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Introduction

Inspired by the works of Dewar, Murty and Kotěšovec [START_REF] Dewar | An asymptotic formula for the coefficients of j(z)[END_REF][START_REF] Kotěšovec | A method of finding the asymptotics of q-series based on the convolution of generating functions[END_REF], we establish some useful theorems for asymptotic formulas. Define (1.1) ψ n (v, r, b; p) := v p(1p) 2π r b+(1-p)/2 n b+1-p/2 exp(n p r 1-p ) for n ∈ N, v, b ∈ R, r > 0, 0 < p < 1.

Theorem 1.1. Let t 1 and t 2 be two given positive integers with gcd(t 1 , t 2 ) = 1. Suppose that

F 1 (q) = ∞ n=0 a t1n q t1n
and F 2 (q) = ∞ n=0 c t2n q t2n are two power series such that their coefficients satisfy the asymptotic formulas

a t1n ∼ t 1 ψ t1n (v 1 , r 1 , b 1 ; p), (1.2) 
c t2n ∼ t 2 ψ t2n (v 2 , r 2 , b 2 ; p), (1.3) where v 1 , b 1 , v 2 , b 2 ∈ R, r 1 , r 2 > 0, 0 < p < 1. Then, the coefficients d n in the product

F 1 (q)F 2 (q) = ∞ n=0 d n q n
satisfy the following asymptotic formula

d n ∼ ψ n (v 1 v 2 , r 1 + r 2 , b 1 + b 2 ; p).
(1.4) Some special cases of Theorem 1.1 have been established. In 2013, Dewar and Murty [START_REF] Dewar | An asymptotic formula for the coefficients of j(z)[END_REF] proved the case of p = 1/2, t 1 = t 2 = 1. Later, Kotěšovec [START_REF] Kotěšovec | A method of finding the asymptotics of q-series based on the convolution of generating functions[END_REF] obtained the case of 0 < p < 1, t 1 = t 2 = 1. We add two more parameters t 1 and t 2 in order to calculate the asymptotic formulas for plane partitions, without them Theorem 1.2 would not be proven. Our further contribution is to reformulate the asymptotic formula in a much more simpler form (1.2), (1.3) and (1.4), so that the result of Theorem 1.1 can be easily iterated for handling a product of multiple power series F 1 (q)F 2 (q) • • • F k (q) (see Theorem 2.3). We also obtain the following two theorems, which are useful to find asymptotic formulas for various plane partitions.

Theorem 1.2. Let m be a positive integer. Suppose that x i and y i (1 ≤ i ≤ m) are positive integers such that gcd(x 1 , x 2 , . . . , x m , y 1 , y 2 , . . . , y m ) = 1. Then, the coefficients d n in the following infinite product

m i=1 k≥0 1 1 -q xik+yi = ∞ n=0 d n q n
have the following asymptotic formula

d n ∼ v 1 2 √ 2π r b+1/4 n b+3/4 exp( √ nr), (1.5) where v = m i=1 Γ(y i /x i ) √ x i π ( x i 2 ) yi/xi , r = m i=1 2π 2 3x i , b = m i=1 ( y i 2x i - 1 4 
).

Theorem 1.3. Let t i ∈ N for 1 ≤ i ≤ m. Suppose that F (q) = ∞ n=0 a n q n and F (q) m i=1 1 1 -q ti = ∞ n=0 d n q n are two power series. If a n ∼ n α exp(βn p )
where 0 < p < 1, α ∈ R, β > 0, then we have

d n ∼ n α+m(1-p) β m p m m i=1 t i exp(βn p ). (1.6)
An ordinary plane partition (PP) is a filling ω = (ω i,j ) of the quarter plane Λ = {(i, j) | i, j ≥ 1} with nonnegative integers such that rows and columns decrease weakly, and the size |ω| = ω i,j is finite. The generating function of ordinary plane partitions is known since MacMahon [START_REF] Macmahon | Partitions of numbers whose graphs possess symmetry[END_REF][START_REF] Macmahon | Combinatory analysis[END_REF]:

(1.7) ω∈PP z |ω| = ∞ i=1 ∞ j=1 1 1 -z i+j-1 = ∞ i=1 (1 -z k ) -k .
The generating functions for various kinds of plane partitions can be found in [START_REF] Andrews | MacMahon's conjecture on symmetric plane partitions[END_REF][START_REF] Andrews | Plane partitions. I. The MacMahon conjecture[END_REF][START_REF] Andrews | Plane partitions. III. The weak Macdonald conjecture[END_REF][START_REF] Andrews | Plane partitions. V. The TSSCPP conjecture[END_REF][START_REF] Andrews | Plane partitions. VI. Stembridge's TSPP theorem[END_REF][START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Gessel | Cylindric partitions[END_REF][START_REF] Krattenthaler | Generating functions for plane partitions of a given shape[END_REF][START_REF] Macdonald | Symmetric functions and Hall polynomials. Oxford Mathematical Monographs[END_REF][START_REF] Okounkov | Quantum Calabi-Yau and classical crystals[END_REF][START_REF] Panova | Tableaux and plane partitions of truncated shapes[END_REF][START_REF] Sagan | Enumeration of partitions with hooklengths[END_REF][START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF][START_REF] Stanley | Theory and application of plane partitions[END_REF][START_REF] Stanley | The conjugate trace and trace of a plane partition[END_REF].

For two partitions λ and µ, We write λ ≻ µ or µ ≺ λ if λ/µ is a horizontal strip (see [START_REF] Macdonald | Symmetric functions and Hall polynomials. Oxford Mathematical Monographs[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]). When reading an ordinary plane partition ω along the diagonals from left to right, we obtain a sequence of partitions (λ 0 , λ 1 , . . . , λ h ) such that λ i-1 ≺ λ i or λ i-1 ≻ λ i for 1 ≤ i ≤ h. For simplicity, we identify the ordinary plane partition ω and the sequence of partitions by writing ω = (λ 0 , λ 1 , . . . , λ h ).

A ±1-sequence δ is called a prof ile. Let |δ| 1 (resp. |δ| -1 ) be the number of letters 1 (resp. -1) in δ. A skew plane partition (SkewPP) with profile δ = (δ 1 , δ 2 , . . . , δ h ) is a sequence of partitions ω = (λ 0 , λ 1 , . . . , λ h ) such that λ 0 = λ h = ∅, and

λ i-1 ≺ λ i (resp. λ i-1 ≻ λ i ) if δ i = 1 (resp. δ i = -1). Its size is defined by |ω| = h i=0 |λ i |.
For example, ω = (∅, (2), (3, 2), ( 2), ( 3), (4, 3), (3, 2), (3), ∅) is a skew plane partition with profile δ = (1, 1, -1, 1, 1, -1, -1, -1) and size 27. This skew plane partition can also be visualized as the following:
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The generating function for skew plane partitions with profile δ is (see [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF][START_REF] Stanley | Ordered structures and partitions[END_REF]) Cylindric partitions (CP) were first introduced by Gessel and Krattenthaler [START_REF] Gessel | Cylindric partitions[END_REF], see also [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] for an equivalent definition. A cylindric partition with profile δ = (δ 1 , δ 2 , . . . , δ h ) is a sequence of partitions ω = (λ 0 , λ 1 , . . . , λ h ) such that λ 0 = λ h , and

(1.8) ω∈SkewPP δ z |ω| = i<j δi>δj 1 1 -z j-i .
λ i-1 ≺ λ i (resp. λ i-1 ≻ λ i ) if δ i = 1 (resp. δ i = -1). Its size is defined by |ω| = h-1
i=0 |λ i | (notice that λ h is not counted here, which is a little different from skew plane partitions). For example, ω = ((2, 1), (3, 1), (4, 1), (3), (4, 2), (2, 1)) is a cylindric partition with profile δ = (1, 1, -1, 1, -1) and size 21. This cylindric partition can be visualized as the following:
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Borodin obtained the generating function for cylindric partitions with profile δ = (δ i ) 1≤i≤h (see [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF][START_REF] Tingley | Three combinatorial models for sln crystals, with applications to cylindric plane partitions[END_REF]):

(1.9)

ω∈CP δ z |ω| = k≥0     1 1 -z hk+h i<j δi>δj 1 1 -z hk+j-i i<j δi<δj 1 1 -z hk+h+i-j     .
By using Theorems 1.2 and 1.3 we obtain the asymptotic formulas for the numbers of skew plane partitions and cylindric partitions with size n for fixed widths in Sections 3 and 4 respectively. Let us reproduce the asymptotic formulas for some special cases below: We see that the order of the asymptotic formula for skew plane partitions of fixed width depends only on the width, not on the profile (the skew zone) itself. We may think that this is natural by intuition. However, the case for cylindric partitions shows that this is not always true.

PPa ∼ 1.
The rest of the paper is arranged in the following way. First, in Section 2 we prove our main theorems on asymptotic formulas. Later, we compute the asymptotic formulas for the numbers of skew plane partitions and cylindric partitions in Sections 3 and 4 respectively.

Proofs of main asymptotic formulas

In this section we prove the three main asymptotic formulas stated in Theorems 1.1, 1.2 and 1.3. The basic idea of the proofs comes from the work of Dewar and Murty [START_REF] Dewar | An asymptotic formula for the coefficients of j(z)[END_REF]. First let us recall Laplace's method (see, for example, [8, p. 36]).

Lemma 2.1 (Laplace's method). Assume that f (x) is a twice continuously dif- ferentiable function on [a, b] with x 0 ∈ (a, b) the unique point such that f (x 0 ) = max [a,b] f (x). Assume additionally that f ′′ (x 0 ) < 0. Then b a e nf (x) dx ∼ e nf (x0) 2π -nf ′′ (x 0 )
.

The sign ∼ means that the quotient of the left-hand side by the right-hand side tends to 1 as n → +∞.

We also need the following lemma. 

f (x)dx - f (x 0 ) n ≤ 1 n ⌊nb⌋ i=⌈na⌉ f ( i n ) ≤ b a f (x)dx + f (x 0 ) n . Proof. Let f (x) = 0 for x / ∈ [a, b]. Since f (x) increases on (a, x 0 ), we have f (k) n ≤ k+ 1 n k f (x)dx ≤ f (k + 1 n ) n when a ≤ k < k + 1 n ≤ x 0 . Since f (x) decreases on (x 0 , b), we obtain f (k + 1 n ) n ≤ k+ 1 n k f (x)dx ≤ f (k) n when x 0 ≤ k < k + 1 n ≤ b. Let k 0 be the integer such that k0 n ≤ x 0 < k0+1 n , we have k 0 +1 n k 0 n f (x)dx ≤ f (x 0 ) n . Therefore b a f (x)dx ≤ ⌊nb⌋+1 n ⌈na⌉-1 n f (x)dx = k 0 n ⌈na⌉-1 n f (x)dx + k 0 +1 n k 0 n f (x)dx + ⌊nb⌋+1 n k 0 +1 n f (x)dx ≤ 1 n k0 i=⌈na⌉ f ( i n ) + 1 n f (x 0 ) + 1 n ⌊nb⌋ i=k0+1 f ( i n ) ≤ 1 n ⌊nb⌋ i=⌈na⌉ f ( i n ) + 1 n f (x 0 ). On the other hand, b a f (x)dx ≥ ⌊nb⌋ n ⌈na⌉ n f (x)dx = k 0 n ⌈na⌉ n f (x)dx + k 0 +1 n k 0 n f (x)dx + ⌊nb⌋ n k 0 +1 n f (x)dx ≥ 1 n k0-1 i=⌈na⌉ f ( i n ) + 1 n -f (x 0 ) + f ( k 0 n ) + f ( k 0 + 1 n ) + 1 n ⌊nb⌋ i=k0+2 f ( i n ) ≥ 1 n ⌊nb⌋ i=⌈na⌉ f ( i n ) - 1 n f (x 0 ).
Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we can assume that v 1 , v 2 > 0. For 0

< x < 1, let f (x) = r 1-p 1 x p + r 1-p 2 (1 -x) p and g(x) = x -b1-1+ p 2 (1 -x) -b2-1+ p 2 . Then f ′ (x) = pr 1-p 1 x p-1 -pr 1-p 2 (1 -x) p-1 and f ′′ (x) = p(p -1)r 1-p 1 x p-2 + p(p -1)r 1-p 2 (1 -x) p-2 < 0.
The function f ′ (x) has only one zero point

x 0 = r 1 r 1 + r 2 .
Therefore f (x) is increasing on (0, x 0 ), has a maximum of (r 1 + r 2 ) 1-p at x 0 , and is decreasing on (x 0 , 1).

Let 0 < ǫ < 1 be a given constant. By continuity, there exists 0

< δ < min{ 1 2 x 0 , 1 2 (1 -x 0 )} such that if |x -x 0 | < 2δ, then (1 -ǫ)g(x 0 ) < g(x) < (1 + ǫ)g(x 0 ). (2.1)
From (1.2) and (1.3), for large enough n we have

(1 -ǫ)t 1 ψ t1n (v 1 , r 1 , b 1 ; p) < a t1n < (1 + ǫ)t 1 ψ t1n (v 1 , r 1 , b 1 ; p) (2.2) and (1 -ǫ)t 2 ψ t2n (v 2 , r 2 , b 2 ; p) < c t2n < (1 + ǫ)t 2 ψ t2n (v 2 , r 2 , b 2 ; p). (2.3)
Suppose that 0 ≤ i ≤ t 1 t 2 -1 is a given integer. We just need to prove that (1.4) is true for n = mt 1 t 2 + i where m ∈ N. By Bézout's identity, there exists some

α i , β i ∈ N ≥0 , 0 ≤ α i ≤ t 2 -1 such that t 1 α i + t 2 β i = i.
For large enough n = mt 1 t 2 + i, let

j 1 (n) = (x 0 -δ)n -α i t 1 t 1 t 2 , j 2 (n) = (x 0 + δ)n -α i t 1 t 1 t 2 , j 3 (n) = n -α i t 1 t 1 t 2 .
We have

d n = H 1 (n) + H 2 (n) + H 3 (n),
where

H 1 (n) = j1(n)-1 j=0 a (αi+jt2)t1 c (mt1-jt1+βi)t2 , H 2 (n) = j3(n) j=j2(n)+1 a (αi+jt2)t1 c (mt1-jt1+βi)t2 , H 3 (n) = j2(n) j=j1(n) a (αi+jt2)t1 c (mt1-jt1+βi)t2 .
For H 1 (n), we have

H 1 (n) = O   n |b1+1-p 2 |+|b2+1-p 2 | j1(n)-1 j=0 exp n p f (α i + jt 2 )t 1 n   = O n |b1+1-p 2 |+|b2+1-p 2 |+1 exp (n p f (x 0 -δ)) = o n -b1-b2-1+ p 2 exp (n p f (x 0 )) .
Similarly, we have

H 2 (n) = o n -b1-b2-1+ p 2 exp (n p f (x 0 )) .
Next we just need to estimate H 3 (n). For large enough n, we can assume that every a (αi+jt2)t1 and c (mt1-jt1+βi)t2 in H 3 (n) satisfy (2.2) and (2.3). Let

A 0 = p(1 -p) 2π t 1 t 2 v 1 v 2 r b1+(1-p)/2 1 r b2+(1-p)/2 2 , A 1 (n) = A 0 n -b1-b2-2+p j2(n) j=j1(n) g( (α i + jt 2 )t 1 n ) exp n p f (α i + jt 2 )t 1 n , A 2 (n) = g(x 0 )A 0 n -b1-b2-2+p j2(n) j=j1(n) exp n p f (α i + jt 2 )t 1 n , A 3 (n) = (x 0 +δ)n-α i t 1 t 1 t 2 n (x 0 -δ)n-α i t 1 t 1 t 2 n exp n p f ( (α i + nxt 2 )t 1 n ) dx. Therefore (1 -ǫ) 2 A 1 (n) < H 3 (n) < (1 + ǫ) 2 A 1 (n).
Then by (2.1), we obtain

(2.4) (1 -ǫ) 3 A 2 (n) < H 3 (n) < (1 + ǫ) 3 A 2 (n). Replace f (x) by exp n p f ( (αi+nxt2)t1 n ) in Lemma 2.

2, we have

A 3 (n) - exp (n p f (x 0 )) n ≤ 1 n j2(n) j=j1(n) exp n p f (α i + jt 2 )t 1 n (2.5) ≤ A 3 (n) + exp (n p f (x 0 )) n .
Put (2.4) and (2.5) together, we obtain

(1 -ǫ) 3 A 3 (n) - exp (n p f (x 0 )) n < H 3 (n) g(x 0 )A 0 n -b1-b2-1+p (2.6) < (1 + ǫ) 3 A 3 (n) + exp (n p f (x 0 )) n .
Notice that when n is large enough,

x 0 -3δ 2 t 1 t 2 < (x 0 -δ)n -α i t 1 t 1 t 2 n < x 0 -δ 2 t 1 t 2 , (2.7) x 0 + δ 2 t 1 t 2 < (x 0 + δ)n -α i t 1 t 1 t 2 n < x 0 + 3δ 2 t 1 t 2 . (2.8)
Also we have

n p f (α i + nxt 2 )t 1 n = r 1-p 1 ((α i + nxt 2 )t 1 ) p + r 1-p 2 (1 -(α i + nxt 2 )t 1 ) p = n p f (xt 1 t 2 ) + o(1).
Then by (2.7), (2.8) and Lemma 2.1 (Laplace's method ) we have

A 3 (n) ∼ (x 0 +δ)n-α i t 1 t 1 t 2 n (x 0 -δ)n-α i t 1 t 1 t 2 n exp (n p f (xt 1 t 2 )) dx ∼ exp(n p f (x 0 )) 2π -n p t 2 1 t 2 2 f ′′ (x 0 ) . (2.9)
This means that when n is large enough,

(1 -ǫ) exp(n p f (x 0 )) 2π -n p t 2 1 t 2 2 f ′′ (x 0 ) < A 3 (n) < (1 + ǫ) exp(n p f (x 0 )) 2π -n p t 2 1 t 2 2 f ′′ (x 0 ) . Therefore (1 -ǫ) 4 n -p 2 exp(n p f (x 0 )) 2π -t 2 1 t 2 2 f ′′ (x 0 ) + o n -p 2 exp (n p f (x 0 )) < H 3 (n) g(x 0 )A 0 n -b1-b2-1+p < (1 + ǫ) 4 n -p 2 exp(n p f (x 0 )) 2π -t 2 1 t 2 2 f ′′ (x 0 ) + o n -p 2 exp (n p f (x 0 )) .
Finally we obtain

d n = H 1 (n) + H 2 (n) + H 3 (n) ∼ H 3 (n) ∼ g(x 0 )A 0 n -b1-b2-1+ p 2 exp(n p f (x 0 )) 2π -t 2 1 t 2 2 f ′′ (x 0 ) . But g(x 0 ) = ( r 1 r 1 + r 2 ) -b1-1+ p 2 ( r 2 r 1 + r 2 ) -b2-1+ p 2 , f (x 0 ) = (r 1 + r 2 ) 1-p , f ′′ (x 0 ) = p(p -1)(r 1 + r 2 ) 3-p r 1 r 2 . Therefore d n ∼ ψ n (v 1 v 2 , r 1 + r 2 , b 1 + b 2 ; p).
Our asymptotic formula can be easily iterated for handling a product of multiple power series

F 1 (q)F 2 (q) • • • F k (q). Theorem 2.3. Suppose that m > 0, 1 ≤ i ≤ m, t = gcd(z 1 , z 2 , . . . , z m ). Let F i (q) = ∞ n=0 a (i) n q zin and G(q) = m i=1 F i (q) = ∞ n=0 d n q tn
where

a (i) n ∼ z i • ψ zin (v i , r i , b i ; p). (2.10) Then d n ∼ t • ψ tn ( m i=1 v i , m i=1 r i , m i=1 b i ; p). (2.11)
Proof. Without loss of generality, we can assume that m = 2. For i = 1, 2, we have

F i (q) = ∞ n=0 a (i) n (q t ) zin/t
where

a (i) n ∼ z i • ψ zin (v i , r i , b i ; p) = z i t ψ zin/t (v i t -b i 1-p , r i t p 1-p , b i ; p).
Replace q by q t , t i by zi t in Theorem 1.1 we have

d n ∼ ψ n (v 1 v 2 t -b 1 +b 2 1-p , (r 1 + r 2 )t p 1-p , b 1 + b 2 ; p) = tψ tn (v 1 v 2 , r 1 + r 2 , b 1 + b 2 ; p).
Hardy-Ramanujan [START_REF] Hardy | Asymptotic Formulaae in Combinatory Analysis[END_REF] have discovered the asymptotic formula for the number of integer partitions, which was extended by Ingham [START_REF] Ingham | A Tauberian theorem for partitions[END_REF] in 1941.

Lemma 2.4 (Ingham). Let x and y be two positive integers with gcd(x, y) = 1. Suppose that

k≥0 1 1 -q xk+y = ∞ n=0 a n q n . Then a n ∼ ψ n (v, r, b; 1 2 ) 
,

where v = Γ(y/x) √ xπ ( x 2 ) y/x , r = 2π 2 3x , b = y 2x - 1 4 . 
Ingham's result can be further generalized as follows, which will be useful for finding the asymptotic formula for skew plane partitions.

Theorem 2.5. Suppose that m > 0, x i > 0, y i > 0, z i = gcd(x i , y i ) for 1 ≤ i ≤ m, t = gcd(z 1 , z 2 , . . . , z m ) and

v i = Γ(y i /x i ) √ x i π ( x i 2 ) yi/xi , r i = 2π 2 3x i , b i = y i 2x i - 1 4 . Let m i=1 k≥0 1 1 -q xik+yi = ∞ n=0 d n q tn . Then d n ∼ t • ψ tn ( m i=1 v i , m i=1 r i , m i=1 b i ; 1 2 
). (2.12)

Proof. Let k≥0 1 1 -q xik+yi = ∞ n=0 a (i) n q zin .
It is easy to check that

ψ n (v i z 1 2 - y i x i i , r i z i , b i ; 1 2 ) = z i • ψ zin (v i , r i , b i ; 1 2 ). 
Replace q by q zi , x by x i /z i , y by y i /z i in Lemma 2.4 we obtain

a (i) n ∼ ψ n (v i z 1 2 - y i x i i , r i z i , b i ; 1 2 ) ∼ z i • ψ zin (v i , r i , b i ; 1 2 ). 
Thus (2.12) follows from Theorem 2.3.

The above result implies Theorem 1.2 by letting t = 1. Next we give the proof of Theorem 1.3.

Proof of Theorem 1.3. By induction, it is easy to see that we just need to prove the case m = 1, t 1 = t. Notice that (x α exp(βx p )) ′ = (βpx p + α)x α-1 exp(βx p ). Let 0 < ǫ < 1. Then there exists some N > 0 such that for any x ≥ N , we have (x α exp(βx p )) ′ > 0; and for any n ≥ N , we have

(1 -ǫ)n α exp(βn p ) < a n < (1 + ǫ)n α exp(βn p ). (2.13) But d n = ⌊ n t ⌋ j=0 a n-tj = ⌊ n-N t ⌋ j=0 a n-tj + ⌊ n t ⌋ j=⌊ n-N t ⌋+1 a n-tj .
First we have

⌊ n t ⌋ j=⌊ n-N t ⌋+1 a n-tj = O(1).
On the other hand, we have

(1 -ǫ) ⌊ n-N t ⌋ j=0 (n -tj) α exp(β(n -tj) p ) < ⌊ n-N t ⌋ j=0 a n-tj (2.14) < (1 + ǫ) ⌊ n-N t ⌋ j=0
(ntj) α exp(β(ntj) p ). (2.15) Since x α exp(βx p ) increases for x ≥ N , we have

1 t n n-t⌊ n-N -t t ⌋ x α exp(βx p )dx ≤ ⌊ n-N t ⌋ j=0 (n -tj) α exp(β(n -tj) p ) ≤ 1 t n+t n-t⌊ n-N t ⌋ x α exp(βx p )dx.
But when n is large enough, we have

n+t n-t⌊ n-N t ⌋ x α exp(βx p )dx ∼ n+t n-t⌊ n-N t ⌋ x α + α + 1 -p βp x α-p exp(βx p )dx = n+t n-t⌊ n-N t ⌋ x α+1-p βp exp(βx p ) ′ dx ∼ (n + t) α+1-p βp exp(β(n + t) p ) ∼ n α+1-p βp exp(βn p ),
where the last ∼ is guaranteed by the condition 0 < p < 1.

Similarly, we have

n n-t⌊ n-N -t t ⌋ x α exp(βx p )dx ∼ n α+1-p βp exp(βn p ).
Therefore when n is large enough, we have

(1 -ǫ) 2 n α+1-p βpt exp(βn p ) < ⌊ n-N t ⌋ j=0 a n-tj < (1 + ǫ) 2 n α+1-p βpt exp(βn p ).
Finally we obtain d n ∼ n α+1-p βpt exp(βn p ).

Asymptotic formulas for skew plane partitions

Various plane partitions have been widely studied since MacMahon [START_REF] Macmahon | Partitions of numbers whose graphs possess symmetry[END_REF][START_REF] Macmahon | Combinatory analysis[END_REF]. In particular, the generating function for skew plane partitions with profile δ has been derived (see [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF][START_REF] Stanley | Ordered structures and partitions[END_REF]). In this section, first we obtain the asymptotic formula for ordinary plane partitions of fixed width. We say that a (skew) plane partition ω has a width m if ω i,j = 0 for i > m.

Theorem 3.1. Let PP m (n) be the number of plane partitions ω of width m and size n. Then,

(3.1) PP m (n) ∼ 2 -m 2 +2m+5 4 ( m 3 ) m 2 +1 4 π m 2 -m 2 m-1 i=1 i! × n -m 2 +3 4
exp(π 2mn/3).

Proof. Let δ = 1 m (-1) ∞ in (1.8) we have

ω∈PPm z |ω| = k≥0 m i=1 1 (1 -z k+i )
.

Therefore by Theorem 1.2 the number of plane partitions with profile δ and size n is asymptotic to

ψ n ( m i=1 (i -1)! √ π ( 1 2 ) i , 2mπ 2 3 , m 2 4 ; 1 2 ),
which is equal to the right-hand side of (3.1).

When m = 1, the above theorem gives the Hardy-Ramanujan asymptotic formula for the number of integer partitions

(3.2) PP 1 (n) ∼ 1 4 √ 3n exp(π 2n/3).
When m = 3, this is the example (PPa) illustrated in Fig. 2. Actually we have ω∈PPa

z |ω| = k≥0 1 (1 -z k+1 )(1 -z k+2 )(1 -z k+3 )
.

Therefore the number of plane partitions of width 3 and size n is asymptotic to

2 -4 π 3 n -3 exp(π √ 2n).
More generally, we can derive the asymptotic formula for the number of skew plane partitions with fixed width.

Theorem 3.2. Let δ = (δ ′ , (-1) ∞ ) = (δ ′ 1 , δ ′ 2 , . . . , δ ′ m-1 , ( -1) 
∞ ) be a profile, and SkewPP δ (n) be the number of skew plane partitions with profile δ and size n. Then

SkewPP δ (n) ∼ 2 -ℓ 2 +2ℓ+5 4 ( ℓ 3 ) ℓ 2 +1 4 π ℓ 2 -ℓ 2 i<j δ ′ i >δ ′ j 1 j -i δ ′ i =1 (m -i -1)! × n -ℓ 2 +3 4 
exp(π 2ℓn/3), (3.3) where ℓ := |δ ′ | 1 .

Proof. By (1.8) we have

ω∈SkewPP δ z |ω| = i<j δ ′ i >δ ′ j 1 1 -z j-i × k≥0 δ ′ i =1 1 1 -z k+m-i . By Theorem 1.2 the coefficient of z n in k≥0 δ ′ i =1 1 1 -z k+m-i is asymptotic to ψ n ( δ ′ i =1 (m -i -1)! √ π ( 1 2 ) m-i , 2ℓπ 2 3 , 1 2 
δ ′ i =1 (m -i) - ℓ 4 ; 1 2 
).

Proof. We have

t∈W δ t h = h h + i<j, δi>δj j -i h + i<j, δi<δj h + i -j h = 1 + i<j δi<δj 1 + |δ| 1 h δi=-1 i - |δ| -1 h δj =1 j. (4.1)
If we exchange any two adjacent letters in δ, the right-hand side of (4.1) doesn't change. Therefore, the above summation is independent of δ when h and |δ| 1 are given. Hence we have

t∈W δ t h = 1 + K.
On the other hand, #W δ = 1 + 2K. Then we obtain (4.2)

t∈W δ ( t 2h - 1 4 ) = 1 4
.

By Lemma 4.1 , Theorem 1.2 and Identity (4.2) the number of cylindric partitions with profile δ and size n is asymptotic to

ψ n (v, r, b; 1 2 ), 
where

v = t∈W δ Γ(t/h) √ hπ ( h 2 ) t/h = t∈W δ Γ( t h ) • 2 -1-K √ hπ -1 2 -K , r = t∈W δ 2π 2 3h = 2π 2 3h (1 + 2K), b = t∈W δ ( t 2h - 1 4 ) = 1 4 .
The proof is achieved by the definition (1.1) of ψ.

Notice that in the above theorem, the profile δ contains both steps "1" and "-1". In fact, when δ = (-1) h or δ = (1 h ), the number of cylindric partitions with profile δ is 0 if n is not a multiple of h. If n = hn 1 , it is equal to the number of integer partitions of size n 1 .

The three examples (CPa)-(CPc) for h = 4 (here we say that these cylindric partitions have width h=4) illustrated in Fig. 2 correspond to the following special cases of Theorem 4.2.

(CPa) Let δ = (1 -1, -1, -1). By Lemma 4.1 we have ω∈CPa

z |ω| = k≥0 1 (1 -z 4k+1 )(1 -z 4k+2 )(1 -z 4k+3 )(1 -z 4k+4 ) = k≥0 1 1 -z k+1 .
Therefore the number of such cylindric partitions with size n is asymptotic to

√ 3 12 × 1 n exp π 2n 3 .
(CPb) Let δ = (1 -1, 1, -1). By Lemma 4.1 we have ω∈CPb

z |ω| = k≥0 1 (1 -z 4k+1 ) 2 (1 -z 4k+3 ) 2 (1 -z 4k+4 ) = k≥0 1 (1 -z 2k+1 ) 2 (1 -z 4k+4 )
.

Therefore the number of such cylindric partitions with size n is asymptotic to (CPc) Let δ = (1 -1, -1, 1). By Lemma 4.1 we have ω∈CPc

z |ω| = k≥0 1 (1 -z 4k+1 )(1 -z 4k+2 ) 2 (1 -z 4k+3 ) 2 (1 -z 4k+4 ) = k≥0 1 (1 -z k+1 )(1 -z 4k+2 )
.

Therefore the number of such cylindric partitions with size n is asymptotic to 
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 1 Fig. 1. Skew plane partitions and cylindric partitions.
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 2 Fig. 2. Asymptotic formulas for skew PP and CP of fixed widths.
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 22 Suppose that n is a positive integer. Let f (x) be a non-negative Lebesgue integrable function on [a, b] with x 0 ∈ (a, b) the unique point such that f (x 0 ) = max [a,b] f (x). Assume additionally that f (x) increases on (a, x 0 ) and decreases on (x 0 , b). Then, b a

√ n

Denote by inv(δ ′ ) the number of pairs (i, j) such that i < j, δ ′ i > δ ′ j . Notice that

Then by Theorem 1.3 the number SkewPP δ (n) is asymptotic to

3 )

which is equal to the right-hand side of (3.3).

The two examples (PPb) and (PPc) for ℓ = |δ ′ | 1 = 3 illustrated in Fig. 2 correspond to the following special cases of Theorem 3.2.

(PPb

.

Therefore by Theorems 1.2 and 1.3 the number of skew plane partitions with profile δ and size n is asymptotic to

.

Therefore the number of skew plane partitions with profile δ and size n is asymptotic to 3 • 2 -3 π 3 n -3 exp(π √ 2n).

Asymptotic formula for cylindric partitions

First we recall Borodin's formula (1.9) written in the following form.

Lemma 4.1 (Borodin [6]). Let δ = (δ i ) 1≤i≤h be a profile. Then the generating function for the cylindric partitions with profile δ is

where

In this section we derive the asymptotic formula for the number of cylindric partitions.

Theorem 4.2. Let δ = (δ j ) 1≤j≤h be a profile. When 1 ≤ |δ| 1 ≤ h -1, the number of cylindric partitions with profile δ is asymptotic to

where K = |δ| 1 |δ| -1 /2.