sinϕe
α
2 cosϕ∫ π

0
sinϕ′ e

α
2 cosϕ′ dϕ′

. (17)

Remark 4.1. The relevance of the set B will become apparent in Proposition 4.2.

Proof. (i) Using the left invariance of the Haar measure, it is enough to prove the result
for Λ = I3, since

〈A〉MαΛ =

∫
SO3(R)

AeαA·Λ dA∫
SO3(R)

eαΛ·A dA
= Λ

∫
SO3(R)

ΛTAeαΛTA·I3 dA∫
SO3(R)

eαΛTA·I3 dA
= Λ〈A〉MαI3

.

When Λ = I3, Lemma 3.2 first ensures that 〈A〉MαI3
is diagonal, then the change of

variable A′ = P 12A(P 12)T (see Definition 3.1) shows that:

〈a11〉MαI3
= 〈a22〉MαI3

.

Proceeding analogously with the other coefficients we have that 〈A〉MαI3
is proportional

to I3, i.e. there exists c1 = c1(α) ∈ R such that

c1(α)I3 = 〈A〉αI3 . (18)

The parametrisation of SO3(R) using Rodrigues’ formula (9) then gives the explicit
expression of c1 by taking the trace in Equation (18) and using that for A = A(θ,n),
Tr(A) = 2 cos θ + 1.

(ii) As before, using the left and right invariance of the Haar measure it is enough to
prove the result for B = diag(1, 0, 0). Now if D = diag(a, b,−b) for a, b ∈ R, then the
change of variable A 7→ P 23A(P 23)T followed by the change of variable A 7→ D23A (see
Definition 3.1) show that∫

SO3(R)

a22e
D·A dA = −

∫
SO3(R)

a33e
D·A dA,
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which proves with lemma 3.2 that 〈A〉MD
is diagonal of the form diag(ã, b̃,−b̃) for

ã, b̃ ∈ R. Similarly, if D = diag(a, b, b) then 〈A〉MD
is of the form diag(ã, b̃, b̃). These

two results prove that 〈A〉MαB
is proportional to B, i.e. there exists c2 = c2(α) ∈ R

such that (16) holds. The parametrisation of SO3(R) coming from the isomorphism
(10) then gives the explicit expression of c2 by taking B = diag(1, 0, 0) in Equation
(16). First, using the change of variable A 7→ P 13A(P 13)T it holds that,

c2(α) =
1

Z

∫
SO3(R)

a11e
α
2 a11 dA =

1

Z

∫
SO3(R)

a33e
α
2 a33 dA

where

Z =

∫
SO3(R)

e
α
2 a11 dA =

∫
SO3(R)

e
α
2 a33 dA.

Then, using the parametrisation (11), it follows that:

c2(α) =

∫ π
0

cosϕ sinϕe
α
2 cosϕ dϕ∫ π

0
sinϕe

α
2 cosϕ dϕ

.

Remark 4.2. We could alternatively use one of the two parametrisations of SO3(R) given
in Section 3.2 or the quaternion formulation to prove that 〈A〉αI3 and 〈A〉αB are proportional
to I3 and B. However, the proof that we have just presented here holds in any dimension
(the value of the constants c1(α) and c2(α) depends on the dimension but not the form of
the matrices) whereas the volume forms and the quaternion formulation strongly depend on
the dimension n = 3.

We can now state the main result of this section:

Theorem 5 (Equilibria for the homogeneous Body-Orientation BGK equation). Let ρ ∈ R+

be a given density. The equilibria of the spatially homogeneous BGK equation (7) are the
distributions of the form f = ρMJ where J ∈M3(R) is a solution of the matrix compatibility
equation:

J = ρ〈A〉MJ
. (19)

The solutions of the compatibility equation (19) are:

1. the matrix J = 0,

2. the matrices of the form J = αΛ with Λ ∈ SO3(R) and where α ∈ R satisfies the scalar
compatibility equation

α = ρc1(α), (20)

3. the matrices of the form J = αB where B ∈ B and where α ∈ R satisfies the scalar
compatibility equation

α = ρc2(α), (21)

where the set B and the functions c1 and c2 are defined in Lemma 4.1.

Remark 4.3. Notice that the existence of a non-zero solution for the scalar compatibility
equations (20) and (21) is not guaranteed for all values of ρ > 0 . The existence of non-
zero solutions for these equations will be explored in Section 4.2. They will determine the
existence of equilibria for Equation (7) for a given value of ρ (Corollary 4.2).

Remark 4.4. The fact that these matrices are solutions of the matrix compatibility equation
(19) follows directly from the consistency relations (14) and (16) as it will be shown in the
proof of Theorem 5. The main difficulty of the proof is therefore the necessary condition: we
will prove that a solution of the matrix compatibility equation (19) is necessarily of one of
the forms listed in Theorem 5.
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The proof of this theorem will use the two following propositions. The first one and its
corollary (Proposition 4.1 and Corollary 4.1) show that the compatibility equation (19) can
be reduced to a compatibility equation on diagonal matrices (equation (22)). The second
one (Proposition 4.2) provides a necessary condition for a diagonal matrix to be a solution
of (22). The proof of Proposition 4.2 is deferred to the next section.

Proposition 4.1 (Orbital reduction). The following equivalence holds: J ∈ M3(R) is a
solution of the matrix compatibility equation (19) if and only if for all J ′ ∈ Orb(J), J ′ is a
solution of the matrix compatibility equation (19).

Proof. This is a consequence of the left and right invariance of the Haar measure which
ensures that for any J ∈M3(R) and any P,Q ∈ SO3(R) :

〈PAQ〉MJ
= 〈A〉MPJQ.

Since the diagonal part of the SSVD of a matrix J is in the orbit of J , we obtain the
following corollary:

Corollary 4.1 (Reduction to diagonal matrices). Let J ∈ M3(R) with SSVD given by
J = PDQ. The following equivalence holds: J is a solution of (19) if and only if D is a
solution of (19).

We will therefore consider only the following problem in dimension 3: find all the diagonal
matrices D ∈M3(R) such that {

D = ρ〈A〉MD

D ∈ D ,
(22)

where the set D is the subset of diagonal matrices which are the diagonal part of a SSVD
and is defined by (12). Notice that Equation (22) is just Equation (19) restricted to the
set D .

Remark 4.5. The diagonal part D ∈M3(R) of a SSVD of a matrix J ∈M3(R) is unique
so the problems (19) and (22) are equivalent. Notice that there might be other diagonal
matrices in Orb(J) (take for example J diagonal which does not satisfy the conditions (12)).
However the diagonal part of any SSVD of these matrices is D : the diagonal part of the
SSVD characterises the orbit of a matrix. In the following, we will find all the diagonal
solutions of (19) (i.e. the solutions of (22) without the restriction D ∈ D) and then only
consider the ones which belong to D . For instance we will see that there are solutions of (19)
of the form diag(0,−α, 0) where α > 0. The diagonal part of their SSVD is diag(α, 0, 0) and
is a solution of (22).

Remark 4.6. A diagonal solution D of the matrix compatibility equation (19) verifies that
D/ρ belongs to the set:

Ω =
{
D = diag(d1, d2, d3), ∃ f ∈ P(SO3(R)), Jf = D

}
⊂ D3(R),

where P(SO3(R)) is the set of probability measures on SO3(R). The set diag−1(Ω) ⊂ R3 is
exactly the tetrahedron T defined as the convex hull of the points (±1,±1,±1) with an even
number of minuses (which we will call Horn’s tetrahedron). It is a consequence of Horn’s
theorem [39, Theorem 8] which states that T is exactly the set of vectors which are the
diagonal of an element of SO3(R). It ensures that if f is a probability measure, we have by
convexity of T : ∫

SO3(R)

f(A)AdA ∈ diag(T )

and therefore diag−1(Ω) ⊂ T . Conversely, taking the Dirac deltas δI3 and similarly for the
other vertices of T , we see that the four vertices of Horn’s tetrahedron belong to diag−1(Ω).
Since Ω is convex, we conclude that T ⊂ diag−1(Ω).

17



4 Equilibria of the BGK operator

The diagonal solutions of the matrix compatibility equation (19) satisfy the following
necessary condition.

Proposition 4.2. The diagonal solutions of the compatibility equation (19) are necessarily
of one of the following the types :

(a) D = 0.

(b) D = α diag(±1,±1,±1) with an even number of minus signs and where α ∈ R \ {0}.
If α ∈ (0,+∞), the diagonal part of the SSVD of these diagonal matrices is equal to
D = αI3.
If α ∈ (−∞, 0), the diagonal part of the SSVD of these diagonal matrices is equal to
D = α diag(−1,−1, 1) = |α|diag(1, 1,−1).

(c) D = α diag(±1, 0, 0) and the matrices obtained by permutation of the diagonal coeffi-
cients and where α ∈ R \ {0}.
The diagonal part of the SSVD of these diagonal matrices is equal to D = diag(|α|, 0, 0).

Section 4.2 will be devoted to the proof of this proposition. We are now ready to prove
Theorem 5.

Proof (of Theorem 5). An equilibria of the BGK equation is of the form

f = ρMJ ,

where
J = Jf = ρ〈A〉MJ

.

It is straightforward to check that J = 0 is a solution of (19). Now, let D a matrix of one
the form described in Proposition 4.2 with a parameter α ∈ R. For instance, for a matrix of
type (c) like D = α diag(0,−1, 0), thanks to Lemma 4.1 we have:

D = ρ〈A〉MD
⇐⇒ D = ρc2(α) diag(0,−1, 0) ⇐⇒ α = ρc2(α).

Similarly for the other diagonal matrices of type (c), we prove that they are solution of the
matrix compatibility equation (19) if and only if their parameter α ∈ R is solution of the
scalar compatibility equation (21). Analogously one can check that the diagonal matrices of
type (b) are solutions of the matrix compatibility equation (19) if and only if their parameters
α ∈ R are solutions of the scalar compatibility equation (20). This yields all the diagonal
solutions of (19). Now, the solutions of (19) are exactly the matrices J ∈ Orb(D) where D
is a diagonal solution of (19) and the set Orb(D) ⊂M3(R) is the orbit of D defined in the
introduction. We conclude by noticing that if D is of type (b) then Orb(D) = SO3(R) and
if D is of type (c) then Orb(D) = B.

Remark 4.7. When applied to diagonal matrices, the last part of Theorem 5 states that
the diagonal solutions of (19) are necessarily of one of the types (a), (b) or (c) defined in
Proposition 4.2 and that, it holds that

1. the matrix 0 is always a solution of (19),

2. a matrix of type (b) is a solution of (19) iff its parameter α ∈ R \ {0} satisfies (20),

3. a matrix of type (c) is a solution of (19) iff its parameter α ∈ R \ {0} satisfies (21).

4.2 Proof of Proposition 4.2

The proof of Proposition 4.2 is based on two results. The first one has been proved in [55,
Section 4] to study the nematic alignment of polymers in higher dimensional spaces:
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4 Equilibria of the BGK operator

Theorem 6 ([55]). Let n ≥ 3, b ∈ R+ and s = (s1, s2, . . . , sn) ∈ Rn a solution of the
nonlinear system

sj = 〈m2
j 〉gs,b , j = 1, . . . , n, (23)

where the average is taken with respect to the PDF on the sphere Sn−1 :

gs,b(m1, . . . ,mn) :=
1

Z
exp

b n∑
j=1

sjm
2
j

 , (24)

where Z is the normalisation constant which ensures that gs,b is a PDF on the sphere Sn−1.
Then Card{s1, s2, . . . , sn} ≤ 2.

The second tool that we will use to prove Proposition 4.2 is an isomorphism between
SO3(R) and the space of unitary quaternions which transforms the compatibility equation
(22) into the compatibility equation (23) studied in Theorem 6.

Proposition 4.3.

1. There is an isomorphism between the group SO3(R) and the quotient group H/ ± 1,
where H is the group of unit quaternions. Since H is homeomorphic to S3, there is an
isomorphism Φ :

Φ : S3/± 1 −→ SO3(R).

Moreover Φ is an isometry in the sense that it maps the volume form of S3/±1 (defined
as the image measure of the usual measure on S3 by the projection on the quotient space)
to the volume form on SO3(R): for all measurable function f on SO3(R),∫

S3/±1

f
(
Φ(q)

)
dq =

∫
SO3(R)

f(A) dA.

2. There is a linear isomorphism between the vector space M3(R) and the vector space
S 0

4 (R) of trace free symmetric matrices of dimension 4:

φ : M3(R) −→ S 0
4 (R),

such that for all J ∈M3(R), and q ∈ H/± 1,

1

2
J · Φ(q) = q · φ(J)q.

The first dot product is defined by Equation (8) and the second one is the usual dot
product in R4.

3. For all q ∈ H/± 1, it holds that φ
(
Φ(q)

)
= q ⊗ q − 1

4I4.

4. The isomorphism φ preserves the diagonal structure: if D = diag(d1, d2, d3) then,

φ(D) =
1

4


d1 + d2 + d3 0 0 0

0 d1 − d2 − d3 0 0
0 0 −d1 + d2 − d3

0 0 −d1 − d2 + d3


and if Q = diag(s1, s2, s3, s4) with s1 + s2 + s3 + s4 = 0, then

φ−1(Q) = 2

 s1 + s2 0 0
0 s1 + s3 0
0 0 s1 + s4

 .

The proof of this proposition can be found in appendix A. We are now ready to prove
Proposition 4.2.
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Proof (of Proposition 4.2). Using the first and second points of Proposition 4.3, it holds
that ∫

SO3(R)

AeA·D dA =

∫
S3/±1

Φ(q)eΦ(q)·D dq =

∫
S3/±1

Φ(q)e2q·φ(D)q dq.

The compatibility equation (22) then becomes:

D =
ρ

Z

∫
S3/±1

Φ(q)e2q·φ(D)q dq.

Applying the isomorphism φ defined in Proposition 4.3 to this last equation, we obtain thanks
to the third point of Proposition 4.3 :

φ(D) =
ρ

Z

∫
S3/±1

φ
(
Φ(q)

)
e2q·φ(D)q dq =

ρ

Z

∫
S3/±1

(
q ⊗ q − 1

4
I4

)
e2q·φ(D)q dq.

Using the fourth point of Proposition 4.3, we then obtain the following equivalent problem:
find all the trace-free diagonal matrices Q = diag(s1, s2, s3, s4) of dimension 4 such that

Q = ρ

∫
S3/±1

e
∑4
i=1 2siq

2
i (q ⊗ q − 1

4I4) dq

Z
,

where Z is a normalisation constant:

Z :=

∫
S3/±1

e
∑4
i=1 2siq

2
i dq.

Equivalently, defining for i ∈ {1, 2, 3, 4} :

s′i :=
si
ρ

+
1

4
,

we want to solve the system of compatibility equations:

s′i =

∫
S3/±1

q2
i gs′,2ρ(q) dq, i = 1, 2, 3, 4, (25)

where s′ = (s′1, s
′
2, s
′
3, s
′
4) and gs′,2ρ is given by (24). Thanks to Theorem 6, we conclude

that if s′ is a solution of (25), then the coefficients s′1, s
′
2, s
′
3, s
′
4 can take at most two distinct

values. So, the same result holds for the coefficients s1, s2, s3, s4. Now thanks to the fourth
point of Proposition 4.3, we only have the following possibilities:

• if s1 = s2 = s3 = s4 = 0, then
D = φ−1(Q) = 0,

• if s1 = 3α/4 and s2 = s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = αI3,

• if s2 = 3α/4 and s1 = s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = α

 1 0 0
0 −1 0
0 0 −1

 ,

and similarly by permuting the diagonal elements when s3 = 3α/4 and when the other
elements are equal s1 = s2 = s4 = −α/4 or when s4 = 3α/4 and s1 = s2 = s3 = −α/4,
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4 Equilibria of the BGK operator

• if s1 = s2 = α/4 and s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = α

 1 0 0
0 0 0
0 0 0

 ,

and similarly by permuting the diagonal elements when s1 = s3 = α/4 and when
s2 = s4 = −α/4 or s1 = s4 = α/4 and s2 = s3 = −α/4.

The computation of the SSVD for these matrices is an easy computation. This concludes
the proof of Proposition 4.2.

4.3 Determination of the equilibria for each density ρ

In Theorem 5 we saw that the BGK operator can have three types of equilibria. The uniform
equilibria f = ρ (corresponding to J = 0) is always an equilibrium. However, the existence
of the other two types of equilibria depends on Equations (20) and (21) having a solution
for a given ρ. Therefore the existence of these types of equilibria will depend on the value of
ρ. In this section we will determine the existing equilibria for each value of ρ. In particular,
we will draw the phase diagram for ρ and α, that is to say the parametrised curves defined
by Equations (20) and (21) in the plane (ρ, α) (see Figure 2). We first prove the following
proposition.

Proposition 4.4. Let ρc := 6.

(i) The function α 7→ α/c1(α) is well-defined on R, its value at zero is ρc. Moreover,
there exists α∗ > 0 such that this function is decreasing on (−∞, α∗] and increasing on
[α∗,+∞). Defining ρ∗ := α∗/c1(α∗), it holds that ρ∗ < ρc.

(ii) The function α 7→ α/c2(α) is even. It is decreasing on (−∞, 0), increasing on (0,∞)
and its value at zero is ρc.

(iii) We have the following asymptotic behaviours:

α

c1(α)
∼

α→+∞
α+ 1,

α

c2(α)
∼

α→+∞
α+ 2.

Proof. The idea of the proof is taken from [55].

(i) Since
d

dθ

{
sin2(θ/2) sin θ

}
= sin2(θ/2)(1 + 2 cos θ),

an integration by parts shows that:

α

c1(α)
= 3

∫ π
0

sin2(θ/2)eα cos θ dθ∫ π
0

sin2(θ/2) sin2 θeα cos θ dθ
=

3

{sin2 θ}α
.

It proves that α and c1(α) have the same sign for all α ∈ R. Then we define function
m : α 7→ {sin2 θ}α = 3c1(α)/α which satisfies the property:

m′(α) = 0 =⇒ m′′(α) < 0,

since
m′(α) = {sin2 θ cos θ}α − {sin2 θ}α{cos θ}α,

and
m′′(α) = −Varα(cos2 θ)− 2{cos θ}αm′(α),
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4 Equilibria of the BGK operator

where Varα is the variance for the probability density (15). This property implies
that α/c1(α) has only one critical point which is a global minimum. This minimum
is attained at a point α∗ > 0 as a simple computation shows that m′(0) > 0 and
consequently ρ∗ < ρc. A simple computation gives m(0) = 1

2 so ρc = 6.

(ii) We have similarly:

α

c2(α)
= 4

∫ π
0

sinϕe
α
2 cosϕ dϕ∫ π

0
sin3 ϕe

α
2 cosϕ dϕ

=
4

[sin2 ϕ]α
, (26)

from which we can easily see that α 7→ α/c2(α) is even and has only one minimum
attained at α = 0. A simple computation shows that its value at 0 is ρc = 6.

(iii) The behaviour at infinity is obtained by Laplace’s method: with the change of variable
s = 1− cos θ on [0, π], we get

α

c1(α)
= 3

eα
∫ 2

0
e−αs s

2
√

1−(1−s)2
ds

eα
∫ 2

0
e−αs s2

√
1− (1− s)2 ds

∼
α→+∞

α+ 1.

With the same method we have:

α

c2(α)
= 4

∫ 2

0
e−

α
2 s ds∫ 2

0
e−

α
2 s(1− (1− s)2) ds

∼
α→+∞

α+ 2.

Thanks to Proposition 4.4 and Theorem 5 we can now fully describe the equilibria of
the BGK operator. A graphical representation of this result is given by the phase diagram
depicted in Figure 2 :

Corollary 4.2 (Equilibria of the BGK operator, depending on the density ρ). The set of
equilibria of the BGK operator (13) depends on the value of ρ. In particular we need to
distinguish three regions ρ ∈ (0, ρ∗), ρ ∈ (ρ∗, ρc) and ρ > ρc where ρ∗ and ρc are defined in
Proposition 4.4. We have the following equilibria in each region:

• For 0 < ρ < ρ∗, α = 0 is the unique solution of Equations (20) and (21) and therefore
the only equilibrium is the uniform equilibrium f eq = ρ.

• For ρ = ρ∗, in addition to the uniform equilibrium, there is a family of anisotropic
equilibria given by f eq = ρ∗Mα∗Λ where Λ ∈ SO3(R) and α∗ = ρ∗c1(α∗).

• For ρ∗ < ρ < ρc, the compatibility equation (20) has two solutions α+ and α− with
0 < α− < α+ which give, in addition to the uniform equilibrium, two families of
anisotropic equilibria : f eq = ρMα+Λ and f eq = ρMα−Λ with Λ ∈ SO3(R).

• For ρ = ρc, we have α− = 0.

• For ρ > ρc, Equation (20) has two solutions α3 < 0 < α1 which give two families of
anisotropic equilibria f eq = ρMα3Λ and f eq = ρMα1Λ with Λ ∈ SO3(R). Moreover,
Equation (21) has two solutions −α2 < 0 < α2 which give another family of equilibria:
f eq = ρMα2B where B ∈ B. The uniform equilibrium is always an equilibrium.

When an equilibrium is of the form f eq = ρMαΛ with parameters α > 0 and Λ ∈ SO3(R)
then these parameters can respectively be interpreted as a concentration parameter and a
mean body-orientation. They are analogous to the equilibria found in [13] in the Vicsek case.
However, in SO3(R), there exist other equilibria which are not of this form. We will see in
Section 5 that these latter equilibria are always unstable.
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4 Equilibria of the BGK operator

Figure 2: Phase diagram for the equilibria of the BGK operator (13). Depending on the
density, there are one, two, three or four branches of equilibria (α2 and −α2 give the same
orbit). The uniform equilibrium f eq = ρ is always an equilibrium (corresponding to α = 0,
depicted in green). The equilibria of the form f eq = ρMαΛ, Λ ∈ SO3(R) exist for ρ > ρ∗ and
correspond to the two branches of the red curve α = ρc1(α). Finally the equilibria of the
form f eq = ρMαB , B ∈ B exist for ρ > ρc and correspond to the two branches of the blue
curve α = ρc2(α). The dotted and dashed lines correspond to unstable equilibria (as shown
in Section 5). The signs are the signature of the Hessian matrix HessV (D) defined in Section
5 taken at an equilibrium point. The elements α∗, ρ∗ and ρc are defined in Proposition 4.4;
the elements α+, α−, α1, α2 and α3 are given in Corollary 4.2.

Finally the following picture (Figure 3) is a representation in the space R3 of the diagonal
parts of the SSVDs of the solution of the matrix compatibility equation (19) when ρ > ρc.
They all belong to the domain D defined by (12) and depicted in orange in Figure 3.
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5 Convergence to equilibria

Figure 3: The 4 diagonal parts of the SSVDs of the diagonal equilibria seen as elements of
the space R3 for ρ > ρc, as described in Corollary 4.2. The ones with non zero determinant
are in red (type (b) in Proposition 4.2), the non-zero one with determinant equal to zero is in
blue (type (c)) and the matrix 0 is in green. They all lie in the domain diag−1(D) depicted
in orange and delimited by the three blue planes {d1 = d2}, {d2 = d3} and {d2 = −d3}.

5 Convergence to equilibria

Now that we know all the equilibria of the spatially homogeneous BGK equation (7) we
proceed to investigate the asymptotic behaviour of f(t, A) as t→ +∞. This problem can be
reduced to looking at the asymptotic behaviour of Jf since, if Jf → J∞ ∈M3(R), then f(t)
will converge as t→ +∞ towards ρMJ∞ as it can be seen by writing Duhamel’s formula for
equation (7) :

f(t) = e−tf0 + ρ

∫ t

0

e−(t−s)MJf(s)
ds. (27)

The asymptotic behaviour of Jf is much simpler than the one of f since Jf is the solution
of the following ODE

d

dt
Jf = ρ〈A〉MJf

− Jf , Jf (t = 0) = Jf0
, (28)

as it can be seen by multiplying (7) by A ∈ SO3(R) and integrating over SO3(R). Since
J ∈ M3(R) 7→ MJ ∈ L∞(SO3(R)) is locally Lipschitz, the flow of Equation (28) is defined
globally in time as a bounded Lipschitz perturbation of the linear system d

dtJ = −J .

Notice that the solutions of the compatibility equation (19) are exactly the equilibria of
the dynamical system (28). We therefore obtain the following proposition:

Proposition 5.1 (Equilibria of the BGK operator, equilibria of the ODE (28)). A distribu-
tion f eq = ρMJ is an equilibrium of the BGK operator (13) if and only if J ∈M3(R) is an
equilibrium of the dynamical system (28).
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5 Convergence to equilibria

We will call stable/unstable an equilibrium of the BGK operator (13) such that the
associated matrix J ∈M3(R) is a stable/unstable equilibrium of the ODE (28). This section
is devoted to the proof of the following theorem:

Theorem 7 (Convergence towards equilibria). Let ρ ∈ R+ be such that ρ 6= ρ∗ and ρ 6= ρc
(as defined in Proposition 4.4). Let f0 be an initial condition for (7) and let Jf0

= PD0Q be
a SSVD. Let f(t) be the solution at time t ∈ R+ of the spatially homogeneous BGK equation
(7) with initial condition f0. Let D(t) be the solution at time t ∈ R+ of the ODE (28) with
initial condition D0 ∈ D . It holds that:

Jf(t) = PD(t)Q

is a SSVD and there exists a subset Nρ ⊂ R3 of zero Lebesgue measure such that:

1. if D0 /∈ Nρ, then f(t) converges as t → ∞ towards an equilibrium f eq of the BGK
operator (13) of the form f eq = ρMJeq , where Jeq ∈ M3(R) is of one of the forms
described in Theorem 5. The convergence is locally exponentially fast in the sense that
there exists constants δ,K, µ > 0 such that if ‖Jf0

− Jeq‖ ≤ δ then for all t > 0,

∀A ∈ SO3(R), |f(t, A)− f eq(A)| ≤ e−µt
(
Kρ+ |f0(A)− f eq(A)|

)
.

2. If D0 /∈ Nρ, we have the following asymptotic behaviours depending on the density ρ :

(i) if 0 < ρ < ρ∗, then D(t)→ 0 as t→ +∞ and, consequently, f eq = ρ,

(ii) if ρ∗ < ρ < ρc, then D(t) → 0 or D(t) → α+I3 as t → +∞ and, consequently,
f eq = ρ or f eq = ρMα+Λ respectively, where α+ > 0 is defined in corollary 4.2
and Λ := PQ ∈ SO3(R),

(iii) if ρ > ρc, then D(t) → α1I3 as t → +∞ and, consequently, f eq = ρMα1Λ where
α1 > 0 is defined in corollary 4.2 and Λ := PQ ∈ SO3(R).

Remark 5.1. The subset Nρ ⊂ R3 depends on the density ρ. This subset will be made
explicit in the three cases ρ < ρ∗, ρ∗ < ρ < ρc and ρ > ρc in Section 5.3. If D0 ∈ Nρ, then
there is convergence towards an unstable equilibrium at a rate which may not be exponential.

Remark 5.2 (Phase transitions). Theorem 7 demonstrates a phase transition phenomenon
triggered by the density of agents ρ : when ρ < ρ∗, the system is disordered (asymptotically
in time) in the sense that Jf → 0 and we therefore cannot define a mean body-attitude.
When the density increases and exceeds the critical value ρc, the system is self-organised
(asymptotically in time and for almost every initial data), in the sense that Jf → αΛ where
α ∈ R+ and Λ ∈ SO3(R) can be respectively interpreted as a concentration parameter and
a mean body attitude. When ρ∗ < ρ < ρc the self-organised and disordered states are both
asymptotically stable and the convergence towards one or the other state depends on the
initial data. Such “transition region” also appears in the Vicsek model, as studied in [13],
and gives rise to an hysteresis phenomenon.

The proof of this theorem can be found at the end of Section 5.2. It is based on a gradient
flow structure for the flux Jf studied in Section 5.1. This structure ensures the convergence
of Jf towards a matrix Jeq ∈ M3(R) as t → +∞ and consequently the convergence of
f(t) as t → +∞ towards an equilibrium. The stability of the equilibria determines which
equilibrium can be attained. This question is addressed in Section 5.2. Additional details
about the subset Nρ as well as the study of the critical cases ρ = ρ∗ and ρ = ρc are provided
in Section 5.3.

5.1 A gradient-flow structure in R3

In this section we show that the ODE (28) can be reduced to a gradient-flow ODE in R3.
We first show (Section 5.1.1) how (28) can be reduced to an ODE in R3, the equilibria of
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which are linked to the equilibria of (28) (and therefore of (7)). Then we show that this
ODE in R3 has a gradient-flow structure which will allow us to conclude on the asymptotic
behaviour of the solution of (7) (Section 5.1.2).

5.1.1 Reduction to a nonlinear ODE in R3 and equilibria

The ODE (28) is a matrix-valued nonlinear ODE (in dimension 9) but, as in the previous
section (Proposition 4.1 and Corollary 4.1), we will use the left and right invariance of the
Haar measure and the SSVD to reduce the problem to a vector-valued nonlinear ODE in
dimension 3, as explained in Proposition 5.2 and Corollary 5.1.

Proposition 5.2 (Reduction to a nonlinear ODE in dimension 3). Let J0 ∈ M3(R) be a
given matrix and let D0 ∈ Orb(J0) be diagonal. Let P,Q ∈ SO3(R) such that J0 = PD0Q.
Let J : [0,∞) → M3(R) be a C1 curve in M3(R) with J(0) = J0. For all t > 0, let
D(t) ∈M3(R) be the matrix such that J(t) = PD(t)Q. It holds that:

(i) J = J(t) is the solution of the ODE (28) with initial condition J(t = 0) = J0 if and only
if D = D(t) is the solution of the same ODE (28) with initial condition D(t = 0) = D0.

(ii) Moreover, if (i) holds, then the matrix D(t) ∈M3(R) is diagonal for all time.

Proof. (i) Using the left and right invariance of the Haar measure, we see that if the
matrix J(t) ∈M3(R) is a solution of (28), then for any P,Q ∈ SO3(R), PJ(t)Q is also
a solution (and conversely).

(ii) Since D0 is diagonal, the fact that D(t) is also diagonal is a consequence of lemma 3.2
which states that 〈A〉MD

is diagonal when D is diagonal.

For any matrix J0, such a diagonal matrix D0 always exists: we can take the diagonal
part of the SSVD of J0. We therefore only have to study the following ODE for diagonal
matrices D3(R). Since this vector space is isomorphic to R3 through the isomorphism diag
defined in the introduction, we obtain two equivalent ODEs:

d

dt
D(t) = ρ〈A〉MD(t)

−D(t), D(t = 0) = D0, (29a)

d

dt
D̂(t) = ρdiag−1

(
〈A〉M

diag(D̂(t))

)
− D̂(t), D̂(t = 0) = D̂0, (29b)

where D̂0 = diag−1(D0) and the following equivalence holds : D̂(t) = diag−1(D(t)) is the

solution of (29b) if and only if D(t) = diag(D̂(t)) is the solution of (29a).

Note that it is not clear that if J0 = PD0Q is a SSVD, then J(t) = PD(t)Q is a SSVD
for all t > 0. The following proposition and corollary ensure that the SSVD is preserved by
the dynamical system which will allow us to restrict the domain on which the ODE (29a) is
posed.

Proposition 5.3 (Invariant manifolds). The following subsets of R3 are invariant manifolds
of the dynamical system (29b) :

• the planes
{

(d1, d2, d3) ∈ R3, di + dj = 0
}

for i 6= j ∈ {1, 2, 3},
• the planes

{
(d1, d2, d3) ∈ R3, di − dj = 0

}
for i 6= j ∈ {1, 2, 3},

• the intersections of two of these planes and in particular the lines

R

 1
1
1

 , R

 1
0
0

 , R

 1
1
−1

 . . .

26



5 Convergence to equilibria

Proof. For i = 2 and j = 3, the result has already been proved in the second point of
Lemma 4.1. The other cases are similar.

Corollary 5.1. Let J0 ∈ M3(R) and J0 = PD0Q be a SSVD with P,Q ∈ SO3(R) and
D0 ∈ D3(R) diagonal. Let J(t) be the solution of the ODE (28) with initial condition
J(t = 0) = J0. Let D(t) the solution of the ODE (29a) with initial condition D(t = 0) = D0.
Then the decomposition J(t) = PD(t)Q is a SSVD for J(t).

Proof. The fact that J(t) = PD(t)Q is a consequence of the first point of Proposition
5.2. The fact that it is a SSVD is a consequence of Proposition 5.3 which ensures that the
conditions (12) remain true for all t > 0 : D is stable in the sense that if D0 ∈ D , then
D(t) ∈ D for all time t > 0. This follows from the fact that the image by the isomorphism
diag of the invariant manifolds of (29b) described in Proposition 5.3 are invariant manifolds
of the dynamical system (29a). These manifolds in D3(R) form the boundary of the subset
D .

In conclusion, the study of the asymptotic behaviour of f(t) as t→ +∞ can be reduced
to the study of the asymptotic behaviour of the solutions of the ODE (29a) posed on the
domain D (see Figure 3).

The following Proposition describes the equilibria of the dynamical system (32a) and is
a consequence of the results of Section 4.

Proposition 5.4 (Equilibria of the dynamical system (29a)). The equilibria of the dynamical
system (29a) are, depending on the density ρ :

• the matrix D = 0 for any density ρ,

• the diagonal matrices of type (b) with parameters α+ and α− when ρ∗ < ρ < ρc,

• the diagonal matrices of type (b) with parameters α1 and α3 and the diagonal matrices
of type (c) with parameters ±α2 when ρ > ρc,

where the types (b) and (c) are defined in Proposition 4.2 and the elements α+, α−, α1, α2

and α3 are defined in Corollary 4.2.

Proof. The equilibria of (29a) are the diagonal matrices D such that

ρ〈A〉MD
−D = 0,

which is exactly Equation (19) for the diagonal matrices. This equation has been solved in
Theorem 5, Remark 4.7 and Corollary 4.2.

Remark 5.3. As in the previous section, we have found all the diagonal equilibria of (29a).
However, thanks to Corollary 5.1, only the ones which belong to D are needed.

The following proposition is a straightforward consequence of the previous results.

Proposition 5.5 (Equilibria of the BGK operator, equilibria of the ODE (29a)). Let
J ∈ M3(R) with a SSVD given by J = PDQ. The following assertions are equivalent.

(1) The distribution f eq = ρMJ is an equilibrium of the BGK operator (13).

(2) The matrix D is an equilibrium of the dynamical system (29a) on the domain D .

(3) The matrix D is of one of the forms:

• D = 0, when ρ < ρ∗,

• D = 0 or D = α−I3 or D = α+I3, when ρ∗ ≤ ρ ≤ ρc,
• D = 0 or D = α1I3 or D = α3 diag(−1,−1, 1) or D = α2 diag(1, 0, 0), when
ρ > ρc,

where ρ∗, ρc, α−, α+, α1, α2 and α3 are defined in Proposition 4.4 and Corollary 4.2.
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5 Convergence to equilibria

5.1.2 A gradient-flow structure

Lemma 5.1 (Gradient-flow structure). We define the partition function of a matrix J ∈ M3(R) :

Z(J) :=

∫
SO3(R)

eJ·A dA, (30)

and the potentials V (J) and V̂ (D̂) respectively on M3(R) and on R3 :

V (J) :=
1

2
‖J‖2 − ρ logZ(J), (31a)

V̂ (D̂) :=
1

2
|D̂|2 − 2ρ logZ(diag(D̂)) (31b)

where ‖ · ‖ and | · | are the Euclidean norms respectively on M3(R) and on R3. Then we can
rewrite equations (29a) and (29b) into a gradient flow structure as follows:

d

dt
D(t) = ρ〈A〉MD(t)

−D(t) = −∇V (D), (32a)

d

dt
D̂(t) = ρdiag−1

(
〈A〉M

diag(D̂(t))

)
− D̂(t) = −∇V̂ (D̂), (32b)

where ∇ is the gradient operator in M3(R) endowed with the Riemaniann structure (8) or
the gradient operator in R3 endowed with the usual Euclidean structure.

Proof. The partition function satisfies that for all J ∈M3(R),

∇(logZ)(J) = 〈A〉MJ
,

since ∇(eJ·A) = AeJ·A. The result follows in M3(R). The result in R3 follows from the fact
that for any w1, w2 ∈ R3, it holds that:

w1 · w2 = 2 diag(w1) · diag(w2)

where · denotes the dot product on R3 and on M3(R) as defined in (8).

Remark 5.4. This gradient-flow structure on Jf is specific to the BGK equation and does
not hold for the Fokker-Planck operator (as shown in [13], the differential equation satisfied
by Jf in the Vicsek case involves the spherical harmonics of degree 2 and higher of f ; here
the equation for Jf is closed).

In particular the gradient-flow structure (32a) implies that the system (32a) will converge
towards an equilibrium. When all the equilibria of the dynamical system (29a) are hyperbolic
the convergence towards the stable equilibria is exponentially fast (see [38, Section 9.3]). The
goal of the next section is to find which equilibria among the ones found in Section 4 are
stable and to completely describe the asymptotic behaviour of the system depending on the
initial condition and the local density ρ. We will see that phase transitions appear between
ordered and disordered dynamics when the density ρ increases.

5.2 Stability of the equilibria and conclusion

Since the flow of (29b) is the image by the isomorphism diag−1 of the flow of (29a), an
equilibria Deq of (29a) is stable (resp. unstable) if and only if diag−1(Deq) is a stable
(resp. unstable) equilibria of (29b). The stability properties of the equilibria of (29b) are
much simpler to study than the stability properties of the equilibria of (29a) since they

are given by the signature of the Hessian matrix Hess V̂ (D̂eq) ∈ S3(R) of the potential V̂

given in equation (31b) (the linearisation of ODE (29b) around an equilibrium D̂eq is indeed
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5 Convergence to equilibria

d
dtĤ = −Hess V̂ (D̂eq)Ĥ). In particular, an equilibrium D̂eq is stable if and only if the sig-

nature of Hess V̂ (D̂eq) is (+ + +).

Note that in the matrix framework (32a), the Hessian of the potential (31a) in the Eu-
clidean space M3(R) would be a rank 4 tensor. Here we are reduced to the computation of the

signature of 3×3 symmetric matrices. For a diagonal matrix D ∈ D3(R) and D̂ = diag−1(D)
we will write with a slight abuse of notations:

HessV (D) ≡ Hess V̂ (D̂).

WhenD ∈ D3(R) is an equilibrium of (29a) we call signature of the Hessian matrix HessV (D)

the signature of Hess V̂ (D̂) where D̂ = diag−1(D). A simple computation shows that the
Hessian matrix HessV (D) is given by :

HessV (D) = I3 −
1

2
ρΓ,

where Γ = (Γij)i,j with :

Γij = 〈aiiajj〉MD
− 〈aii〉MD

〈ajj〉MD
.

The following theorem is an extension of Corollary 4.2 and gives a full description of the
equilibria of the BGK operator with their stability.

Theorem 8 (Stability of the equilibria of the ODE (29a)).

• For 0 < ρ < ρ∗, the only equilibrium is D = 0. This equilibrium is stable.

• For ρ∗ < ρ < ρc, the equilibrium D = 0 and the equilibria of type (b) with parameter α+

are stable. The equilibria of type (b) with parameter α− are unstable and the signature
of the Hessian matrix is (−+ +).

• For ρ > ρc, the stable equilibria are the equilibria of type (b) with parameter α1. The
other equilibria (D = 0, type (b) with parameter α3 and type (c) with parameter ±α2)
are unstable and the signatures of the Hessian matrix are respectively (−−−), (+−−)
and (+ +−).

The proof of Theorem 8 will be based on the following lemma which states an important
orbital invariance principle for the signature of the Hessian matrix.

Lemma 5.2 (Orbital invariance of the signature). Let D̂ ∈ R3 be an equilibrium of (29b).

The signature of Hess V̂ (D̂) depends only on the type (a), (b) or (c) of diag(D̂) as defined
in Proposition 4.2.

Proof. Let D̂1 and D̂2 be two equilibria of (29b) such that diag(D̂1) and diag(D̂2) are of
the same type. Then there exist P,Q ∈ SO3(R) and R ∈ O3(R) such that

D̂2 = diag−1
(
P diag(D̂1)Q

)
= RD̂1.

Moreover for all M ∈ M3(R), the matrices P,Q,R satisfy (permutation of the diagonal
coefficients):  (PMQ)11

(PMQ)22

(PMQ)33

 = R

 M11

M22

M33


where Mii is the (i, i)-th coefficient of the matrix M . Therefore, one can check that:

∇V̂ (D̂2) = R∇V̂ (D̂1)

and
Hess V̂ (D̂2) = RHess V̂ (D̂1)RT .

The conclusion follows from Sylvester’s law of inertia ([45, Chapter 8 Theorem 1]).
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5 Convergence to equilibria

Proof (of Theorem 8). Thanks to lemma 5.2, we therefore do not have to compute the
signatures of the Hessian matrix taken at all equilibria, it is enough to choose one matrix in
each orbit: for the equilibria of type (b) (see Proposition 4.2) we will compute the signature
of Hess(αI3) where α = ρc1(α) and for the equilibria of type (c) we will compute the signa-
ture of Hess(α diag(1, 0, 0)) where α = ρc2(α). We first start with the case of the uniform
equilibrium.

Case 1. Uniform equilibrium D = 0

For the uniform equilibrium D = 0, 〈aij〉 = 0 for all (i, j). Moreover, by the change of
variable A′ = DikA where k 6= i, j, we have when i 6= j :

〈aiiajj〉 = −〈aiiajj〉 = 0.

It proves that Γ is diagonal. Then with the changes of variables A′ = P ijA or A′ = AP ij it
can be seen that all the 32 quantities 〈a2

ij〉 are equal. Since their sum is equal to n = 3 we
get that

HessV (0) =

(
1− 1

2
ρ〈a2

11〉
)
I3 =

(
1− ρ

ρc

)
I3,

where ρc = 6. In conclusion, the signature of HessV (0) is (+ + +) if ρ < ρc and (−−−) if
ρ > ρc.

Case 2. Equilibria of type (b) : D = αI3

Let D = αI3 with α = ρc1(α). We have c1(α) = 〈a11〉MD
= 〈a22〉MD

= 〈a33〉MD
and

a change of variable of the type A′ = P ijA(P ij)T shows that all the 〈akka``〉MD
are equal.

The Hessian matrix is therefore equal to :

HessV (αI3) = I3 −
1

2
ρ

 ν γ γ
γ ν γ
γ γ ν

 ,

with ν = 〈a2
11〉MD

− 〈a11〉2MD
and γ = 〈a11a22〉MD

− 〈a11〉MD
〈a22〉MD

. The eigenvalues of
HessV (D) are :

• 1 − 1
2ρν − ργ of order 1 with eigenvector (1, 1, 1)T . But taking the derivative with

respect to α of (14) with Λ = I3 we obtain the relation :

c′1(α) =
1

2
〈a2

11〉MD
+ 〈a11a22〉MD

− 3

2
〈a11〉2MD

=
1

2
ν + γ,

and using ρ = α/c1(α) we can rewrite :

1− 1

2
ρν − ργ = 1− αc′1(α)

c1(α)
= c1(α)

(
id

c1

)′
(α).

Its sign is then given by Proposition 4.4 and the fact that c1(α) has the same sign

as α : c1(α)
(
id
c1

)′
(α) > 0 when α < 0, c1(α)

(
id
c1

)′
(α) < 0 when 0 ≤ α < α∗ and

c1(α)
(
id
c1

)′
(α) > 0 when α > α∗.

• 1 − 1
2ρν + 1

2ργ of order 2 with eigenvectors (1,−1, 0)T and (0, 1,−1)T . It can be
rewritten as:

1− 1

2
ρν +

1

2
ργ = 1− α

4c1(α)

〈
(a11 − a22)2

〉
MD

.
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5 Convergence to equilibria

To determine this sign, we use the explicit volume form of SO3(R) given by Rodrigues’
formula (9) to see that :

α

4c1(α)

〈
(a11 − a22)2

〉
MD

=
α

5
·
∫ π

0
sin2(θ/2)(1− cos θ)2eα cos θ dθ∫ π

0
sin2(θ/2)(1 + 2 cos θ)eα cos θ dθ

.

Lemma 5.3. The function

f : x 7−→ 1− x

5
·
∫ π

0
sin2(θ/2)(1− cos θ)2ex cos θ dθ∫ π

0
sin2(θ/2)(1 + 2 cos θ)ex cos θ dθ

,

satisfies f(0) = 0, f(x) ≥ 0 if x ≥ 0 and f(x) ≤ 0 if x ≤ 0

Proof. The value of f(0) is given by the expansion of exp. Note that :

d

dθ

{
sin2(θ/2) sin θ

}
= sin2(θ/2)(1 + 2 cos θ),

so that an integration by parts shows :∫ π

0

sin2(θ/2)(1 + 2 cos θ)ex cos θ dθ = x

∫ π

0

sin2(θ/2) sin2(θ)ex cos θdθ.

We get that :

f(x) = 1− 1

5

∫ π
0

sin2(θ/2)(1− cos θ)2ex cos θ dθ∫ π
0

sin2(θ/2) sin2(θ)ex cos θdθ
.

We have :

f(x) ≥ 0⇐⇒
∫ π

0

sin2(θ/2)

(
1

5
(1− cos θ)2 − sin2(θ)

)
ex cos θ dθ ≤ 0.

Linearizing sin2(θ/2) and expanding everything gives :

sin2(θ/2)

(
1

5
(1− cos θ)2 − sin2(θ)

)
=
−1

5
(3 cos θ + 2)(1− cos θ)2,

so that :

f(x) ≥ 0⇐⇒
∫ π

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ 0.

Now for x ≥ 0, let θ0 = arccos(−2/3). We cut the integral at θ0 and we get∫ θ0

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e− 2
3x

∫ θ0

0

(3 cos θ + 2)(1− cos θ)2 dθ,

since the integrand is nonnegative and x ≥ 0. Similarly when the integrand is nonpos-
itive ∫ π

θ0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e− 2
3x

∫ π

θ0

(3 cos θ + 2)(1− cos θ)2 dθ.

And finally :∫ π

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e− 2
3x

∫ π

0

(3 cos θ + 2)(1− cos θ)2 dθ = 0.

We find similarly that f(x) ≤ 0 when x ≤ 0.
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5 Convergence to equilibria

And therefore, we can deduce the sign of the eigenvalue: 1− α
4c1(α)

〈
(a11−a22)2

〉
MD

> 0

when α > 0 and 1− α
4c1(α)

〈
(a11 − a22)2

〉
MD

< 0 when α < 0.

Case 3. Equilibria of type (c) : D = α diag(1, 0, 0)

For D = α diag(1, 0, 0) with α = ρc2(α), using the parametrisation (11), it holds that :∫
SO3(R)

a22e
α
2 a11 dA =

∫
SO3(R)

a22e
α
2 a33 dA

=
1

8π2

∫ 2π

θ=0

∫ π

φ2=0

e
α
2 cosφ2 sinφ2

∫ 2π

φ1=0

(− sin θ sinφ1 + cos θ cosφ1 cosφ2)dφ1dφ2dθ

= 0.

where the first equality comes from the change of variable A 7→ P 13A(P 13)T . Similarly,

〈a22〉MD
= 〈a33〉MD

= 〈a11a22〉MD
= 〈a11a33〉MD

= 0.

The Hessian matrix is therefore equal to :

I3 −
1

2
ρ

 〈a2
11〉MD

− 〈a11〉2MD
0 0

0 〈a2
22〉MD

〈a22a33〉MD

0 〈a22a33〉MD
〈a2

33〉MD

 ,

and since 〈a2
22〉MD

= 〈a2
33〉MD

as it can be seen with the change of variable A 7→ P 23A(P 23)T ,
its eigenvalues are :

1− 1

2
ρ
(
〈a2

11〉MD
− 〈a11〉2MD

)
,

with eigenvector (1, 0, 0)T ,

1− 1

2
ρ
(
〈a2

22〉MD
− 〈a22a33〉MD

)
,

with eigenvector (0, 1,−1)T and

1− 1

2
ρ
(
〈a2

22〉MD
+ 〈a22a33〉MD

)
,

with eigenvector (0, 1, 1)T . We have as before :

c′2(α) =
1

2

(
〈a2

11〉MD
− 〈a11〉2MD

)
,

so the first eigenvalue can be rewritten

1− 1

2
ρ
(
〈a2

11〉MD
− 〈a11〉2MD

)
= 1− αc′2(α)

c2(α)
= c2(α)

(
id

c2

)′
(α) > 0,

where we have used Proposition 4.4 to determine the sign. The two other eigenvalues are
equal to:

1− 1

4
ρ
〈

(a22 ± a33)2
〉
MD

Using the change of variable A 7→ P 13A(P 13)T and the parametrisation (11), one can see
that : ∫

SO3(R)

(a22 ± a33)2e
α
2 a11 dA =

∫
SO3(R)

(a22 ± a11)2e
α
2 a33 dA

=
1

8π2

∫ 2π

θ=0

∫ 2π

φ1=0

cos2(φ1 ± θ)
∫ π

φ2=0

sinφ2 (1± cosφ2)2e
α
2 cosφ2 dφ2 dφ1 dθ
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5 Convergence to equilibria

so that : 〈
(a22 ± a33)2

〉
MD

=
1

2

[
(1± cosφ)2

]
α

where [·]α is defined in Proposition 4.1. Using the relation ρ = α
c2(α) = 4

[sin2 φ]α
(see Formula

(26)), the two eigenvalues are equal to :

1− 1

2

∫ π
0

sinφ(1± cosφ)2e
α
2 cosφ dφ∫ π

0
sin3 φe

α
2 cosφ dφ

.

With the same technique used in the previous paragraph (Lemma 5.3) it is possible to show

that the eigenvalue 1 − 1
4ρ
〈

(a22 − a33)2
〉
MD

is nonpositive when α < 0 and nonnegative

when α > 0. The contrary holds for the other eigenvalue (nonnegative when α < 0 and
nonpositive when α > 0). Finally the signs of these two eigenvalues are always (+−).

The conclusion of the proof follows from the study of the roots of Equations (20) and
(21) provided by Corollary 4.2 and depicted in Figure 2. In particular, the cases α = α∗

and α = 0 correspond to the critical cases ρ = ρ∗ and ρ = ρc which are studied in the next
section.

Remark 5.5. The above calculations are similar to the computation of the equilibria and
their stability of

Ψ : D ∈ diag(T ) 7→ F [MD]

where F is the free-energy (6). In particular, it can be shown that the equilibria of Ψ and
their stability are the same as the ones described in Theorem 8. In particular, since (6) is
also a free energy in the Fokker-Planck case, this analysis shows the instability of equilibria
of the Fokker-Planck of the form ρMD when D is of one of the unstable equilibria of (29a)
described in Theorem 8. This technique is similar to the one which was used in [57] in the
case of 3D polymers. However, it does not provide global or local convergence of the solution
of the Fokker-Planck equation towards an equilibrium. This requires further investigations
which will be left for future work. In the Vicsek case [13], it was based on a LaSalle’s principle
and on estimates for the dissipation term.

We can finally prove Theorem 7 :

Proof (of Theorem 7). Thanks to the Duhamel’s formula (27), the asymptotic behaviour
of f(t) as t → +∞ is given by the asymptotic behaviour of Jf(t). Thanks to Proposition
5.2 and Corollary 5.1, we only have to study the asymptotic behaviour of the solution of
the ODE (29a) where the initial condition is the diagonal part of a SSVD of Jf0

. Since this
equation has a gradient-flow structure (32a), we know that the solution D(t) converges as
t → +∞ towards an equilibrium Deq and consequently Jf(t) → PDeqQ := Jeq. Moreover
the equilibrium Deq is a stable equilibrium provided that D0 does not belong to the stable
manifold of an unstable equilibrium. Since these manifolds have dimension at most 2, the
union of these manifolds, called Nρ is of zero measure and there is convergence towards a
stable equilibrium for all D0 /∈ Nρ. In this case, the convergence is locally exponentially fast
in the sense that there exist constants δ, λ, C > 0 such that if ‖Jf0

− Jeq‖ ≤ δ then for all
t > 0,

‖Jf(t) − Jeq‖ ≤ Ce−λt. (33)

Let f eq = ρMJeq . It follows from Duhamel’s formula (27) that for all A ∈ SO3(R) :

|f(t, A)− f eq(A)| ≤ e−t|f0(A)− f eq(A)|+ ρe−t
∫ t

0

es|MJf(s)
(A)−MJeq(A)|ds. (34)
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5 Convergence to equilibria

Since SO3(R) is compact and Jf(t) is bounded uniformly in t, there exists a constant L > 0
such that for all t > 0, the following Lipschitz bound holds:

∀A ∈ SO3(R), |MJf(t)
(A)−MJeq(A)| ≤ L‖Jf(t) − Jeq‖. (35)

Reporting (35) into (34) and using (33), the first point of Theorem 7 follows with constants
K = CL/|1 − λ| and µ = min(1, λ) when λ 6= 1 and K = CL and µ = 1 − ε for any ε > 0
when λ = 1.

The stability of the equilibria of the dynamical system (29a) is given in Theorem 8.
Finally the conclusions of points 2.(ii) and 2.(iii) follow from the fact that the diagonal parts
of the SSVD of the equilibria of type (b) with parameters α+ and α1 are respectively α+I3
and α1I3.

5.3 Final remark: characterisation of the stable manifold of the
unstable equilibria and critical cases

This section is devoted to a more precise description of the subset Nρ of zero measure of
initial conditions which do not necessarily lead to one of the behaviours detailed in the pre-
vious section (see Theorem 7).

When ρ 6= ρ∗ and ρ 6= ρc, all the equilibria of (29b) are hyperbolic and we can apply
the stable manifold theorem ([48] Section 2.7) which states that for a given hyperbolic equi-

librium D̂eq of the nonlinear equation (29b), the stable set of D̂eq is a smooth manifold.

Its dimension is given by the number of minuses in the signature of −Hess V̂ (D̂eq) and its

tangent space at D̂eq is the stable subspace of the linearized system around D̂eq. We are
now ready to describe the behaviour of the system (29b) for a given density ρ and an initial

condition D̂0 ∈ R3. Note that we can restrict ourselves to the case D̂0 ∈ diag−1(D) and that

our goal is to describe diag−1(Nρ) (in the R3-framework). We write D(t) = diag D̂(t) the

solution of (29a) with initial condition D0 = diag D̂0.

Case 1. When ρ < ρ∗

When ρ < ρ∗, there is only the uniform equilibrium : D(t) −→
t→+∞

0 and Nρ = ∅.

Case 2. When ρ∗ < ρ < ρc

There are three equilibria for (29b) : two are stable (0 and α+(1, 1, 1)T ) and one is un-

stable (α−(1, 1, 1)T ) which satisfies that −Hess(V̂ )(α−(1, 1, 1)T ) has signature (−−+). The
stable manifold theorem ensures that diag−1(Nρ) is the stable set of the unstable equili-
brium and is a smooth manifold of dimension 2 and its tangent plane at α−(1, 1, 1)T admits
the eigenvectors (1,−1, 0)T and (0, 1,−1)T for basis. The unstable manifold of the unstable
equilibrium has dimension : it is the line of direction (1, 1, 1)T .

Finally, the space R3 is partitioned in two domains by diag−1(Nρ) : depending on which

domain D̂0 belongs to in R3 \ diag−1(Nρ), D̂(t) will converge towards either the uniform

equilibrium or to α+(1, 1, 1)T (or towards α−(1, 1, 1)T if D̂0 belongs to its stable manifold).

Case 3. When ρ > ρc

When ρ > ρc, D̂(t) can converge towards one of the four equilibria : 0, α3(−1,−1, 1)T ,
α2(1, 0, 0)T or α1(1, 1, 1)T (see Figure 2).
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5 Convergence to equilibria

• The uniform equilibrium is unstable and −Hess(V̂ )(0) has signature (+++) therefore,
there is no stable direction and D(t) cannot converge towards 0 unless D0 = 0 (and
then D(t) = 0 for all t ∈ R+).

• The equilibrium α3 diag(−1,−1, 1) is unstable and its stable manifold M1 has dimen-

sion 1: it is the half line R∗+

 1
1
−1

 (it is indeed an invariant manifold of dimension 1

and a solution on this half-line cannot converge towards an other equilibrium). There-

fore D(t) converges towards α3 diag(−1,−1, 1) if and only if D̂0 lies on this half line.

• The equilibrium α2(1, 0, 0)T is unstable and its stable manifold has dimension 2 with
a tangent plane generated by the two vectors (1, 0, 0)T and (0, 1,−1)T : it is the plane

{d2 + d3 = 0}. We note that this plane is an invariant manifold, so if D̂0 belongs to
this plane, the limit when t→ +∞ also belongs to this plane. But since the half-lines

R∗+

 1
1
−1

 and R∗+

 1
−1
1

 are the stable manifolds of the equilibria α3(−1,−1, 1)T

and α3(−1, 1,−1)T , the limit when t → +∞ is α2(1, 0, 0)T if and only if D0 belongs
to the (open) quarter of the plane {d2 + d3 = 0} delimited by these two half-lines:
this is the stable manifold of α2 diag(1, 0, 0). In conclusion, D(t) converges towards

α2 diag(1, 0, 0) if and only if D̂0 is of the form (d1, d2,−d2)T with d1 > d2 ≥ 0. Since

D̂0 ∈ diag−1(D), we can restrict ourselves to the eighth of plan M2 delimited by the
half lines R∗+(1, 1,−1)T excluded and R∗+(1, 0, 0)T included.

• In every other cases, D(t) converges towards α1I3 which is the only stable equilibrium.

Finally, in the case ρ > ρc, the subset Nρ ∩D is equal to diag
(
{0} ∪M1 ∪M2

)
.

The critical cases

We end this section by an informal description of the expected behaviour in the critical
cases.

• When ρ = ρ∗ the uniform equilibrium is stable and there is an other equilibrium
of the form α∗I3 with α∗ > 0. This equilibrium is non hyperbolic: the kernel of
−Hess V̂ (α∗(1, 1, 1)T ) is one dimensional, spanned by the vector (1, 1, 1)T . The two
other eigenvalues are negative. Therefore, for the system (29b), there exists a center
manifold of dimension 1 and a stable manifold of dimension 2, which tangent plane
being the orthogonal of (1, 1, 1)T .

If D̂0 belongs to the stable manifold, D(t) converges exponentially fast towards α∗I3
([33] Theorem 3.22). The stable manifold of dimension 2 delimits two domains and one

of them is included in the subset {x ∈ R3, x · (1, 1, 1)T ≥ α∗}. If D̂0 belongs to this

domain, then it belongs to a center manifold and D̂(t) is attracted exponentially fast
towards the the line R(1, 1, 1)T and converges at rate 1/t towards α∗(1, 1, 1). In every

other cases, D̂(t) converges exponentially fast towards 0.

• When ρ = ρc there is one stable equilibrium of the form αI3 with α > 0. The uniform
equilibrium is non hyperbolic and −Hess V̂ (0) = 0.

In the case when D̂(t) converges towards 0, with a formal computation, the rate of

convergence is expected to be either 1/t or 1/
√
t depending on D̂0. The convergence

towards the stable anisotropic equilibrium is exponentially fast.
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6 Macroscopic limit for the stable equilibria

We now go back to the spatially inhomogeneous model. We want to investigate (at least
formally) the hydrodynamic models derived from the BGK equation (4). To do so, we
introduce the scaling t′ = εt and x′ = εx for ε > 0 and we define fε(t′, x′, A) := f(t, x,A).
After this change of variables in (4) and dropping the primes, we see that fε satisfies the
following equation:

∂tf
ε + (Ae1 · ∇x)fε =

1

ε

(
ρfεMJfε − f

ε
)
. (36)

We want to investigate the macroscopic limit ε→ 0 with the assumption that fε converges
towards a stable equilibrium. Thanks to the results of the last section, we will assume that
fε → ρMαΛ where ρ = ρ(t, x), α = ρc1(α), α ∈ R+ and Λ = Λ(t, x) ∈M3(R) (with a notion
of convergence as strong as needed). Since the equilibrium is assumed to be stable there are
two cases: either Λ ∈ SO3(R) (and therefore ρ > ρ∗) or Λ = 0 that is to say fε is uniform in
the body-orientation variable and converges towards ρ = ρ(t, x) (and therefore ρ < ρc). For
a given time t ∈ R+, we will say that x ∈ R3 belongs to a disordered region when Λ(t, x) = 0.
Otherwise, when Λ(t, x) ∈ SO3(R), we will say that x ∈ R3 belongs to an ordered region.

The purpose of the two next sections is to write at least formally the hydrodynamic
equations satisfied by ρ = ρ(t, x) and Λ = Λ(t, x). First notice that integrating (36) over
SO3(R) leads to the conservation law:

∂tρ
ε +∇x · j[fε] = 0, (37)

where ρε ≡ ρfε and

j[fε] :=

∫
SO3(R)

Ae1f
ε dA ≡ Jfεe1.

The macroscopic model then depends on the region considered.

1. In a disordered region, j[fε] → 0 and assuming that the convergence is sufficiently
strong, we get that ∂tρ = 0. To obtain more information we will look at the next order
in the Chapman-Enskog expansion (Section 6.1).

2. In an ordered region, j[fε]→ αΛe1 where α = ρc1(α) and therefore, assuming that the
convergence is strong enough:

∂tρ+∇x · (αΛe1) = 0.

However due to the lack of conserved quantities, we will need specific tools to write
an equation satisfied by Λ = Λ(t, x) in order to obtain a closed system of equations on
(ρ,Λ). This is the purpose of Section 6.2.

6.1 Diffusion model in a disordered region

We consider a region where fε converges as ε→ 0 to a density ρ(t, x) uniform in the body-
attitude variable. The following proposition gives the diffusion model obtained by looking
at the next order in the Chapman-Enskog expansion.

Proposition 6.1 (Formal). In a disordered region, the density ρε satisfies formally at first
order the following diffusion equation:

∂tρ
ε = ε∇x ·

(
1
3∇xρ

ε

1− ρε

ρc

)
, ρc = 6. (38)
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Proof. We follow the same calculations as in [13] : we write fε = ρε + εfε1 (where fε1 is
defined by this relation) and notice that:

Jfε = εJfε1 and MJfε (A) = 1 + εJfε1 ·A+O(ε2).

Inserting this in (36), multiplying by A and integrating over SO3(R) leads to:

Jfε1 = ρε
∫
SO3(R)

(Jfε1 ·A)AdA−
∫
SO3(R)

Ae1 · ∇xρεAdA+O(ε). (39)

Using Lemma 3.3, it holds that∫
SO3(R)

(Jfε1 ·A)AdA =
1

6
Jfε1 . (40)

To compute the second term, we note that Ae1 · ∇xρε = 2A · Rρε where Rρε is the matrix,
the first column of which is equal to ∇xρε and the others are equal to zero. Using Lemma
3.3 we obtain ∫

SO3(R)

Ae1 · ∇xρεAdA =
1

3
Rερ. (41)

By multiplying (39) by e1, it follows from (40) and (41) that :(
1− ρε

ρc

)
Jfε1 e1 = −1

3
∇xρε +O(ε),

which gives the result by inserting this in (37).

Remark 6.1. This analysis does not depend on the dimension. In SOn(R) the same formal
result holds:

∂tρ
ε = ε∇x ·

(
1
n∇xρ

ε

1− ρε

ρc

)
, ρc = 2n.

6.2 Self-organised hydrodynamics in an ordered region

In the following, for a given density ρ ∈ R+, α(ρ) denotes the maximal nonnegative root of
α = ρc1(α). We are going to prove the following theorem.

Theorem 9 (Formal). We suppose that fε → ρ(x, t)MJ(x,t) (as strongly as necessary) as
ε → 0 where J(x, t) = α(ρ(x, t))Λ(x, t) and Λ(x, t) ∈ SO3(R). Then ρ and Λ satisfy the
following system of partial differential equations:

∂tρ+∇x · (ρc1(α(ρ))Λe1) = 0, (42a)

ρ(∂tΛ + c̃2((Λe1) · ∇x)Λ) + c̃3[(Λe1)×∇xρ]×Λ

+ c4ρ[−rx(Λ)× (Λe1) + δx(Λ)Λe1]×Λ = 0. (42b)

where c̃2, c̃3, c4 are functions of ρ to be defined later and δ and r are the “divergence” and
“rotational” operators defined in [14] : if Λ(x) = exp([b(x)]×)Λ(x0) with b smooth around
x0 and b(x0) = 0, then

δx(Λ)(x0) := ∇x · b(x)|x=x0 and rx(Λ)(x0) := ∇x × b(x)|x=x0 ,

where ∇x× is the curl operator.

The first equation (42a) is the conservation law (37) and the goal is to obtain the equation
(42b) for Λ = Λ(t, x). However, here and contrary to the classical gas dynamics, the total
momentum is not conserved:

d

dt

∫
SO3(R)

fAdA 6= 0
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6 Macroscopic limit for the stable equilibria

and we therefore cannot deduce easily a closed system of equations. This lack of conserved
quantities is specific to self-propelled particle models such as the Vicsek model. The main
tool to tackle the problem will be the Generalised Collision Invariants method introduced
in [18] for the study of the hydrodynamic limit of the continuum Vicsek model. Its precise
setting in the context of our body-attitude model is detailed Section 6.2.1. The formal proof
of Theorem 9 can be found in Section 6.2.2.

6.2.1 Generalised collision invariants

To obtain an equation on Λ, the main tool are the Generalised Collisional Invariants (GCI)
first introduced in [18]. For a given J ∈M3(R), we define first the linear collision operator:

LJ(f) = ρfMJ − f,

so that QBGK(f) = LJf (f). Let J ∈M3(R) with det J > 0 and let Λ := PD(J) ∈ SO3(R)
be the orthogonal part of its polar decomposition. The set of GCI associated to J is defined
as:

CJ :=

{
ψ : SO3(R)→ R,

∫
SO3(R)

LJ(f)ψ dA = 0 for all f such that PTΛ
(Jf )

}
. (43)

The condition ψ ∈ CJ is equivalent to:∫
SO3(R)

f(〈ψ〉MJ
− ψ) dA = 0 for all f such that PTΛ

(Jf ) = 0.

Therefore, following the ideas of the proof of [14, Proposition 4.3], we have:

ψ ∈ CJ ⇐⇒ ∃B ∈ TΛ, 〈ψ〉MJ
− ψ(A) = B ·A,

that is to say:

ψ ∈ CJ ⇐⇒ ∃B ∈ TΛ, ∃C ∈ R, ψ(A) = −B ·A+ C,

or equivalently since B ∈ TΛ means that there exists P ∈ A3(R) such that B = ΛP :

CJ = Span

1,
⋃

P∈A3(R)

ψΛ
P

 ,

where
ψΛ
P (A) = −P · ΛTA.

Now for any P ∈ A3(R), denoting Λfε ≡ Λε = PD(Jfε), we get by multiplying the equation
(36) by ψΛε

P : ∫
SO3(R)

(∂tf
ε +Ae1 · ∇xfε)P · (Λε)TAdA = 0. (44)

The right-hand side vanishes by Definition (43) of the GCI. Note that if fε → ρMJ with
det(J) > 0, we have also det(Jfε) > 0 for ε sufficiently small and Λε ∈ SO3(R).

6.2.2 Hydrodynamic limit (formal proof of Theorem 9)

Taking formally the limit ε→ 0 in (44) and since it is true for all P ∈ A3(R), we obtain:

X :=

∫
SO3(R)

(
∂t(ρMαΛ) +Ae1 · ∇x(ρMαΛ)

)
(ΛTA−ATΛ) dA = 0.
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6 Macroscopic limit for the stable equilibria

We have:

∂t(MαΛ) =
(
∂t(αΛ) ·A− 〈∂t(αΛ) ·A〉MαΛ

)
MαΛ

= α′∂tρ(A · Λ− 〈A · Λ〉MαΛ
)MαΛ + α∂tΛ · (A− 〈A〉MαΛ

)MαΛ,

where α′ denotes the derivative of α(ρ) with respect to ρ and similarly for ∂i(MαΛ). With
this we compute the term:

(∂t +Ae1 · ∇x)(ρMαΛ) =

MαΛ(A)

(
1 + ρα′

(
A · Λ− 3

2
c1(α)

))
(∂t +Ae1 · ∇x)ρ

+MαΛ(A)ραA · (∂t +Ae1 · ∇x)Λ,

where we have used that:

〈A · Λ〉MαΛ
=

3

2
c1(α),

and
Λ · (∂t +Ae1 · ∇x)Λ = 0.

Most of the terms that appear in X are computed in [14]. Precisely,

X = X1 +X2 +X3 +X4 + Y (45)

where X1, X2, X3 and X4 are computed in [14] :

X1 :=

∫
SO3(R)

∂tρMαΛ(A)(ΛTA−ATΛ) dA = 0,

X2 :=

∫
SO3(R)

αρ(A · ∂tΛ)MαΛ(A)(ΛTA−ATΛ) dA = C2ραΛT∂tΛ,

X3 :=

∫
SO3(R)

Ae1 · ∇xρMαΛ(A)(ΛTA−ATΛ) dA = C3[e1 × ΛT∇xρ]×,

X4 :=

∫
SO3(R)

ρα
(
A · (Ae1 · ∇x)Λ

)
MαΛ(A)(ΛTA−ATΛ) dA

= ρα(C4[Le1]× + C5[LT e1 + Tr(L)e1]×),

where the coefficients

C2 = C3 :=
2

3
{sin2 θ}α, C4 :=

2

15
{sin2 θ(1 + 4 cos θ)}α, and C5 :=

2

15
{sin2 θ(1− cos θ)}α,

and the matrix
L := ΛTDx(Λ)Λ,

are the same as in [14]. The matrix Dx(Λ) ∈ M3(R) is defined as the unique matrix such
that for all w ∈ R3, and smooth functions Λ : R3 → SO3(R),

(w · ∇x)Λ = [Dx(Λ)w]×Λ

(see [14, Section 4.5]). Note that C3 = C2 since the noise and alignement parameters which
were denoted by ν and d in [14] have been taken equal to 1 here. Note also that these
coefficients are functions of ρ (through α only). The term Y is an additional term which
appears here due to the presence of the parameter α = α(ρ) which is a function of ρ. It
depends also on the derivative α′ of α :

Y := ρα′
∫
SO3(R)

(ΛTA−ATΛ)MαΛ(A)

(
A · Λ− 3

2
c1(α)

)
(∂t +Ae1 · ∇x)ρ dA.
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All the terms that involve the time derivative of ρ are equal to zero since ∂tρ does not depend
on A and with the change of variable A′ = ΛATΛ which has unit jacobian, it holds that
A′ · Λ = A · Λ and therefore∫

SO3(R)

(ΛTA−ATΛ)MαΛ(A)

(
A · Λ− 3

2
c1(α)

)
dA

= −
∫
SO3(R)

(ΛTA′ −A′TΛ)MαΛ(A′)

(
A′ · Λ− 3

2
c1(α)

)
dA′ = 0.

We thus have:
Y = Y1 + Y2,

where

Y1 := ρα′
∫
SO3(R)

(A · Λ)(Ae1 · ∇x)ρ (ΛTA−ATΛ)MαΛ(A) dA,

and

Y2 :=
3

2
c1(α)ρα′

∫
SO3(R)

(Ae1 · ∇x)ρ (ΛTA−ATΛ)MαΛ(A) dA.

With the change of variable A 7→ ΛTA these terms become

Y1 = ρα′
∫
SO3(R)

(ΛBe1 · ∇xρ)(B −BT )(B · I3)MαI3(B) dB,

Y2 :=
3

2
c1(α)ρα′

∫
SO3(R)

(ΛBe1 · ∇xρ)(B −BT )MαI3(B) dB,

and they can be computed using the same techniques as in [14] or lemma 3.4 in the appendix.
More precisely, we can write

ΛBe1 · ∇xρ = B ·R1,ρ,

where R1,ρ is the matrix, the first column of which is equal to 2ΛT∇xρ and the others are
all equal to zero. It satisfies:

R1,ρ −RT1,ρ
2

= [e1 × ΛT∇xρ]×.

By the change of variable B 7→ BT , we have

Y1 = ρα′
∫
SO3(R)

(B ·R1,ρ)(B −BT )(B · I3)MαI3(B) dB,

= ρα′
∫
SO3(R)

A · (R1,ρ −RT1,ρ)A(A · I3)MαI3(A) dA.

This integral is of the form (46) where

g(A) := A · I3MαI3(A)

is invariant by transposition and conjugation and

J := R1,ρ −RT1,ρ

is a skew-symmetric matrix. From (48) and (49) we get

Y1 = ραµ(R1,ρ −RT1,ρ)

with

µ :=
1

8

∫
SO3(R)

(a21 − a12)2 Tr(A)MαI3(A) dA.
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The first term Y1 can therefore be written:

Y1 = 2µρα′[e1 × ΛT∇xρ]×,

and using Rodrigues’ formula we obtain:

2µ =
1

3

{
(1 + 2 cos θ) sin2(θ)

}
α

where {·}α has been defined in Proposition 4.1. Similarly the second term Y2 can be written:

Y2 =
3

2
c1(α)C3ρα

′[e1 × ΛT∇xρ]×,

where the coefficient C3 is the same as in [14] :

C3 =
2

3
{sin2 θ}α = C2.

Finally, we obtain:

Y = ρα′
(

3

2
c1(α)C3 +

1

3

{
(1 + 2 cos θ) sin2(θ)

}
α

)
[e1 × ΛT∇xρ]×.

Putting all the terms together, we can conclude as in [14]. First we notice that:

Tr(L) = δx(Λ), [ΛLT e1]× = [(Dx(Λ)− [rx(Λ)]×)Λe1]× and [ΛLe1]×Λ =
(
(Λe1) · ∇x

)
Λ.

Therefore we obtain by multiplying (45) by Λ and dividing by αC2 :

ρ(∂tΛ + c2((Λe1) · ∇x)Λ) + c̃3[(Λe1)×∇xρ]×Λ

+ c4ρ[−rx(Λ)× (Λe1) + δx(Λ)Λe1]×Λ = 0,

where the coefficients

c̃2 :=
C4 + C5

C2
=

1

5

{sin2 θ(2 + 3 cos θ)}α
{sin2 θ}α

and c4 :=
C5

C2
=

1

5

{sin2 θ(1− cos θ)}α
{sin2 θ}α

are respectively equal to the coefficients c2 and c4 in [14] and the coefficient c3 in [14] (which
is equal to 1) becomes:

c̃3 =
1

α
+
ρα′

α

3

2
c1(α) +

1

2

{
(1 + 2 cos θ) sin2 θ

}
α

{sin2 θ}α

 .

7 Conclusion

In this work, we have presented a new BGK model of body-attitude coordination where
agents are described by a rotation matrix. Starting from the kinetic level (a space homo-
geneous BGK equation) we have drawn a parallel between our Vicsek-type model and the
models of nematic alignment of polymers. We then have deduced the equilibria of the system
and have shown a phase transition phenomenon triggered by the density of agents. Thanks
to a gradient-flow structure specific to the BGK equation we have been able to describe
the asymptotic behaviour of the system. Finally, we have derived the macroscopic models
(SOHB) in the spatially inhomogeneous case.
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On the modelling side, a rigorous mean-field limit which leads to the BGK equation is
currently under study and will be the object of future work. However, many other questions
remain open. At the kinetic level, our study relies on the dimension 3 and it would be
interesting to extend the ideas developed here in SOn(R), n ≥ 3, for example by drawing
new parallels with higher dimensional polymers models or other similar models [27, 28]. In
addition, the mathematical and numerical analyses of the macroscopic SOHB model are still
in progress.

The BGK model studied here is a step towards the full description of the models of
collective behaviour depicted in Figure 1. The tools and ideas that we have presented here
may help to analyse other models of body-attitude coordination such as the non-normalised
Fokker-Planck model in SO3(R). Other models which take into account curvature control in
addition to body-orientation, in the spirit of [19], could also be considered.

A Quaternions and rotations

These appendix is devoted to the proof of Proposition 4.3. We also give additional results
about quaternions. The following lemma gives a link between quaternions and the theory of
Q-tensors.

Lemma A.1. Let S 0
4 (R) be the space of symmetric 4×4 trace free matrices. If Q ∈ S 0

4 (R)
has two eigenvalues with eigenspaces of dimensions 1 and 3, then Q can be written

Q = α

(
q ⊗ q − 1

4
I4

)
,

for a given unit quaternion q seen as a vector of R4. A matrix of this form is called a uniaxial
Q-tensor. When α = 1 we will say that Q is a normalised uniaxial Q-tensor.

Proof. Let Q ∈ S 0
4 (R) such that Q has two eigenvalues with eigenspaces of dimensions 1

and 3. By the spectral theorem, there exists P ∈ O3(R) such that for a given α > 0 :

Q =
α

4
P diag(3,−1,−1,−1)PT = αP diag(1, 0, 0, 0)PT − α

4
I4,

and the result follows by taking q equals to the first column of P .

Proof of Proposition 4.3. 1. The group isomorphism Φ is explicitly computed in [52].
In particular, let q ∈ S3/± 1. The matrix A = Φ(q) is defined for all purely imaginary
quaternion u ∈ H by A[u] = [quq∗] where (u1, u2, u3)T =: [u] ∈ R3 is the vector
associated to u = u1i+ u2j + u3k. More explicitly, if q = x+ iy + zj + tk, then

A =

 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 − y2 + z2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 − y2 − z2 + t2

 .

Note that we have identified q ∈ H and its equivalence class in S3/ ± 1 and that Φ
is well defined since only quadratic expressions are involved. The fact that this group
isomorphism is an isometry follows from [17, Proposition A.3] and [14, Lemma 4.2].

2. The expression

J ·A =
1

2
Tr(Φ(q)TJ)

is a quadratic form for q. We take Q the matrix associated to this quadratic form. For
J = (Jij)i,j , using the explicit form of A = Φ(q) with q = x+ yi+ zj + tk we obtain:

Q =
1

4


J11 + J22 + J33 J32 − J23 J13 − J31 J21 − J12

J32 − J23 J11 − J22 − J33 J12 + J21 J13 + J31

J13 − J31 J12 + J21 −J11 + J22 − J33 J23 + J32

J21 − J12 J13 + J31 J23 + J32 −J11 − J22 + J33

 .
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This is an isomorphism since dim M3(R) = dim S 0
4 (R) and J can be obtained from Q

similarly. Moreover, since the bilinear matrix associated to a quadratic form is uniquely
defined, if Q ∈ S 0

4 (R) is such that 1
2J ·Φ(q) = q ·Qq for all q ∈ S3/±1, then Q = φ(J).

3. To prove the third point, we note that a unit quaternion can be seen as a rotation in R3

in a more geometrical way ([17, Section 5.1]): for θ ∈ [0, π] and n = (n1, n2, n3)T ∈ S2,
let us define the unit quaternion q by

q = cos
θ

2
+ sin

θ

2
(n1i+ n2j + n3k),

The unit quaternion q represents the rotation of angle θ ∈ [0, π] and axis n ∈ S2 in the
sense that if R(θ,n) ∈ SO3(R) denotes the matrix associated to the rotation of angle
θ ∈ [0, π] around the axis n ∈ S2 then Φ(q) = R(θ,n). Note that q and −q represent the
same rotation so Φ(q) is well defined by identifying q with its equivalence class in S3/±1.

In R3 the composition of two rotations of respective angles and axis (θ,n) ∈ [0, π]× S2

and (θ′,n′) ∈ [0, π] × S2 is itself a rotation: we have R(θ,n)R(θ′,n′) = R(θ̂, n̂) where

the angle θ̂ ∈ [0, π] is defined by

cos
θ̂

2
= cos

θ

2
cos

θ′

2
− n · n′ sin θ

2
sin

θ′

2
.

Note that cos(θ̂/2) = q · q̄′ where q and q′ are the associated unit quaternions seen as
vectors of dimension 4. In particular the dot product of two rotations matrices is

R(θ,n) ·R(θ′,n′) =
1

2
Tr
(
R(θ,n)R(θ′,−n′)

)
=

1

2
(2 cos θ̃ + 1)

where

cos
θ̃

2
= cos

θ

2
cos

θ′

2
+ n · n′ sin θ

2
sin

θ′

2
.

Besides, for the quaternions q and q′ respectively associated to the rotations R(θ,n)
and R(θ′,n′), we have:

q′ ·Qq′ = (q · q′)2 − 1

4
= cos2 θ̃

2
− 1

4
=

1

4
(2 cos θ̃ + 1),

where Q is the normalised uniaxial Q-tensor:

Q = q ⊗ q − 1

4
I4.

Finally 1
2R(θ,n) ·R(θ′,n′) = q′ ·Qq′ and we obtain thanks to the previous point:

φ
(
R(θ,n)

)
= Q,

that is to say: if J ∈ SO3(R) then φ(J) is a normalised uniaxial Q-tensor.

4. If D = diag(d1, d2, d3) then using the explicit form of φ given in the second point:

φ(D) =
1

4


d1 + d2 + d3

d1 − d2 − d3

−d1 + d2 − d3

−d1 − d2 + d3

 ,

and if Q = diag(s1, s2, s3, s4) with s1 + s2 + s3 + s4 = 0 then

φ−1(Q) = 2

 s1 + s2

s1 + s3

s1 + s4

 .
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B More about SO3(R) and SOn(R)

Lemma B.1. For all n ≥ 3 :

Span(SOn(R)) = Mn(R).

Proof. First we prove that the diagonal matrices form a subset of Span(SOn(R)): it is
enough to show that

D :=


1

0
. . .

0

 ∈ Span(SOn(R))

(the other diagonal matrices with only one nonzero coefficient can be obtained in a similar
way). When n is odd:

D = In +


1
−1

. . .

−1


and both matrices in the sum are in SOn(R). When n ≥ 4 is even,(

04

In−4

)
=

1

2
In +

1

2

(
−I4

In−4

)
∈ Span(SOn(R)),

thus:
1
−1

−1
1

0n−4

 =


1
−1

−1
1

In−4

−
(

04

In−4

)
∈ Span(SOn(R)),

and similarly:

4D =


1

1
1

1
0n−4

+


1
−1

−1
1

0n−4

+


1

1
−1

−1
0n−4



+


1
−1

1
−1

0n−4

 ∈ Span(SOn(R)).

The SSVD (Definition 3.2) gives the result for any matrix.

Corollary B.1. For n ≥ 3, a matrix that commutes with any matrix of SOn(R) is of the
form λIn.

We can now prove Lemma 3.3 and its generalisation Lemma 3.4.
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Proof (of Lemma 3.3). The linear map Φ : Mn(R)→Mn(R) defined by

Φ(J) :=

∫
SOn(R)

(J ·A)AdA,

satisfies for all P ∈ SOn(R),

Φ(P ) = PΦ(In) = Φ(In)P,

which by corollary B.1 means that
Φ(In) = λIn.

Therefore, Φ(P ) = λP for any P ∈ SOn(R) and the same is true for any matrix J ∈Mn(R)
by lemma B.1. To compute λ, notice that for the matrix ei ⊗ ej :

1

2

∫
SOn(R)

(ei ·Aej)2 dA = λ.

Summing this equality for all i, j gives:

n

2
= λn2,

and λ = 1/2n.

Proof (of Lemma 3.4). Let us define the linear map ψ : Mn(R) −→Mn(R) by

ψ(J) :=

∫
SOn(R)

(J ·A)Ag(A) dA. (46)

1. We first note that ψ is self-adjoint for the dot product A · B = Tr(ATB): for any
K ∈Mn(R),

ψ(J) ·K =

∫
SOn(R)

(J ·A)(K ·A) g(A) dA = J · ψ(K).

2. We prove that Span(In) is a stable supspace for ψ : for any P ∈ SOn(R) we have:

Pψ(In)PT =

∫
SOn(R)

(In ·A)PAPT g(A) dA = ψ(In),

and we conclude with corollary B.1 that ψ(In) = αIn with:

α =
2

n
In · ψ(In) =

1

2n

∫
SOn(R)

Tr(A)2g(A) dA.

3. Since ψ is a self adjoint operator, the orthogonal subspace Span(In)⊥ is also a stable
subspace. Moreover, using the change of variable A 7→ AT , we see that ψ(JT ) = ψ(J)T

and we have the decomposition:

Span(In)⊥ = S 0
n (R)

⊥
⊕An(R),

where S 0
n (R) and An(R) are respectively the subspace of trace free symmetric matrices

and the subspace of skew-symmetric matrices. They are both stable subspaces.
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4. We prove now that ψ : S 0
n (R)→ S 0

n (R) is a uniform scaling. By the spectral theorem,
every matrix J ∈ S 0

n (R) can be written

J = PDPT ,

where P ∈ SOn(R) and D is diagonal. Since

ψ(PDPT ) = Pψ(D)PT ,

it is enough to prove that there exists λ ∈ R such that for all diagonal matrices D,
ψ(D) = λD. For D = diag(d1, . . . , dn), we have:

ψ(D) =
1

2

n∑
k=1

dk

∫
SOn(R)

akkAg(A) dA.

Now, if i 6= j, let Dik ∈ SOn(R) be the diagonal matrix such that all the coefficients
are equal to 1 except Dik

ii and Dik
kk which are equal to −1. Then the change of variable

A 7→ DikA(Dik)T gives∫
SOn(R)

akkaij g(A) dA = −
∫
SOn(R)

akk aij g(A) dA = 0,

which proves that ψ(D) is diagonal and the i-th coefficient of ψ(D) is:

ψ(D)ii =
1

2

n∑
k=1

dk

∫
SOn(R)

akk aii g(A) dA.

Using the fact that Tr(D) = 0 and that all the
∫
SOn(R)

aii akk g(A) dA are equal for

i 6= k (by using conjugation by the matrices P ij , i, j 6= k, see Definition 3.1), we obtain:

ψ(D)ii =
1

2
di

∫
SOn(R)

(a2
11 − a11 a22) g(A) dA,

and we conclude that for all J ∈ S 0
n (R) :

ψ(J) = λJ,

with

λ =
1

2

∫
SOn(R)

(a2
11 − a11 a22) g(A) dA =

1

4

∫
SOn(R)

(a11 − a22)2 g(A) dA.

5. We prove similarly that ψ : An(R) → An(R) is a uniform scaling. Every J ∈ An(R)
can be written

J = PCPT ,

where

C =



C1

C3

. . .

C2p−1

0
. . .

0


(47)
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is a block diagonal matrix with blocks

Ci =

(
0 −ci
ci 0

)
, ci ∈ R∗, i ∈ {1, 3, 5, . . . , 2p− 1}

so that,
ψ(J) = ψ(PCPT ) = Pψ(C)PT ,

and

ψ(C) =
1

2

p∑
k=1

c2k−1

∫
SOn(R)

(a2k,2k−1 − a2k−1,2k)Ag(A) dA.

When n ≥ 3, by using conjugation by the matrices D2j−1,2j for j ∈ {1, . . . , bn/2c}
(Definition 3.1) we can see that for each k ∈ {1, . . . , p}, the matrix

Mk :=

∫
SOn(R)

(a2k,2k−1 − a2k−1,2k)Ag(A) dA

is of the form (47). Moreover, when n ≥ 5, by using conjugation by matrices D2j−1,2`−1

for j 6= `, j, ` ∈ {1, . . . , bn/2c} and j, ` 6= k, we can see that all the diagonal blocks
of Mk are equal to zero except the one in position 2k − 1. When n = 3 there is only
one block in position 1 so the result holds but when n = 4 such j and ` do not exist.
In conclusion, when n 6= 4, ψ(C) is of the form (47) and each diagonal block C ′2k−1 of
ψ(C) is written

C ′2k−1 = µ2k−1C2k−1

with

µ2k−1 :=

∫
SOn(R)

(a2k,2k−1−a2k−1,2k)a2k,2k−1g(A) dA =

∫
SOn(R)

(a21−a12)a21g(A) dA,

where this equality follows by using conjugation by “block-permutation matrices”:

Qk :=



I2
. . .

I2
02 −I2
I2 02

I2
. . .

I2
1

. . .

1



,

where the first zero on the diagonal is in position 2k − 1. Therefore,

ψ(C) = µC, (48)

with

µ =
1

2

∫
SOn(R)

(a21 − a12)a21 g(A) dA =
1

4

∫
SOn(R)

(a21 − a12)2 g(A) dA. (49)

6. Finally, for J ∈ Span(In)⊥, writing

J =
J + JT

2
+
J − JT

2
,
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we have:
ψ(J) = βJ + γJT ,

with

β =
1

2
(λ+ µ) =

1

4

∫
SOn(R)

(
(a2

11 − a11 a22) + (a21 − a12)a21

)
g(A) dA,

and

γ =
1

2
(λ− µ) =

1

4

∫
SOn(R)

(
(a2

11 − a11 a22)− (a21 − a12)a21

)
g(A) dA.

7. In conclusion, writing the decomposition

J =
1

n
Tr(J)In +K,

where K ∈ Span(In)⊥, we obtain

ψ(J) = aTr(J)In + bJ + cJT ,

with

a =
α− β − γ

n
,

and

b = β =
1

8

∫
SOn(R)

(
(a11 − a22)2 + (a12 − a21)2

)
g(A) dA,

and

c = γ =
1

8

∫
SOn(R)

(
(a11 − a22)2 − (a12 − a21)2

)
g(A) dA.

And there are of course many other ways to write the coefficients a, b and c.

Remark B.1. In dimension 4, the result still holds for symmetric matrices. For general
matrices, the result can be proved in particular cases, for instance when g is a function of
the trace, by using an explicit parametrisation of SO4(R) such as the 4-dimensional version
of (10).
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