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Abstract: Considering a class of stochastic differential equations driven
by a locally stable process, we address the joint parametric estimation,
based on high frequency observations of the process on a fixed time inter-
val, of the drift coefficient, the scale coefficient and the jump activity of
the process. Extending the methodology proposed in [6] , where the jump
activity was assumed to be known, we obtain two different rates of con-
vergence in estimating simultaneously the scale parameter and the jump
activity, depending on the scale coefficient. If the scale coefficient is multi-
plicative: a(x, σ) = σa(x), the joint estimation of the scale coefficient and
the jump activity behaves as for the translated stable process studied in [5]
and the rate of convergence of our estimators is non diagonal. In the non
multiplicative case, the results are different and we obtain a diagonal and
faster rate of convergence which coincides with the one obtained in esti-
mating marginally each parameter. In both cases, the estimation method is
illustrated by numerical simulations showing that our estimators are rather
easy to implement.
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1. Introduction

In this paper, we consider a class of stochastic differential equations driven by
a symmetric locally α-stable process

Xt = x0 +

∫ t

0

b(Xs, θ)ds+

∫ t

0

a(Xs−, σ)dLαs ,

and we study the joint estimation of (θ, σ, α) based on high-frequency observa-
tions of the process on the time interval [0, T ] with T fixed (without restriction

∗Corresponding author
†This research is supported by the Paris Seine Initiative

1

mailto:emmanuelle.clement@univ-eiffel.fr
mailto:arnaud.gloter@univ-evry.fr


E.Clément and A.Gloter/Joint estimation 2

we will next assume that T = 1). In recent years, there has been growing inter-
est in modeling with pure-jump Lévy processes (see for example Jing et al. [13]
and [17]) and estimation of such processes is of particular interest.

A large literature is devoted to parametric estimation of jump-diffusions from
high-frequency observations and we know that, due to the Brownian compo-
nent, the estimation of the drift coefficient is not possible without assuming
that T goes to infinity. For pure-jump processes, assuming that the jump ac-
tivity α ∈ (0, 2), the situation is completely different and we can estimate all
the parameters on a fixed time interval. When X is a Lévy process, the first
results in that direction have been established among others by Aı̈t-Sahalia
and Jacod [1] [2], Kawai and Masuda [14] [16], Masuda [18], Ivanenko, Ku-
lik and Masuda [10] and more recently by Brouste and Masuda [5]. Concern-
ing the parametric estimation of pure-jump driven stochastic equations the
literature is less abundant and only partial results are available. The estima-
tion of (θ, σ) is performed by Masuda in [19], assuming that α is known and
with the restriction α ∈ [1, 2). The estimation method proposed in [19] is
based on an approximation (for small h) of the distribution of the normal-
ized increment h−1/α(Xt+h − Xt − hb(Xt, θ))/a(Xt, σ) by the α-stable distri-
bution. However this approximation is not relevant if α < 1. To solve this
problem, Clément and Gloter [6] consider the following modified increment
h−1/α(Xt+h − ξXth (θ))/a(Xt, σ), where (ξxt (θ))t≥0 solves the ordinary equation

ξxt (θ) = x+

∫ t

0

b(ξx0
s (θ), θ)ds, t ≥ 0.

This permits to estimate (θ, σ), for α ∈ (0, 2) known. Turning to the efficiency
of these estimation methods, the LAMN property is established in Clément and
al. [7] for the estimation of (θ, σ) assuming that the scale coefficient a is constant
and that (Lαt )t is a truncated stable process.

In this paper, we perform the joint estimation of the three parameters (θ, σ, α)
assuming that α ∈ (0, 2). Our methodology follows the ideas of [6] and is based
on estimating functions (we refer to Sørensen [22] and to the recent survey by
Jacod and Sørensen [12] for asymptotics in estimating function methods). Let
us recall brieflty the methodology developed in [6]. Observing that the condi-
tional distribution of h−1/α(Xt+h − ξXth (θ))/a(Xt, σ) is close to the α-stable
distribution (this is estimated in total variation distance in [6]) the idea is to
approximate the transition density ph(x, y) of the process (Xt)t by

h−1/α

a(x, σ)
ϕα

(
h−1/α

(y − ξxh(θ))

a(x, σ)

)
,

where ϕα is the density of a symmetric α-stable variable Sα1 . This approximation
permits to construct a quasi-likelihood function and then a natural choice of
estimating function is to consider the associated score function. In the present
paper, the additional estimation of the jump activity α requires extensions to
non bounded functions of total variation distance estimates and limit theorems
established in [6], to prove the asymptotic properties of our estimators. We stress
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on the fact that these asymptotic properties are established without restriction
on the jump activity α.

The estimation of θ achieves the optimal rate and the information established
in [7] for a simplified stochastic equation but the rate of convergence and the
asymptotic variance-covariance matrix in estimating (σ, α) depend on the func-
tion a. To take into account this new phenomenon, we distinguish between two
cases.

If the function a is multiplicative (multiplicative case), a(x, σ) = σa(x), then
we show that the rate of convergence is non diagonal and we compute the
asymptotic variance of the estimator. This case extends the previous results
established respectively in [18] and [5] for a translated α-stable process, where
it is shown that the Fisher information matrix is singular in estimating (σ, α)
with a diagonal norming rate, but that the LAN property holds with a non
singular information matrix using a non diagonal norming rate. Furthermore,
we can conjecture that in the multiplicative case our estimator is efficient since
the asymptotic variance in estimating (σ, α) is the inverse of the information
matrix appearing in the LAN property established in [5] for the translated α-
stable process. A consequence of the non diagonal rate is that the asymptotic
errors in estimating σ and α jointly are proportional, which is supported also
by our numerical simulations.

On the other hand, if the scale coefficient a does not separate σ and x (non
multiplicative case), s→ ∂σa

a (Xs, σ0) is almost surely non constant, the result is
new and surprising. Indeed our estimator is asymptotically mixed normal with
a diagonal norming rate, faster than in the multiplicative case. Moreover, this
rate achieves the optimal rate of convergence in estimating marginally σ and
α. Especially this shows that, contrarily to the multiplicative case, the rate in
estimating jointly (θ, σ) and α coincides with the one obtained assuming that
α is known. Remark that the efficiency in the non multiplicative case is still an
open problem since the LAMN property is not yet established for a non constant
scale coefficient a.

The paper is organized as follows. Section 2 introduces the notation and
assumptions. In Section 3 we state our main results : estimation method and
asymptotic properties of the estimators. The main limit theorems to prove con-
sistency and asymptotic mixed normality of our estimators are established in
Section 4. Section 5 contains some simulation results that illustrate the asymp-
totic properties of the estimators.

2. Notation and assumptions

We consider the class of stochastic one-dimensional equations :

Xt = x0 +

∫ t

0

b(Xs, θ)ds+

∫ t

0

a(Xs−, σ)dLαs (2.1)

where (Lαt ) is a pure-jump locally α-stable process defined on a filtered space
(Ω,F , (Ft)t∈[0,1],P). To simplify the notation we assume that θ, σ are real pa-
rameters. We observe the discrete time process (Xti)0≤i≤n with ti = i/n, for
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i = 0, . . . , n that solves (2.1) for the parameter value β0 = (θ0, σ0, α0) and our
aim is to estimate the parameter β0.

We make some regularity assumptions on the coefficients a and b that ensure
in particular that (2.1) admits a unique strong solution. We also specify the
behavior of the Lévy measure near zero of the process (Lαt )t∈[0,1].

H1(Regularity) : (a) Let Vθ0 × Vσ0 be a neighborhood of (θ0, σ0). We assume
that x 7→ a(x, σ0) is C2 on R, b is C2 on R× Vθ0 and

sup
x

( sup
θ∈Vθ0

|∂xb(x, θ)|+ |∂xa(x, σ0)|) ≤ C,

∃p > 0 s.t. |∂2xb(x, θ0)|+ |∂2xa(x, σ0)| ≤ C(1 + |x|p),

a is non negative and ∃p ≥ 0 s.t. sup
σ∈Vσ0

1

a(x, σ)
≤ C(1 + |x|p),

(b) ∀x ∈ R, θ 7→ b(x, θ) and σ 7→ a(x, σ) are C3

∃p > 0 s.t. sup
(θ,σ)∈Vθ0×Vσ0

max
1≤l≤3

(|∂lθb(x, θ)|+ |∂lσa(x, σ)|) ≤ C(1 + |x|p),

∃p > 0 s.t. sup
θ∈Vθ0

|∂x∂θb(x, θ)| ≤ C(1 + |x|p).

H2 (Lévy measure) : (a) The Lévy measure of (Lαt ) satisfies

ν(dz) =
g(z)

|z|α+1 1R\{0}(z)dz,

where α ∈ (0, 2) and g : R 7→ R is a continuous symmetric non negative bounded
function with g(0) = 1.

(b) g is differentiable on {0 < |z| ≤ η} for some η > 0 with continuous

derivative such that sup0<|z|≤η

∣∣∣∂zg(z)g(z)

∣∣∣ <∞.
This assumption is satisfied by a large class of processes : α-stable process

(g = 1), truncated α-stable process (g = τ a truncation function), tempered
stable process (g(z) = e−λ|z|, λ > 0).

Remark 2.1. Our results rely on Theorem 4.1 and Theorem 4.2 in [6], ob-
tained under H2, that give a rate of convergence in total variation distance
between respectively the rescaled distributions of X1/n and Lα1/n, and the locally
α-stable distribution and the stable distribution. The key point is that the rate of
convergence εn satisfies

√
nεn → 0. However, as in [3], [10] and [24], we could

consider, with some proof modifications (in this paper and in [6]), a more general
class of locally stable processes and weaken H2. In particular, our methodology
permits to consider ν symmetric admitting the decomposition

ν(dz) =
g0(z)

|z|α+1
1{0<|z|≤η}dz + ν1(dz).
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If ν1, possibly singular, is supported on {|z| > η}, then due to the localization
introduced in Section 4.1 of [6], Theorem 4.1 and Theorem 4.2 remain true.
Moreover the result of Proposition 4.1 (in this paper) can be obtained (with a
different proof) assuming that

∫
{|z|>η} |z|

δν1(dz) <∞, for 0 < δ < min(1, α).

If ν1 is supported on R \ 0, we assume additionally that ν1 is absolutely
continuous for |z| ≤ η with

1{0<|z|≤η}ν1(dz)/dz = 1{0<|z|≤η}g1(z)/|z|β+1, 0 ≤ β < α,

where g0 and g1 are continuously differentiable on {|z| ≤ η} and g0(0) = 1.
Then setting g(z) = g0(z) + g1(z)|z|α−β, we have

1{0<|z|≤η}ν(dz) = 1{0<|z|≤η}g(z)/|z|α+1.

One can check that H2(b) is not satisfied for this function g since ∂zg is not
bounded on {|z| ≤ η}. But it can be proven that the result of Theorem 4.1 in
[6] remains true under the weaker assumption z 7→ z∂zg(z) bounded, which is
satisfied by g defined above. Turning to the result of Theorem 4.2 in [6] (es-
tablished under the condition g(z) = 1 + O(|z|)), we can obtain (with a dif-
ferent proof ) the slower rate of convergence εn = min(n−1/α, n−(α−β)/α) if
g(z) = 1 + O(|z|) + O(|z|α−β) and 0 < β < α. Consequently to ensure the
convergence

√
nεn → 0, we need the additional restriction β < α/2.

The rate of convergence and the information in the joint estimation of (θ0, σ0, α0)
depend crucially on the function a and we will prove that if a separates the pa-
rameter σ (multiplicative case), the rate of convergence is not diagonal.

NDNM (non degeneracy in the non multiplicative case) : s→ ∂σa
a (Xs, σ0)

is almost surely non constant. Almost surely, ∃t1 ∈ (0, 1), such that ∂θb(Xt1 , θ0) 6=
0, where (Xt)t∈[0,1] solves (2.1) for the parameter value β0.

NDM (non degeneracy in the multiplicative case) : a(x, σ) = σa(x).
Almost surely, ∃t1 ∈ (0, 1), such that ∂θb(Xt1 , θ0) 6= 0, where (Xt)t∈[0,1] solves
(2.1) for the parameter value β0.

We observe that in the multiplicative case the assumptions H1 can be written
simply in terms of the function a as soon as σ0 > 0.

To estimate the parameter β0 = (θ0, σ0, α0), we extend the methodology
proposed in [6] based on estimating equations (see also [22]). Considering X1/n

solution of (2.1) (with β = (θ, σ, α)) and introducing the ordinary differential
equation

ξx0
t (θ) = x0 +

∫ t

0

b(ξx0
s (θ), θ)ds, t ∈ [0, 1], (2.2)

it is proved in [6] (combining Theorem 4.1 and Theorem 4.2) that n1/α(X1/n −
ξx0

1/n(θ))/a(x0, σ) converges in total variation distance to Sα1 , a stable random
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variable with characteristic function e−C(α)|u|α . Thus if X1/n admits a density,
denoted by p1/n(x0, y, β), then p1/n converges in L1-norm to

n1/α

a(x0, σ)
ϕα

(
n1/α

(y − ξx0

1/n(θ))

a(x0, σ)

)

where ϕα is the density of Sα1 . We mention that the existence of the density
p1/n is established under stronger assumptions on the Lévy measure (essentially
integrability conditions for the large jumps part), see for example [4] or [9],
but is not required in our method. So to estimate β, the previous convergence
suggests to consider the following approximation of the likelihood function

logLn(θ, σ, α) =

n∑
i=1

log

(
n1/α

a(X i−1
n
, σ)

ϕα(zn(X i−1
n
, X i

n
, θ, σ, α))

)
(2.3)

where

zn(x, y, θ, σ, α) = zn(x, y, β) = n1/α
(y − ξx1/n(θ))

a(x, σ)
. (2.4)

Note that ϕα can be computed numerically (see for example [21]). A natural
choice of estimating functions is therefore the score function. This leads to the
following functions

Gn(β) =

 G1
n(β)

G2
n(β)

G3
n(β)

 = −∇β logLn(θ, σ, α), (2.5)

with for k = 1, 2, 3

Gkn(β) =

n∑
i=1

gk
(
X i−1

n
, X i

n
, β
)
,

g1(x, y, β) = n1/α
∂θξ

x
1/n(θ)

a(x, σ)

∂zϕα
ϕα

(zn(x, y, β)), (2.6)

g2(x, y, β) =
∂σa(x, σ)

a(x, σ)
(1 + zn(x, y, β)

∂zϕα
ϕα

(zn(x, y, β))), (2.7)

g3(x, y, β) =
log n

α2
(1 + zn(x, y, β)

∂zϕα
ϕα

(zn(x, y, β))) (2.8)

−∂αϕα
ϕα

(zn(x, y, β)).

Note that to compute the above functions, we used

∂θzn = −n1/α
∂θξ

x
1/n(θ)

a(x, σ)
, ∂σzn = −∂σa

a
zn, ∂αzn = − log n

α2
zn.
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To simplify the notation, we introduce the functions

hα(z) = ∂zϕα(z)/ϕα(z)

kα(z) = 1 + zhα(z), ∂zkα(z) = hα(z) + z∂zhα(z)

fα(z) = ∂αϕα(z)/ϕα(z).

Note that we have the relation ∂αhα = ∂zfα.
From Dumouchel [8], we know that

|∂k1z ∂k2α ϕα(z)| ≤ C (log(|z|))k2
|z|k1+α+1

,

as |z| goes to infinity. This permits to deduce that hα, ∂zhα, kα, ∂zkα are
bounded on R× (0, 2) and that for |z| large enough

|fα(z)| ≤ C log |z|, |∂αfα(z)| ≤ C(log |z|)2.

We also observe that ∂zfα and z 7→ z∂zkα(z) are bounded and that z 7→
z∂αhα(z) is bounded, for |z| large, by C log |z|.

Throughout the paper, we denote by C a generic constant whose value may
change from line to line.

3. Joint estimation

3.1. Main results

We estimate β by solving the equation Gn(β) = 0, where Gn is defined by
(2.5) with g1, g2 and g3 given by (2.6), (2.7), (2.8). We prove that the resulting
estimator is consistent and asymptotically mixed normal. However the rate of
convergence and the asymptotic information matrix depend on the function a.
Let us define the matrix rate un by

un =

( 1
n1/α0−1/2 0

0 1√
n
vn

)
, vn =

(
v1,1n v1,2n
v2,1n v2,2n

)
,

where vn is specified below, depending on the coefficient a.
Under the assumption NDNM, we obtain a diagonal rate of convergence as

stated in the following theorem.

Theorem 3.1. We assume that assumptions H1, H2 and NDNM hold and that
vn is given by (diagonal rate)

vn =

(
1 0
0 1

logn

)
.

Then there exists an estimator (θ̂n, σ̂n, α̂n) solving the equation Gn(β) = 0 with
probability tending to 1, that converges in probability to (θ0, σ0, α0). Moreover



E.Clément and A.Gloter/Joint estimation 8

we have the stable convergence in law with respect to σ(Lα0
s , s ≤ 1)

u−1n

 θ̂n − θ0
σ̂n − σ0
α̂n − α0

 Ls−−→ I(β0)−1/2N ,

where N is a standard Gaussian variable independent of I(β0) and

I(β0) =

( ∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
dsEh2α0

(Sα0
1 ) 0

0 Iσα(β0)

)
(3.1)

with

Iσα(β0) =

( ∫ 1

0
∂σa(Xs,σ0)

2

a(Xs,σ0)2
dsEk2α0

(Sα0
1 ) 1

α2
0

∫ 1

0
∂σa(Xs,σ0)
a(Xs,σ0)

dsEk2α0
(Sα0

1 )
1
α2

0

∫ 1

0
∂σa(Xs,σ0)
a(Xs,σ0)

dsEk2α0
(Sα0

1 ) 1
α4

0
Ek2α0

(Sα0
1 )

)
.

Note that the matrix I(β0) is invertible a.s. since from NDNM

1

α4
0

Ek2α0
(Sα0

1 )

(∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
ds−

(∫ 1

0

∂σa(Xs, σ0)

a(Xs, σ0)
ds

)2
)
> 0, a.s.

Turning to the multiplicative case (assumption NDM), we have the following
result.

Theorem 3.2. We assume that H1, H2 and NDM hold. We assume moreover
that

v1,1n
1

σ0
+ v2,1n

log n

α2
0

→ v1,1 v1,2n
1

σ0
+ v2,2n

log n

α2
0

→ v1,2

v2,1n → v2,1 v2,2n → v2,2 (3.2)

and that v1,1v2,2 − v1,2v2,1 > 0. Then there exists an estimator (θ̂n, σ̂n, α̂n)
solving the equation Gn(β) = 0 with probability tending to 1, that converges in
probability to (θ0, σ0, α0). Moreover we have the stable convergence in law with
respect to σ(Lα0

s , s ≤ 1)

u−1n

 θ̂n − θ0
σ̂n − σ0
α̂n − α0

 Ls−−→ I(β0)−1/2N ,

where N is a standard Gaussian variable independent of I(β0) and

I(β0) =

( ∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
dsEh2α0

(Sα0
1 ) 0

0 vT Iσα(β0)v

)
(3.3)

with

v =

(
v1,1 v1,2

v2,1 v2,2

)
,

Iσα(β0) =

(
Ek2α0

(Sα0
1 ) −E(kα0

fα0
)(Sα0

1 )
−E(kα0fα0)(Sα0

1 ) Ef2α0
(Sα0

1 )

)
.



E.Clément and A.Gloter/Joint estimation 9

Remark 3.1. In the particular case of constant coefficients a and b (where
assumption NDM holds), our estimator is efficient. Indeed the rate of conver-
gence and the asymptotic Fisher information I are the one obtained recently
by Brouste and Masuda [5], where the LAN property is established from high
frequency observations, for the translated α-stable process

Xt = θt+ σSαt .

Remark 3.2. If we have some additional information on the parameter α0,
we can replace the solution to the ordinary equation (2.2) by an approximation
(see also Proposition 3.1 in [6]). In particular, if α0 ∈ (2/3, 2), we can check
from H1 that supθ∈Vθ0

|ξx1/n(θ)−x−b(x, θ)/n| ≤ C(1+ |x|)/n2 and consequently

setting z(x, y, β) = n1/α(y−x−b(x, θ)/n)/a(x, σ), we deduce that (with V
(η)
n (β0)

defined by (3.4))

sup
β∈V (η)

n (β0)

|zn(x, y, β)− zn(x, y, β)| ≤ C(1 + |x|p)εn,

where n1/2εn goes to zero. This control is sufficient to show that the results
of Theorem 3.1 and Theorem 3.2 hold with the estimating functions Gn(β) =
−∇β logLn(β) where Ln is the quasi-likelihood function obtained by replacing
zn by zn in the expression (2.3).

Remark 3.3. Since I(β0) and I(β0) are positive definite a.s., we can check that

the estimator (θ̂n, σ̂n, α̂n) proposed in Theorem 3.1 and Theorem 3.2 is also a
local maximum of the quasi-likelihood function Ln defined by (2.3), on a set with
probability tending to one (see Sweeting [23]).

For the reader convenience we recall the sufficient conditions established
in Sørensen [22] to prove the existence, consistency and asymptotic normal-
ity of estimating functions based estimators. To this end, we define the matrix
Jn(β1, β2, β3) by

Jn(β1, β2, β3) =

n∑
i=1

 ∇βg
1(X i−1

n
, X i

n
, β1)T

∇βg2(X i−1
n
, X i

n
, β2)T

∇βg3(X i−1
n
, X i

n
, β3)T

 .

For η > 0, we also define

V (η)
n (β0) = {(θ, σ, α); ||(un)−1(β − β0)T || ≤ η}, (3.4)

where ||.|| is a vector or a matrix norm and AT is the transpose of the matrix
A.

With these notations, Theorem 3.1 and Theorem 3.2 are consequence of the
two following conditions :
C1 : ∀η > 0, we have the convergence in probability

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un −W (β0)|| → 0,
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where W (β0) = I(β0) (assumption NDNM) or W (β0) = I(β0) (assumption
NDM).
C2 : (uTnGn(β0))n stably converges in law to W (β0)1/2N where N is a standard
Gaussian variable independent of W (β0) and the convergence is stable with
respect to the σ-field σ(Lα0

s , s ≤ 1).
Before starting the proof, we compute explicitly uTnGn(β0) and Jn. This per-

mits to understand how appear the conditions on the matrix vn depending on
the assumptions on a. We have

uTnGn(β0) =


√
n
∑n
i=1

∂θξ
i
1/n(θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

1√
n

∑n
i=1

(
(v1,1n

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

+ v2,1n
logn
α2

0
)kα0(zin(β0))− v2,1n fα0(zin(β0))

)
1√
n

∑n
i=1

(
(v1,2n

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

+ v2,2n
logn
α2

0
)kα0

(zin(β0))− v2,2n fα0
(zin(β0))

)


where we have used the short notation

zin(β0) = zn(X i−1
n
, X i

n
, β0), (3.5)

with zn defined by (2.4) and

ξi1/n(θ0) = ξ
X(i−1)/n

1/n (θ0),

with ξ solving (2.2). Using the relation ∂αhα = ∂zfα, we now express each term
of the matrix Jn. We have

J1,1
n (β0) = n1/α0

n∑
i=1

∂2θξ
i
1/n(θ0)

a(X i−1
n
, σ0)

hα0
(zin(β0)) (3.6)

−n2/α0

n∑
i=1

(∂θξ
i
1/n(θ0))2

a(X i−1
n
, σ0)2

∂zhα0
(zin(β0))

J1,2
n (β0) = J2,1

n (β0) = −n1/α0

n∑
i=1

∂σa(X i−1
n
, σ0)

a(X i−1
n
, σ0)2

∂θξ
i
1/n(θ0)∂zkα0(zin(β0))

J1,3
n (β0) = J3,1

n (β0) =

n1/α0

n∑
i=1

∂θξ
i
1/n(θ0)

a(X i−1
n
, σ0)

[
− log n

α2
0

∂zkα0
(zin(β0)) + ∂zfα0

(zin(β0))

]

J2,2
n (β0) =

n∑
i=1

[
∂σ

(
∂σa

a

)
(X i−1

n
, σ0)kα0

(zin(β0))

−(
∂σa

a
)2(X i−1

n
, σ0)zin(β0)∂zkα0

(zin(β0))

]
(3.7)
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J3,3
n (β0) = −

n∑
i=1

[
∂αfα0

(zin(β0))− 2
log n

α2
0

zin(β0)∂αhα0
(zin(β0))

+2
log n

α3
0

kα0(zin(β0)) +
(log n)2

α4
0

zin(β0)∂zkα0(zin(β0))

]
(3.8)

J2,3
n (β0) = J3,2

n (β0) =

n∑
i=1

∂σa

a
(X i−1

n
, σ0)

[
− log n

α2
0

zin(β0)∂zkα0
(zin(β0))

+zin(β0)∂αhα0
(zin(β0))

]
. (3.9)

From these computations and using the limit theorems established in Section
4, we can check conditions C1 and C2 and proceed to the proof of Theorem 3.1
and Theorem 3.2. We first remark that in the above expressions we can replace
∂θξ

x
1/n(θ) by ∂θb(x, θ)/n. Indeed from H1 and Gronwall’s Lemma we have

sup
θ∈Vθ0

|∂θξx1/n(θ)− 1

n
∂θb(x, θ)| ≤ C(1 + |x|p)/n2, (3.10)

sup
θ∈Vθ0

|∂2θξx1/n(θ)− 1

n
∂2θb(x, θ)| ≤ C(1 + |x|p)/n2. (3.11)

Furthermore, by a standard localization procedure we can assume that a is
bounded. Indeed setting aK(x, σ) = a(x, σ)IK(a(x, σ)) where IK is a smooth
real function, equal to 1 on [−K,K] and vanishing outside [−2K, 2K], and
considering the process XK solution of (2.1) with coefficients b and aK , then
X = XK on ΩK = {ω ∈ Ω; sup0≤t≤1 |a(Xt−(ω), σ0)| ≤ K} and P(ΩK) → 1 as
K goes to infinity. Consequently, in the next proof sections, we assume that a
is bounded.

3.2. Proof of Theorem 3.1

3.2.1. Condition C2

We recall that hα0
, kα0

are bounded and that fα0
is asymptotically equiva-

lent to the logarithm. Moreover some straightforward computations permit to
show that Ehα0

(Sα0
1 ) = Ekα0

(Sα0
1 ) = Efα0

(Sα0
1 ) = 0 and E(hα0

kα0
)(Sα0

1 ) = 0.
Therefore from Corollary 4.1, we deduce the convergence in probability

1

log n
√
n

n∑
i=1

fα0
(zin(β0))→ 0

and from Theorem 4.1 we obtain the stable convergence in law
1√
n

∑n
i=1

∂θb(X i−1
n
,θ0)

a(X i−1
n
,σ0)

hα0(zin(β0))

1√
n

∑n
i=1

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

kα0(zin(β0))

1√
n

∑n
i=1

(
1
α2

0
kα0

(zin(β0))− 1
lognfα0

(zin(β0))
)


Ls−−→ I(β0)1/2N ,
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where I(β0) is given by (3.1) and N is a standard Gaussian variable independent
of I(β0).

Now with un given by

un =

 1
n1/α0−1/2 0 0

0 1
n1/2 0

0 0 1
n1/2 logn


and using the approximation (3.10) it yields

uTnGn(β0) =


1√
n

∑n
i=1

∂θb(X i−1
n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

1√
n

∑n
i=1

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

kα0
(zin(β0))

1√
n

∑n
i=1

(
1
α2

0
kα0(zin(β0))− 1

lognfα0(zin(β0))
)

+ oP (1),

and the stable convergence in law of uTnGn(β0) is proved.

3.2.2. Condition C1

We have to check the uniform convergence in probability

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un − I(β0)|| → 0,

with V
(η)
n (β0) defined by (3.4) and

uTnJn(β1, β2, β3)un =


J1,1
n (β1)

n2/α0−1

J1,2
n (β1)

n1/α0

J1,3
n (β1)

n1/α0 logn
J2,1
n (β2)

n1/α0

J2,2
n (β2)
n

J2,3
n (β2)
n logn

J3,1
n (β3)

n1/α0 logn

J3,2
n (β3)
n logn

J3,3
n (β3)

n(logn)2


where the coefficients of the matrix Jn are given by (3.6)-(3.9).

After a meticulous study of each term appearing in the matrix uTnJn(β1, β2, β3)un
and using the approximations (3.10) and (3.11), condition C1 reduces to prove
the following uniform convergence in probability

sup
β∈V (η)

n (β0)

| 1
n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))−

∫ 1

0

f(Xs, θ0, σ0)dsEgα0
(Sα0

1 )| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, if Egα0

(Sα0
1 ) = 0,

for functions f depending on a, b and their partial derivatives with respect
to the parameters θ, σ and gα belonging to the set of functions hα, kα, ∂zkα,
∂zfα, ∂zhα, z∂zkα, ∂αhα, ∂αfα, z∂αhα. These functions satisfy the assumptions



E.Clément and A.Gloter/Joint estimation 13

of Theorem 4.2. Moreover, using the symmetry of ϕα (ϕα and fα are even) and
the integration by part formula, we can prove

Ehα(Sα1 ) = Ekα(Sα1 ) = E∂zkα(Sα1 ) = E∂αhα(Sα1 ) = E∂zfα(Sα1 ) = 0

E∂zhα(Sα1 ) = −Eh2α(Sα1 )

ESα1 ∂zkα(Sα1 ) = −Ek2α(Sα1 ) (3.12)

E∂αfα(Sα1 ) = −Ef2α(Sα1 )

ESα1 ∂αhα(Sα1 ) = −ESα1 fα(Sα1 )hα(Sα1 ) = −E(kαfα)(Sα1 ).

The result follows then from Theorem 4.2 (convergence (4.3) and (4.4)).

3.3. Proof of Theorem 3.2

We first observe that from NDM ∂σa/a = 1/σ.

3.3.1. Condition C2

Since Ehα0
(Sα0

1 ) = Ekα0
(Sα0

1 ) = Efα0
(Sα0

1 ) = 0, we deduce from Theorem 4.1
the stable convergence in law

1√
n

(
1 0
0 vT

) n∑
i=1


∂θb(X i−1

n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

kα0
(zin(β0))

−fα0
(zin(β0))

 Ls−−→ I(β0)1/2N ,

where I(β0) is given by (3.3) and N is a standard Gaussian variable independent
of I(β0).

Using the approximation (3.10) and the property of vn (3.2), we deduce

uTnGn(β0) =
1√
n

(
1 0
0 vT

) n∑
i=1


∂θb(X i−1

n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

kα0
(zin(β0))

−fα0
(zin(β0))

+ oP (1),

and C2 is proved.

3.3.2. Condition C1

We will prove

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un − I(β0)|| → 0.
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We have :

uTnJn(β1, β2, β3)un = J1,1
n (β1)

n2/α0−1
1

n1/α0
(J1,2
n (β1), J1,3

n (β1))vn

1
n1/α0

vTn (J2,1
n (β2), J3,1

n (β3))T 1
nv

T
n

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
vn

 ,

and using the symmetry of Jn, the proof reduces to the following convergence
in probability

sup
β∈V (η)

n (β0)

| J
1,1
n (β)

n2/α0−1
−
∫ 1

0

∂θb(Xs, θ0)2

a(Xs, σ0)2
dsEh2α0

(Sα0
1 )| → 0, (3.13)

sup
β2,β3∈V (η)

n (β0)

| 1

n1/α0
(J1,2
n (β2), J1,3

n (β3))vn| → 0, (3.14)

sup
β2,β3∈V (η)

n (β0)

|| 1
n
vTn

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
vn − vT Iσα(β0)v|| → 0. (3.15)

From the expression of Jn given in (3.6)-(3.9) and using the approximations
(3.10) and (3.11), convergence (3.13) follows from (4.3) and (4.4) in Theorem
4.2 and (3.14) is a consequence of (4.5) in Theorem 4.2, since the terms of the
matrix vn are bounded by log n. To study the convergence (3.15) we observe
that

v =

(
1
σ0

logn
α2

0

0 1

)
× vn + o(1)

and consequently we just have to prove

sup
β2,β3∈V (η)

n (β0

||vTn
(

1

n

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
− Jn(β0)

)
vn|| → 0 (3.16)

where

Jn(β0) = rTn

(
Ek2α0

(Sα0
1 ) −E(kα0fα0)(Sα0

1 )
−E(kα0

fα0
)(Sα0

1 ) Ef2α0
(Sα0

1 )

)
rn,

with

rn =

(
1
σ0

logn
α2

0

0 1

)
.
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To simplify the notation we introduce the following normalized sums:

S(k)
n (β) =

1

n

n∑
i=1

kα(zin(β))

S(zk′)
n (β) =

1

n

n∑
i=1

zin(β)∂zkα(zin(β))

S(z∂h)
n (β) =

1

n

n∑
i=1

zin(β)∂αhα(zin(β))

S(∂f)
n (β) =

1

n

n∑
i=1

∂αfα(zin(β)),

and from (3.7) (3.8), (3.9) we obtain

1

n
J2,2
n (β) = − 1

σ2
(S(k)
n (β) + S(zk′)

n (β))

1

n
J3,2
n (β) = − log n

σα2
S(zk′)
n (β) +

1

σ
S(z∂h)
n (β)

1

n
J3,3
n (β) = − (log n)2

α4
S(zk′)
n (β) + 2

log n

α2
S(z∂h)
n (β)− 2

log n

α3
S(k)
n (β)− S(∂f)

n (β).

A simple computation gives moreover

Jn(β0) =

(
1
σ2
0
Ek2α0

(Sα0
1 ) sym

logn
σ0α2

0
Ek2α0

(Sα0
1 )− 1

σ0
E(kα0

fα0
)(Sα0

1 ) J
2,2

n (β0)

)
.

with J
2,2

n (β0) = (logn)2

α4
0

Ek2α0
(Sα0

1 ) − 2 logn
α2

0
E(kα0

fα0
)(Sα0

1 ) + Ef2α0
(Sα0

1 ). Then

using once again that vn is bounded by log n, (3.16) is proved as soon as we
have the following convergence in probability (with q ≤ 4)

sup
β∈V (η)

n (β0)

|(log n)qS(k)
n (β)| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(zk′)
n (β) + Ek2α0

(Sα0
1 )| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(z∂h)
n (β) + E(kα0

fα0
)(Sα0

1 )| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(∂f)
n (β) + Ef2α0

(Sα0
1 )| → 0.

Recalling the equalities (3.12), the above convergence results from (4.5) in The-
orem 4.2.
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4. Limit theorems

We state in this section some limit theorems (Central Limit Theorem and uni-
form Law of Large Numbers) that are crucial to obtain the asymptotic properties
of our estimators. We follow the approach proposed in [6], extending the results
to non bounded functions, with some uniformity with respect to the parameter
α.

The next key proposition extends to non bounded functions the control in
total variation distance established in [6] (Theorem 4.1 and Theorem 4.2).

Proposition 4.1. Let f be a real function such that

∀x ∈ R |f(x)| ≤ C(1 + (log(1 + |x|))q),

for some constants C > 0 and q > 0. Then assuming H1, H2 and a bounded,
we have

i)

|Ef

(
n1/α0

(X1/n − ξx0

1/n(θ0))

a(x0, σ0)

)
− Ef(n1/α0Lα0

1/n)| ≤ C(1 + |x0|)εn,

ii)
|Ef(n1/α0Lα0

1/n)− Ef(Sα0
1 )| ≤ Cεn,

where n1/2εn → 0 as n goes to infinity.

Proof. We set zn = n1/α0
(X1/n−ξ

x0
1/n

(θ0))

a(x0,σ0)
and we consider the truncation fKn =

f1{|x|≤Kn}. By assumption, ||fKn ||∞ ≤ C(logKn)q and from Theorem 4.1 and
Theorem 4.2 in [6] we have

|EfKn(zn)− EfKn(n1/α0Lα0

1/n)| ≤ C(1 + |x0|)(logKn)q ε̃n,

|EfKn(n1/α0Lα0

1/n)− EfKn(Sα0
1 )| ≤ C(logKn)q ε̃n,

where ε̃n = 1/n1−ε if α0 ≤ 1, for any ε ∈ (0, 1), and ε̃n = 1/n1/α0−ε if α0 > 1,
for any ε ∈ (0, 1/α0). Then, if Kn = np for any p > 0, we deduce

√
n(logKn)q ε̃n → 0.

It remains to bound |Ef(Sα0
1 )−EfKn(Sα0

1 )|, |Ef(zn)−EfKn(zn)| and |Ef(n1/α0Lα0

1/n)−
EfKn(n1/α0Lα0

1/n)|.
For δ < α0, we have

|Ef(Sα0
1 )− EfKn(Sα0

1 )| = E|f(Sα0
1 )|1{|Sα0

1 |>Kn}

≤ C

Kδ
n

(1 + E(logq(1 + |Sα0
1 |)|S

α0
1 |δ)) ≤

C

Kδ
n

,
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and we conclude choosing Kn = n1/δ. Turning to the second term and proceed-
ing similarly we just have to check that for δ < α0

E|n1/α0(X1/n − ξx0

1/n(θ0))|δ ≤ C, (4.1)

since from H1 a is lower bounded. Using Gronwall’s Lemma, we have

sup
s≤1/n

|n1/α0(Xs − ξx0
s (θ0))| ≤ Cn1/α0 sup

s≤1/n
|
∫ s

0

a(Xu−, σ0)dLα0
u |,

and (4.1) holds if Enδ/α0 sups≤1/n |
∫ s
0
a(Xu−, σ0)dLα0

u |δ ≤ C. This is obtained

by rescaling. Setting Lnt = n1/α0Lα0

t/n for t ∈ [0, 1] then (Lnt )t∈[0,1] is a Lévy

process with Lévy measure νn given by

νn(dz) =
1

|z|α0+1
g(z/n1/α0)dz.

Considering now (Xn
t )t∈[0,1] that solves the equation

Xn
t = x0 +

1

n

∫ t

0

b(Xn
s , θ0)ds+

1

n1/α0

∫ t

0

a(Xn
s−, σ0)dLns ,

we can check that the processes (Xt/n, n
1/α0Lα0

t/n)t∈[0,1] and (Xn
t , L

n
t )t∈[0,1] have

the same law, and (4.1) reduces to prove

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLnu|δ ≤ C (4.2)

We can split (Lnt ) in two parts (small jumps and large jumps) : Lnt = Ln,1t +Ln,2t
with

Ln,1t =

∫ t

0

∫
{0<|z|≤1}

zµ̃n(ds, dz),

Ln,2t =

∫ t

0

∫
{|z|>1}

zµn(ds, dz),

where µn and µ̃n are respectively the Poisson measure and the compensated
Poisson random measure associated to (Lnt ). Since 2/δ > 1, we deduce using
successively Hölder’s inequality and Burkholder’s inequality

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,1u |δ ≤ (E sup

s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,1u |2)δ/2

≤ C(E
∫ 1

0

∫
{0<|z|≤1}

a2(Xn
u−, σ0)z2νn(dz)ds)δ/2 ≤ C,

since a is bounded. Considering now the large jumps part and assuming more-
over that δ < min(1, α0) we have

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,2u |δ ≤ E

∫ 1

0

∫
{|z|>1}

|z|δµn(ds, dz) ≤ C,
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since δ < α0, and i) follows. Observing that (4.1) implies E|n1/α0Lα0

1/n|
δ ≤ C

(taking b = 0 and a = 1), we obtain ii).

From this proposition, we obtain a Central Limit Theorem for non bounded
functions.

Theorem 4.1. We assume H1, H2 and a bounded. Let hi : R → R, i = 1, 2, 3
be C1 functions such that

∀i, ∀x ∈ R, |hi(x)|+ |∂xhi(x)| ≤ C(1 + (log(1 + |x|))q),

for some constants C > 0 and q > 0 and let fi : R → R be continuous func-
tions. We assume that Ehi(Sα0

1 ) = 0 for i = 1, 2, 3. Then we have the stable
convergence in law with respect to σ(Lα0

s , s ≤ 1):

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(zn(X i−1
n
, X i

n
, β0))

f2(X i−1
n

)h2(zn(X i−1
n
, X i

n
, β0))

f3(X i−1
n

)h3(zn(X i−1
n
, X i

n
, β0))

 Ls−−→ Σ1/2N ,

where zn is defined by (2.4), N is a standard Gaussian variable independent of
Σ and for 1 ≤ i, j ≤ 3

Σi,j =

∫ 1

0

(fifj)(Xs)ds E(hihj)(S
α
1 ).

Proof. Using Proposition 4.1 and following the proof of Corollary 3.1 in [6], we
obtain the convergence in probability for j = 1, 2, 3

1

n1/2

n∑
i=1

fj(X i−1
n

)
(
hj(zn(X i−1

n
, X i

n
, β0))− hj(n1/α0∆Li)

)
→ 0,

where ∆Li = L i
n
− L i−1

n
. Now we can extend the proof of Theorem 3.2 in [6]

to non bounded functions hj with logarithmic growth and we obtain the stable
convergence in law

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(n1/α0∆Li)

f2(X i−1
n

)h2(n1/α0∆Li)

f3(X i−1
n

)h3(n1/α0∆Li)

 Ls−−→ Σ1/2N .

An immediate consequence of Theorem 4.1 is the following convergence in
probability.

Corollary 4.1. We assume H1, H2 and a bounded. Let h : R → R be a C1
function such that

∀x ∈ R |h(x)|+ |∂xh(x)| ≤ C(1 + (log(1 + |x|))q),
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for some constants C > 0 and q > 0 and Eh(Sα0
1 ) = 0. Then we have the

convergence in probability

1√
n log n

n∑
i=1

h(zn(X i−1
n
, X i

n
, θ0, σ0, α0))→ 0,

with zn defined by (2.4).

We finally establish some uniform convergence results that extend Theorem
3.1 in [6].

Theorem 4.2. Assume H1, H2 and a bounded. Let f be a continuous function
such that

sup
(θ,σ)∈K0

(|f(x, θ, σ)|+ |∂θf(x, θ, σ)|+ |∂σf(x, θ, σ)|) ≤ C(1 + |x|p),

where K0 is a neighborhood of (θ0, σ0) and let (z, α) 7→ gα(z) be a C1 function
(with respect to (z, α)) such that ∂zgα is bounded (uniformly in α on compact
subset of (0, 2)) and such that

|gα(z)|+ |∂αgα(z)| ≤ C(1 + (log(1 + |z|))p), p > 0.

Then we have the convergence in probability

sup
β∈V (η)

n (β0)

| 1
n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))−

∫ 1

0

f(Xs, θ0, σ0)dsEgα0
(Sα0

1 )| → 0,

(4.3)

where V
(η)
n (β0) and zin(β) are defined respectively by (3.4) and (3.5).

Moreover if Egα0
(Sα0

1 ) = 0, the following convergences in probability hold

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, (4.4)

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, ∀q > 0. (4.5)

Before proving this result we remark that for β ∈ V (η)
n (β0) we have : |θ−θ0| ≤

η/n1/α0−1/2, |σ − σ0| ≤ Cη log(n)/
√
n and |α− α0| ≤ Cη log(n)/

√
n.

The proof of Theorem 4.2 relies on Proposition 4.1 and on the following two
Lemmas.

Lemma 4.1 (Lemma 4.2 in [6]). Assuming H1 and H2, there exists p > 0 such
that ∀ε > 0 and ∀δ ∈ (0, 1)

P
(
|zn(x0, X1/n, β0)− n1/α0Lα0

1/n| > ε
)
≤
{
C(ε)(1 + |x0|p) logn

nα0
if α0 < 1,

C(ε)(1 + |x0|p) 1
n1−δ , if α0 ≥ 1,

where C(ε) is a positive constant.
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Lemma 4.2. Assuming H1 and H2, there exists p, q > 0 such that

∀ε > 0, P|F i−1
n

(
sup

β∈V (η)
n (β0)

|zin(β)− n1/α0∆Li| > ε

)
≤ C(ε)(1 + |X i−1

n
|p)/nq,

(4.6)
where C(ε) is a positive constant, ∆Li = Lα0

i
n

−Lα0
i−1
n

and zin(β) is given in (3.5).

Proof. We have the decomposition

zin(β)− n1/α0∆Li =
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)

(zin(β0)− n1/α0∆Li)

+(
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)
− 1)n1/α0∆Li

+
n1/α

n1/α0

1

a(X i−1
n
, σ)

n1/α0(ξi1/n(θ0)− ξi1/n(θ)).

The proof follows then the same lines as the proof of Lemma 5.1 in [6] using

Lemma 4.1, β ∈ Vn(β0) and observing that | n
1/α

n1/α0
− 1| ≤ C log(n)2/

√
n.

Proof of Theorem 4.2. We recall the following useful result to prove convergence
in probability of triangular arrays (see [11]).

Let (ζni ) be a triangular array such that ζni is F i
n

-measurable then the two

following conditions imply the convergence in probability
∑n
i=1 ζ

n
i → 0 :

n∑
i=1

|E|F i−1
n

ζni | → 0 in probability,

n∑
i=1

E|F i−1
n

|ζni |2 → 0 in probability.

From this result, the methodology is similar to the proof of Theorem 3.1 in
[6] and we just outline the main steps. The difference with [6] is that α varies
and the function gα is not bounded. Note however that ∂zgα is bounded. We
check the following convergences in probability, ∀q > 0,

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

(f(X i−1
n
, θ, σ)− f(X i−1

n
, θ0, σ0))gα(zin(β))| → 0, (4.7)

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ0, σ0)(gα(zin(β))−gα0(n1/α0∆Li))| → 0, (4.8)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ0, σ0)(gα0(n1/α0∆Li)− Egα0(Sα0

1 ))| → 0, (4.9)
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| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)−

∫ 1

0

f(Xs, θ0, σ0)ds| → 0. (4.10)

The last convergence is immediate, (4.9) is a consequence of Proposition 4.1.
We check (4.7) observing that

E|F i−1
n

[ sup
β∈V (η)

n (β0)

(log(1 + |zin(β)|))p] ≤ C(1 + |X i−1
n
|p
′
), (4.11)

for some p′ > 0. Indeed from (4.1) we have

E|F i−1
n

|zin(β0)|δ ≤ C,

for any δ < α0. Furthermore a straightforward computation gives

zin(β)− zin(β0) = (
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)
− 1)zin(β0)

+
n1/α

n1/α0

1

a(X i−1
n
, σ)

n1/α0(ξi1/n(θ0)− ξi1/n(θ))

and then

sup
β∈V (η)

n (β0)

|zin(β)− zin(β0)| ≤ C(1 + |X i−1
n
|p)(1 + |zin(β0)|)(log n)2/

√
n.

This permits to deduce (4.11) and at last, (4.8) follows from (4.11) and Lemma
4.2. The convergences (4.7)-(4.10) permit to obtain (4.3) and (4.5) in Theorem
4.2.

To prove (4.4), combining (4.11), Lemma 4.1 and Lemma 4.2, we check the
convergences in probability for α0 > 1

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}[gα(zin(β))− gα0

(zin(β0))]| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}

[
gα0

(zin(β0))

−E|F i−1
n

gα0
(zin(β0))

]
| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}E|F i−1

n

gα0
(zin(β0))| → 0.

These convergences are obtained with similar computations than the one used
in the proof of Theorem 3.1 in [6] and we omit the details.
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5. Numerical simulations

In this section, we make numerical simulations. We aim to show that the joint
estimation of the three parameters (θ, σ, α) is feasible in practice in several
models. We also want to illustrate that the asymptotic behavior of the estimator
is different whether the model satisfies the condition NDM or NDNM, which is
the main finding of Section 3.1.

5.1. A multiplicative model driven by an α-stable process

We consider the process (Xt)t∈[0,1] solution of

dXt = θXtdt+ σ
√

1 +X2
t dSαt ,

where (Sαt )t is a symmetric α-stable process with characteristic function u 7→
e−|u|

α

. Assumption NDM holds true and we can apply results of Section 3.1.
As matrix rate, we choose v1,1n = σ0, v1,2n = − σ0

α2
0

log(n), v2,1n = 0, v2,2n = 1. This

choice is such that (3.2) holds true with v =

(
1 0
0 1

)
. Let us denote by Z a

Gaussian random vector with law N (0R3 ,Kα0
) where

Kα0 =

E[h2α0
(Sα0

1 )] 0 0
0 E[k2α0

(Sα0
1 )] −E[(kα0

fα0
)(Sα0

1 )]
0 −E[(kα0

fα0
)(Sα0

1 )] E[f2α0
(Sα0

1 )]

−1 . (5.1)

Then, from the stable convergence result of Theorem 3.2, one has the conver-
gence to Z of the vector (

∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
ds)1/2n1/α0−1/2(θ̂n − θ0)

√
n( σ̂n−σ0

σ0
) + log(n)

α2
0

√
n(α̂n − α0)

√
n(α̂n − α0)

 .

Thus, the rate of estimation is n1/α0−1/2 for θ0, and
√
n for α0. Moreover, we get

that
√
n

log(n) (
σ̂n−σ0

σ0
)+ 1

α2
0

√
n(α̂n−α0)

n→∞−−−−→ 0. This implies that
√
n

log(n) (σ̂n−σ0) =

− σ0

α2
0

√
n(α̂n − α0) + oP (1)

n→∞−−−−→ − σ0

α2
0
Z3. Hence, the rate of estimation for σ0

is
√
n

log(n) and asymptotically the estimation errors for the parameters σ0 and

α0 are proportional and have a correlation tending to −1. Comparing with the
situation of non-multiplicative model, addressed in Theorem 3.1, we see that
both parameters α0 and σ0 are estimated with rate slower by a log(n) factor in
the multiplicative case.

5.1.1. Numerical results

For numerical simulations, we choose θ0 = 0.5, σ0 = 1, α0 ∈ {0.7, 1.3, 1.7}. We
let the number of data n ranges in the set {128, 256, 512, 1024, 2048}. We simu-
late the process (Xt) with an Euler scheme with step (1000n)−1. In Tables 1–3,
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we give an estimation by Monte-Carlo of the mean of the estimators together
with their standard deviations. In these Monte-Carlo experiments, we used 1000
replications.

From Table 1, we see that for α0 = 0.7 the joint estimation of the three
parameters works well. Especially, the estimator of the drift parameter performs
extremely well for α0 = 0.7 , which is expected, since the rate of estimation
is n1/0.7−1/2 ' n0.93. For α0 = 1.3 (Table 2), the estimation of σ0 and α0

works well while the estimation of θ0 has some bias which reduces slowly as n
increases. For α0 = 1.7, we found that the estimation of the drift parameter θ0
has both a very large bias and standard deviation. Actually, the convergence of
the estimator θ̂n occurs with the extremely slow rate n1/1.7−1/2 ' n0.0882, and
it seems impossible, in practice, to get a correct estimate of the drift parameter
when α0 = 1.7.

On the other hand, we see that the estimation of σ0 and α0 works well again.
It means that the impossibility to estimate correctly the drift parameter for
α0 = 1.7 has no negative impact on the estimation of the other parameters.

In Tables 4–6, we give an estimation of the standard deviation of the error
of estimation rescaled in a way that it theoretically converges to a Gaussian
variable whose variance can be computed using (5.1). Let us stress that, as the

asymptotic law of θ̂n is mixed normal, the estimation error θ̂n − θ0 is rescaled
by a factor involving the random quantity

Vθ0 =

(∫ 1

0

∂θb(Xs, θ0)2

a(Xs, σ0)2
ds

)−1
,

that we approximate, in practice, by a Riemann sum based on the simulated
observations (Xi/n)i=0,...,n. As the entries of the matrix Kα0 given in (5.1) are
not explicit, the theoretical asymptotic standard deviations for these rescaled
errors are computed using numerical integration. These theoretical standard
deviations are reported in the last line of each tables 4–6.

In Tables 4 –6, we see that the asymptotic behavior of the estimator is exactly
as predicted from the theoretical study : the rate of estimation for θ0, σ0, and α0

are exactly n1/α0−1/2, n1/2/ log(n) and n1/2. Moreover, the asymptotic rescaled
standard deviations are close to the theoretical one.

In Figures 1–3, we plot the histograms of the distribution of the rescaled
errors of estimation, together with the density of their Gaussian limits. For the
sake of shorntess, we only plot the results for n = 2048 and α0 ∈ {0.7, 1.3, 1.7}.
It appears that the empirical distributions are close to their theoretical limits,
in all cases.

In Table 7, we display the empirical correlation between the estimators σ̂n
and α̂n for different values of α0 and n. As expected from the theory, in the
multiplicative case this correlation tends to −1 as n→∞.

Our last numerical experiment in the multiplicative case is related to Remark
3.2, where we state that for α0 > 2/3, one can replace in the contrast function,
the quantity ξx1/n(θ) by its one step Euler approximation ξx1/n(θ) ' x+b(x, θ)/n.
We see, by comparison of Table 8 with Table 1, that the quality of estimation is
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Table 1
Estimation : Multiplicative case α0 = 0.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.498 6.7 ∗ 10−2 1.184 8.18 ∗ 10−1 0.709 6.76 ∗ 10−2

256 0.500 3.30 ∗ 10−2 1.157 6.55 ∗ 10−1 0.702 4.70 ∗ 10−2

512 0.500 1.65 ∗ 10−2 1.110 4.75 ∗ 10−1 0.700 3.19 ∗ 10−2

1024 0.500 7.74 ∗ 10−3 1.062 3.70 ∗ 10−1 0.700 2.31 ∗ 10−2

2048 0.500 4.36 ∗ 10−3 1.045 2.75 ∗ 10−1 0.700 1.64 ∗ 10−2

Table 2
Estimation : Multiplicative case α0 = 1.3

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.443 6.85 ∗ 10−1 1.048 3.66 ∗ 10−1 1.316 1.27 ∗ 10−1

256 0.386 6.31 ∗ 10−1 1.031 3.01 ∗ 10−1 1.310 9.35 ∗ 10−2

512 0.424 5.77 ∗ 10−1 1.014 2.39 ∗ 10−1 1.306 6.47 ∗ 10−2

1024 0.429 5.06 ∗ 10−1 1.014 1.78 ∗ 10−1 1.302 4.41 ∗ 10−2

2048 0.457 4.26 ∗ 10−1 1.011 1.38 ∗ 10−1 1.300 3.16 ∗ 10−2

the same when one uses the approximation of ξx1/n(θ) as when one uses its true
value.

Fig 1: Distribution of the rescaled errors of estimation and comparison with their
theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 0.7, n = 2048, multiplicative
model).

(a) V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) (b)
√
n

log(n)
(σ̂n − σ0) (c)

√
n(α̂n − α0)

Table 3
Estimation : Multiplicative case α0 = 1.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 -0.549 2.46 1.018 2.20 ∗ 10−1 1.706 1.13 ∗ 10−1

256 -0.493 2.39 1.012 1.76 ∗ 10−1 1.704 9.20 ∗ 10−2

512 -0.299 2.02 1.008 1.41 ∗ 10−1 1.701 6.67 ∗ 10−2

1024 -0.299 2.02 1.011 1.07 ∗ 10−1 1.700 4.75 ∗ 10−2

2048 -0.184 1.92 1.004 8.06 ∗ 10−2 1.700 3.20 ∗ 10−2
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Table 4
Std of rescaled errors : Multiplicative case α0 = 0.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 1.15 1.91 0.76
256 1.11 1.89 0.75
512 1.08 1.73 0.72
1024 1.05 1.71 0.74
2048 1.06 1.63 0.74

Theoretical limit 1.10 1.55 0.76

Table 5
Std of rescaled errors : Multiplicative case α0 = 1.3

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 1.27 0.85 1.44
256 1.35 0.86 1.50
512 1.39 0.87 1.46
1024 1.46 0.82 1.41
2048 1.48 0.81 1.43

Theoretical limit 1.52 0.84 1.42

Table 6
Std of rescaled errors : Multiplicative case α0 = 1.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 1.51 0.53 1.42
256 1.49 0.51 1.47
512 1.45 0.51 1.51
1024 1.49 0.49 1.52
2048 1.50 0.48 1.545

Theoretical limit 1.50 0.51 1.50

Table 7
Correlation between σ̂n and α̂n (multiplicative model)

α
n

128 256 512 1024 2048

0.7 -0.85 -0.89 -0.93 - 0.94 -0.96
1.3 -0.91 -0.93 -0.95 -0.97 -0.97
1.7 -0.90 -0.93 -0.94 -0.96 -0.96

Table 8
Estimation : Multiplicative case α0 = 0.7. Euler approximation for ξx

1/n
(θ)

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.501 7.10 ∗ 10−2 1.235 8.74 ∗ 10−1 0.707 6.72 ∗ 10−2

256 0.500 3.11 ∗ 10−2 1.146 6.46 ∗ 10−1 0.704 4.74 ∗ 10−2

512 0.499 1.71 ∗ 10−2 1.107 4.62 ∗ 10−1 0.700 3.21 ∗ 10−2

1024 0.501 8.06 ∗ 10−3 1.035 3.50 ∗ 10−1 0.702 2.28 ∗ 10−2

2048 0.500 4.25 ∗ 10−3 1.031 2.61 ∗ 10−1 0.700 1.59 ∗ 10−2
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Fig 2: Distribution of the rescaled errors of estimation and comparison with their
theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 1.3, n = 2048, multiplicative
model).
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√
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Fig 3: Distribution of the rescaled errors of estimation and comparison with their
theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 1.7, n = 2048, multiplicative
model).
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5.1.2. Discussion about the implementation

The minimization of the contrast function (2.3) was conducted using quasi-
Newton methods implemented in Python Numpy package. It necessitates to
compute numerically the values of the contrast function and of its deriva-
tives, and thus involves numerous evaluations of the functions ϕα, ∂zϕα and
∂αϕα. These three functions are computed using their integral representations
given in [20] and [21], that can be numerically intensive. However, numerical
evaluation of the quantities ϕα(zn(X i−1

n
, X i

n
, β)), ∂zϕα(zn(X i−1

n
, X i

n
, β)) and

∂αϕα(zn(X i−1
n
, X i

n
, β)) for different values of i = 1, . . . , n can be computed in

parallel, using different threads for different values of i. In our numerical simu-
lation, we used CUDA programming language, to implement the computation
of the contrast function, and its derivative, with a multi-threaded code on GPU.
Using a Nvidia GTX1080 GPU, the Monte-Carlo experiments presented in Ta-
ble 1–3 with n = 2048 and 1000 iterations take around 2 hours each. Hence,
searching the values of the parameter for one observation of length n = 2048
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takes a few seconds, showing that our contrast method is implementable, and
fast, in practice.

Theorem 3.2 states existence of some zero of the gradient of the contrast
function, that yields a consistent estimator. However it does not prevent exis-
tence of other zeros that would not be a convergent estimator. Nevertheless, in
practice the maximization algorithms always find a consistent estimator, and
do not seem to be trapped on local maximum, or non consistent maximum, of
the quasi-likelihood function. Searching directly the zeros of the gradient of the
contrast function provides convergent estimators as well. This suggests that the
zero of the gradient function might be unique for most simulations and reaches
the global maximum of the contrast function. To support this, we draw one
sample path of observations (Xi/n)i=0,...,n with n = 2048, θ0 = 0.5, σ0 = 1,
α0 = 0.7, and explore the shape of the contrast function (2.3). In Figure 4, we
plot the graph of

[−2, 2]× [0.1, 3.961] → R
(θ, σ) 7→ logLn(θ, σ, α)

for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Figure 4a) plots the cross section for the true value
α0 = 0.7, and we see that the maximum in (θ, σ) is reached in a unique point
close to the true value (θ0, σ0). In Figures 4b)–e), we see that the maximization
of the contrast function at cross section with values of α far from α0 yields to a
correct estimation of θ, while estimation of σ is far from its true value. However,
the values of the maximum in Figures 4b)–e) are lower than the one for α = 0.7,
showing that when maximizing the contrast function with respect to (θ, σ, α),
the maximum will be reached for α close to α0 = 0.7. Figure 5 shows the cross
section of the contrast function at θ = θ0 = 0.5. We see that the maximum
in (α, σ) is reached near the true value (α0, σ0). Eventually, maximizing with

respect to the three parameters, by Python Numpy package, yields to β̂n =
(0.495, 0.849, 0.709) and the quasi-Newton maximization algorithm converges
after 18 steps.

5.2. A non multiplicative model driven by an α-stable process

We consider (Xt)t∈[0,1] solution of

dXt = θXtdt+ exp(σ sin(Xt))dS
α
t ,

where (Sαt )t is a symmetric α-stable process. The assumption NDNM holds true,
and thus we can apply Theorem 3.1. As a consequence the rate of estimation is
n1/α0−1/2 for θ0,

√
n for σ0 and

√
n log(n) for α0. Comparing to multiplicative

case, the rate of estimation is log(n) faster for both parameters σ0 and α0. We
make numerical simulations to see if the rate is indeed faster, in practice, in the
non-multiplicative case than in the multiplicative one. The asymptotic law of
the estimation error is mixed Gaussian by Theorem 3.1, and we define rescaled
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(a) Section of the contrast at α = 0.7
Max is reached at θ = 0.480 and
σ = 0.958 and its value is 16154

(b) Section of the contrast at α = 0.6
Max is reached at θ = 0.480 and
σ = 3.961 and its value is 16088

(c) Section of the contrast at α = 0.8
Max is reached at θ = 0.480 and
σ = 0.256 and its value is 16141

(d) Section of the contrast at α = 0.5
Max is reached at θ = 0.480 and
σ = 3.961 and its value is 14726

(e) Section of the contrast at α = 0.9
Max is reached at θ = 0.480 and
σ = 0.1 and its value is 16099

Fig 4: Plot of the cross section at different values of α
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Fig 5: Plot of the cross section at θ = θ0 = 0.5
Max is reached at σ = 0.802 and α = 0.712 and its value is 16157

errors of estimation that have Gaussian laws. Let us define

Vθ0 =

(∫ 1

0

∂θb(Xs, θ0)2

a(Xs, σ0)2
ds

)−1
Vσ0 =

(∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
ds− (

∫ 1

0

∂σa(Xs, σ0)

a(Xs, σ0)
ds)2

)−1
Vα0

= α4
0

∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
dsVσ0

.

Then, from the stable convergence result of Theorem 3.1, we have

V
−1/2
θ0

n1/α0−1/2(θ̂n − θ0)
n→∞−−−−→ N (0, (Ehα0

(Sα0
1 ))−1) (5.2)

V −1/2σ0

√
n(σ̂n − σ0)

n→∞−−−−→ N (0, (Ekα0
(Sα0

1 ))−1) (5.3)

V −1/2α0

√
n log(n)(α̂n − θ0)

n→∞−−−−→ N (0, (Ekα0
(Sα0

1 ))−1) (5.4)

In Tables 9–14, we present results of numerical simulations conducted with the
true values of the parameters θ0 = 0.5, σ0 = 1 and α0 ∈ {0.7, 1.3, 1.7}. We show
a Monte-Carlo evaluation, based on 1000 replications, for the mean and standard
deviation of these estimators. Moreover, we evaluate the standard deviation of
the rescaled errors of these estimators defined as on the left hand-side of (5.2)–
(5.4). We compare these standard deviations with the theoretical limit given
by the standard deviation of the variables appearing on the right hand-side of
(5.2)–(5.4).

From the results in Tables 9–11, we see that the estimation of the three
parameters performs well for α0 = 0.7 and α0 = 1.3, and the parameters σ0
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Table 9
Estimation : Non multiplicative case α0 = 0.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.500 5.85 ∗ 10−2 1.170 8.55 ∗ 10−1 0.703 2.58 ∗ 10−2

256 0.500 2.92 ∗ 10−2 1.056 6.09 ∗ 10−1 0.702 1.69 ∗ 10−2

512 0.500 1.13 ∗ 10−2 1.038 4.63 ∗ 10−1 0.701 9.88 ∗ 10−3

1024 0.500 6.50 ∗ 10−3 1.031 3.69 ∗ 10−1 0.700 6.55 ∗ 10−3

2048 0.500 3.86 ∗ 10−3 1.023 2.51 ∗ 10−1 0.700 4.60 ∗ 10−3

Table 10
Estimation : Non multiplicative case α0 = 1.3

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.458 3.82 ∗ 10−1 1.046 3.51 ∗ 10−1 1.308 5.94 ∗ 10−2

256 0.448 3.44 ∗ 10−1 1.019 2.54 ∗ 10−1 1.302 3.67 ∗ 10−2

512 0.476 3.54 ∗ 10−1 1.008 1.81 ∗ 10−1 1.302 2.35 ∗ 10−2

1024 0.465 2.91 ∗ 10−1 1.002 1.34 ∗ 10−1 1.301 1.59 ∗ 10−2

2048 0.496 2.81 ∗ 10−1 1.003 9.51 ∗ 10−2 1.300 9.82 ∗ 10−3

and α0 are well estimated for α0 = 1.7 as well. Moreover, from Tables 12–14,
we see that the asymptotic behavior of the estimator is in practice very close
to the description given by theoretical results (5.2)–(5.4). In Figures 6–8, we
plot the distributions of the rescaled errors of estimation given by the left hand
sides of (5.2)–(5.4) together with their Gaussian limits, when n = 2048 and
α0 ∈ {0.7, 1.3, 1.7}. From these figures, we see again that the law of the estimator
is very close to its theoretical description. Especially, we observe numerically
that the rate of estimation of σ0, α0 is different in this non-multiplicative model
than for the multiplicative model of Section 5.1. Another difference is that the
estimation errors of σ0 and α0 are no longer asymptotically proportional in the
non-multiplicative case, which is consistent with the numerical evaluation of the
correlation between these two estimators given in Table 15.

5.3. Non linear drift S.D.E.

In this section, we consider a model with non linear drift :

dXt = (Xt −
θ

1 +X2
t

)dt+ exp(σ sin(Xt))dL
α
t .

Here, the quantity ξx1/n(θ) can not be explicitly computed and we use instead the

Euler approximation ξx1/n(θ) = x+b(x, θ)/n. We focus on the case α0 = 0.7 and

Table 11
Estimation : Non multiplicative case α0 = 1.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 -0.358 2.04 1.015 2.23 ∗ 10−1 1.702 7.42 ∗ 10−2

256 -0.289 1.98 1.001 1.75 ∗ 10−1 1.700 5.08 ∗ 10−2

512 0.033 1.44 1.003 1.28 ∗ 10−1 1.702 3.36 ∗ 10−2

1024 0.202 1.22 1.003 9.17 ∗ 10−2 1.701 2.52 ∗ 10−2

2048 0.245 1.06 1.004 6.66 ∗ 10−2 1.701 1.55 ∗ 10−2
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Table 12
Std of rescaled errors : Non multiplicative case α0 = 0.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.23 1.90 1.85
256 1.36 1.93 1.82
512 1.17 2.48 1.87
1024 1.05 3.12 1.84
2048 1.06 2.29 1.86

Theoretical limit 1.05 1.86 1.86

Table 13
Std of rescaled errors : Non multiplicative case α0 = 1.3

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.31 1.10 1.16
256 1.29 1.09 1.15
512 1.34 1.15 1.15
1024 1.34 1.14 1.17
2048 1.38 1.16 1.18

Theoretical limit 1.52 1.15 1.15

Table 14
Std of rescaled errors : Non multiplicative case α0 = 1.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.86 0.83 0.89
256 2.01 0.84 0.89
512 1.67 0.86 0.90
1024 1.94 0.90 1.03
2048 2.11 0.89 0.93

Theoretical limit 1.50 0.91 0.91

Table 15
Correlation between σ̂n and α̂n (non multiplicative model)

α
n

128 256 512 1024 2048

0.7 0.23 0.12 0.12 0.093 0.13
1.3 0.34 0.41 0.26 0.33 0.31
1.7 0.34 0.46 0.49 0.60 0.50
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Fig 6: Distribution of the rescaled errors of estimation and comparison with
their theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 0.7, n = 2048, non
multiplicative model).
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n
1
α0
− 1
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α0

√
n ln(n)(α̂n − α0)

Fig 7: Distribution of the rescaled errors of estimation and comparison with
their theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 1.3, n = 2048, non
multiplicative model).
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Fig 8: Distribution of the rescaled errors of estimation and comparison with
their theoretical Gaussian limits (θ0 = 0.5, σ0 = 1, α0 = 1.7, n = 2048, non
multiplicative model).
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2
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n
1
α0
− 1

2 (θ̂n − θ0) (b) V
− 1

2
σ0

√
n(σ̂n − σ0) (c) V

− 1
2

α0

√
n ln(n)(α̂n − α0)

from Remark 3.2, this Euler approximation is valid as α0 > 2/3. We compare
the results for two different driving Lévy processes, one being exactly α-stable,



E.Clément and A.Gloter/Joint estimation 33

Table 16
Estimation : Non multiplicative case α0 = 0.7, non linear drift, stable process

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 1.015 1.13 ∗ 10−1 0.951 4.84 ∗ 10−1 0.712 3.76 ∗ 10−2

256 1.010 1.61 ∗ 10−1 0.960 3.67 ∗ 10−1 0.707 2.93 ∗ 10−2

512 1.003 4.09 ∗ 10−2 0.966 2.70 ∗ 10−1 0.703 1.97 ∗ 10−2

1024 1.000 4.72 ∗ 10−3 0.976 2.09 ∗ 10−1 0.703 1.74 ∗ 10−2

2048 1.006 1.34 ∗ 10−1 0.979 1.67 ∗ 10−1 0.703 1.47 ∗ 10−2

and the other one being locally α-stable.

5.3.1. Process driven by an α-stable process

Here, we assume that the Lévy process (Lαt )t = (Sαt )t is a symmetric α-stable
process, as in Sections 5.1–5.2. Its Lévy measure is thus given by ν(dz) =
cα
|z|1+α 1R\{0}(z)dz where cα = (−2Γ(−α) cos(πα/2))−1.

The empirical means and standard deviations of the estimators are given in
Table 16, for θ0 = 1, σ0 = 1 and α0 = 0.7. In practice, we see that the estimators
work well. However, the empirical standard deviation of θ̂n seems unstable, as
it is not perfectly decreasing with n, and we found rather different values, for
different runs of simulations (each with 1000 replications). In Figure 9, we plot
the distributions of the rescaled errors together with their Gaussian limits. All
errors outside of the interval [−20, 20] are clipped to the interval borders. We
see that the empirical distributions are close to their Gaussian limits, except for
several larger values that fall outside the interval [−20, 20]. It explains why the
estimators work well in practice, while the estimation of their variances can be
unstable, due to a few extreme values.

5.3.2. Process driven by a tempered α-stable process

Here, we assume that the Lévy process (Lαt )t is a tempered α-stable process,
whose Lévy measure is given by ν(dz) = cα

|z|1+α e
−|z|1R\{0}(z)dz. To simulate

tempered stable random variables, we use the rejection based method proposed
in [15].

The empirical means and standard deviations of the estimator are given in
Table 17, for θ0 = 1, σ0 = 1 and α0 = 0.7.

We see that the estimator works very well in practice. Especially, the estima-
tion of the drift parameter has a smaller standard deviation than in the stable
case. In Figure 10, we plot the distributions of the rescaled errors of estimation
together with their Gaussian limits. We see that the empirical distributions fit
very well the theoretical ones. Especially, we do not observe the presence of
extreme values, as it is the case when the model is driven by a stable process.
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Table 17
Estimation : Non multiplicative case α0 = 0.7, non linear drift, tempered stable process

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 1.004 1.25 ∗ 10−2 1.108 4.99 ∗ 10−1 0.706 3.08 ∗ 10−2

256 1.001 1.91 ∗ 10−2 1.065 3.87 ∗ 10−1 0.704 1.99 ∗ 10−2

512 1.001 3.49 ∗ 10−3 1.022 2.68 ∗ 10−1 0.701 1.29 ∗ 10−2

1024 1.000 1.67 ∗ 10−3 1.010 1.96 ∗ 10−1 0.700 7.78 ∗ 10−3

2048 1.000 9.13 ∗ 10−4 1.010 1.14 ∗ 10−1 0.700 5.19 ∗ 10−3

Fig 9: Distribution of the rescaled errors of estimation and comparison with
their theoretical Gaussian limits (θ0 = 1, σ0 = 1, α0 = 0.7, n = 2048, non linear
drift, stable case).
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Fig 10: Distribution of the rescaled errors of estimation and comparison with
their theoretical Gaussian limits (θ0 = 1, σ0 = 1, α0 = 0.7, n = 2048, non linear
drift, tempered stable case).
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55 1316–1348. MR4010937

[7] Clément, E., Gloter, A. and Nguyen, H. (2019). LAMN property for
the drift and volatility parameters of a sde driven by a stable Lévy process.
ESAIM Probab. Stat. 23 136–175. MR3945580

[8] DuMouchel, W. H. (1973). On the asymptotic normality of the
maximum-likelihood estimate when sampling from a stable distribution.
Ann. Statist. 1 948–957. MR0339376

[9] Fournier, N. and Printems, J. (2010). Absolute continuity for some
one-dimensional processes. Bernoulli 16 343–360. MR2668905

[10] Ivanenko, D., Kulik, A. M. and Masuda, H. (2015). Uniform LAN
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