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Motivated by the Nekrasov-Okounkov formula on hook lengths, the first author conjectured that the Plancherel average of the 2k-th power sum of hook lengths of partitions with size n is always a polynomial of n for any k ∈ N. This conjecture was generalized and proved by Stanley (Ramanujan J., 23 (1-3) : 91-105, 2010). In this paper, inspired by the work of Stanley and Olshanski on the differential poset of Young lattice, we study the properties of two kinds of difference operators D and D -defined on functions of partitions. Even though the calculations for higher orders of D are extremely complex, we prove that several well-known families of functions of partitions are annihilated by a power of the difference operator D. As an application, our results lead to several generalizations of classic results on partitions, including the marked hook formula, Stanley Theorem, Okada-Panova hook length formula, and Fujii-Kanno-Moriyama-Okada content formula. We insist that the Okada constants Kr arise directly from the computation for a single partition λ, without the summation ranging over all partitions of size n.

Introduction

The aim of this paper is to develop a formal method to discover new hook length identities of partitions and generalize classical such identities which occur in Combinatorics, Number Theory, Representation Theory and Mathematical Physics by difference operator technique, which is motivated by the work of Stanley [START_REF] Stanley | Differential posets[END_REF] and Olshanski [START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF][START_REF] Olshanski | Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes[END_REF][START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF] on the differential poset of Young lattice. Our main results are the Theorems 1.3 and 1. [START_REF] Conway | The Book of Numbers[END_REF].

First we recall some basic definitions. We refer the reader to [START_REF] Macdonald | Symmetric functions and Hall polynomials, Oxford Mathematical Monographs[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF] for the basic knowledge on partitions and symmetric functions. A partition is a finite weakly decreasing sequence of positive integers λ = (λ 1 , λ 2 , . . . , λ ℓ ). Here the integer |λ| = 1≤i≤ℓ λ i is called the size of the partition λ. A partition λ is identified with its Young diagram, which is a collection of boxes arranged in left-justified rows with λ i boxes in the i-th row. The content of the box = (i, j) in the i-th row and j-th column of the Young diagram of a partition is defined by c = ji (see [START_REF] Lascoux | Symmetric Functions and Combinatorial Operators on Polynomials[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF]). The hook length of the box in the Young diagram, denoted by h , is the number of boxes exactly to the right, or exactly above, or the box itself (the French convention for the Young diagrams is used in this paper) (see [START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF]). For example, the Young diagram and hook lengths of the partition (6, 3, 3, 2) are illustrated in Figure 1. A standard Young tableau of shape λ is obtained by filling in the boxes of the Young diagram of λ with numbers from 1 to |λ| such that the numbers strictly increase along every row and every column. Suppose that λ and µ are two partitions with λ ⊇ µ, which means that the Young diagram of λ contains the Young diagram of µ. Denote by f λ (resp. f λ/µ ) the number of standard Young tableaux of shape λ (resp. λ/µ). Let H λ = ∈λ h be the product of all hook lengths of boxes in λ. Set f ∅ = 1 and H ∅ = 1 for the empty partition ∅. It is well known that (see [START_REF] Amdeberhan | Differential operators, shifted parts, and hook lengths[END_REF][START_REF] Dehaye | Difference operators for partitions under the Littlewood decomposition[END_REF][START_REF] Frame | The hook graphs of Sn[END_REF][START_REF] Han | The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension, and applications[END_REF][START_REF] Han | Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition[END_REF][START_REF] Han | New hook-content formulas for strict partitions[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF])

(1.1) f λ = |λ|! H λ and 1 n! |λ|=n f 2 λ = 1.
Here

f 2 λ
|λ|! is called the Plancherel measure of the partition λ and

1 n! |λ|=n f 2 λ g(λ)
is called the Plancherel average of the function g(λ) (see [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF][START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF]). Nekrasov and Okounkov [START_REF] Nekrasov | Seiberg-Witten theory and random partitions[END_REF] obtained the following formula for hook lengths

n≥0   |λ|=n f 2 λ ∈λ (t + h 2 )   x n n! 2 = i≥1 (1 -x i ) -1-t ,
which was generalized and given a more elementary proof by the first author [START_REF] Han | The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension, and applications[END_REF]. Motivated by the above formula, the first author conjectured that the Plancherel average of the power sum of hook lengths

1 n! |λ|=n f 2 λ ∈λ h 2k
is always a polynomial of n for any given positive integer k, which was generalized and proved by Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF].

Theorem 1.1 (Stanley). Let F = F (z 1 , z 2 , . . .) be a symmetric function of infinite variables. Then the Plancherel average

(1.2) 1 n! |λ|=n f 2 λ F (h 2 : ∈ λ)
is a polynomial of n, where F (h 2 : ∈ λ) means that n of the variables z 1 , z 2 , . . . are substituted by h 2 for ∈ λ, and all other variables by 0.

The polynomiality of (1.2) suggested Okada to conjecture an explicit formula [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF], which was proved by Panova [START_REF] Panova | Polynomiality of some hook-length statistics[END_REF]. Let S(λ, r) := ∈λ 1≤j≤r (h 2j 2 ) and K r := (2r)!(2r + 1)! r!(r + 1)! 2 .

The sequence (K 0 = 1, K 1 = 3, K 2 = 40, K 3 = 1050, . . .) appears as A204515 in the On-Line Encyclopedia of Integer Sequences [START_REF]Sequence A204515[END_REF].

Theorem 1.2 (Okada-Panova [START_REF] Panova | Polynomiality of some hook-length statistics[END_REF]). For each positive integer n we have

(1.3) n! |λ|=n S(λ, r) H 2 λ = K r n r + 1 .
In this paper, we study two kinds of difference operators D and D -defined on functions of partitions, motivated by the work of Stanley [START_REF] Stanley | Differential posets[END_REF] and Olshanski [START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF][START_REF] Olshanski | Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes[END_REF][START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF] on differential poset of Young lattice. As applications, we will generalize Stanley Theorem, Okada-Panova hook length formula and obtain other more general results by studying the difference operator D on each single summand F (h 2 : ∈ λ). As will be seen in Corollary 1.5 the constants K r arise directly from the computation for a single partition λ, without the summation ranging over all partitions of size n.

The differential poset of Young lattice was first introduced in 1988 by Stanley [START_REF] Stanley | Differential posets[END_REF]. In his paper, Stanley studied the following two operators for partitions:

T 1 (λ) := λ + λ + and T 2 (λ) := λ - λ -,
where λ + (resp. λ -) ranges over all partitions obtained by adding (resp. removing) a box to (resp. from) λ. Many remarkable results on Young lattice and partitions were obtained by this technique [START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF][START_REF] Olshanski | Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes[END_REF][START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF][START_REF] Petrov | sl(2) operators and Markov processes on branching graphs[END_REF][START_REF] Stanley | Differential posets[END_REF]. For example, Olshanski [START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF] gave a proof of the content case of Stanley Theorem by replacing λ by certain functions g(λ)

H λ related to contents of partitions in the definition of T 1 and T 2 . In this paper, we will give a systematic application of Stanley and Olshanski's ideas, which demonstrates the power of the difference operator approach. Definition 1.1. Let g(λ) be a function defined on partitions. The difference operators D and D -are defined by

Dg(λ) = λ + g(λ + ) -g(λ)
and

D -g(λ) = |λ| g(λ) - λ - g(λ -),
where λ + (resp. λ -) ranges over all partitions obtained by adding (resp. removing) a box to (resp. from) λ. Higher-order difference operators for D are defined by induction D 0 g := g and D k g := D(D k-1 g) (k ≥ 1). Also, we write Dg(µ) := Dg(λ)| λ=µ for a fixed partition µ.

We will show in Lemma 2.8 that the two difference operators D and D -satisfy the simple noncommutative law DD --D -D = D.

The functions of partitions which are annihilated by a power of the difference operator D is crucial in our study. Definition 1.2. A function g(λ) of partitions is called a D-polynomial on partitions, if there exists a nonnegative integer r such that D r+1 g(λ)/H λ = 0 for every partition λ. The minimal r satisfying this condition is called the degree of g(λ).

In this paper, we will show that several types of functions of partitions, such as the power sums of hook lengths and contents, are D-polynomials.

Our two main theorems are stated next. 

f λ/µ D k p ν (h 2 : ∈ λ) H λ = 0≤i≤|ν|+ℓ-k d i+k n i
is a polynomial of n, where

d i = D i ( p ν (h 2 : ∈ µ) H(µ) ).
In particular, let k = 0. Then

(1.4) 1 (n + |µ|)! |λ/µ|=n f λ f λ/µ p ν (h 2 : ∈ λ)
is a polynomial of n with degree at most |ν| + ℓ. Furthermore,

1 (n + |µ|)! |λ/µ|=n f λ f λ/µ F (h 2 : ∈ λ)
is a polynomial of n for any given partition µ and any given symmetric function F . Theorem 1.3 is difficult to prove, since the calculations for higher orders of D are extremely complex. We have to make a full study of a large family of D-polynomials. In Example 3.2, we see that D 3 g(1) is equal to a sum of some fractions. Theorem 1.3 claims that the later sum can be annihilated.

Let us give some applications first. Knowing the polynomiality for some certain functions gets us closer to explicit formulas. By Theorem 1.4 with µ = ∅, we derive Stanley Theorem. In Section 8 we prove the following corollary, and show that Okada-Panova hook length formula can be derived by Corollary 1.5.

Corollary 1.5. For each nonnegative integer r, the function S(λ, r) of partitions is a D-polynomial with degree r + 1. More precisely,

H λ D r S(λ, r) H λ = K r |λ|, (1.5) H λ D r+1 S(λ, r) H λ = K r , (1.6) H λ D r+2 S(λ, r) H λ = 0. (1.7)
The special case r = 1 of Okada-Panova hook length formula is usually called marked hook formula [START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF]:

(1.8) |λ|=n f λ H λ S(λ, 1) = 3 n 2 .
In Section 5 we obtain the following generalization of (1.8). Notice that we couldn't find such nice explicit formulas for general S(λ, r) since D i S(λ,r) H λ doesn't have nice expression for general i ≤ r -1.

Theorem 1.6 (Skew marked hook formula). Let µ be a given partition. For every n ≥ |µ| we have

(1.9) |λ|=n, λ⊃µ H µ f λ/µ H λ S(λ, 1) -S(µ, 1) = 3 2 (n -|µ|) (n + |µ| -1).
Recall that the content of the box = (i, j) in the Young diagram of a partition is defined by c = ji (see [START_REF] Lascoux | Symmetric Functions and Combinatorial Operators on Polynomials[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF]). Let

C(λ, r) := ∈λ 0≤j≤r-1 (c 2 -j 2 ).
The following similar results are obtained for contents in Section 9.

Theorem 1.7. For each positive integer r, the function C(λ, r) of partitions is a D-polynomial of degree r + 1. More precisely,

H λ D r C(λ, r) H λ = (2r)! (r + 1)! |λ|, (1.10) H λ D r+1 C(λ, r) H λ = (2r)! (r + 1)! , (1.11) H λ D r+2 C(λ, r) H λ = 0. (1.12)
Theorem 1.8 (Fujii-Kanno-Moriyama-Okada [START_REF] Fujii | Instanton calculus and chiral one-point functions in supersymmetric gauge theories[END_REF]). For each positive integer n we have

n! |λ|=n C(λ, r) H 2 λ = (2r)! (r + 1)! n r + 1 .
Theorem 1.9 (Skew marked content formula). Let µ be a given partition. For every n ≥ |µ| we have

(1.13) |λ|=n, λ⊇µ H µ f λ/µ H λ C(λ, 1) -C(µ, 1) = 1 2 (n -|µ|) (n + |µ| -1).
The rest of the paper is arranged in the following way. In Section 2 we study the general properties for the difference operators D and D -. The connection between difference operator D and the Plancherel average of functions of partitions will be established in Section 3. In Sections 4 and 5, we study two specific families of D-polynomials arising from the work of the first author on the shifted parts of partitions [START_REF] Han | Hook lengths and shifted parts of partitions[END_REF] and the work of Carde, Loubert, Potechin and Sanborn [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF]. In section 6, we study the properties of the functions q ν (λ) needed in the proof of our main results. Later, we prove the main results Theorems 1.3 and 1.4 in Section 7. Finally, we prove and generalize the Okada-Panova hook length formula and the Fujii-Kanno-Moriyama-Okada content formula by difference operator technique in Sections 8 and 9 respectively.

Difference operators for partitions

The difference operators D and D -defined in Section 1 are our fundamental tools for studying hook length formulas. This section is devoted to establish some basic properties. It is obvious that D and D -are linear operators.

Lemma 2.1. Let λ be a partition and g 1 , g 2 be two functions of partitions. The following identities hold for all a 1 , a 2 ∈ R :

D(a 1 g 1 + a 2 g 2 )(λ) = a 1 Dg 1 (λ) + a 2 Dg 2 (λ), D -(a 1 g 1 + a 2 g 2 )(λ) = a 1 D -g 1 (λ) + a 2 D -g 2 (λ).
The function H λ is a D-polynomial with degree 0. Lemma 2.2. For each partition λ we have

D 1 H λ = 0.
Proof. Let n = |λ|. Consider the following two sets related to standard Young tableaux (written as "SYT" for simplicity)

A = {(i, T ) : 1 ≤ i ≤ n + 1, T is an SYT of shape λ}, B = {(λ + , T + ) : |λ + /λ| = 1, T + is an SYT of shape λ + }.
Let (i, T ) ∈ A. First we increase every entry which is greater than or equal to i by one in T . Then we use the Robinson-Schensted-Knuth algorithm [START_REF] Knuth | The Art of Computer Programming[END_REF] to insert the integer i into T to get a new SYT T + . Let λ + be the shape of T + . We have |λ + /λ| = 1, so that (λ + , T + ) ∈ B. It is easy to see that this is a bijection between sets A and B. The cardinalities of A and B are (n+ 1)f λ and λ + f λ + respectively. Hence we obtain

(n + 1)f λ = λ + f λ + .
This implies

D 1 H λ = λ + 1 H λ + - 1 H λ = 1 (n + 1)! λ + f λ + -(n + 1)f λ = 0.
For the difference operator D -we obtain the following similar results. Lemma 2.3. Let g(λ) be a function of partitions. Then D -g(λ) = 0 for every partition λ if and only if

g(λ) = a H λ
for some constant a.

Proof. By the definition of SYTs it is obvious that

f λ = λ -f λ -. Thus, (2.1) D -a H λ = a|λ| H λ - λ - a H λ - = a (|λ| -1)! f λ - λ - f λ -= 0.
On the other hand,

D -g(λ) = 0 implies |λ| g(λ) = λ -g(λ -). Let a = g(∅)
where ∅ is the empty partition. By induction and (2.1) we obtain g(λ) = a H λ . Notice that it is not easy to determine the functions g(λ) under the condition Dg(λ) = 0 for every partition λ. For example, by (1.5) and the following Lemma 2.4 we obtain

D ∈λ (h 2 -1) -3 |λ| 2 H λ = 0.
Lemma 2.4. For each positive integer r we have

D |λ| r H λ = |λ| r-1 H λ and D - |λ| r H λ = r |λ| r H λ .
Proof. Let n = |λ|. By Lemmas 2.2 and 2.3 we obtain

D n r H λ = λ + n+1 r H λ + - n r H λ = n+1 r -n r H λ = n r-1 H λ , D - n r H λ = n n r H λ - λ - n-1 r H λ - = n n r -n n-1 r H λ = r n r H λ .
In fact, we obtain the following more general results for D and D -.

Lemma 2.5. For each function g defined on partitions we obtain

D g(λ) H λ = λ + g(λ + ) -g(λ) H λ + , and 
D -g(λ) H λ = λ - g(λ) -g(λ -) H λ - .
Proof. By Lemmas 2.2 and 2.3 we have

D g(λ) H λ = λ + g(λ + ) H λ + - g(λ) H λ = λ + g(λ + ) -g(λ) H λ + , D -g(λ) H λ = |λ| g(λ) H λ - λ - g(λ -) H λ - = λ - g(λ) -g(λ -) H λ - . Lemma 2.6 (Leibniz's rule). Let g 1 , g 2 , • • • , g r be functions defined on partitions.
We have

D 1≤j≤r g j (λ) H λ = λ + ( * ) 1 H λ + k∈A g k (λ + ) -g k (λ) l∈B g l (λ)
and

D - 1≤j≤r g j (λ) H λ = - λ -( * ) 1 H λ - k∈A g k (λ -) -g k (λ) l∈B g l (λ) ,
where [r] := {1, 2, • • • , r} and the sum ( * ) ranges over all pairs (A, B)

⊂ [r] × [r] such that A ∪ B = [r], A ∩ B = ∅ and A = ∅.
In particular,

D g 1 (λ)g 2 (λ) H λ = g 1 (λ)D g 2 (λ) H λ + g 2 (λ)D g 1 (λ) H λ + λ + 1 H λ + g 1 (λ + ) -g 1 (λ) g 2 (λ + ) -g 2 (λ)
and

D -g 1 (λ)g 2 (λ) H λ = g 1 (λ)D -g 2 (λ) H λ + g 2 (λ)D -g 1 (λ) H λ - λ - 1 H λ - g 1 (λ) -g 1 (λ -) g 2 (λ) -g 2 (λ -) .
Proof. By Lemma 2.5 we have

D 1≤j≤r g j (λ) H λ = λ + 1 H λ + 1≤j≤r g j (λ + ) - 1≤j≤r g j (λ) = λ + 1 H λ + 1≤j≤r g j (λ) + (g j (λ + ) -g j (λ)) - 1≤j≤r g j (λ) = λ + ( * ) 1 H λ + k∈A g k (λ + ) -g k (λ) l∈B g l (λ) .
The proof for D -is similar.

For higher-order difference operators, we have the following result.

Lemma 2.7. Suppose that k is a nonnegative integer. Let n = |λ|. Then we have

(2.2) D k n r g(λ) = k i=0 k i n + i r -k + i D i g(λ).
Proof. First we have

D n + j r g(λ) = λ + n + 1 + j r g(λ + ) - n + j r g(λ) = n + 1 + j r Dg(λ) + n + j r -1 g(λ). (2.3)
We prove (2.2) by induction. The case k = 0, 1 is trivial by (2.3). Assume that the lemma is true for some k ≥ 1, then Proof.

D D k n r g(λ) = k i=0 k i D n + i r -k + i D i g(λ) = k i=0 k i n + 1 + i r -k + i D i+1 g(λ) + n + i r -k + i -1 D i g(λ) = k+1 i=1 k i -1 n + i r -k + i -1 D i g(λ) + k i=0 k i n + i r -k + i -1 D i g(λ) = k+1 i=0 k + 1 i n + i r -k + i -1 D i g(λ).
If (λ + ) -= λ, then (λ + ) -= λ ∪ { 1 } \ { 2 } for some boxes 1 = 2 .
This means that we can switch the order of adding 1 and removing 2 and get the same partition (λ

\ { 2 }) ∪ { 1 } ∈ {(λ -) + : (λ -) + = λ}. Consequently, (2.4) {(λ + ) -: (λ + ) -= λ} = {(λ -) + : (λ -) + = λ}.
For a given partition, the number of ways to add a box minus the number of ways to remove a box always equals 1. Thus

(λ + ) - g (λ + ) -- (λ -) + g (λ -) + = g(λ)
.

By definition of D and D -, we have

DD -g(λ) = λ + D -g(λ + ) -D -g(λ) = λ + |λ + |g(λ + ) - (λ + ) - g (λ + ) --|λ|g(λ) + λ - g(λ -)
and

D -Dg(λ) = |λ|Dg(λ) - λ - Dg(λ -) = |λ| λ + g(λ + ) -|λ|g(λ) - (λ -) + g (λ -) + + λ - g(λ -).
The above three identities yield

DD -g(λ) -D -Dg(λ) = λ + g(λ + ) -g(λ) = Dg(λ).

Telescoping sum for partitions

In this section, we build the connection between the difference operator D and the Plancherel average of functions of partitions. The main result in this section is Theorem 3.2. Lemma 3.1. For each given partition µ and function g of partitions, let

A(n) := |λ/µ|=n f λ/µ g(λ) and B(n) := |λ/µ|=n f λ/µ Dg(λ). Then (3.1) A(n) = A(0) + n-1 k=0 B(k).
Proof. By the definition of the operator D,

λ + g(λ + ) = g(λ) + Dg(λ).
Summing the above equality over all SYTs T of shape λ/µ with |λ/µ| = n, we have

A(n + 1) = A(n) + B(n).
By iteration we obtain (3.1).

Example 3.1. Let g(λ) = 1/H λ . Then Dg(λ) = 0 by Lemma 2.2. The two quantities defined in Lemma 3.1 are:

A(n) = |λ/µ|=n f λ/µ H λ and B(n) = 0. Consequently, (3.2) 
|λ/µ|=n

f λ/µ H λ = 1 H µ .
In particular, we derive the second identity in (1.1) by letting µ = ∅.

Theorem 3.2. Let g be a function of partitions and µ be a given partition. Then we have

(3.3) |λ/µ|=n f λ/µ g(λ) = n k=0 n k D k g(µ)
and

(3.4) D n g(µ) = n k=0 (-1) n+k n k |λ/µ|=k f λ/µ g(λ).
In particular, if there exists some positive integer r such that D r+1 g(λ) = 0 for every partition λ, then the left-hand side of (3.3) is a polynomial of n with degree at most r.

Proof. First, we prove (3.3) by induction. The case n = 0 is trivial. Assume that (3.3) is true for some nonnegative integer n. Then by the proof of Lemma 3.1 we have

|λ/µ|=n+1 f λ/µ g(λ) = |ν/µ|=n f ν/µ g(ν) + |ν/µ|=n f ν/µ Dg(ν) = n k=0 n k D k g(µ) + n k=0 n k D k+1 g(µ) = n+1 k=0 n + 1 k D k g(µ).
Finally, Identity (3.4) is proved by the Möbius inversion formula [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF].

Example 3.2. Let g(λ) = ∈λ h 2 H λ , µ = (1)
, n = 0, 1, 2, 3 in Identity (3.4). Note that

f (1)/(1) = 1; f (2)/(1) = 1, f (11)/(1) = 1, f (3)/(1) = 1, f (111)/(1) = 1, f (21)/(1) = 2, f (4)/(1) = 1, f (1111)/(1) = 1, f (31)/(1) = 3, f (211)/(1) = 3, f (22)/(1) = 2.
Then we have

D 0 g(1) = (-1) 0+0 0 0 f (1)/(1) g(1) = g(1) = 1; D 1 g(1) = (-1) 1+1 1 1 f (2)/(1) g(2) + f (11)/(1) g(11) + (-1) 1+0 1 0 f (1)/(1) g(1)
= g(2) + g(11)g(1) 1) g( 21) 1) g( 11)

= 5 2 + 5 2 -1 = 4; D 2 g(1) = (-1) 2+2 2 2 f (3)/(1) g(3) + f (111)/(1) g(111) + f (21)/(
+ (-1) 2+1 2 1 f (2)/(1) g(2) + f (11)/(
+ (-1) 2+0 1 0 f (1)/(1) g(1)
= g(3) + g(111) + 2g(21) -2g(2) -2g(11) + g(1)

= 7 3 + 7 3 + 2 • 11 3 -2 • 5 2 -2 • 5 2 + 1 = 3; D 3 g(1) = (-1) 3+3 3 3 f (4)/(1) g(4) + f (1111)/(1) g(1111) + f (31)/(1) g(31)
+ f (211)/(1) g(211) + f (22)/(1) g( 22) 1) g( 21) 1) g( 11)

+ (-1) 3+2 3 2 f (3)/(1) g(3) + f (111)/(1) g(111) + f (21)/(
+ (-1) 3+1 3 1 f (2)/(1) g(2) + f (11)/(
+ (-1) 3+0 3 0 f (1)/(1) g(1)
= g(4) + g(1111) + 3g(31) + 3g(211) + 2g( 22)

-3g(3) -3g(111) -6g(21) + 3g(2) + 3g(11) -g(1) = 5 4 + 5 4 + 3 • 11 4 + 3 • 11 4 + 2 • 3 2 -3 • 7 3 -3 • 7 3 -6 • 11 3 + 3 • 5 2 + 3 • 5 2 -1 = 0.

Shifted parts of partitions

In this section, we will show that some certain functions related to shifted parts of partitions are D-polynomials, which is motivated by the work of the first author on hook lengths and symmetric functions [START_REF] Han | Hook lengths and shifted parts of partitions[END_REF].

Suppose that λ = (λ 1 , λ 2 , . . . , λ ℓ ) is a partition with size n. Let

ϕ λ (z) = n i=1 (z + n + λ i -i),
where λ i = 0 for i ≥ ℓ + 1. The following theorem is the main result in this section.

Theorem 4.1. Suppose that z is a formal parameter. For each partition λ we have

D ϕ λ (z) H λ = zϕ λ (z + 1) H λ .
Theorem 4.1 has several direct corollaries.

Corollary 4.2. Suppose that z is a formal parameter and r is a nonnegative integer.

For each partition λ we have

D r+1 ϕ λ (z) H λ = z(z + 1) • • • (z + r)ϕ λ (z + r + 1) H λ .
In particular, ϕ λ (-r) is a D-polynomial with degree at most r, or equivalently, 

D r+1 ϕ λ (-r) H λ = 0.
f λ/µ ϕ λ (-r) H λ = r k=0 n k D k ϕ µ (-r) H µ
is a polynomial of n with degree at most r.

To prove Theorem 4.1, we need the following lemma proved by the first author in [START_REF] Han | Hook lengths and shifted parts of partitions[END_REF].

Lemma 4.4 ((2.2) of [START_REF] Han | Hook lengths and shifted parts of partitions[END_REF]). Suppose that λ is a partition and λ i > λ i+1 for some integer i. Then

H λ H λ * = n j=1 (i -λ i + 1 + λ j -j) n-1 j=1 (i -λ i + λ * j -j)
, where λ * is obtained from λ by removing a box from the i-th row.

Proof of Theorem 4.1. Let

φ(z) = D ϕ λ (z) H λ - zϕ λ (z + 1) H λ .
It is easy to see that φ(z) is a polynomial of z with degree at most n

+ 1 = |λ| + 1. Furthermore, [z n+1 ] φ(z) = λ + 1 H λ + - 1 H λ = 0 and [z n ] φ(z) = λ + n+2 2 H λ + - 1 H λ - n+1 2 + n H λ = 0.
This means that φ(z) is a polynomial of z with degree at most n -1. To show that φ(z) = 0, we just need to find n distinct roots for φ(z). Let z i = iλ in -1 for 1 ≤ i ≤ n. We will show that φ(z i ) = 0. If λ i = λ i-1 , we know the factor z + n + 1 + λ ii lies in ϕ λ + (z) since we can not add a box in i-th row to λ and thus ϕ λ + (z i ) = 0. For similar reasons, for all 1 ≤ i ≤ n we have ϕ λ (z i ) = ϕ λ (z i + 1) = 0, which means that φ(z i ) = 0.

If λ i +1 ≤ λ i-1 , we can add a box in i-th row to λ. First we also have ϕ λ (z i +1) = 0 since z i +n+1+λ i -1 = 0. To show φ(z i ) = 0, we just need to show D( ϕ λ (zi)

H λ ) = 0, or equivalently,

λ + H λ H λ + ϕ λ + (z i ) = ϕ λ (z i ).
It is easy to see that only one term on the left side of last identity is not 0. Thus we just need to show that

H λ H λ * * ϕ λ * * (z i ) = ϕ λ (z i ),
where λ * * is obtained by adding a box to λ in i-th row. But the last identity is equivalent to Lemma 4.4. The proof is complete.

D-polynomials from the work of Carde-Loubert-Potechin-Sanborn

In this section, we derive some D-polynomials arising from the work of Carde, Loubert, Potechin and Sanborn [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF] on one of the first author's conjecture [START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF] related to hook lengths of partitions. Furthermore, the degrees of such D-polynomials can be explicitly determined. As an application of Theorem 3.2 and Lemma 2.8, we obtain the skew marked hook length formula (see Theorem 1.6).

Let z be a formal parameter and ρ(h, z) be the function defined on each positive integer h (see [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF][START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF]):

ρ(h, z) := (1 + √ z) h + (1 - √ z) h (1 + √ z) h -(1 - √ z) h • h √ z = h k≥0 h 2k z k k≥0 h 2k+1 z k = 1 + h 2 -1 3 z - (h 2 -1)(h 2 -4) 45 z 2 + (h 2 -1)(h 2 -4)(2h 2 -11) 945 z 3 + • • • .
Definition 5.1. The functions L k (λ) of partitions are defined by the following generating function

∈λ ρ(h , z) = k≥0 L k (λ)z k .
For example, we have

L 0 (λ) = 1 and L 1 (λ) = 1 3 ∈λ (h 2 -1) = S(λ, 1) 3 . 
For i = 2r -1, 2r, 2r + 1, D i Lr(λ) H λ has an explicit expression.

Theorem 5.1. For each partition λ we have

D 2r+1 L r (λ) H λ = 0, (r ≥ 0) (5.1) D 2r L r (λ) H λ = (2r -1)!! H λ , (r ≥ 1) (5.2) D 2r-1 L r (λ) H λ = (2r -1)!! H λ |λ|. (r ≥ 1) (5.3)
Recall the following result obtained in [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF], which will be used in the proof of Theorem 5.1.

Lemma 5.2 (Carde-Loubert-Potechin-Sanborn [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF]). For each partition λ we have

λ + w(λ + ) = w(1)w(λ) + λ - w(λ -),
where

w(λ) = ∈λ ρ(h , z) h √ z .
Lemma 5.2 implies

λ + ∈λ + ρ(h , z) H λ + - ∈λ ρ(h , z) H λ = z λ - ∈λ -ρ(h , z) H λ - .
Comparing the coefficients of z k , we obtain

(5.4) D L k (λ) H λ = |λ|L k-1 (λ) H λ -D -L k-1 (λ) H λ .
Lemma 5.3. For each partition λ and each integer r ≥ 1 we have

D r L k (λ) H λ = |λ|D r-1 L k-1 (λ) H λ +(r-1)D r-2 L k-1 (λ) H λ -D -D r-1 L k-1 (λ) H λ .
Proof. The lemma is true when r = 1 by (5.4). Assume that it is true for some r ≥ 1. By Lemmas 2.7 and 2.8 we have

D r+1 L k (λ) H λ = D |λ|D r-1 L k-1 (λ) H λ + (r -1)D r-2 L k-1 (λ) H λ -D -D r-1 L k-1 (λ) H λ = |λ|D r L k-1 (λ) H λ + rD r-1 L k-1 (λ) H λ -D -D r L k-1 (λ) H λ .
Proof of Theorem 5.1. Identity (5.1) is proved by induction on r. When r = 0, we have D( L0(λ) H λ ) = D( 1 H λ ) = 0 by Lemma 2.2. Assume that (5.1) is true for some r ≥ 0. So that

D 2r+1 L r (λ) H λ = D 2r+2 L r (λ) H λ = 0.
By Lemma 5.3 we obtain

D 2r+3 L r+1 (λ) H λ = |λ|D 2r+2 L r (λ) H λ + (2r + 2)D 2r+1 L r (λ) H λ -D -D 2r+2 L r (λ) H λ = 0.
For (5.2) and (5.3) we proceed in the same manner. By Lemma 5.3, we have

D 2r+2 L r+1 (λ) H λ = |λ|D 2r+1 L r (λ) H λ + (2r + 1)D 2r L r (λ) H λ -D -D 2r+1 L r (λ) H λ = (2r + 1)D 2r L r (λ) H λ = (2r + 1) • (2r -1)!! H λ = (2r + 1)!! H λ , and 
D 2r+1 L r+1 (λ) H λ = |λ|D 2r L r (λ) H λ + 2rD 2r-1 L r (λ) H λ -D -D 2r L r (λ) H λ = |λ| (2r -1)!! H λ + (2r -1)!! 2r|λ| H λ -D -(2r -1)!! H λ = (2r + 1)!! |λ| H λ .
The case r = 1 is guaranteed by Lemma 5.3.

By Theorems 5.1 and 3.2 we obtain the following result.

Theorem 5.4. Let µ be a given partition and r a nonnegative integer. Then

|λ/µ|=n f λ/µ L r (λ) H λ = 0≤k≤2r n k D k L r (µ) H(µ)
is a polynomial of n with degree at most 2r. In particular, let µ = ∅, we have 

|λ|=n f λ L r (λ) H λ = 0≤k≤2r d k n k where d k = D k Lr(λ)
f λ/µ L 1 (λ) H λ = L 1 (µ) H(µ) + nD L 1 (µ) H(µ) + n 2 D 2 L 1 (µ) H(µ) = L 1 (µ) H(µ) + n |µ| H(µ) + n 2 1 H(µ) , (α 1 , β 1 ) (α j , β j ) (α j+1 , β j+1 ) (α i , β i ) (α i+1 , β i+1 ) (α m , β m ) h 4 h 3 h 2 h 1 h 1 = x i -x j -1 h 2 = x i -y j+1 h 3 = y i -x j h 4 = y i -y j+1 +1 • • • • • • • Figure 2.
A partition and its corners. The outer corners are labelled with (α i , β i ) (i = 1, 2, . . . , m). The inner corners are indicated by the dot symbol "•". and |λ/µ|=n

f λ/µ H µ L 1 (λ) -L 1 (µ) H λ = n|µ| + n 2 by (3.
2). This is equivalent to (1.9).

6.

A family of D-polynomials q ν (λ)

In this section, we study the properties of a family of functions q ν (λ) needed in the proof of our main Theorems 1.3 and 1.4. The main result in this section is Theorem 6.1.

For a partition λ, the outer corners (see [START_REF] Bandlow | An elementary proof of the Hook formula[END_REF]) are the boxes which can be removed to get a new partition λ -. Let m = m(λ) be the number of outer corners of λ and (α 1 , β 1 ), . . . , (α m , β m ) be the coordinates of outer corners such that α 1 > α 2 > • • • > α m . Let y j = y j (λ) := β jα j be the contents of outer corners for 1 ≤ j ≤ m. We set α m+1 = β 0 = 0 and call (α 1 , β 0 ), (α 2 , β 1 ), . . . , (α m+1 , β m ) the inner corners of λ. Let x i = x i (λ) := β iα i+1 be the contents of inner corners for 0 ≤ i ≤ m (see Figure 2). It is easy to verify that x i and y j satisfy the following relation:

(6.1) x 0 < y 1 < x 1 < y 2 < x 2 < • • • < y m < x m .
According to Olshanski [START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF] we define (6.2)

q k (λ) := 0≤i≤m x i k - 1≤j≤m y j k
for each k ≥ 0. The first three values of {q k (λ)} k≥0 can be evaluated explicitly.

For each partition λ we have (6.3) q 0 (λ) = 1, q 1 (λ) = 0 and q 2 (λ) = 2 |λ|.

Let us prove (6.3). First we have q 0 (λ) = (m + 1)m = 1. By definition of x i and y j , we obtain

0≤i≤m x i = 1≤j≤m y j = 1≤i≤m β i - 1≤j≤m α j . Thus q 1 (λ) = 0≤i≤m x i - 1≤j≤m y j = 0.
We also have

q 2 (λ) = 0≤i≤m x 2 i - 1≤j≤m y 2 j = 0≤i≤m (β i -α i+1 ) 2 - 1≤j≤m (β j -α j ) 2 = 1≤i≤m 2β i (α i -α i+1 ).
By Figure 2 it is easy to see that 1≤i≤m β i (α iα i+1 ) is equal to the number of boxes in λ, which is |λ|. Hence q 2 (λ) = 2 |λ|.

For each partition ν = (ν 1 , ν 2 , . . . , ν ℓ ), the function q ν (λ) is defined by (6.4)

q ν (λ) := q ν1 (λ)q ν2 (λ) • • • q ν ℓ (λ).
Theorem 6.1. Let ν be a partition. Then q ν (λ) is a D-polynomial with degree at most |ν|/2. Furthermore, there exist some b δ ∈ Q such that

(6.5) D( q ν (λ) H λ ) = |δ|≤|ν|-2 b δ q δ (λ) H λ
for every partition λ.

Notice that (6.5) could also be obtained by carefully reading [START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF] or [START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF]. But for completeness and since it is not explicitly given in [START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF] or [START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF], we will include a proof later.

First we prove some useful lemmas related to hook lengths and q ν (λ). For each k = 0, 1, . . . , m, denote by k = (α k+1 + 1, β k + 1) and λ k+ = λ ∪ { k }. Lemma 6.2. Let g be a function defined on integers. Then we have

∈λ k+ g(h ) - ∈λ g(h ) = g(1) + 0≤i≤k-1 g(x k -x i ) -g(x k -y i+1 ) + k+1≤i≤m g(x i -x k ) -g(y i -x k ) and ∈λ k+ g(h ) ∈λ g(h ) = g(1) 0≤i≤k-1 g(x k -x i ) g(x k -y i+1 ) k+1≤i≤m g(x i -x k ) g(y i -x k ) .
In particular, we have

H λ k+ H λ = 0≤i≤m i =k (x k -x i ) 1≤j≤m (x k -y j ) .
Proof. When adding the box k to λ, it is easy to see that the hook lengths of boxes which are in the same row or the same column with k increase by one. The hook lengths of other boxes don't change. Thus we have

∈λ k+ g(h ) - ∈λ g(h ) = 1≤i≤α k+1 g h (i,β k +1) (λ k+ ) -g h (i,β k +1) (λ) + 1≤j≤β k g h (α k+1 +1,j) (λ k+ ) -g h (α k+1 +1,j) (λ) + g h k (λ k+ ) ,
where h (λ) (resp. h (λ k+ )) denotes the hook length of the box in λ (resp. λ k+ ). On the other hand, the hook lengths of

(α k+1 + 1, 1), (α k+1 + 1, 2), • • • , (α k+1 + 1, β k ) in λ and λ k+ are x k -x i -1, x k -x i -2, • • • , x k -y i+1 + 1, x k -y i+1 (0 ≤ i ≤ k -1) and x k -x i , x k -x i -1, • • • , x k -y i+1 + 2, x k -y i+1 + 1 (0 ≤ i ≤ k -1)
respectively. Hence we obtain

1≤j≤β k g(h (α k+1 +1,j) (λ k+ ))-g(h (α k+1 +1,j) (λ)) = 0≤i≤k-1 g(x k -x i )-g(x k -y i+1 ) .
Similarly,

1≤j≤α k+1 g(h (j,β k +1) (λ k+ )) -g(h (j,β k +1) (λ)) = k+1≤i≤m g(x i -x k ) -g(y i -x k ) .
Thus we obtain the first identity in the lemma. The second follows from replacing g(h) by ln(g(h)). In particular, g(h) = h implies the third identity. Lemma 6.3. Let g be a function defined on integers. Define

g 1 (λ) := 0≤i≤m g(x i ) - 1≤j≤m g(y j )
which is a function of partitions. Then

D g 1 (λ) H λ = 0≤i≤m g(x i + 1) + g(x i -1) -2g(x i ) H λ i+ .
In particular, let g(z) = z k so that g 1 (λ) = q k (λ). Then we obtain

D q k (λ) H λ = 0≤i≤m 2 H λ i+ 1≤j≤k/2 k 2j x i k-2j .
Proof. Let X = {x 0 , x 1 , . . . , x m } and Y = {y 1 , y 2 , . . . , y m } be the sets of contents of inner corners and outer corners of λ respectively. Four cases are to be considered.

(i) If β i + 1 < β i+1 and α i+1 + 1 < α i .
Then it is easy to see that the contents of inner corners and outer corners of

λ i+ are X ∪ {x i -1, x i + 1} \ {x i } and Y ∪ {x i } respectively. (ii) If β i + 1 = β i+1 and α i+1 + 1 < α i , so that y i+1 = x i + 1.
Hence the contents of inner corners and outer corners of

λ i+ are X ∪ {x i -1} \ {x i } and Y ∪ {x i } \ {x i + 1} respectively. (iii) If β i + 1 < β i+1 and α i+1 + 1 = α i , so that y i = x i -1.
Then the contents of inner corners and outer corners of

λ i+ are X ∪ {x i + 1} \ {x i } and Y ∪ {x i } \ {x i -1} respectively. (iv) If β i + 1 = β i+1 and α i+1 + 1 = α i . Then y i + 1 = x i = y i+1 -1.
The contents of inner corners and outer corners of λ i+ are X \ {x i } and Y ∪ {x i } \ {x i -1, x i + 1} respectively. Thus we always have (6.6)

g 1 (λ i+ ) -g 1 (λ) = g(x i + 1) + g(x i -1) -2g(x i ). Therefore D g 1 (λ) H λ = 0≤i≤m g 1 (λ i+ ) -g 1 (λ) H λ i+ = 0≤i≤m g(x i + 1) + g(x i -1) -2g(x i ) H λ i+
by Lemma 2.5.

Lemma 6.4. Let k be a nonnegative integer. Then there exist some b

ν ∈ Q such that 0≤i≤m H λ H λ i+ x i k = |ν|≤k b ν q ν (λ)
for every partition λ.

Proof. Let

g(z) = 1≤j≤m (1 -y j z) - 0≤i≤m H λ H λ i+ 0≤j≤m j =i (1 -x j z).
Then by Lemma 6.2 we obtain

g 1 x t = 1≤j≤m 1 - y j x t - H λ H λ t+ 0≤j≤m j =t 1 - x j x t = 1≤j≤m 1 - y j x t - 1≤j≤m (x t -y j ) 0≤j≤m j =t (x t -x j ) • 0≤j≤m j =t 1 - x j x t = 0.
This means that g(z) has at least m + 1 roots, so that g(z) = 0 since g(z) is a polynomial of z with degree at most m. Therefore we obtain 0≤i≤m

H λ H λ i+ • 1 1 -x i z = 1≤j≤m (1 -y j z) 0≤j≤m (1 -x j z) , which means that 0≤i≤m H λ H λ i+ k≥0 (x i z) k = exp 1≤j≤m ln(1 -y j z) - 0≤i≤m ln(1 -x i z) = exp k≥1 q k (λ) k z k .
Comparing the coefficients of z k on both sides, we obtain

0≤i≤m H λ H λ i+ x i k = |ν|≤k b ν q ν (λ)
for some b ν ∈ Q. Notice that b ν are independent of λ. This achieves the proof. Now we will give a proof of Theorem 6.1.

Proof of Theorem 6.1. Let k be an integer. By Lemma 6.3 we have

H λ D q k (λ) H λ = 0≤i≤m H λ H λ i+ 1≤j≤k/2 2 k 2j x i k-2j .
Then there exist some b δ ∈ Q such that

D q k (λ) H λ = |δ|≤k-2 b δ q δ (λ) H λ
for every partition λ by Lemma 6.4. In other words, (6.5) is true for ν = (k). From (6.6) with g(z) = z k we actually obtain

q k (λ i+ ) -q k (λ) = 1≤j≤k/2 2 k 2j x i k-2j ,
which is a polynomial of x i with degree at most k -2. Then by Lemmas 2.6 and 6.4 there exist some b δ ∈ Q such that

H λ D( q ν (λ) H λ ) = |δ|≤|ν|-2 b δ q δ (λ)
for every partition λ.

Hook lengths and D-polynomials

In this section, we prove the main Theorems 1.3 and 1.4. Let r be a fixed nonnegative integer. The key step is to show that S(λ, r) defined in (1) can be written as a symmetric polynomial on {x 0 , x 1 , . . . , x m } and {y 1 , y 2 , . . . , y m }, as stated next. for every partition λ.

Keep the same notations as in Section 6 (see Figure 2). Let

A ij = {(i ′ , j ′ ) ∈ λ : α i+1 + 1 ≤ i ′ ≤ α i , β j + 1 ≤ j ′ ≤ β j+1 } so that λ = 0≤j<i≤m A ij .
The multiset of hook lengths of

A ij are xi-xj -1 a=xi-yj+1 {a, a -1, a -2, . . . , a -(x i -y i -1)}.
Let F 0 (n) be a function defined on integers. Define

F 1 (n) := n k=1 F 0 (k) and F 2 (n) := n k=1 F 1 (k). Hence ∈Aij F 0 (h ) = xi-xj -1 a=xi-yj+1 xi-yi-1 b=0 F 0 (a -b) = xi-xj -1 a=xi-yj+1 F 1 (a) -F 1 (a -x i + y i ) = xi-xj -1 a=xi-yj+1 F 1 (a) - xi-xj -1 a=xi-yj+1 F 1 (a -x i + y i ) = F 2 (x i -x j -1) + F 2 (y i -y j+1 -1) -F 2 (x i -y j+1 -1) -F 2 (y i -x j -1)
and thus

∈λ F 0 (h ) = 0≤j<i≤m ∈Aij F 0 (h ) = 0≤j<i≤m F 2 (x i -x j -1) + F 2 (y i -y j+1 -1) (7.2) -F 2 (x i -y j+1 -1) -F 2 (y i -x j -1) .
For each n ≥ 1 the polynomial P n (z) of real number z is defined by

P n (z) := z n+1 n + 1 + z n 2 + 1 n + 1 1≤j≤n/2 n + 1 2j z n-2j+1 (-1) j+1 B 2j ,
where B 2j are Bernoulli numbers [START_REF] Conway | The Book of Numbers[END_REF][START_REF] Foata | Principes de combinatoire classique[END_REF][START_REF] Knuth | Computation of tangent, Euler, and Bernoulli numbers[END_REF]. Let k be a positive integer. According to Euler-MacLaurin formula [START_REF] Knuth | Computation of tangent, Euler, and Bernoulli numbers[END_REF],

P n (k) = 1 n + 2 n + • • • + k n .
Consequently, P n (k) = P n (k + 1) -(k + 1) n . It is easy to obtain the following identity:

(7.3) P n (-k -1) = (-1) n+1 P n (k). (n ≥ 1)
For simplicity we rewrite (7.4)

P n (z) = z n 2 + 0≤j≤n/2 ζ j (n)z n-2j+1 . Let G 0 (j) = 1≤i≤r (j 2 -i 2 ) = r w=0 η w j 2w . We define G 1 (n) := n k=1 G 0 (k) and G 2 (n) := n k=1 G 1 (k).
The polynomial G(z) of real number z is defined by

(7.5) G(z) := (-1) r z 2 r! 2 2 + r w=1 η w P 2w (z -1) 2 + w j=0 ζ j (2w)P 2w-2j+1 (z -1) .
Lemma 7.2. The function G(z) defined in (7.5) satisfies the following relations:

G(0) = 0, (7.6) G(n) = (-1) r nr! 2 2 + G 2 (n -1), (n ∈ N) (7.7) G(n) = G(-n).
(n ∈ N) (7.8)

Proof. It's obvious that P n (0) = 0 and thus P n (-1) = 0 by (7.3). So that G(0) = 0 follows from (7.5). By definitions of G 0 , G 1 and G 2 we have

G 2 (n -1) = n-1 k=1 k j=1 r w=0 η w j 2w = n-1 k=1 k j=1 η 0 + r w=1 η w n-1 k=1 P 2w (k) = η 0 n 2 + r w=1 η w n-1 k=1 k 2w 2 + w j=0 ζ j (2w)k 2w-2j+1 = (-1) r r! 2 n 2 + r w=1 η w P 2w (n -1) 2 + w j=0 ζ j (2w)P 2w-2j+1 (n -1) . Hence (7.7) is true. By (7.3), G(n) -G(-n) = r w=1 η w P 2w (n -1) 2 + w j=0 ζ j (2w)P 2w-2j+1 (n -1) - r w=1 η w - P 2w (n) 2 + w j=0 ζ j (2w)P 2w-2j+1 (n) = r w=1 η w P 2w (n) - n 2w 2 - w j=0 ζ j (2w)n 2w-2j+1 = 0.
The above lemma implies that G(n) is an even polynomial of the integer n with degree 2r + 2, which means that there exist some rational numbers ξ i such that (7.9)

G(n) = r+1 i=1 ξ i n 2i .
Proof of Theorem 7.1. By (7.2) we obtain

S(λ, r) = ∈λ G 0 (h ) = 0≤j<i≤m G 2 (x i -x j -1) + G 2 (y i -y j+1 -1) -G 2 (x i -y j+1 -1) -G 2 (y i -x j -1) = 0≤j<i≤m G(x i -x j ) + G(y i -y j+1 ) -G(x i -y j+1 ) -G(y i -x j ) .
The last equality is due to (7.7) and

(x i -x j ) + (y i -y j+1 ) -(x i -y j+1 ) -(y i -x j ) = 0.
Thus by (7.9), we have

S(λ, r) = 1≤k≤r+1 ξ k 0≤j<i≤m (x i -x j ) 2k + (y i -y j+1 ) 2k -(x i -y j+1 ) 2k -(y i -x j ) 2k = 1≤k≤r+1 ξ k V (k),
where we obtain there exist some rational numbers b ′ ν such that (7.10)

V (k) = 0≤i≤j≤m (x i -x j ) 2k + 1≤i≤j≤m (y i -y j ) 2k - 0≤i≤m 1≤j≤m (x i -y j ) 2k . Notice that ξ k is independent of λ since G(n) is independent of λ. Comparing the coefficients of z 2k (1 ≤ k ≤ r + 1)
V (k) = |ν|≤2k b ′ ν q ν (λ)
for every partition λ. This achieves the proof.

For each partition ν = (ν 1 , ν 2 , • • • , ν ℓ ) we define S ν (λ) := 1≤i≤ℓ S(λ, ν i ).

Combining Theorems 7.1 and 6.1 we derive the following result.

Theorem 7.3. Let ν = (ν 1 , ν 2 , • • • , ν ℓ ) be a given partition. Then S ν (λ) is a D-polynomial with degree at most |ν| + ℓ. Furthermore, there exist some b δ ∈ Q indexed by partitions δ such that

(7.11) D k S ν (λ) H λ = |δ|≤2|ν|+2ℓ-2k b δ q δ (λ) H λ
for every partition λ.

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Notice that p ν (h 2 : ∈ λ) can be written as a linear combination of some S ν (λ). Then by Theorem 7.3 we obtain Theorem 1.3.

Proof of Theorem 1.4. It is easy to see that for any symmetric function F (z 1 , z 2 , . . .) of infinite variables, F (h 2 : ∈ λ) can be written as a linear combination of some p ν (h 2 : ∈ λ). Then by Theorems 1.3, 3.2 and 7.3 we derive Theorem 1.4.

Okada-Panova hook length formula

Okada's conjecture on hook lengths (1.3) was first proved by Panova [START_REF] Panova | Polynomiality of some hook-length statistics[END_REF] by means of Theorem 1.1. In this section, we generalize and give another proof of the Okada-Panova hook length formula by using difference operators. In fact, the constants K r arise directly from the computation for a single partition λ, without the summation ranging over all partitions of size n. for every partition λ.

Proof. We have

∈λ i+ c 2r - ∈λ c 2r = (β i -α i+1 ) 2r = x 2r i .
Therefore

H λ D ∈λ c 2r H λ = λ i+ H λ H λ i+ ∈λ i+ c 2r - ∈λ c 2r = λ i+ H λ H λ i+ x 2r i .
The proof is achieved by Lemma 6.4 and linearity.

Proof of Theorem 1.7. By (6.3), Theorems 9.1 and 6.1 there exist a, b ∈ Q such that for every λ, Theorem 1.9 is a simple consequence of Theorems 3.2 and 1.7.
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 1 Figure 1. The Young diagram of the partition (6, 3, 3, 2) and the hook lengths of corresponding boxes.

Lemma 2 . 8 .

 28 The two difference operators D and D -are noncommutative, and satisfy DD --D -D = D.

H λ λ=∅ . Proof of Theorem 1 . 6 .

 16 Let r = 1 in Theorem 5.4. Then we obtain |λ/µ|=n
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 71 There exist some rational numbers b ν = b ν (r) indexed by integer partitions ν such that (7.1) S(λ, r) = |ν|≤2r+2 b ν q ν (λ)

e

  on both sides of the following trivial identity (yj -xi)z ,

Proof of Corollary 1 . 5 .Hence ( 1 . 5 ) 9 .

 15159 By (6.3) and Theorem 7.3 there exist a, b ∈ Q such that for every λ, H λ D r S(λ, r) H λ = a|λ| + b. The explicit values of a and b are determined by taking two special partitions λ = ∅ and λ = (1). Since S(λ, r) = 0 if λ does not have any hook length greater than r, we have b = D r S(λ, r) H λ λ=∅ = 0 by (3.4). On the other hand, it's obvious that the only partitions of size r + 1 who have hook lengths greater than r are {λ (k) : 0 ≤ k ≤ r} where λ (k) = (k + 1, 1, 1, • • • , 1 is true. Consequently, (1.6) and (1.7) are derived from (1.5) by applying the difference operator D. Proof of Theorem 1.2. Since S(λ, r) = 0 if λ does not have any hook length greater than r, i ≤ r by (3.4). Substituting g(λ) by S(λ, r)/H λ and µ by ∅ in (3.3) we get |λ|=n Fujii-Kanno-Moriyama-Okada content formula In this section, we prove and generalize the Fujii-Kanno-Moriyama-Okada content formula. Recall C(λ, r) = ∈λ r-1 i=0 (c 2i 2 ). Theorem 9.1. There exist some b ν ∈ Q indexed by partitions ν such that H λ D C(λ, r) H λ = |ν|≤2r b ν q ν (λ)

H

  λ D r C(λ, r) H λ = a|λ| + b. The explicit values of a and b are determined by taking two special partitions λ = ∅ and λ = (1). Since C(λ, r) = 0 if λ does not have any content whose absolute value is greater than r -1, we have b = D r C(λ, r) 4). On the other hand, it's obvious that the only partitions of size r + 1 who have contents with absolute values greater than r -1 are (1 r+1 ) and (r + 1). By (3.4) we have a = D r C(λ, r) 10) is true. Consequently, (1.11) and (1.12) are derived from (1.10) by applying the difference operator D. Proof of Theorem 1.8. Since C(λ, r) = 0 if λ does not have any content whose absolute value is greater than ri ≤ r by (3.4). Substituting g(λ) by C(λ, r)/H λ and µ by ∅ in (3.3) we get |λ|=n

  Theorem 1.3. For each power sum symmetric function p ν (z 1 , z 2 , . . .) of infinite variables indexed by the partition ν = (ν 1 , ν 2 , . . . , ν ℓ ), the function p ν (h 2 : ∈ λ) of partition λ is a D-polynomial with degree at most |ν| + ℓ.

Theorem 1.4. Let µ be a given partition and k be a nonnegative integer. For each power sum symmetric function p ν (z 1 , z 2 , . . .) we have |λ/µ|=n
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