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Abstract

We propose the application of occupation measure theory to the classical problem of transient stability anal-
ysis for power systems. This enables the computation of certified inner and outer approximations for the region
of attraction of a nominal operating point. In order to determine whether a post-disturbance point requires cor-
rective actions to ensure stability, one would then simply need to check the sign of a polynomial evaluated at that
point. Thus, computationally expensive dynamical simulations are only required for post-disturbance points in
the region between the inner and outer approximations. We focus on the nonlinear swing equations but voltage
dynamics could also be included. The proposed approach is formulated as a hierarchy of semidefinite programs
stemming from an infinite-dimensional linear program in a measure space, with a natural dual sum-of-squares
perspective. On the theoretical side, this paper lays the groundwork for exploiting the oscillatory structure of
power systems by using Hermitian (instead of real) sums-of-squares and connects the proposed approach to
recent results from algebraic geometry.

1 Introduction
The application of sum-of-squares (SOS) techniques to electric power systems dates back to 2000 in Parrilo’s
PhD thesis [1, Chapter 7.4], where they are used for robust bifurcation analysis. More recently, there has been
a growing interest in the power systems community regarding applications of SOS techniques and, in their dual
form, moment relaxation hierarchies. In particular, these techniques are used to find global solutions to alternating
current optimal power flow problems [2–5].

The use of these techniques is justified when weaker relaxations [6] do not provide a global solution, but
rather a strict lower bound [7]. References [2–5] show that the Lasserre hierarchy of moment relaxations [8, 9]
can solve AC optimal power flow (ACOPF) problems for small power systems (with up to 10 buses) to global
optimality using low orders of the hierarchy. This is crucial since the Lasserre hierarchy becomes computationally
expensive with increasing relaxation order. By exploiting sparsity [5, 10, 11], the Lasserre hierarchy can solve
practical instances of ACOPF problems [12] with thousands of variables and constraints. This is achieved through
a multi-ordered Lasserre hierarchy [11].

In this paper, we demonstrate that the problem of transient stability analysis (TSA) in power systems can be
addressed using similar techniques. TSA considers the behavior of a power system following a major disturbance.
The system must return to a stable condition and preserve synchronous operation after the switching of various
devices and after faults. Electric power systems are growing in complexity due to increasing shares of renewable
generation, increasing peak loads, and the expected wide-scale uses of demand response and energy storage.
New tools are needed to benefit from high-performance computing and advances in sensing and communication
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equipment, such as phasor measurement units. Moreover, the control of power systems is complicated by phase-
shifting transformers, HVDC lines, special protection schemes, etc. In this paper, we focus on uncontrolled
dynamics as a first step towards certified estimations of the region of attraction (ROA) around a nominal operating
point.

Similar to ACOPF problems, we find that TSA problems can be solved by convexifying the problem using
measure theory, following the work of [13] which admits a dual SOS perspective. To the best of our knowledge,
SOS were first used to obtain estimates of the ROA of dynamical systems in [1, Chapter 7.3]. In the context of
power systems, they were pioneered by the work [14], which uses a Lyapunov approach (see [15–18] for related
works). The authors of [14] devise an expanding interior algorithm for estimating the ROA of the operating point.
Their approach was recently improved in [19] where an algorithm is devised that is simpler than the expanding
interior, and includes convergence proofs, contrary to [14]. One could say that these previous approach are dual
while the approach in this paper is primal. The key distinction is that the dual approach leads to sophisticated
bilinear matrix inequality conditions and relies on the choice of a shaping polynomial, while the primal approach
results in a single semidefinite program with no additional data required besides the problem description and a
hierarchy order. Moreover, the approach in [19] only ensures convergence of the algorithm, but not necesssarily
towards the the global optimum, while our primal approach based on [13] is endowed with a convergence in
volume towards the actual ROA. We thus believe that it bears great potential for transmission systems operators,
provided that sparsity may be exploited as in ACOPF problems.

We next summarize some recent work on power systems TSA. Wang et al. [20] propose TSAs using a hybrid
direct-time-domain method and a partial energy function. The analysis of the power system is reduced to several
pairs of “coupled” machines with large rotor speed differences. Owusu-Mireku and Chiang [21] propose an
energy-based method for the TSA after a power system transmission switching event. Their method determines
a relevant controlling unstable equilibrium point for a switching event and then uses an energy margin to assess
stability. Dasgupta and Vaidya [22] develop a methodology for finite-time rotor TSA. The authors draw on the
theory of normal hyperbolic surfaces in order to bring new insights to existing techniques for finite-time stability.
All these contributions are confirmed numerically on relevant test cases, such as those in [12].

This paper is organized as follows. Section 2 formulates the TSA problem. Section 3 presents the proposed
occupation-measure-based method as well as some foundational theoretical results. Section 4 describes numerical
experiments conducted to show the practical relevance of the proposed method and gives future research directions
regarding computational tractability.

2 Problem Formulation

2.1 Transient stability of power systems
Consider a power system composed of n synchronous generators with respective complex voltages v1, . . . ,vn. We
assume, as it is common in the literature, that the voltage magnitudes |v1|, . . . , |vn| are fixed during the transient
period, while the phase angles θ1, . . . ,θn are variable (compared to the rotating frame) with respective angular
speeds ω1, . . . ,ωn. In addition, the loads in the network are considered to be constant and passive impedances.
After a fault occurs, the phases will satisfy the following set of differential equations:{

θ̇k = ωk,

ω̇k = −λkωk +
1

Mk

(
Pmec

k −Pelec
k (θ1, . . . ,θn)

)
,

(1)

where Pmec
k is the (fixed) mechanical power input at bus k and Pelec

k (θ1, . . . ,θn) is the electrical power output of
each generator k with value given by

Gkk|Vk|2 +∑
l 6=k
|vk||vl |{Bkl sin(θk−θl)+Gkl cos(θk−θl)} . (2)

The quantities Bkl and Gkl denote the line susceptances and conductances, and Mk denotes the generator inertia
constant. The constant λk is related to the damping coefficient of each generator.

We assume that there exists an equilibrium to these equations, i.e., values of θ eq that satisfy

Pmec
k = Pelec

k (θ
eq
1 , . . . ,θ eq

n ), k = 1, . . . ,n. (3)

In other words, θ eq corresponds to a steady-state operating point of an AC transmission system. As usual, we
choose one bus, denoted by subscript “ref”, to serve as the reference bus, with θ

eq
ref = 0 (often referred to as

slack bus). Indeed, the equations are invariant up to a phase shift. Although the focus of the paper is on frequency



analysis, the results apply to a more comprehensive model coupled with voltage dynamics. The details are omitted
for brevity.

The TSAs described in this paper rely on polynomial reformulations of the dynamical system model (1)–(3).
To illustrate these reformulations, we use the three-bus example from Chiang et al. [23], which is composed of
three synchronous machines connected in a cycle. Since the third bus sets the reference angle (i.e., θ3 = 0), we
only need two phase angle variables, θ1, θ2, and two rotor speed variables, ω1, ω2, to describe the dynamics:

θ̇k = ωk, k = 1,2,
ω̇1 = −sin(θ1)−0.5sin(θ1−θ2)−0.4ω2,

ω̇2 = −0.5sin(θ2)−0.5sin(θ2−θ1)−0.5ω2 +0.05.

A stable equilibrium is given by (θ
eq
1 , θ

eq
2 ) = (0.02, 0.06). Following [14], the coordinates can be shifted so that

(θ
eq
1 ,θ

eq
2 ) = (0.00, 0.00) is a stable equilibrium. This dynamical system can in turn be formulated as a polynomial

differential algebraic system, as suggested by Anghel et al. [14]. To that end, we introduce auxiliary variables

sk := sin(θk) and ck := 1− cos(θk), k = 1,2 (4)

The reformulated dynamical system is

ω̇1 = 0.4996s2−0.4ω1−1.4994s1−0.02c2 +0.02s1s2

+0.4996s1c2−0.4996c1s2 +0.02c1c2,

ω̇2 = 0.4996s1 +0.02c1−09986s2 +0.05c2 −0.5ω2

−0.02s1s2−0.4996s1c2 +0.4996c1s2 −0.02c1c2,

ṡk = (1− ck)ωk k = 1,2,
ċk = skωk k = 1,2,
0 = s2

k + c2
k−2.0ck k = 1,2,

Section 4 will show that one can actually avoid increasing the number of variables and immediately obtain an
algebraic differential system of equations in complex-valued quantities.

2.2 Region of attraction
Consider the basic semi-algebraic set

X := { x ∈ Rn | gi(x)> 0, i = 1, . . . ,nX} (5)

where g1, . . . ,gnX are polynomials such that X is compact, as well as the differential algebraic system{
ẋ(t) = f (x(t)),
g0(x(t)) = 0

x(t) ∈ X , ∀t ∈ [0,T ], (6)

where x(·) : [0,T ]−→ Rn, f ∈ R[x]n, T > 0 and g0 ∈ R[x].
In addition, we ask that the final state x(T ) belongs to another semi-algebraic set XT ⊂ X , for example, a

Euclidian ball with a small radius ε > 0 centered at the equilibrium.
The region of attraction (ROA) X0 is the set of initial conditions for which there exists an admissible trajectory:

X0 :={ x0 ∈ X | ∃ x(·|x0) solution to (6) on [0,T ] s.t.
x(0|x0) = x0, and x(T |x0) ∈ XT} .

The remainder of this paper describes approaches for computing inner and outer approximations to the ROA X0.

3 Approximation of the Region of Attraction via Occupation Measures
In this section, we explain the general approach proposed by Henrion and Korda [13, 24]. Their idea is to provide
a convex formulation of polynomial ODEs using the notion of occupation measures (OM) [25], which quantify
the time spent by the trajectory of the state in a set B⊂ X :

µ(A×B|x0) :=
∫ T

0
IA×B(t,x(t|x0))dt (7)



where A ⊂ [0,T ] and I is the indicator function. Importantly, such a µ satisfies, for any measurable function
ϕ : X → R, ∫ T

0
ϕ(t,x(t|x0))dt =

∫
[0,T ]×X

ϕ(t,x)dµ(t,x|x0). (8)

Next, define the operator L : C1([0,T ]×X)→C([0,T ]×X)

v 7−→L v :=
∂v
∂ t

+
n

∑
i=1

∂v
∂xi

fi(t,x) =
∂v
∂ t

+grad v · f . (9)

Then, for any v ∈C1([0,T ]×X ,R), (8) and (9) yield

v(T,x(T |x0)) = v(0,x0)+
∫
[0,T ]×X

L v(t,x)dµ(t,x|x0). (10)

If instead of an initial point x0, we consider a probability distribution µ0 supported on the feasible set X , one may
define the average occupation measure

µ(A×B) :=
∫

X
µ(A×B|x0)dµ0(x0), (11)

µT (B) :=
∫

X
IB(x(T |x0))dµ0(x0). (12)

Integrating (10) with respect to µ0, we obtain that∫
X

v(T,x)dµT (x) =
∫

X
v(0,x)dµ0(x)

+
∫
[0,T ]×X

L v(t,x)dµ(t,x). (13)

Using distributional derivatives, one can interpret the above equation as Liouville’s PDE. Finding the ROA is then
formulated as the following optimization problem:

p∗ = sup µ0(X) (14)
s.t. Liouville equation (13),

µ0 + µ̂0 = λ , (15)
µ > 0, µ0 > 0, µT > 0, µ̂0 > 0,
spt(µ)⊂ [0,T ]×X , spt(µ̂0)⊂ X

spt(µ0)⊂ X , spt(µT )⊂ XT .

where λ denotes the Lebesgue measure on X and spt denotes the support of a measure. Equations (13) and (15)
induce a linear relationship between the four measures. The optimal value of this infinite dimension linear program
is equal to the volume of the ROA [13, Theorem 1]. Importantly, the supremum is attained and the optimal solution
is such that µ∗0 is the restriction of the Lebesgue measure to the ROA.

In his seminal article [8], Lasserre showed that such infinite-dimensional linear program on measures µ can be
approximated by a hierarchy of finite-dimensional semidefinite programs on vectors of moments yα =

∫
xα dµ(x),

|α|6 2k [26]. These hierarchies have the remarkable property of yielding upper bounds p∗k of the infinite-
dimensional optimal value p∗ such that p∗k ↘

k→∞

p∗.

There exists a dual perspective to the approach:

d∗ = inf
∫

X w(x)dλ (x)

s.t. L v(t,x)6 0, ∀(t,x) ∈ [0,T ]×X ,

w(x)> v(0,x)+1, ∀x ∈ X ,

v(T,x)> 0, ∀x ∈ XT ,

w(x)> 0, ∀x ∈ X .

(16)

The constraint L v(t,x)6 0 implies that v is non-increasing along the trajectories, and thus v(0,x)> 0 on X0 due
to the constraint v(T,x)> 0 on XT . As a byproduct, we also have that w(x)> 1 on X0. A nice property about the
previous optimization problems is that there is no duality gap [13, Theorem 2].



Figure 1: The polynomial for the three-bus system whose zero level set, which is indicated by the back region,
provides an outer approximation to the ROA. The projection shown is for (ω1, ω2) = (0, 0).

This dual perspective naturally admits a SOS reformulation:

inf wᵀ h

s.t. −L vk(t,x) = p(t,x)+q0(t,x)t(T − t)

+∑
nX
i=1 qi(t,x)gX

i (x),

wk(x)− vk(0,x)−1 = p0(x)+∑
nX
i=1 q0i(x)g

X
i (x),

vk(T,x) = pT (x)+∑
nT
i=1 qTi(x)g

XT
i (x),

wk(x) = s0(x)+∑
nX
i=1 s0i(x)g

X
i (x).

(17)

where h is the vector of λ ’s moments, and w is the vector of coefficients of wk(x) in the moments basis. The
optimization variables include polynomials vk(t,x) and wk(x) of degree at most 2k as well as the SOS polynomials
p(x), qi(x), p0(x), pT (x), q0i(x), qTi(x), s0(x), and s0i(x) with appropriate degrees that can be deduced from the
constraints in the optimization problem. Again, there is no duality gap between the truncated problems at every
order of the hierarchy [13, Theorem 4].

An outer approximation to the ROA is then given by

X̃0 := { x ∈ Rn | vk(0,x)> 0 } (18)

which converges in volume towards the ROA as the order k increases to infinity [13, Theorem 6]. As with the
Lasserre hierarchy or the Lyapunov approach via SOS, the computational burden increases sharply as the order k
increases.

A particularity of the OM approach is that the state set X should have an interior point such that the computed
volumes are non-zero. Hence, constraints g0(x(t)) = 0 in (6) derived from our change of variable may be trouble-
some, since the manifold M := {x ∈ X | g0(x) = 0} has no interior point. A simple method to address this issue
consists in ignoring the equality constraints when computing the ROA approximation X̃0, and then consider X̃0∩M
as the desired ROA estimation. Such a method does not work with any arbitrary equality constraints. However, in
the case of constraints derived from a change of variable, this approach is valid due to the fact that the vector field
f then satisfies (grad g0) · f ≡ 0. Thus, the dynamics are tangent to M, which means that any trajectory starting in
M will remain in M, which is exactly the constraint g0(x(t)) = 0, ∀ t ∈ [0,T ].

To the best of our knowledge, this is the first time that algebraic equality constraints derived from a change
of variable are addressed within the OM approach. This facilitates the novel application of OM theory to non-
polynomial systems.

We conclude this section by briefly discussing the approach for computing inner approximations. The ma-
chinery for inner approximations is very similar to the outer approximation approach discussed above. The key
distinction is that the inner approximations consider an outer approximation to the complement of the ROA,
Xc

0 := X \X0. See [27] for further details.



Figure 2: An outer approximation of the ROA is indicated by the back region. The projection shown is for
(ω1, ω2) = (0, 0).

Figure 3: An inner approximation of the ROA is indicated by the back region. The projection shown is for
(ω1,ω2) = (0,0).

4 Case study
For our numerical experiments, we use MATLAB R2015b, YALMIP [28], SeDuMi 1.3 [29], and the “ROA” code
of Henrion and Korda [13] to apply OM theory to the three-bus example from [23] that is described in Section 2.1.

We note that practical power system analyses require the ability to address significantly larger problems than
the test case considered in this paper. However, constructing certified approximations for the ROA leads to difficult
computational challenges. Similar to the demonstrations of previous algorithms [14], [19], this paper focuses on a
small system as an initial step towards practical applications. Future work that exploits network sparsity and other
problem structures will be crucial for scalability. Decomposition approaches may also prove valuable [15–17].

With final time T = 8 and radius ε = 0.1, we find the following polynomial, v5(0,x), at fifth-order relaxation (k = 5):

v5(0,x) = 1.8707−4.9538x1 +0.0017x2

...

−0.0002x2
5x8

6−0.0021x5x9
6−0.0003x10

6 ,

whose zero level set { x ∈ R6 | v5(0,x) > 0 } provides an outer approximation to the ROA. We illustrate the



polynomial v5(0, ·) in Fig. 1 as a function of the original state variables (θ1, θ2). We consider (ω1, ω2) = (0, 0)
in order to visualize the ROA, but this is not a necessary restriction. We illustrate the outer approximation to the
ROA in Fig. 2.

Likewise, with T = 8 and ε = 0.1, we find at the third-order relaxation (k = 3) the inner approximation to the
ROA presented in Fig. 3 (again with (ω1, ω2) = (0, 0) used only for representation purposes).

We next show how one could use Hermitian SOS to obtain better numerical results. For optimal power
flow problems, applying Hermitian SOS yields computational advantages while preserving convergence guar-
antees [11]. The idea is to exploit the structure that comes from alternating current physics in order to reduce
the computational burden. We consider the transient dynamics of a system after the fault has disappeared and we
assume that there is no voltage instability. In that case, it is reasonable to assume that the magnitudes |v| of the
complex voltages are fixed such that only the phase angles θ are variables. This allows us to define vk := exp( jθk)
(up to proper rescaling), such that v̇k = jθ̇k exp( jθk), where j =

√
−1. The dynamics can thus immediately be

written as a differential algebraic system of equations:
v̇k = jωkvk,

ω̇k=−λkωk +
1

Mk

(
Pk− 1

2 ∑l 6=k−Gkl |vk|2−Y klvkvl−Yklvlvk
)
,

0 = |vk|2−1,

(19)

where Ykl denotes the mutual admittance of the line connecting buses k and l.
It is straightforward to adapt the theory of OMs to complex states by leveraging recent results in complex

algebraic geometry [30]. Our ongoing research is implementing a complex version of the hierarchy proposed by
Henrion and Korda [13] in order to reduce the computational burden at a given relaxation order.

5 Conclusion
In the context of the transient stability analysis of power systems, this paper demonstrates the potential for using
the theory of occupation measures (along with convex optimization techniques) to compute inner and outer ap-
proximations to the region of attraction for a stable equilibrium point. To the best of our knowledge, this is the first
time that occupation measure theory has been applied to analyze transient stability problems for electric power
systems. The resulting approximations have the potential to provide analytically rigorous guarantees that can pre-
clude the need for computationally expensive transient simulations. With computational tractability remaining an
important challenge, future research will investigate how to exploit sparsity when using occupation measures.
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numéro 7012, EPFL, 2016.

[25] R. Winter, “Convex Duality and Nonlinear Optimal Control,” SIAM J. Control Optimiz., vol. 31, pp. 518–
538, 1993.

[26] J. B. Lasserre, Moments, Positive Polynomials and Their Applications, ser. Imperial College Press Optimiza-
tion Series. Imperial College Press, 2010, no. 1.

[27] M. Korda, D. Henrion, and C. Jones, “Inner Approximations of the Region of Attraction for Polynomial
Dynamical Systems,” IFAC Proc. Volumes, vol. 46, pp. 534–539, 2013.
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