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ARTICLE

Transcriptome-wide identification of transient RNA
G-quadruplexes in human cells
Sunny Y. Yang1, Pauline Lejault2, Sandy Chevrier3, Romain Boidot 3, A. Gordon Robertson4,

Judy M.Y. Wong 1 & David Monchaud 2

Guanine-rich RNA sequences can fold into four-stranded structures, termed G-quadruplexes

(G4-RNAs), whose biological roles are poorly understood, and in vivo existence is debated.

To profile biologically relevant G4-RNA in the human transcriptome, we report here on

G4RP-seq, which combines G4-RNA-specific precipitation (G4RP) with sequencing. This

protocol comprises a chemical crosslinking step, followed by affinity capture with the G4-

specific small-molecule ligand/probe BioTASQ, and target identification by sequencing,

allowing for capturing global snapshots of transiently folded G4-RNAs. We detect wide-

spread G4-RNA targets within the transcriptome, indicative of transient G4 formation in

living human cells. Using G4RP-seq, we also demonstrate that G4-stabilizing ligands

(BRACO-19 and RHPS4) can change the G4 transcriptomic landscape, most notably in long

non-coding RNAs. G4RP-seq thus provides a method for studying the G4-RNA landscape, as

well as ways of considering the mechanisms underlying G4-RNA formation, and the activity

of G4-stabilizing ligands.
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The biological functions and cellular regulations of
RNAs are dependent on their secondary and tertiary
structures1,2. RNAs can adopt intricate bulged, stem–loop

structures involving duplex-, triplex-, and quadruplex-RNA
motifs3,4. G-quadruplexes (G4s) are structures formed by
Hoogsteen bonding of four guanines to form planar guanine
quartet (G-quartet) units, which π-stack on each other, to
assemble into columnar four-stranded structures with the central
cavity stabilized by monovalent cations (i.e., K+, Na+). G4
folding is spontaneous in vitro and results in a highly stable
structure. While both single-stranded DNA and RNA can fold
into G4s, the latter is less studied5,6, even though G4 formation in
RNA molecules is generally more stable, and RNA molecules can
fold more readily due to their predominant single-stranded nat-
ure in vivo.

Formation of G4-RNA has recently been implicated in key
RNA metabolism events, including the regulation of RNA pro-
cessing and translation7,8. To better understand the roles of G4-
RNA in cell biology, there has been a strong interest in mapping
the distribution of G4-RNAs within the human transcriptome.
However, to date, in vitro and in vivo evidence appear to be
contradictory, limiting interpretation of the relevance of G4-
RNAs9–12. In vitro transcription experiments suggest that
opportunities exist for G4-RNA formation during co-
transcriptional folding of nascent RNA13. Kwok et al.9 used
reverse transcription (RT)-stalling coupled with next-generation
sequencing to map thousands of G4-RNA sites in vitro, showing
widespread potential G4-forming sites within the human tran-
scriptome. In contrast, Guo and Bartel10 showed through in vivo
DMS-mediated RNA modification with RT-stall-sequencing that
G4s are nearly entirely in an unfolded state in vivo in mammalian
cells. This observation is surprising since it has widely been
assumed that G4-RNAs are formed in vivo, at least transiently.
Conversely, evidence for in vivo G4 formation has been provided
by cellular imaging studies using G4-specific antibodies and
probes11,12. To reconcile these results, we hypothesized that G4-
RNAs must be able to form, at least transiently, in live human
cells, and that the identity of these G4-RNAs may provide valu-
able insights into their regulatory mechanisms and functions.
However, because none of the above methods are suitable for
capturing transient G4s, an alternative approach was needed.

Here, we report on a small-molecule-based approach to
assessing the existence and the identity of transient G4-RNAs in
the human transcriptome. We designed a biotinylated version of
a previously characterized G4-specific ligand/probe, template-
assembled synthetic G-quartet (TASQ), which self-assembles into
a synthetic G-quartet upon association with a G4 target through
end-quartet stacking. We developed a protocol, G4RP-seq (G4-
RNA-specific precipitation and sequencing) using BioTASQ to
capture G4-RNAs from human breast cancer cells in log-phase
growth. Using this protocol to characterize in vivo transcriptomic
landscapes, we showed that more G4s are present in gene tran-
scripts that are GC-rich and have higher densities of predicted G4
motifs. We also evaluated G4 ligand-induced changes to the G4-
RNA landscape following treatments with the G4 ligand,
BRACO-19 or RHPS4, showing both similarities and differences
in their respective induction profiles. Our data show that G4-
RNAs can be ligand-induced in diverse RNA entities that include
long non-coding RNAs; further, differential G4-RNAs induced by
G4 ligands suggest that specific G4 structure–ligand interactions
could be exploited.

Results
BioTASQ selectively captures G4 targets in vitro. To support
affinity purification and identification of functional

transcriptomic G4-RNA targets, we added a biotin tag to the
biomimetic quadruplex ligands known as TASQ (Fig. 1a)14,15,
known for their high G4-selectivity and, for some of them, their
ability to track G4-RNAs in live cells (N-TASQ)12,16. Detailed
synthesis and characterization of the biotinylated TASQ, or
BioTASQ, can be found in Supplementary Figure 1 and Methods.
We first evaluated the G4-interacting properties of BioTASQ via a
fluorescence resonance energy transfer (FRET)-melting assay
(Supplementary Figure 2)17 and electrospray ionization mass
spectrometry (ESI-MS) analyses (Supplementary Figure 3)18.
FRET-melting experiments were performed with BioTASQ
against a panel of dual-labeled nucleic acid sequences that
included: (a) three G4-DNAs (F-Myc-T and F-kit-T, found in the
promoter regions of MYC and KIT gene, respectively, and F21T,
the human telomeric sequence);19,20 (b) one G4-RNA (F-
TERRA-T, the human telomeric transcript);21,22 and (c) one
duplex-DNA as a control (F-DS-T) (Supplementary Figure 2).
Introduction of a biotin tag negatively impacted G4-affinity of
BioTASQ (further confirmed by ESI-MS measurements) com-
pared to the non-biotinylated parent PNADOTASQ. However, it
did not affect the ability of BioTASQ to discriminate G4s over
duplexes14,23.

Next, we assessed whether BioTASQ could efficiently capture
G4s from solutions in vitro24. We used fluorescein (F)-labeled
nucleic acids since fluorescence signal measurements allow for
convenient and sensitive detection of the ligand/G4 assemblies.
We performed these experiments with: (a) three G4-DNAs (F-
Myc and F-SRC, two sequences found in the promoter regions of
MYC and SRC gene, respectively25,26, and F-22AG, the human
telomeric sequence); (b) three G4-RNAs (F-TRF2 and F-NRAS,
two sequences found in the mRNA of TRF2 and NRAS gene,
respectively;27 and F-TERRA (the human telomeric transcripts);
and (c) one duplex-DNA as control (F-Duplex). Labeled
oligonucleotides (1 μM) were incubated with BioTASQ (20 μM)
and streptavidin-coated magnetic beads (MagneSphere®, 25 μL).
After overnight incubation at 25 °C, streptavidin beads were
precipitated, the supernatant removed, and the beads resus-
pended in denaturing buffer before thermal denaturation (8 min
at 90 °C). After separation from the beads (via centrifugation and
magnet immobilization), fluorescent signals from the supernatant
solutions were measured to quantify nucleic acid capture. Our
results confirmed the efficiency of BioTASQ-mediated G4 capture
(Fig. 1b) and showed that the level of G4s recovered was
dependent on both the G4 nucleic acid type and topology. G4-
DNA was enriched 4.1–20.7-fold, whereas G4-RNA was enriched
between 10.9- and 23.8-fold when compared to controls, while
duplex-DNA was not enriched. BioTASQ appeared to have
stronger preferences for certain G4 topologies, as type I (or
‘parallel’)28 G4s displayed better enrichment than type II (or
“mixed-hybrid”) G4s (with 16.6-, 20.7-, 20.6-, 10.9-, and 23.8-fold
enhancement for F-Myc, F-SRC, F-TERRA, F-TRF2, and F-
NRAS, respectively, versus 4.1-fold enhancement for F-22AG).
The preference of BioTASQ for type I G4, which displays
accessible external G-quartets, is expected, given that TASQs are
sterically demanding ligands that require accessible, loopless G-
quartets for binding G4 targets efficiently. This property
represents a limitation to the use of BioTASQ for G4 detection,
especially for G4-DNAs, which have higher conformational
diversity than G4-RNAs. We have not yet tested the affinity of
BioTASQ on the recently reported antiparallel G4-RNA29. While
the cellular prevalence of G4-RNA with antiparallel topology
remains to be established, they may provide key insights into the
topological preference of TASQ ligands. We confirmed that the
streptavidin bead/BioTASQ system did not extract duplex-DNA
(0.7-fold). We further confirmed G4 selectivity of BioTASQ via
competitive pull-down experiments, which we performed with
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F-SRC and F-NRAS (1 μM) in the presence of an excess of
duplex-DNA (either ds17 or ds26, 20 μM) or DNA extracts (calf
thymus DNA, ctDNA, 100 μM, expressed in base pairs). The
capture efficiencies of the fluorescently labeled G4-RNA were not
significantly affected by an excess of synthetic duplexes (90–112%
with F-SRC, 74-82% with F-NRAS) or with DNA extracts (76%
and 90% with F-SRC and F-NRAS, respectively). We also tested
BioTASQ/streptavidin association with an excess of either biotin
(80 μM, to compete with streptavidin interaction) or PNADO-
TASQ (10 μM, to compete with G4 interaction) (Fig. 1c).
Together, these results show the strong ternary interaction
between G4s, BioTASQ, and streptavidin (beads), which provided
the basis for the development of our G4RP protocol (described
below).

G4RP isolates G4-RNA targets from human cell extracts. After
confirming that BioTASQ could interact with and capture G4s
in vitro, we then assessed whether it could capture G4 targets

from human cell extracts. For this, we developed the G4-RNA-
specific precipitation (G4RP) protocol, a modified version of the
commonly used RNA-immunoprecipitation (RIP) protocol30.
MCF7 cells were first crosslinked with formaldehyde to halt
biological processes and stabilize transient structural interactions.
Harvested cells were then sonicated briefly to release cellular
content. Cell lysates were incubated with a high concentration of
BioTASQ (100 µM) overnight (Supplementary Figure 3C) before
affinity purification with magnetic streptavidin beads.

We first used RT quantitative PCR (RT-qPCR) with gene-
specific primers to confirm the efficiency of the G4RP protocol31.
G4RP-qPCR analysis of RNAs extracted from the BioTASQ-
enriched fractions showed that non-specific binding was
negligible (black bars) (Fig. 2a, b) while demonstrating the
enrichment of two known G4-forming mRNAs, i.e., VEGFA and
NRAS27 (gray bars) (Fig. 2a, b).

To confirm bona fide G4 formation in target mRNA
sequences, we collected MCF7 cell extracts following treatments
with two well-established G4-stabilizing ligands, BRACO-19
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and RHPS432,33. We chose the treatment ligand doses to be
between the respective IC15 and IC25 (doses that are growth
inhibitory in 15–25% of the cells; BRACO-19: 5 µg/mL and
RHPS4: 1.5 µM), as determined by growth kinetics profiling of
MCF7 in the presence of G4 ligands, compared with vehicle
controls (Supplementary Figure 4). Treatment with G4 ligands
significantly increased G4RP-qPCR signals by 6.5-fold, 3.6-fold,
and 4.4-fold in BRACO-19-treated cells and by 10.2-fold, 4.2-
fold, and 2.5-fold in RHPS4-treated samples in three selected
G4-rich regions, VEGFA, NRAS, and TERF2, respectively,
compared to the untreated control (Fig. 2c; Supplementary
Figure 5), demonstrating that BioTASQ can specifically enrich
for G4-containing RNA sequences. HPRT1 was selected as an
unstructured RNA control, as this housekeeping mRNA is
expected to have low G4-forming potential34. Neither BRACO-
19 nor RHPS4 treatment induced a significant change in
BioTASQ-captured HPRT1 signals, confirming that these G4
ligands were selective for G4-rich targets. Collectively, these
results indicate that the G4RP protocol is suitable for the
purification and identification of G4-containing RNAs from
human cell extracts, as well as the quantification of the G4
ligand-induced changes.

We performed G4RP in samples that were crosslinked to
preserve the transiently formed cellular G4s while preventing the
induction of G4 formation in vitro, as crosslinked nucleic acids
would be in an immobilized state. We used the reported
formaldehyde concentration and crosslinking conditions where
over 90% of nuclear DNA are immobilized35 and anticipated that
the crosslink efficiency for cellular RNA to be similar. As controls
and to illustrate the importance of this crosslinking step, G4RP
was performed in non-crosslinked samples. We selected three
targets from the top- and bottom-ranked transcripts obtained
with our G4RP-seq results (see below). BioTASQ enrichment of
these targets was quantified using RT-qPCR and compared
between the non-crosslinked and crosslinked samples (Supple-
mentary Figure 6). We observed a loss of difference in BioTASQ
enrichment in the non-crosslinked samples, despite the overall
higher signals. These increased signals in non-crosslinked
samples were likely G4s that were formed in vitro, due to the
high concentration of BioTASQ, arguing that the crosslinking
step is necessary to immobilize cellular RNA structures and to
minimize the effects of in vitro G4 formation and destabilization
through the biochemical evaluation steps. As naked, non-
crosslinked RNA targets are susceptible to the in vitro
G4 stabilization effects of high concentration of BioTASQ during
the incubation steps, the true differences between the in vivo
transient levels of the top and bottom ranking targets would be
masked.

G4RP-Seq identifies transcriptome-wide transient G4-RNAs.
To survey the baseline in vivo G4 transcriptomic landscape, we
performed G4RP followed by sequencing (G4RP-seq) in human
breast cancer cells harvested at log-phase growth. Due to the
crosslinking step in the G4RP protocol, we expected to capture
global levels of transient G4s in the transcriptome. Notably, as G4
ligand treatment resulted in gene expression changes in human
cells36, we needed to account for these input differences; there-
fore, an internal input control was included for each treatment
condition. To enrich for diverse G4-forming RNAs, we elected to
remove ribosomal RNA targets at the cDNA library preparation
step, as rRNA constitute over 80% of total cellular RNAs. Ribo-
depletion instead of poly-A selection was used, as we anticipated
that non-poly-A RNAs, including many non-coding RNAs
(ncRNAs), not only harbor but contribute to a substantial pro-
portion of cellular G4s37. For the sequencing analysis, two com-
parisons were required: BioTASQ versus input (which gives
normalized global levels of transient G4s for a specific transcript
as Enrichment Score (ES)), and G4 ligand-treated versus
untreated cells (given as Enrichment Score Change (ΔES))
(Supplementary Figure 7). After mapping reads to the hg19
reference human genome assembly with HISAT238, normal-
ization and differential gene expression analyses were performed
with HTSeq/DESeq2 pipeline39,40, by comparing the BioTASQ-
enriched samples with the corresponding inputs41 (Supplemen-
tary Data 1). Of note, the relative enrichment levels by BioTASQ
(given as ES) were not direct quantitative readouts of G4 for-
mation but instead indicate the relative propensity of a specific
transcript to fold into G4. ES values allow ranking of transcripts
by relative G4-folding status under specific experimental
conditions.

We observed BioTASQ enrichment of many gene transcripts,
suggesting the existence of widespread G4-RNAs, at least
transiently, in live human cells. This observation was expected
since we were capturing a snapshot of the G4-RNA landscape in
which some G4-rich sequences were in folded states, while others
were in unfolded states. While the sequencing depth was not high
enough to detect subtle changes in individual G4-forming
sequences, we were able to confidently determine gene-level
changes by focusing on a subset of highly abundant transcripts,
filtered by high normalized mean read counts (as an estimate of
relative expression level). We compared ES for each condition to
generate initial lists of gene transcripts filtered by a minimal
abundance threshold (>50 normalized mean read counts)
(Supplementary Data 1). To ensure high-confidence hits with
substantive changes, we further filtered the list and included only
those with high transcript read abundance (≥500 mean read
counts; approximately the top 5% of the list), which we used for
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downstream analyses. Gene transcripts in this filtered list were
then ES-ranked for downstream analyses (Supplementary
Data 1D).

ES, a gene-specific ratio of the BioTASQ signal normalized to
the corresponding input signal, moderately positively correlated

with their respective G/C content (Pearson correlation= 0.43,
p < 0.0001) (Fig. 3b). ES was uncorrelated to gene length (Pearson
correlation= 0.02, p= 0.89) (Fig. 3c). To evaluate whether the ES
is related to the density of potential G4 sequences, Quadbase242

was then used to assess the number of predicted G4 (pG4) motifs
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Fig. 3 Characterization of the baseline level of G4-RNA landscape using G4RP-seq. a Top 10 highly abundant transcripts (filtered by at least 500 base-read
counts) with the lowest BioTASQ enrichment (blue bars, normalized to the input in the untreated sample) or with the highest BioTASQ enrichment (red
bars) ranked by Enrichment Scores. b Regression plot of BioTASQ-Enrichment Score for each transcript versus its corresponding G/C content (R2= 0.187,
p < 0.001, significant non-zero relationship). c Regression plot of BioTASQ-Enrichment Score for each transcript versus its corresponding gene length (R2

= 0.00005, p= 0.89, non-significant relationship). d Number of pG4 motifs (calculated by Quadbase2 using mid stringency G3L1–7) to gene length ratio
plotted against the subset of highly abundant transcripts ranked by their BioTASQ enrichment. The bar graph (inset) shows the average pG4 motif/gene
length ratio between the top 100 ranked transcripts versus the bottom 100 ranked transcripts (p < 0.001, significant difference, Student's t-test)
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(i.e. sequences with the canonical G3L1–7 G4 sequence) in each
gene transcript. The ratios of the number of pG4s to gene length
were calculated and then plotted against the transcripts ranked by
their ES (Fig. 3d). Comparison of the ratios between the top and
bottom 100 ES-ranked transcripts showed significantly higher
values (2.2-fold difference) for top-ranked transcripts. Results
from gene ontology analysis of the top and bottom 100 ES-ranked
transcripts are summarized in Supplementary Table 143.
Together, our bioinformatics analyses confirmed that transcripts
with higher ES tend to have higher G/C content and higher pG4
density.

We also found that highly expressed lncRNAs had some of the
lowest relative G4 levels, as shown by their low ES (Fig. 3a). These
bottom-ranked transcripts included well-known lncRNAs such as
MALAT1, RPPH1, RMRP, and XIST. The presence of MALAT1
on this list was unexpected, as it has been previously reported as a
G4-forming lncRNA in vitro9,10. Interestingly, residual rRNAs
(that escaped from the ribodepletion step during library
preparation) were also among the most depleted within this list.

G4RP-seq identifies ligand-induced changes in G4-RNA pro-
files. We evaluated ligand-induced changes in the G4-RNA
landscapes by applying G4RP-seq to samples treated with G4
ligands and calculating an Enrichment Score Change (ΔES) from
the ratio of treated versus non-treated samples. By filtering the
initial list ΔES > 1.75, we found BioTASQ enrichment in 251 and
463 gene transcripts to be highly induced by BRACO-19 and
RHPS4, respectively (Supplementary Data 1B–C). Results from
gene ontology analysis performed on the lists of top genes are
summarized in Supplementary Table 243.

Among the list of gene transcripts with a high ligand-induced
increase (ΔES > 1.75) and at least 500 mean read counts, the
lncRNAsMALAT1, RPPH1, and XIST were highly ranked in both
BRACO-19- and RHPS4-induced gene lists (Fig. 4a). Some RNAs
previously reported to harbor G4s in vitro were also identified,
including NEAT1 and NRAS9,27. We found no correlation
between the ligand-induced ΔES and the read counts of the
transcripts (Pearson correlation= 0.02, p= 0.69) (Supplementary
Figure 8). The ligand-induced ΔES of each transcript was
compared to the corresponding G/C content of the transcripts,
which interestingly showed a negative correlation (Fig. 4b). When
the transcripts were ordered by ΔES, the pG4 density appeared to
be distributed toward lower scores (1.7-fold and 2.7-fold
difference between the average ratio of top and bottom 100
ranked transcripts for BRACO-19 and RHPS4, respectively)
(bottom panel) (Fig. 4b). Overall, our observations suggest that
transcripts with higher pG4 density were more likely to be
captured in a folded state in the absence of ligands, resulting in
ΔES being lower due to the higher baseline level of G4 formation.
In contrast, transcripts with lower pG4 density were more likely
to be unfolded in the absence of ligands and to have their
G4 structures stabilized in the presence of ligands, leading to a
higher ΔES.

When we compared the absolute number of pG4 motifs (i.e.
without normalization to gene length) between the three
treatment conditions ranked by their respective ES, we observed
differential changes in pG4 profiles between the two G4 ligand
treatments (Fig. 4c). pG4 scores generated using different
stringency of searches (G2L1–10, G3L1–5, and G3L1–7) showed
similar trends (Supplementary Figure 9). BioTASQ-captured
targets generated from BRACO-19-treated samples exhibited
higher levels of pG4-dependent enrichment regardless of the
search stringency, conceivably due to the broader range of
intramolecular G4s (longer loops, 2-quartet G4s, etc.) stabilized
by this ligand. On the other hand, targets generated from RHPS4-

treated samples showed lower levels of pG4-dependent enrich-
ment and a pG4-dependency could only be observed when the
plots were obtained using G4 motif searches with the lower
stringency. We reasoned that RHPS4-binding preference could be
selective towards sequences with lower numbers of G4 motifs or
highly specific G4 sequences that are less prevalent within the
transcriptome. However, we cannot rule out the possibility of
intermolecular G4s, as computational algorithms are currently
unable to predict these structures. Given this caveat, the lack of
pG4-dependent enrichment in samples treated with RHPS4 could
be partially explained by a preferential ligand-induced stabiliza-
tion of intermolecular G4s. The overlap between the gene lists for
the two G4 ligand treatments demonstrated that they have
differential G4-induction profiles, in agreement with their
differential in vitro G4-structure-specific binding profiles
(Fig. 4d)44.

We further validated our findings from G4RP-seq by
performing qPCR on separate G4RP samples obtained with
biological repeat experiments, using primers specific for the top
three common lncRNA targets: MALAT145, XIST46, and
RPPH147. Fold change differences between G4RP-qPCR and
G4RP-seq were seen and expected due to the small qPCR region
amplified. Nevertheless, the qPCR results were consistent with
those obtained from sequencing, confirming that these lncRNAs
were targets of G4 ligands (Fig. 4e; Supplementary Figure 10).
Circular dichroism (CD) and thermal differential spectra (TDS)
analyses48 of the three selected pG4 regions of MALAT1, XIST,
and RPPH1 were consistent with the formation of parallel-type
G4 structures in vitro in the selected pG4 motif sequences
extracted from these genes (Supplementary Figure 11). In
summary, we observed that the BRACO-19 and RHPS4
treatments in MCF7 cells similarly induced G4 stabilization in
several highly expressed lncRNA targets, but the treatments also
displayed distinct ligand specificity towards other RNA targets.

Discussion
It has been widely assumed that G4s must be formed in vivo, at
least transiently, due to the high structural stability of G4 nucleic
acids and the favorable intracellular potassium concentration.
The extent to which G4-RNA formation occurs in vivo in human
cells is debated49, since it has been recently reported that G4s are
globally unfolded in the mammalian transcriptome10. To address
this conundrum, we developed and reported here on G4RP-seq, a
protocol that provides evidence supporting the existence of
transient G4-RNAs in the in vivo human transcriptome. We also
used G4RP-seq to generate readouts of the changes in
transcriptome-wide G4-RNA landscape upon treatments with G4
ligands.

Our first key finding of global transient G4-RNA formation
suggests an alternative perspective on Guo and Bartel’s10 lack of
detected G4-RNAs by DMS/RT-profiling, an observation that can
be interpreted in two ways: either G4s are seldomly formed
in vivo, or G4s are formed but are unfolded quickly by destabi-
lizing mechanisms such as through the actions of helicases. DMS/
RT profiling may be reporting on an unfolded G4 landscape since
it measures the biological endpoint in which all G4s are even-
tually unfolded. A recent study corroborated this by demon-
strating that dynamic folding and unfolding of some G4-RNAs in
live cells could occur within seconds50. We postulated that even if
the G4 equilibrium heavily favors an unfolded G4 state, global
snapshots of transiently folded G4s could still be captured by a
chemical crosslinking step. Our observation of widespread G4-
RNAs using a snapshot approach, combined with Bartel’s
observation of endpoint globally unfolded G4-RNAs, suggest that
in vivo G4-RNAs can form continuously and are rapidly resolved
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to an unfolded state. Further, we anticipate that the equilibrium
between an RNA’s transient folded and unfolded states can be
influenced by competing factors such as the transcription rate of
the RNA, the availability of helicases51, the chaperone activities of
RNA-binding proteins52, and the structural stabilization by G4
ligands53 (Fig. 5). Importantly, the effectiveness of capturing these
transient G4-RNAs within transcripts, as measured by BioTASQ

enrichment, is correlated with their G/C content and pG4 density.
This observation suggests that gene transcripts with a higher
density of pG4 motifs would have a higher probability of having
at least one of these motifs captured in a folded state with our
crosslinking snapshot approach. It is currently undetermined
whether such transient G4s have any biological roles or are
simply stochastic passenger events that arise from the chemical
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properties of guanines. Strikingly, lncRNAs appeared to avoid
G4-formation and were found mainly in an unfolded state, in the
absence of G4 ligands. The functions and interactions of lncRNAs
with other molecules (DNA, RNA, and protein) are dependent on
their folding into higher-order structures54, and the formation of
G4 may interfere with such folding. Consistent with this, a study
on hnRNP F binding and G4 formation showed that hnRNP F
ribonucleoprotein formation prevents G4 formation/reformation
by sequestering the G-tracts in a single-stranded RNA state55. As
the rate of protein-RNA complex formation is faster than that for
G4 formation56, the shift of cellular G4-RNAs toward an unfol-
ded state could be partially due to interactions with RNA-binding
proteins.

The second key finding from our report is the characterization
of G4 ligand treatment effects on the G4-RNA folding state
within the in vivo human transcriptome. While previous studies
have characterized G4 ligand-induced changes for human
genome-wide G4-DNAs and transcriptome-wide G4-RNAs
in vitro9,57, the effects of G4 ligands on transcriptome-wide G4-
RNAs in vivo have not been reported. Here, we showed by the
comparison of BioTASQ-enrichment profiles of BRACO-19 and
RHPS4 that these two G4 ligands have both shared and distinct
targets. Following ligand treatments, we found, paradoxically, that
transcripts with lower pG4 density were relatively more enriched
than those with a higher number of G4 motifs. There are two
possible explanations for this. First, the relative increase in Bio-
TASQ enrichment is less significant in high-pG4 transcripts than
that found in low-pG4 transcripts, which have, by definition, a
lower probability of being crosslinked in a folded state in the
absence of ligands. Upon ligand treatment, stabilization of these
previously unfolded pG4s within the low-pG4 transcripts sig-
nificantly increased their BioTASQ enrichment. A second possi-
bility is that rather than the density of G4 motifs, ligand-induced
G4 stabilization may be more dependent on the ligand-binding
affinity of individual G4 sequences, taking into account other
confounding factors such as topology, flanking or loop sequences,
and the presence of modified nucleosides. This second possibility
is supported by our observation that the absolute number of pG4s
within a transcript seemed to be more predictive of its ligand-
induced G4-structure formation for BRACO-19, a broad spec-
trum, pan-G4-specific ligand, but not for RHPS4, a ligand with
higher structural and sequence specificity. Given that the G4-
binding modes of BRACO-19 and RHPS4 are different, their pG4
profiles are expected to be different.

While BRACO-19 and RHPS4 G4-profiles are distinct in sev-
eral aspects, they also share common targets within the in vivo
MCF7 transcriptome, most notably in the abundant lncRNAs.
We anticipate that these targets are of interest, as they contain G4
targets that can be accessed and stabilized by both tested G4
ligands, suggesting that these G4s may be druggable. We propose
that lncRNAs can spontaneously form G4s (e.g. MALAT1)9,10,
but that G4-formation is actively counteracted by the actions of

helicases and/or other RNA-binding proteins51,52. We anticipate
that there may be a window of opportunity for ligand-induced
G4-formation/stabilization between the initial creation of nascent
RNA and the RNA–RNA/RNA–protein interactions that are part
of the co-transcriptional maturation stage of the ribonucleopro-
tein complex13 (Fig. 5). It is important to consider the folding/
unfolding kinetics, since the balance may be shifted as ligand-
mediated G4 stabilization outcompetes the G4-destabilizing fac-
tors (i.e. duplex structures58, helicases51, and RNA-binding pro-
teins52). As dysregulation of lncRNAs has been implicated in
various human diseases, including cancers, cardiovascular, and
neurodegenerative diseases, we anticipate that targeting G4s
within lncRNAs may present a valuable therapeutic strategy to
alter the functions of these RNA entities59.

The G4RP-seq protocol has certain limitations and, we
anticipate, can be further improved. One concern is that Bio-
TASQ is itself a G4 ligand and thus may alter the G4 landscape.
However, as demonstrated, the chemical crosslinking step before
BioTASQ binding serves to minimize the effects of BioTASQ-
induced stabilization (Supplementary Figure 6), we contend that
the G4RP protocol should provide a relatively unbiased readout
of cellular G4-RNA. On the other hand, as we have stated earlier,
BioTASQ preference toward parallel G4s could limit its capability
in capturing rarer forms of G4-RNAs (i.e. antiparallel G4s).
Additionally, the G4RP protocol uses formaldehyde as a cross-
linking agent, and this is known to capture both direct and
indirect RNA–RNA interactions;60 it will be informative in future
work to also include the use of other crosslinking agents to better
characterize the G4-RNA interactome. Additionally, the sequen-
cing depth in our work was insufficient to differentiate small
changes in BioTASQ enrichment in low abundance transcripts
and individual G4-forming sequences, and we anticipate that
high-resolution sequencing in future studies will be necessary for
a more complete mapping of potential transcriptomic G4 sites.
Despite these limitations, we have shown here that G4RP-seq is
useful for the broad identification of transient G4 structures and
offers a snapshot view of the G4 landscape in live human cells.
While using G4RP-seq alone cannot distinguish which competing
factors (i.e. RNA-binding proteins or competing secondary
structures) played more important roles at specific sites, data
from G4RP-seq could be studied in combination with other
functional genomic strategies (i.e. G4-ChIP-seq61, RIP-seq30,
rG4-seq9, DMS-seq10, LIGR-seq62) to better characterize the
interactions between G4 genome and transcriptome (collectively
the G4ome).

In summary, our work provides a proof-of-principle for
studying the mammalian G4-RNA landscape, and a method for
studying the dynamics of in vivo transient G4-RNA under var-
ious biological conditions. Importantly, through G4RP-seq, we
have also evaluated the mechanisms underlying the biological
activity of G4 ligands. This opens exciting opportunities in which
G4RP-seq, by providing transcriptome-wide views of G4 level

Fig. 4 Characterization of the ligand-induced changes in the G4-RNA landscape. a Top 10 highly abundant transcripts with highest fold increase in
BioTASQ enrichment (ranked by Enrichment Score Change) for BRACO-19 (red) and RHPS4 (green). Common targets that were ranked highly for both
ligands are indicated in brown dashed lines. b (Top) Regression plot of BioTASQ-Enrichment Score Change for each transcript versus its corresponding G/
C content (BRACO-19: R2= 0.16, p < 0.0001; RHPS4: R2= 0.16, p < 0.0001, significant non-zero relationship). (Bottom) Number of G4 motifs (calculated
by Quadbase2 using mid stringency G3L1–7) to gene length ratio plotted against the subset of highly abundant transcripts ranked by their BioTASQ-
Enrichment Score Change. Left panel is BRACO-19-induced changes and right panel is RHPS4-induced changes. c Absolute number of pG4 motifs of highly
abundant gene transcripts ranked by BioTASQ-Enrichment Score for the three conditions: non-treated (black), BRACO-19 (red), and RHPS4 (green).
(Bottom) Quantification of average number of pG4 motifs for top 100 and bottom 100 ranked genes for the three sets of conditions. d Venn diagram
comparing top filtered BioTASQ-enriched gene lists for BRACO-19 and RHPS4. e G4RP-qPCR controls of the top lncRNA hits MALAT1, RPPH1, and XIST, in
G4 ligand-treated (BRACO-19 or RHPS4) samples normalized to corresponding untreated controls. Three biological replicates were used for quantification.
Two-way ANOVA was performed. p-Values: *p< 0.05, **p < 0.01, and ***p < 0.001. Error bars represent SEM
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changes, could be used as a quantitative method in the iterative
chemical design of new G4 ligands.

Methods
FRET-melting experiments. The sequences of the oligonucleotides used herein are
listed in Supplementary Table 3. The preparation of these sequences is described in
the Supplementary Methods. Experiments were performed in a 96-well format
using a Mx3005P qPCR machine (Agilent) equipped with FAM filters (λex= 492
nm; λem= 516 nm) in 100 μL (final volume) of 10 mM lithium cacodylate buffer
(pH 7.2) plus 10 mM KCl/90 mM LiCl (F21T, F-DS-T) or plus 1 mM KCl/99 mM
LiCl (F-Myc-T, F-Kit-T, F-TERRA-T) with 0.2 μM of labeled oligonucleotide and
0, 1, 5, or 10 µM of BioTASQ. Competitive experiments were carried out with
labeled oligonucleotide (0.2 μM), 10 µM BioTASQ, and increasing amounts (0, 15
and 50 equiv.) of the unlabeled competitor ds26. After a first equilibration step
(25 °C, 30 s), a stepwise increase of 1 °C every 30 s for 65 cycles to reach 90 °C was
performed, and measurements were made after each cycle. Final data were ana-
lyzed with Excel (Microsoft Corp.) and OriginPro®9.1 (OriginLab Corp.). The
emission of FAM was normalized (0 to 1), and T1/2 was defined as the temperature
for which the normalized emission is 0.5; ΔT1/2 values are means of triplicates.

In vitro pull-down assay. The sequences of the oligonucleotides used herein are
listed in Supplementary Table 3. The preparation of these sequences is described in
the Supplementary Methods. The in vitro quadruplex capture experiments were
performed in 250 µL final volume as follows: first, the streptavidin MagneSphere®
beads (Promega) were washed three times with 10 mM lithium cacodylate buffer
(pH 7.2) plus 10 mM KCl/90 mM LiCl (Caco.K) buffer. To this end, 200 µL of the
commercial solution of beads were centrifuged, taken up in 200 µL of Caco.K, and
this washing step is repeated three times. After the original solutions being
reconstituted (as 250-µL mixtures in Caco.K), 25 µL of MagneSphere® beads were
added to solutions comprising BioTASQ (20 µM) and FAM-labeled oligonucleo-
tides (1 µM). The mixtures were stirred overnight at 25 °C; then, the mixtures were
subsequently centrifuged (60 s at 8900 r.p.m.), the beads are immobilized (attracted
by a magnet) and the supernatant was removed. The solid residue was resuspended
in 240 µL of TBS 1× buffer, heated for 8 min at 90 °C (under gentle stirring 800 r.p.
m.), and then centrifuged for 2 min (8900 r.p.m.). The supernatant was taken up
for analysis (the beads being immobilized by a magnet), after being splitted in three
wells (80 µL each) of a 96-well plate using a ClarioStar machine (BMG Labtech)

equipped with FAM filters (λex= 492 nm; λem= 516 nm). Data were analyzed with
Excel and OriginPro®9.1. FAM emission was normalized as follows: the FAM
emission of the three control wells (without BioTASQ) was collected and nor-
malized to 1; then, the FAM emission of the three wells comprising labeled oli-
gonucleotides, BioTASQ, and beads were collected and compared to the control
experiments. This allowed for a direct quantification of the BioTASQ capture
efficiency. Competitive experiments were performed with BioTASQ (20 µM),
labeled oligonucleotides (1 µM), and MagneSphere® beads (25 µL) along with the
either nucleic acid competitors, ds17 (20 µM), ds26 (20 µM) or calf thymus DNA
(CT-DNA, 100 µM in base pairs), or small-molecule competitors, biotin (80 µM) or
PNADOTASQ (10 µM). All experiments were performed in triplicates.

Cell line and culture. Human breast cancer cells MCF7 was obtained from
American Type Culture Collection (ATCC). The cells were culture in Dulbecco's
modified Eagle's medium (Gibco) supplemented with 5% synthetic fetal bovine
serum (FetalClone III; GE Life Sciences) and 100 U penicillin–streptomycin mix-
ture (Gibco). Cells were incubated at 37 °C in a humidified, 5% CO2 atmosphere-
controlled incubator (HERAcell). Standard cell-culturing procedures were
employed including aspiration and washing with phosphate-buffered saline (PBS,
Gibco). Cells were trypsinized using Trypsin-EDTA (0.25%) (Gibco). Cell counting
was performed using a Coulter Counter (Beckman Coulter).

Dose–response profiling of G4 ligands. MCF7 cells were seeded at 3000/well in a
96-well flat bottom plate. The cells were treated with a series of BRACO-19 or
RHPS4 concentrations, made from serial dilutions. The cells were then monitored
in the Essen Bioscience IncuCyte ZOOM live-cell monitoring system63. Phase
confluency was used to measure cellular proliferation under a range of doses. The
maximum and minimum achievable confluency values under these conditions were
used for normalization. Three biological replicates were used to produce the
dose–response curve. Doses between LD15 to LD25 were calculated from
dose–response curve profiles (Supplementary Figure 4) and used for subsequent
experiments.

G4 RNA-specific precipitation (G4RP). MCF7 cells were seeded at 3.5 × 10[5]
cells per 10-cm dish before treatment with either vehicle (PBS), BRACO 5 µg/mL
(LD15), or RHPS4 1.5 µM (LD25) for 72h. Cells were then crosslinked using 1%
formaldehyde/PBS for 5 min at 25 °C and the crosslinking was then quenched with
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0.125 M glycine for 5 min. Cells were scraped and resuspended in G4RP buffer
(150 mM KCl, 25 mM Tris pH 7.4, 5 mM EDTA, 0.5 mM DTT, 0.5% NP40, RNase
inhibitor (Roche), homebrew protease inhibitor cocktail). Cells were then sonicated
using a Covaris m220 Ultrasonicator using default settings at 10% duty for 2 min.
The sonicated fractions were then incubated with 100 µM BioTASQ (or 100 µM
biotin for negative controls) overnight at 4 °C. Five percent of the sonicate was
collected as input control. Ten micrograms of streptavidin-magnetic beads (Pro-
mega) was added and the extract was incubated for 2 h at 4 °C. Magnetic beads
were then washed four times in G4RP buffer for 5 min. The beads were then
incubated at 70 °C for 1 h to reverse crosslink. TRIZOL was then used to extract the
RNA from the beads using the manufacturer’s instructions.

RT-qPCR. The primer sets used for RT-qPCR are listed in Supplementary Table 4.
Extracted RNA was reverse transcribed with Superscript III (Thermos) and ran-
dom hexamer primers using the manufacturer’s standard protocol to generate
cDNA. cDNAs were quantified using 2× SYBR green mix (Bimake) with three
technical replicates. C(t) values of pull-down samples were normalized to the input
control. Three biological replicates were used for all qPCR-based quantifications.
Exon-spanning primers for quantifying mRNA levels were derived from
Primerbank31.

G4RP sequencing (G4RP-seq) and analysis. G4RP samples were DNAase-
treated, briefly thermally fragmented and ribo-depleted using the Illumina Ribo-
Zero rRNA removal kit. RNA library preparation was performed using the Illu-
mina TruSeq RNA Library Prep kit by following the manufacturer’s instructions.
Two replicates (non-treated, BRACO-19 treated and RHPS4) along with an input
for each condition were paired end sequenced at 2 × 75 bp using NextSeq 500. The
sequenced reads were mapped to the human reference genome hg19 assembly
using HISAT237. Exon feature count and annotation to genes were performed
using HTSeq38. DESeq239 was used for normalization and differential gene
expression analyses. Further filtering and analyses were performed on Excel. The
analysis workflow is outlined in Supplementary Figure 7. Initial gene lists were
filtered by mean read count of>50 and fold change of >1.75 (log value of 0.8). The
list of abundantly expressed genes were filtered by a mean read count of>500. GO
analyses were performed using Enrichr42. Detailed list of gene transcripts can be
found in Supplementary Data 1.

Statistics. Graphs were produced by Microsoft Excel or GraphPad Prism. Statis-
tical testing for multiple groups of dataset were performed using one-way or two-
way ANOVA, and multiple comparisons corrected by the Bonferroni’s method.
Statistical comparisons of the average of two groups were performed using two-
tailed Student's t-test. Linear regression goodness of fit was determined from
coefficient of correlation (R2) or Pearson correlation (R), and non-zero slope sig-
nificance was given as p-value <0.05. All p-values <0.05 were considered significant
unless specified otherwise.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are available on request from the authors upon reasonable request.
The sequencing data have been deposited into NCBI’s Gene Expression Omnibus
and are accessible at GSE112898. A reporting summary for this Article is available
as a Supplementary Information File.
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