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Abstract: Considering a class of stochastic differential equations driven
by a locally stable process, we address the joint parametric estimation,
based on high frequency observations of the process on a fixed time inter-
val, of the drift coefficient, the scale coefficient and the jump activity of
the process. This work extends [4] where the jump activity was assumed
to be known and also [3] where the LAN property and the estimation of
the three parameters are performed for a translated stable process. We
propose an estimation method and show that the asymptotic properties of
the estimators depend crucially on the form of the scale coefficient. If the
scale coefficient is multiplicative: a(x, σ) = σa(x), the rate of convergence
of our estimators is non diagonal and the asymptotic variance in the joint
estimation of the scale coefficient and the jump activity is the inverse of
the information matrix obtained in [3]. In the non multiplicative case, the
results are better and we obtain a faster diagonal rate of convergence with
a different asymptotic variance. In both cases, the estimation method is
illustrated by numerical simulations showing that our estimators are rather
easy to implement.
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Keywords and phrases: Lévy process, Stable process, Stochastic Differ-
ential Equation, Parametric inference, Estimating functions.

1. Introduction

In this paper, we consider a class of stochastic differential equations driven by
a symmetric locally α-stable process

Xt = x0 +

∫ t

0

b(Xs, θ)ds+

∫ t

0

a(Xs−, σ)dLαs ,

and we study the joint estimation of (θ, σ, α) based on high-frequency observa-
tions of the process on the time interval [0, T ] with T fixed (without restriction
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we will next assume that T = 1). In recent years, there has been growing inter-
est in modeling with pure-jump Lévy processes (see for example Jing et al. [10]
and[13]) and estimation of such processes is of particular interest.

A large literature is devoted to parametric estimation of jump-diffusions from
high-frequency observations and we know that, due to the Brownian compo-
nent, the estimation of the drift coefficient is not possible without assuming
that T goes to infinity. For pure-jump processes, assuming that the jump ac-
tivity α ∈ (0, 2), the situation is completely different and we can estimate all
the parameters on a fixed time interval. When X is a Lévy process, the first
results in that direction have been established among others by Aı̈t-Sahalia
and Jacod [1] [2], Kawai and Masuda [11] [12], Masuda [14], Ivanenko, Ku-
lik and Masuda [7] and more recently by Brouste and Masuda [3]. Concern-
ing the parametric estimation of pure-jump driven stochastic equations the
literature is less abundant and only partial results are available. The estima-
tion of (θ, σ) is performed by Masuda in [15], assuming that α is known and
with the restriction α ∈ [1, 2). The estimation method proposed in [15] is
based on an approximation (for small h) of the distribution of the normal-
ized increment h−1/α(Xt+h − Xt − hb(Xt, θ))/a(Xt, σ) by the α-stable distri-
bution. However this approximation is not relevant if α < 1. To solve this
problem, Clément and Gloter [4] consider the following modified increment
h−1/α(Xt+h − ξXth (θ))/a(Xt, σ), where (ξxt (θ))t≥0 solves the ordinary equation

ξxt (θ) = x+

∫ t

0

b(ξx0
s (θ), θ)ds, t ≥ 0.

This permits to estimate (θ, σ) for any value of α ∈ (0, 2). Turning to the
efficiency of these estimation methods, the LAMN property is established in
Clément and al.[5] for the estimation of (θ, σ) assuming that the scale coefficient
a is constant and that (Lαt )t is a truncated stable process.

In this paper, we perform the joint estimation of the three parameters (θ, σ, α)
assuming that α ∈ (0, 2), extending the estimating function based method pro-
posed in [4] (we refer to Sørensen [18] and to the recent survey by Jacod and
Sørensen [9] for asymptotics in estimating function methods). Observing that
the conditional distribution of h−1/α(Xt+h− ξXth (θ))/a(Xt, σ) is close to the α-
stable distribution (this is estimated in total variation distance in [4]) the idea
is to approximate the transition density ph(x, y) of the process (Xt)t by

h−1/α

a(x, σ)
ϕα

(
h−1/α

(y − ξxh(θ))

a(x, σ)

)
,

where ϕα is the density of a symmetric α-stable variable Sα1 . This approximation
permits to construct a quasi-likelihood function and then a natural choice of es-
timating function is to consider the associated score function. We prove that the
resulting estimators are consistent and asymptotically mixed normal. We stress
on the fact that these asymptotic properties are established without restriction
on the jump activity α. The estimation of θ achieves the optimal rate and the
information established in [5] for a simplified stochastic equation but the rate of
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convergence and the asymptotic variance-covariance matrix in estimating (σ, α)
depend on the function a. To take into account this new phenomena, we distin-
guish between two cases. If the function a separates the parameter σ and the
variable x (multiplicative case), a(x, σ) = σa(x), then the rate of convergence
is non diagonal. This is not surprising since it is shown respectively in [14] and
[3] that, in the case of a translated α-stable process, the Fisher information
matrix is singular in estimating (σ, α) with a diagonal norming rate but that
the LAN property holds with a non singular information matrix using a non
diagonal norming rate. Furthermore in that case our estimator is efficient since
the asymptotic variance in estimating (σ, α) is the inverse of the information
matrix obtained in [3]. However, if the scale coefficient a does not separate σ
and x (non multiplicative case), the result is new and more surprising. Indeed
our estimator is asymptotically mixed normal with a faster diagonal norming
rate that achieves the optimal rate of convergence in estimating marginally σ
and α. The efficiency in that case is still an open problem since the LAMN
property is not yet established for a non constant scale coefficient a.

The paper is organized as follows. Section 2 introduces the notation and
assumptions. In Section 3 we state our main results : estimation method and
asymptotic properties of the estimators. The main limit theorems to prove con-
sistency and asymptotic mixed normality of our estimators are established in
Section 4. Section 5 contains some simulation results that illustrate the asymp-
totic properties of the estimators.

2. Notation and assumptions

We consider the class of stochastic one-dimensional equations :

Xt = x0 +

∫ t

0

b(Xs, θ)ds+

∫ t

0

a(Xs−, σ)dLαs (2.1)

where (Lαt ) is a pure-jump locally α-stable process defined on a filtered space
(Ω,F , (Ft)t∈[0,1],P). To simplify the notation we assume that θ, σ are real pa-
rameters. We observe the discrete time process (Xti)0≤i≤n with ti = i/n, for
i = 0, . . . , n that solves (2.1) for the parameter value β0 = (θ0, σ0, α0) and our
aim is to estimate the parameter β0.

We make some regularity assumptions on the coefficients a and b that ensure
in particular that (2.1) admits a unique strong solution. We also precise the
behavior of the Lévy measure near zero of the process (Lαt )t∈[0,1].

H1(Regularity) : (a) Let Vθ0 × Vσ0
be a neighborhood of (θ0, σ0). We assume

that x 7→ a(x, σ0) is C2 on R, b is C2 on R× Vθ0 and

sup
x

( sup
θ∈Vθ0

|∂xb(x, θ)|+ |∂xa(x, σ0)|) ≤ C,

∃p > 0 s.t. |∂2xb(x, θ0)|+ |∂2xa(x, σ0)| ≤ C(1 + |x|p),
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∀x ∈ R,∀σ ∈ Vσ0
a(x, σ) > 0 and ∃p > 0 s.t. sup

σ∈Vσ0

1

a(x, σ)
≤ C(1 + |x|p),

(b) ∀x ∈ R, θ 7→ b(x, θ) and σ 7→ a(x, σ) are C3

∃p > 0 s.t. sup
(θ,σ)∈Vθ0×Vσ0

max
1≤l≤3

(|∂lθb(x, θ)|+ |∂lσa(x, σ)|) ≤ C(1 + |x|p),

∃p > 0 s.t. sup
θ∈Vθ0

|∂x∂θb(x, θ)| ≤ C(1 + |x|p).

H2 (Lévy measure) : (a) The Lévy measure of (Lαt ) satisfies

ν(dz) =
g(z)

|z|α+1 1R\{0}(z)dz,

where α ∈ (0, 2) and g : R 7→ R is a continuous symmetric non negative bounded
function with g(0) = 1.

(b) g is differentiable on {0 < |z| ≤ η} for some η > 0 with continuous

derivative such that sup0<|z|≤η

∣∣∣∂zgg ∣∣∣ <∞.
This assumption is satisfied by a large class of processes : α-stable process

(g = 1), truncated α-stable process (g = τ a truncation function), tempered
stable process (g(z) = e−λ|z|, λ > 0).

The rate of convergence and the information in the joint estimation of (θ0, σ0, α0)
depend crucially on the function a and we will prove that if a separates the pa-
rameter σ (multiplicative case), the rate of convergence is not diagonal.

NDNM (non degeneracy in the non multiplicative case) : s→ ∂σa
a (Xs, σ0)

is almost surely non constant. Almost surely, ∃t1 ∈ (0, 1), such that ∂θb(Xt1 , θ0) 6=
0, where (Xt)t∈[0,1] solves (2.1) for the parameter value β0.

NDM (non degeneracy in the multiplicative case) : a(x, σ) = σa(x).
Almost surely, ∃t1 ∈ (0, 1), such that ∂θb(Xt1 , θ0) 6= 0, where (Xt)t∈[0,1] solves
(2.1) for the parameter value β0.

We observe that in the multiplicative case the assumptions H1 can be written
simply in terms of the function a as soon as σ0 > 0.

To estimate the parameter β0 = (θ0, σ0, α0), we extend the methodology
proposed in [4] based on estimating equations (see also [18]). Introducing the
ordinary differential equation

ξx0
t (θ) = x0 +

∫ t

0

b(ξx0
s (θ), θ)ds, t ∈ [0, 1], (2.2)

it is proved in [4] that n1/α(X1/n − ξx0

1/n(θ)) converges in law to Sα1 , a stable

random variable with characteristic function e−C(α)|u|α . The above convergence



E.Clément et al./Joint estimation 5

leads to the approximation of p1/n(x, y, β), the transition density of the Markov
chain (Xti)0≤i≤n solution of (2.1) (with β = (θ, σ, α)), by

n1/α

a(x, σ)
ϕα

(
n1/α

(y − ξx1/n(θ))

a(x, σ)

)
where ϕα is the density of Sα1 . Consequently, to estimate β, we consider the
following approximation of the likelihood function

logLn(θ, σ, α) =

n∑
i=1

log

(
n1/α

a(X i−1
n
, σ)

ϕα(zn(X i−1
n
, X i

n
, θ, σ, α))

)
(2.3)

where

zn(x, y, θ, σ, α) = zn(x, y, β) = n1/α
(y − ξx1/n(θ))

a(x, σ)
. (2.4)

A natural choice of estimating functions is therefore the score function. This
leads to the following functions

Gn(β) =

 G1
n(β)

G2
n(β)

G3
n(β)

 = −∇β logLn(θ, σ, α), (2.5)

with for k = 1, 2, 3

Gkn(β) =

n∑
i=1

gk
(
X i−1

n
, X i

n
, β
)
,

g1(x, y, β) = n1/α
∂θξ

x
1/n(θ)

a(x, σ)

∂zϕα
ϕα

(zn(x, y, β)), (2.6)

g2(x, y, β) =
∂σa(x, σ)

a(x, σ)
(1 + zn(x, y, β)

∂zϕα
ϕα

(zn(x, y, β))), (2.7)

g3(x, y, β) =
log n

α2
(1 + zn(x, y, β)

∂zϕα
ϕα

(zn(x, y, β))) (2.8)

−∂αϕα
ϕα

(zn(x, y, β)).

Note that to compute the above functions, we used

∂θzn = −n1/α
∂θξ

x
1/n(θ)

a(x, σ)
, ∂σzn = −∂σa

a
zn, ∂αzn = − log n

α2
zn.

To simplify the notation, we introduce the functions

hα(z) = ∂zϕα(z)/ϕα(z)

kα(z) = 1 + zhα(z), ∂zkα(z) = hα(z) + z∂zhα(z)

fα(z) = ∂αϕα(z)/ϕα(z).
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Note that we have the relation ∂αhα = ∂zfα.
From Dumouchel [6], we know that

|∂k1z ∂k2α ϕα(z)| ≤ C (log(|z|))k2
|z|k1+α+1

,

as |z| goes to infinity. This permits to deduce that hα, ∂zhα, kα, ∂zkα are
bounded on R× (0, 2) and that for |z| large enough

|fα(z)| ≤ C log |z|, |∂αfα(z)| ≤ C(log |z|)2.

We also observe that ∂zfα and z 7→ z∂zkα(z) are bounded and that z 7→
z∂αhα(z) is bounded, for |z| large, by C log |z|.

Throughout the paper, we denote by C a generic constant whose value may
change from line to line.

3. Joint estimation

3.1. Main results

We estimate β by solving the equation Gn(β) = 0, where Gn is defined by
(2.5) with g1, g2 and g3 given by (2.6), (2.7), (2.8). We prove that the resulting
estimator is consistent and asymptotically mixed normal. However the rate of
convergence and the asymptotic information matrix depend on the function a.
Let us define the matrix rate un by

un =

( 1
n1/α0−1/2 0

0 1√
n
vn

)
, vn =

(
v1,1n v1,2n
v2,1n v2,2n

)
.

Under the assumption NDNM, we obtain a diagonal rate of convergence as
stated in the following theorem.

Theorem 3.1. We assume that assumptions H1, H2 and NDNM hold and that
vn is given by (diagonal rate)

vn =

(
1 0
0 1

logn

)
.

Then there exists an estimator (θ̂n, σ̂n, α̂n) solving the equation Gn(β) = 0 with
probability tending to 1, that converges in probability to (θ0, σ0, α0). Moreover
we have the stable convergence in law with respect to σ(Lα0

s , s ≤ 1)

u−1n

 θ̂n − θ0
σ̂n − σ0
α̂n − α0

 Ls−−→ I(β0)−1/2N ,

where N is a standard Gaussian variable independent of I(β0) and

I(β0) =

( ∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
dsEh2α0

(Sα0
1 ) 0

0 Iσα(β0)

)
(3.1)
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with

Iσα(β0) =

( ∫ 1

0
∂σa(Xs,σ0)

2

a(Xs,σ0)2
dsEk2α0

(Sα0
1 ) 1

α2
0

∫ 1

0
∂σa(Xs,σ0)
a(Xs,σ0)

dsEk2α0
(Sα0

1 )
1
α2

0

∫ 1

0
∂σa(Xs,σ0)
a(Xs,σ0)

dsEk2α0
(Sα0

1 ) 1
α4

0
Ek2α0

(Sα0
1 )

)
.

Note that the matrix I(β0) is invertible since from NDNM

1

α4
0

Ek2α0
(Sα0

1 )

(∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
ds−

(∫ 1

0

∂σa(Xs, σ0)

a(Xs, σ0)
ds

)2
)
> 0.

Turning to the multiplicative case (assumption NDM), we have the following
result.

Theorem 3.2. We assume that H1, H2 and NDM hold. We assume moreover
that

v1,1n
1

σ0
+ v2,1n

log n

α2
0

→ v1,1 v1,2n
1

σ0
+ v2,2n

log n

α2
0

→ v1,2

v2,1n → v2,1 v2,2n → v2,2 (3.2)

and that v1,1v2,2 − v1,2v2,1 > 0. Then there exists an estimator (θ̂n, σ̂n, α̂n)
solving the equation Gn(β) = 0 with probability tending to 1, that converges in
probability to (θ0, σ0, α0). Moreover we have the stable convergence in law with
respect to σ(Lα0

s , s ≤ 1)

u−1n

 θ̂n − θ0
σ̂n − σ0
α̂n − α0

 Ls−−→ I(β0)−1/2N ,

where N is a standard Gaussian variable independent of I(β0) and

I(β0) =

( ∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
dsEh2α0

(Sα0
1 ) 0

0 vT Iσα(β0)v

)
(3.3)

with

v =

(
v1,1 v1,2

v2,1 v2,2

)
,

Iσα(β0) =

(
Ek2α0

(Sα0
1 ) −E(kα0

fα0
)(Sα0

1 )
−E(kα0

fα0
)(Sα0

1 ) Ef2α0
(Sα0

1 )

)
.

Remark 3.1. In the particular case of constant coefficients a and b (where
assumption NDM holds), our estimator is efficient. Indeed the rate of conver-
gence and the asymptotic Fisher information I are the one obtained recently
by Brouste and Masuda [3], where the LAN property is established from high
frequency observations, for the translated α-stable process

Xt = θt+ σSαt .
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Remark 3.2. If we have some additional information on the parameter α0,
we can replace the solution to the ordinary equation (2.2) by an approximation
(see also Proposition 3.1 in [4]). In particular, if α0 ∈ (2/3, 2), we can check
from H1 that supθ∈Vθ0

|ξx1/n(θ)−x−b(x, θ)/n| ≤ C(1+ |x|)/n2 and consequently

setting z(x, y, β) = n1/α(y − x− b(x, θ)/n)/a(x, σ), we deduce that

sup
β∈V (η)

n (β0)

|zn(x, y, β)− zn(x, y, β)| ≤ C(1 + |x|p)εn,

where n1/2εn goes to zero. This control is sufficient to show that the results
of Theorem 3.1 and Theorem 3.2 hold with the estimating functions Gn(β) =
−∇β logLn(β) where Ln is the quasi-likelihood function obtained by replacing
zn by zn in the expression (2.3).

Remark 3.3. The construction of the estimator (θ̂n, σ̂n, α̂n) in Theorem 3.1
and Theorem 3.2 follows the methodology proposed in Sørensen [18] (see also
Sweeting [19]). Since I(β0) and I(β0) are definite positive, we can check that it
is a local maximum of the quasi-likelihood function Ln defined by (2.3), on a set
with probability tending to one.

For the reader convenience we recall the sufficient conditions established
in Sørensen [18] to prove the existence, consistency and asymptotic normal-
ity of estimating functions based estimators. To this end, we define the matrix
Jn(β1, β2, β3) by

Jn(β1, β2, β3) =

n∑
i=1

 ∇βg
1(X i−1

n
, X i

n
, β1)T

∇βg2(X i−1
n
, X i

n
, β2)T

∇βg3(X i−1
n
, X i

n
, β3)T

 .

For η > 0, we also define

V (η)
n (β0) = {(θ, σ, α); ||(un)−1(β − β0)T || ≤ η}, (3.4)

where ||.|| is a vector or a matrix norm and AT is the transpose of the matrix
A.

With these notations, Theorem 3.1 and Theorem 3.2 are consequence of the
two following conditions :
C1 : ∀η > 0, we have the convergence in probability

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un −W (β0)|| → 0,

where W (β0) = I(β0) (assumption NDNM) or W (β0) = I(β0) (assumption
NDM).
C2 : (uTnGn(β0))n stably converges in law to W (β0)1/2N where N is a standard
Gaussian variable independent of W (β0) and the convergence is stable with
respect to the σ-field σ(Lα0

s , s ≤ 1).
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Before starting the proof, we compute explicitly uTnGn(β0) and Jn. This per-
mits to understand how appear the conditions on the matrix vn depending on
the assumptions on a. We have

uTnGn(β0) =


√
n
∑n
i=1

∂θξ
i
1/n(θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

1√
n

∑n
i=1

(
(v1,1n

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

+ v2,1n
logn
α2

0
)kα0(zin(β0))− v2,1n fα0(zin(β0))

)
1√
n

∑n
i=1

(
(v1,2n

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

+ v2,2n
logn
α2

0
)kα0

(zin(β0))− v2,2n fα0
(zin(β0))

)


where we have used the short notation

zin(β0) = zn(X i−1
n
, X i

n
, β0), (3.5)

with zn defined by (2.4) and

ξi1/n(θ0) = ξ
X(i−1)/n

1/n (θ0),

with ξ solving (2.2). Using the relation ∂αhα = ∂zfα, we now express each term
of the matrix Jn. We have

J1,1
n (β0) = n1/α0

n∑
i=1

∂2θξ
i
1/n(θ0)

a(X i−1
n
, σ0)

hα0
(zin(β0)) (3.6)

−n2/α0

n∑
i=1

(∂θξ
i
1/n(θ0))2

a(X i−1
n
, σ0)2

∂zhα0
(zin(β0))

J1,2
n (β0) = J2,1

n (β0) = −n1/α0

n∑
i=1

∂σa(X i−1
n
, σ0)

a(X i−1
n
, σ0)2

∂θξ
i
1/n(θ0)∂zkα0

(zin(β0))

J1,3
n (β0) = J3,1

n (β0) =

n1/α0

n∑
i=1

∂θξ
i
1/n(θ0)

a(X i−1
n
, σ0)

[
− log n

α2
0

∂zkα0(zin(β0)) + ∂zfα0(zin(β0))

]

J2,2
n (β0) =

n∑
i=1

[
∂σ

(
∂σa

a

)
(X i−1

n
, σ0)kα0

(zin(β0))

−(
∂σa

a
)2(X i−1

n
, σ0)zin(β0)∂zkα0(zin(β0))

]
(3.7)

J3,3
n (β0) = −

n∑
i=1

[
∂αfα0(zin(β0))− 2

log n

α2
0

zin(β0)∂αhα0(zin(β0))

+2
log n

α3
0

kα0
(zin(β0)) +

(log n)2

α4
0

zin(β0)∂zkα0
(zin(β0))

]
(3.8)



E.Clément et al./Joint estimation 10

J2,3
n (β0) = J3,2

n (β0) =

n∑
i=1

∂σa

a
(X i−1

n
, σ0)

[
− log n

α2
0

zin(β0)∂zkα0
(zin(β0))

+zin(β0)∂αhα0
(zin(β0))

]
. (3.9)

From these computations and using the limit theorems established in Section
4, we can check conditions C1 and C2 and proceed to the proof of Theorem 3.1
and Theorem 3.2. We first remark that in the above expressions we can replace
∂θξ

x
1/n(θ) by ∂θb(x, θ)/n. Indeed from H1 and Gronwall’s Lemma we have

sup
θ∈Vθ0

|∂θξx1/n(θ)− 1

n
∂θb(x, θ)| ≤ C(1 + |x|p)/n2, (3.10)

sup
θ∈Vθ0

|∂2θξx1/n(θ)− 1

n
∂2θb(x, θ)| ≤ C(1 + |x|p)/n2. (3.11)

Furthermore, by a standard localization procedure we can assume that a is
bounded. Indeed setting aK(x, σ) = a(x, σ)IK(a(x, σ)) where IK is a smooth
real function, equal to 1 on [−K,K] and vanishing outside [−2K, 2K], and
considering the process XK solution of (2.1) with coefficients b and aK , then
X = XK on ΩK = {ω ∈ Ω; sup0≤t≤1 |a(Xt−(ω), σ0)| ≤ K} and P(ΩK) → 1 as
K goes to infinity. Consequently, in the next proof sections, we assume that a
is bounded.

3.2. Proof of Theorem 3.1

3.2.1. Condition C2

We recall that hα0
, kα0

are bounded and that fα0
is asymptotically equiva-

lent to the logarithm. Moreover some straightforward computations permit to
show that Ehα0

(Sα0
1 ) = Ekα0

(Sα0
1 ) = Efα0

(Sα0
1 ) = 0 and E(hα0

kα0
)(Sα0

1 ) = 0.
Therefore from Corollary 4.1, we deduce the convergence in probability

1

log n
√
n

n∑
i=1

fα0
(zin(β0))→ 0

and from Theorem 4.1 we obtain the stable convergence in law
1√
n

∑n
i=1

∂θb(X i−1
n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

1√
n

∑n
i=1

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

kα0
(zin(β0))

1√
n

∑n
i=1

(
1
α2

0
kα0

(zin(β0))− 1
lognfα0

(zin(β0))
)


Ls−−→ I(β0)1/2N ,

where I(β0) is given by (3.1) and N is a standard Gaussian variable independent
of I(β0).
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Now with un given by

un =

 1
n1/α0−1/2 0 0

0 1
n1/2 0

0 0 1
n1/2 logn


and using the approximation (3.10) it yields

uTnGn(β0) =


1√
n

∑n
i=1

∂θb(X i−1
n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

1√
n

∑n
i=1

∂σa(X i−1
n
,σ0)

a(X i−1
n
,σ0)

kα0
(zin(β0))

1√
n

∑n
i=1

(
1
α2

0
kα0(zin(β0))− 1

lognfα0(zin(β0))
)

+ oP (1),

and the stable convergence in law of uTnGn(β0) is proved.

3.2.2. Condition C1

We have to check the uniform convergence in probability

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un − I(β0)|| → 0,

with V
(η)
n (β0) defined by (3.4) and

uTnJn(β1, β2, β3)un =


J1,1
n (β1)

n2/α0−1

J1,2
n (β1)

n1/α0

J1,3
n (β1)

n1/α0 logn
J2,1
n (β2)

n1/α0

J2,2
n (β2)
n

J2,3
n (β2)
n logn

J3,1
n (β3)

n1/α0 logn

J3,2
n (β3)
n logn

J3,3
n (β3)

n(logn)2


where the coefficients of the matrix Jn are given by (3.6)-(3.9).

After a meticulous study of each term appearing in the matrix uTnJn(β1, β2, β3)un
and using the approximations (3.10) and (3.11), condition C1 reduces to prove
the following uniform convergence in probability

sup
β∈V (η)

n (β0)

| 1
n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))−

∫ 1

0

f(Xs, θ0, σ0)dsEgα0(Sα0
1 )| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, if Egα0

(Sα0
1 ) = 0,

for functions f depending on a, b and their partial derivatives with respect
to the parameters θ, σ and gα belonging to the set of functions hα, kα, ∂zkα,
∂zfα, ∂zhα, z∂zkα, ∂αhα, ∂αfα, z∂αhα. These functions satisfy the assumptions



E.Clément et al./Joint estimation 12

of Theorem 4.2. Moreover, using the symmetry of ϕα (ϕα and fα are even) and
the integration by part formula, we can prove

Ehα(Sα1 ) = Ekα(Sα1 ) = E∂zkα(Sα1 ) = E∂αhα(Sα1 ) = E∂zfα(Sα1 ) = 0

E∂zhα(Sα1 ) = −Eh2α(Sα1 )

ESα1 ∂zkα(Sα1 ) = −Ek2α(Sα1 ) (3.12)

E∂αfα(Sα1 ) = −Ef2α(Sα1 )

ESα1 ∂αhα(Sα1 ) = −ESα1 fα(Sα1 )hα(Sα1 ) = −E(kαfα)(Sα1 ).

The result follows then from Theorem 4.2 (convergence (4.3) and (4.4)).

3.3. Proof of Theorem 3.2

We first observe that from NDM ∂σa/a = 1/σ.

3.3.1. Condition C2

Since Ehα0
(Sα0

1 ) = Ekα0
(Sα0

1 ) = Efα0
(Sα0

1 ) = 0, we deduce from Theorem 4.1
the stable convergence in law

1√
n

(
1 0
0 vT

) n∑
i=1


∂θb(X i−1

n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

kα0
(zin(β0))

−fα0
(zin(β0))

 Ls−−→ I(β0)1/2N ,

where I(β0) is given by (3.3) and N is a standard Gaussian variable independent
of I(β0).

Using the approximation (3.10) and the property of vn (3.2), we deduce

uTnGn(β0) =
1√
n

(
1 0
0 vT

) n∑
i=1


∂θb(X i−1

n
,θ0)

a(X i−1
n
,σ0)

hα0
(zin(β0))

kα0
(zin(β0))

−fα0
(zin(β0))

+ oP (1),

and C2 is proved.

3.3.2. Condition C1

We will prove

sup
β1,β2,β3∈V (η)

n (β0)

||uTnJn(β1, β2, β3)un − I(β0)|| → 0.
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We have :

uTnJn(β1, β2, β3)un = J1,1
n (β1)

n2/α0−1
1

n1/α0
(J1,2
n (β1), J1,3

n (β1))vn

1
n1/α0

vTn (J2,1
n (β2), J3,1

n (β3))T 1
nv

T
n

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
vn

 ,

and using the symmetry of Jn, the proof reduces to the following convergence
in probability

sup
β∈V (η)

n (β0)

| J
1,1
n (β)

n2/α0−1
−
∫ 1

0

∂θb(Xs, θ0)2

a(Xs, σ0)2
dsEh2α0

(Sα0
1 )| → 0, (3.13)

sup
β2,β3∈V (η)

n (β0)

| 1

n1/α0
(J1,2
n (β2), J1,3

n (β3))vn| → 0, (3.14)

sup
β2,β3∈V (η)

n (β0)

|| 1
n
vTn

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
vn − vT Iσα(β0)v|| → 0. (3.15)

From the expression of Jn given in (3.6)-(3.9) and using the approximations
(3.10) and (3.11), convergence (3.13) follows from (4.3) and (4.4) in Theorem
4.2 and (3.14) is a consequence of (4.5) in Theorem 4.2, since the terms of the
matrix vn are bounded by log n. To study the convergence (3.15) we observe
that

v =

(
1
σ0

logn
α2

0

0 1

)
× vn + o(1)

and consequently we just have to prove

sup
β2,β3∈V (η)

n (β0

||vTn
(

1

n

(
J2,2
n (β2) J2,3

n (β2)
J3,2
n (β3) J3,3

n (β3)

)
− Jn(β0)

)
vn|| → 0 (3.16)

where

Jn(β0) = rTn

(
Ek2α0

(Sα0
1 ) −E(kα0fα0)(Sα0

1 )
−E(kα0

fα0
)(Sα0

1 ) Ef2α0
(Sα0

1 )

)
rn,

with

rn =

(
1
σ0

logn
α2

0

0 1

)
.
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To simplify the notation we introduce the following normalized sums:

S(k)
n (β) =

1

n

n∑
i=1

kα(zin(β))

S(zk′)
n (β) =

1

n

n∑
i=1

zin(β)∂zkα(zin(β))

S(z∂h)
n (β) =

1

n

n∑
i=1

zin(β)∂αhα(zin(β))

S(∂f)
n (β) =

1

n

n∑
i=1

∂αfα(zin(β)),

and from (3.7) (3.8), (3.9) we obtain

1

n
J2,2
n (β) = − 1

σ2
(S(k)
n (β) + S(zk′)

n (β))

1

n
J3,2
n (β) = − log n

σα2
S(zk′)
n (β) +

1

σ
S(z∂h)
n (β)

1

n
J3,3
n (β) = − (log n)2

α4
S(zk′)
n (β) + 2

log n

α2
S(z∂h)
n (β)− 2

log n

α3
S(k)
n (β)− S(∂f)

n (β).

A simple computation gives moreover

Jn(β0) =

(
1
σ2
0
Ek2α0

(Sα0
1 ) sym

logn
σ0α2

0
Ek2α0

(Sα0
1 )− 1

σ0
E(kα0

fα0
)(Sα0

1 ) J
2,2

n (β0)

)
.

with J
2,2

n (β0) = (logn)2

α4
0

Ek2α0
(Sα0

1 ) − 2 logn
α2

0
E(kα0

fα0
)(Sα0

1 ) + Ef2α0
(Sα0

1 ). Then

using once again that vn is bounded by log n, (3.16) is proved as soon as we
have the following convergence in probability (with q ≤ 4)

sup
β∈V (η)

n (β0)

|(log n)qS(k)
n (β)| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(zk′)
n (β) + Ek2α0

(Sα0
1 )| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(z∂h)
n (β) + E(kα0

fα0
)(Sα0

1 )| → 0,

sup
β∈V (η)

n (β0)

(log n)q|S(∂f)
n (β) + Ef2α0

(Sα0
1 )| → 0.

Recalling the equalities (3.12), the above convergence results from (4.5) in The-
orem 4.2.
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4. Limit theorems

We state in this section some limit theorems (Central Limit Theorem and uni-
form Law of Large Numbers) that are crucial to obtain the asymptotic properties
of our estimators. We follow the approach proposed in [4], extending the results
to non bounded functions, with some uniformity with respect to the parameter
α.

The next key proposition extends to non bounded functions the control in
total variation distance established in [4] (Theorem 4.1 and Theorem 4.2).

Proposition 4.1. Let f be a real function such that

∀x ∈ R |f(x)| ≤ C(1 + (log(1 + |x|))q),

for some constants C > 0 and q > 0. Then assuming H1 H2 and a bounded, we
have

i)

|Ef

(
n1/α0

(X1/n − ξx0

1/n(θ0))

a(x0, σ0)

)
− Ef(n1/α0Lα0

1/n)| ≤ C(1 + |x0|)εn,

ii)
|Ef(n1/α0Lα0

1/n)− Ef(Sα0
1 )| ≤ Cεn,

where n1/2εn → 0 as n goes to infinity.

Proof. We set zn = n1/α0
(X1/n−ξ

x0
1/n

(θ0))

a(x0,σ0)
and we consider the truncation fKn =

f1{|x|≤Kn}. By assumption, ||fKn ||∞ ≤ C(logKn)q and from Theorem 4.1 and
Theorem 4.2 in [4] we have

|EfKn(zn)− EfKn(n1/α0Lα0

1/n)| ≤ C(1 + |x0|)(logKn)q ε̃n,

|EfKn(n1/α0Lα0

1/n)− EfKn(Sα0
1 )| ≤ C(logKn)q ε̃n,

where ε̃n = 1/n1−ε if α0 ≤ 1 and ε̃n = 1/n1/α0−ε if α0 > 1. Then, if Kn = np

for any p > 0, we deduce

√
n(logKn)q ε̃n → 0.

It remains to bound |Ef(Sα0
1 )−EfKn(Sα0

1 )|, |Ef(zn)−EfKn(zn)| and |Ef(n1/α0Lα0

1/n)−
EfKn(n1/α0Lα0

1/n)|.
For δ < α0, we have

|Ef(Sα0
1 )− EfKn(Sα0

1 )| = E|f(Sα0
1 )|1{|Sα0

1 |>Kn}

≤ C

Kδ
n

(1 + E(logq(1 + |Sα0
1 |)|S

α0
1 |δ)) ≤

C

Kδ
n

,



E.Clément et al./Joint estimation 16

and we conclude choosing Kn = n1/δ. Turning to the second term and proceed-
ing similarly we just have to check that for δ < α0

E|n1/α0(X1/n − ξx0

1/n(θ0))|δ ≤ C, (4.1)

since from H1 a is lower bounded. Using Gronwall’s Lemma, we have

sup
s≤1/n

|n1/α0(Xs − ξx0
s (θ0))| ≤ Cn1/α0 sup

s≤1/n
|
∫ s

0

a(Xu−, σ0)dLα0
u |,

and (4.1) holds if Enδ/α0 sups≤1/n |
∫ s
0
a(Xu−, σ0)dLα0

u |δ ≤ C. This is obtained

by rescaling. Setting Lnt = n1/α0Lα0

t/n for t ∈ [0, 1] then (Lnt )t∈[0,1] is a Lévy

process with Lévy measure νn given by

νn(dz) =
1

|z|α0+1
g(z/n1/α0)dz.

Considering now (Xn
t )t∈[0,1] that solves the equation

Xn
t = x0 +

1

n

∫ t

0

b(Xn
s , θ0)ds+

1

n1/α0

∫ t

0

a(Xn
s−, σ0)dLns ,

we can check that the processes (Xt/n, n
1/α0Lα0

t/n)t∈[0,1] and (Xn
t , L

n
t )t∈[0,1] have

the same law, and (4.1) reduces to prove

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLnu|δ ≤ C (4.2)

We can split (Lnt ) in two parts (small jumps and large jumps) : Lnt = Ln,1t +Ln,2t
with

Ln,1t =

∫ t

0

∫
{0<|z|≤1}

zµ̃n(ds, dz),

Ln,2t =

∫ t

0

∫
{|z|>1}

zµn(ds, dz),

where µn and µ̃n are respectively the Poisson measure and the compensated
Poisson random measure associated to (Lnt ). Since 2/δ > 1, we deduce using
successively Hölder’s inequality and Burkholder’s inequality

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,1u |δ ≤ (E sup

s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,1u |2)δ/2

≤ C(E
∫ 1

0

∫
{0<|z|≤1}

a2(Xn
u−, σ0)z2νn(dz)ds)δ/2 ≤ C,

since a is bounded. Considering now the large jumps part and assuming more-
over that δ < min(1, α0) we have

E sup
s≤1
|
∫ s

0

a(Xn
u−, σ0)dLn,2u |δ ≤ E

∫ 1

0

∫
{|z|>1}

|z|δµn(ds, dz) ≤ C,
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since δ < α0, and i) follows. Observing that (4.1) implies E|n1/α0Lα0

1/n|
δ ≤ C

(taking b = 0 and a = 1), we obtain ii).

From this proposition, we obtain a Central Limit Theorem for non bounded
functions.

Theorem 4.1. We assume H1 H2 and a bounded. Let hi : R → R, i = 1, 2, 3
be C1 functions such that

∀i, ∀x ∈ R, |hi(x)|+ |∂xhi(x)| ≤ C(1 + (log(1 + |x|))q),

for some constants C > 0 and q > 0 and let fi : R → R be continuous func-
tions. We assume that Ehi(Sα0

1 ) = 0 for i = 1, 2, 3. Then we have the stable
convergence in law with respect to σ(Lα0

s , s ≤ 1):

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(zn(X i−1
n
, X i

n
, β0))

f2(X i−1
n

)h2(zn(X i−1
n
, X i

n
, β0))

f3(X i−1
n

)h3(zn(X i−1
n
, X i

n
, β0))

 Ls−−→ Σ1/2N ,

where zn is defined by (2.4), N is a standard Gaussian variable independent of
Σ and for 1 ≤ i, j ≤ 3

Σi,j =

∫ 1

0

(fifj)(Xs)ds E(hihj)(S
α
1 ).

Proof. Using Proposition 4.1 and following the proof of Corollary 3.1 in [4], we
obtain the convergence in probability for j = 1, 2, 3

1

n1/2

n∑
i=1

fj(X i−1
n

)
(
hj(zn(X i−1

n
, X i

n
, β0))− hj(n1/α0∆Li)

)
→ 0,

where ∆Li = L i
n
− L i−1

n
. Now we can extend the proof of Theorem 3.2 in [4]

to non bounded functions hj with logarithmic growth and we obtain the stable
convergence in law

1

n1/2

n∑
i=1

 f1(X i−1
n

)h1(n1/α0∆Li)

f2(X i−1
n

)h2(n1/α0∆Li)

f3(X i−1
n

)h3(n1/α0∆Li)

 Ls−−→ Σ1/2N .

An immediate consequence of Theorem 4.1 is the following convergence in
probability.

Corollary 4.1. We assume H1 H2 and a bounded. Let h : R → R be a C1
function such that

∀x ∈ R |h(x)|+ |∂xh(x)| ≤ C(1 + (log(1 + |x|))q),
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for some constants C > 0 and q > 0 and Eh(Sα0
1 ) = 0. Then we have the

convergence in probability

1√
n log n

n∑
i=1

h(zn(X i−1
n
, X i

n
, θ0, σ0, α0))→ 0,

with zn defined by (2.4).

We finally establish some uniform convergence results that extend Theorem
3.1 in [4].

Theorem 4.2. Assume H1 H2 and a bounded. Let f be a continuous function
such that

sup
(θ,σ)∈K0

(|f(x, θ, σ)|+ |∂θf(x, θ, σ)|+ |∂σf(x, θ, σ)|) ≤ C(1 + |x|p),

where K0 is a neighborhood of (θ0, σ0) and let (z, α) 7→ gα(z) be a C1 function
(with respect to (z, α)) such that ∂zgα is bounded (uniformly in α on compact
subset of (0, 2)) and such that

|gα(z)|+ |∂αgα(z)| ≤ C(1 + (log(1 + |z|))p), p > 0.

Then we have the convergence in probability

sup
β∈V (η)

n (β0)

| 1
n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))−

∫ 1

0

f(Xs, θ0, σ0)dsEgα0
(Sα0

1 )| → 0,

(4.3)

where V
(η)
n (β0) and zin(β) are defined respectively by (3.4) and (3.5).

Moreover if Egα0
(Sα0

1 ) = 0, the following convergences in probability hold

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, (4.4)

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ, σ)gα(zin(β))| → 0, ∀q > 0. (4.5)

Before proving this result we remark that for β ∈ V (η)
n (β0) we have : |θ−θ0| ≤

η/n1/α0−1/2, |σ − σ0| ≤ Cη log(n)/
√
n and |α− α0| ≤ Cη log(n)/

√
n.

The proof of Theorem 4.2 relies on Proposition 4.1 and on the following two
Lemmas.

Lemma 4.1 (Lemma 4.2 in [4]). Assuming H1 and H2, there exists p > 0 such
that ∀ε > 0 and ∀δ ∈ (0, 1)

P
(
|zn(x0, X1/n, β0)− n1/α0Lα0

1/n| > ε
)
≤
{
C(ε)(1 + |x0|p) logn

nα0
if α0 < 1,

C(ε)(1 + |x0|p) 1
n1−δ , if α0 ≥ 1,

where C(ε) is a positive constant.
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Lemma 4.2. Assuming H1 and H2, there exists p, q > 0 such that

∀ε > 0, P|F i−1
n

(
sup

β∈V (η)
n (β0)

|zin(β)− n1/α0∆Li| > ε

)
≤ C(ε)(1 + |X i−1

n
|p)/nq,

(4.6)
where C(ε) is a positive constant, ∆Li = Lα0

i
n

−Lα0
i−1
n

and zin(β) is given in (3.5).

Proof. We have the decomposition

zin(β)− n1/α0∆Li =
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)

(zin(β0)− n1/α0∆Li)

+(
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)
− 1)n1/α0∆Li

+
n1/α

n1/α0

1

a(X i−1
n
, σ)

n1/α0(ξi1/n(θ0)− ξi1/n(θ)).

The proof follows then the same lines as the proof of Lemma 5.1 in [4] using

Lemma 4.1, β ∈ Vn(β0) and observing that | n
1/α

n1/α0
− 1| ≤ C log(n)/

√
n.

Proof of Theorem 4.2. We recall the following useful result to prove convergence
in probability of triangular arrays (see [8]).

Let (ζni ) be a triangular array such that ζni is F i
n

-measurable then the two

following conditions imply the convergence in probability
∑n
i=1 ζ

n
i → 0 :

n∑
i=1

|E|F i−1
n

ζni | → 0 in probability,

n∑
i=1

E|F i−1
n

|ζni |2 → 0 in probability.

From this result, the methodology is similar to the proof of Theorem 3.1 in
[4] and we just outline the main steps. The difference with [4] is that α varies
and the function gα is not bounded. Note however that ∂zgα is bounded. We
check the following convergences in probability

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

(f(X i−1
n
, θ, σ)− f(X i−1

n
, θ0, σ0))gα(zin(β))| → 0, (4.7)

sup
β∈V (η)

n (β0)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ0, σ0)(gα(zin(β))−gα0(n1/α0∆Li))| → 0, (4.8)

| (log n)q

n

n∑
i=1

f(X i−1
n
, θ0, σ0)(gα0(n1/α0∆Li)− Egα0(Sα0

1 ))| → 0, (4.9)
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| 1
n

n∑
i=1

f(X i−1
n
, θ0, σ0)−

∫ 1

0

f(Xs, θ0, σ0)ds| → 0. (4.10)

The last convergence is immediate, (4.9) is a consequence of Proposition 4.1.
We check (4.7) observing that

E|F i−1
n

[ sup
β∈V (η)

n (β0)

(log(1 + |zin(β)|))p] ≤ C(1 + |X i−1
n
|p
′
), (4.11)

for some p′ > 0. Indeed from (4.1) we have

E|F i−1
n

|zin(β0)|δ ≤ C,

for any δ < α0. Furthermore a straightforward computation gives

zin(β)− zin(β0) = (
n1/α

n1/α0

a(X i−1
n
, σ0)

a(X i−1
n
, σ)
− 1)zin(β0)

+
n1/α

n1/α0

1

a(X i−1
n
, σ)

n1/α0(ξi1/n(θ0)− ξi1/n(θ))

and then

sup
β∈V (η)

n (β0)

|zin(β)− zin(β0)| ≤ C(1 + |X i−1
n
|p)(1 + |zin(β0)|)(log n)2/

√
n.

This permits to deduce (4.11) and at last, (4.8) follows from (4.11) and Lemma
4.2. The convergences (4.7)-(4.10) permit to obtain (4.3) and (4.5) in Theorem
4.2.

To prove (4.4), combining (4.11), Lemma 4.1 and Lemma 4.2, we check the
convergences in probability for α0 > 1

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}[gα(zin(β))− gα0

(zin(β0))]| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}

[
gα0

(zin(β0))

−E|F i−1
n

gα0
(zin(β0))

]
| → 0,

sup
β∈V (η)

n (β0)

| 1

n1/α0

n∑
i=1

f(X i−1
n
, θ, σ)1{|X i−1

n
|≤K}E|F i−1

n

gα0
(zin(β0))| → 0.

These convergences are obtained with similar computations than the one used
in the proof of Theorem 3.1 in [4] and we omit the details.
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5. Numerical simulations

In this section, we make numerical simulations. Our goal is twofold : we aim
to show that the joint estimation of the three parameters (θ, σ, α) is feasible in
practice and illustrate that the asymptotic behavior of the estimator is different
whether the model satisfies the condition NDM or NDNM, which is the main
finding of Section 3.1.

5.1. A multiplicative model

We consider the process (Xt)t∈[0,1] solution of

dXt = θXtdt+ σ
√

1 +X2
t dSαt ,

where (Sαt )t is a symmetric α-stable process whose characteristic function is
e−|u|

α

. Assumption NDM holds true and we can apply results of Section 3.1. As
matrix rate, we choose v1,1n = σ0, v1,2n = − σ0

α2
0
, v2,1n = 0, v2,2n = 1. This choice

is such that (3.2) holds true with v =

(
1 0
0 1

)
. Let us denote by Z a Gaussian

random vector with law N (0R3 ,Kα0
) where

Kα0 =

E[h2α0
(Sα0

1 )] 0 0
0 E[k2α0

(Sα0
1 )] −E[(kα0

fα0
)(Sα0

1 )]
0 −E[(kα0

fα0
)(Sα0

1 )] E[f2α0
(Sα0

1 )]

−1 . (5.1)

Then, from the stable convergence result of Theorem 3.2, one has the conver-
gence to Z of the vector (

∫ 1

0
∂θb(Xs,θ0)

2

a(Xs,σ0)2
ds)1/2n1/α0−1/2(θ̂n − θ0)

√
n( σ̂n−σ0

σ0
) + log(n)

α2
0

√
n(α̂n − α0)

√
n(α̂n − α0)

 .

Thus, the rate of estimation is n1/α0−1/2 for θ0, and
√
n for α0. Moreover, we get

that
√
n

log(n) (
σ̂n−σ0

σ0
)+ 1

α2
0

√
n(α̂n−α0)

n→∞−−−−→ 0. This implies that
√
n

log(n) (σ̂n−σ0) =

− σ0

α2
0

√
n(α̂n − α0) + oP (1)

n→∞−−−−→ − σ0

α2
0
Z3. Hence, the rate of estimation for σ0

is
√
n

log(n) and asymptotically the estimation errors for the parameters σ0 and

α0 are proportional and have a correlation tending to −1. Comparing with the
situation of non-multiplicative model, addressed in Theorem 3.1, we see that
both parameters α0 and σ0 are estimated with rate slower by a log(n) factor in
the multiplicative case.

For numerical simulations, we choose θ0 = 0.5, σ0 = 1, α0 ∈ {0.7, 1.3, 1.7}.
We let the number of data n ranges in the set {128, 256, 512, 1024, 2048}. We
simulate the process (Xt) with an Euler scheme with step (1000n)−1. In Tables
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1–3, we give an estimation by Monte-Carlo of the mean of the estimators to-
gether with their standard deviations. In Tables 4–6 (where we use the notation
(5.2)), we give an estimation of the standard deviation of the error of estimation
rescaled in a way that it theoretically converges to a Gaussian variable whose
variance can be computed using (5.1). Using numerical integration, we com-
pute the theoretical asymptotic standard deviation for these rescaled errors of
estimation and give it in the last line of each table.

In Tables 4 and 5 , we see that the asymptotic behavior of the estimator is
exactly as expected from the theoretical study : the rate of estimation for θ0, σ0,
and α0 are exactly n1/α0−1/2, n1/2/ log(n) and n1/2. Moreover, the asymptotic
variances are close to the theoretical one. From Table 1, we see that for α0 = 0.7
the joint estimation of the three parameters works well. Especially, the estimator
of the drift parameter performs extremely well for α0 = 0.7 , which is expected,
since the rate of estimation is n1/0.7−1/2 ' n0.93. For α0 = 1.3, estimation of
σ0 and α0 works well while the estimation of θ0 has some biais which reduces
slowly as n increases. For α0 = 1.7, estimation of σ0 and α0 works well again.
The estimation of θ0 has large bias and variance and does not seem to improve
when n increases. Actually, the convergence of the estimator θ̂n occurs with
the extremely slow rate n1/1.7−1/2 ' n0.0882 and it seems almost impossible
in practice to get a sharp estimate of the drift parameter for n ≤ 2048. Table
6 shows that empirical standard deviation of the estimator significantly differs
from the theoretical one for n ≤ 2048 and α0 = 1.7.

In Table 8, we display the empirical correlation between the estimators σ̂n
and α̂n for different values of α0 and n. As expected from the theory, in the
multiplicative case this correlation tends to −1 as n→∞.

In the Monte-Carlo experiments, we used 1000 replications. The minimiza-
tion of the contrast function (2.3) was conducted using quasi-Newton methods
implemented in Python Numpy package. It necessitates to compute numeri-
cally the values of the contrast function and of its derivatives, and thus involves
numerous evaluations of the functions ϕα, ∂zϕα and ∂αϕα. These three func-
tions are computed using their integral representations given in [16] and [17],
that can be numerically intensive. However, numerical evaluation of the quanti-
ties ϕα(zn(X i−1

n
, X i

n
, β)), ∂zϕα(zn(X i−1

n
, X i

n
, β)) and ∂αϕα(zn(X i−1

n
, X i

n
, β))

for different values of i = 1, . . . , n can be computed in parallel, using different
threads for different values of i. In our numerical simulation, we used CUDA
programming language, to implement the computation of the contrast function,
and its derivative, with a multi-threaded code on GPU. Using a Nvidia GTX1080
GPU, the Monte-Carlo experiments presented in Table 1–3 with n = 2048 and
1000 iterations takes around 2 hours each. Hence, searching the values of the
parameter for one observation of length n = 2048 takes a few seconds, showing
that our contrast method is implementable, and fast, in practice.

Theorem 3.2 states existence of some zero of the gradient of the contrast
function, that yields to a consistent estimator. However it does not prevent
existence of other zeros that would not be a convergent estimator. Nevertheless,
in practice the maximization algorithms always find a consistent estimator, and
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Table 1
Estimation : Multiplicative case α0 = 0.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.498 6.7 ∗ 10−2 1.184 8.18 ∗ 10−1 0.709 6.76 ∗ 10−2

256 0.500 3.30 ∗ 10−2 1.157 6.55 ∗ 10−1 0.702 4.70 ∗ 10−2

512 0.500 1.65 ∗ 10−2 1.110 4.75 ∗ 10−1 0.700 3.19 ∗ 10−2

1024 0.500 7.74 ∗ 10−3 1.062 3.70 ∗ 10−1 0.700 2.31 ∗ 10−2

2048 0.500 4.36 ∗ 10−3 1.060 2.75 ∗ 10−1 0.700 1.64 ∗ 10−2

do not seem to be trapped on local maximum, or non consistent maximum, of
the quasi-likelihood function. Searching directly the zeros of the gradient of the
contrast function provides convergent estimators as well. This suggests that the
zero of the gradient function might be unique for most simulations and reached
at the global maximum of the contrast function. To support this, we draw one
sample path of observations (Xi/n)i=0,...,n with n = 2048 θ0 = 0.5, σ0 = 1,
α0 = 0.7, and explore the shape of the contrast function (2.3). In Figure 1, we
plot the graph of

[−2, 2]× [0.1, 3.961] → R
(θ, σ) 7→ logLn(θ, σ, α)

for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Figure 1a) plots the cross section for the true value
α0 = 0.7, and we see that the maximum in (θ, σ) is reached in a unique point
close to the true value (θ0, σ0). In Figures 1b)–e), we see that the maximization
of the contrast function at cross section with values of α far from α0 yields to a
correct estimation of θ, while estimation of σ is far from its true value. However,
the values of the maximum in Figures 1b)–e) are lower than the one for α = 0.7,
showing that when maximizing the contrast function with respect to (θ, σ, α),
the maximum will be reached for α closed to α0 = 0.7. Figure 2 shows the cross
section of the contrast function at θ = θ0 = 0.5. We see that the maximum
in (α, σ) is reached near the true value (α0, σ0). Eventually, maximizing with

respect to the three parameters, by Python Numpy package, yields to β̂n =
(0.495, 0.849, 0.709) and the quasi-Newton maximization algorithm converges
after 18 steps.

Our last numerical experiment in the multiplicative case is related to Remark
3.2, where we state that for α0 > 2/3, one can replace in the contrast function,
the quantity ξx1/n(θ) by its one step Euler approximation ξx1/n(θ) ' x+b(x, θ)/n.
We see, by comparison of Table 7 with Table 1, that the quality of estimation is
the same when one uses the approximation of ξx1/n(θ) as when one uses its true
value.

5.2. A non multiplicative model

We consider (Xt)t∈[0,1] solution of

dXt = θXtdt+ exp(σ sin(Xt))dS
α
t ,
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Table 2
Estimation : Multiplicative case α0 = 1.3

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.443 6.85 ∗ 10−1 1.048 3.66 ∗ 10−1 1.316 1.27 ∗ 10−1

256 0.386 6.31 ∗ 10−1 1.031 3.01 ∗ 10−1 1.310 9.35 ∗ 10−2

512 0.424 5.77 ∗ 10−1 1.014 2.39 ∗ 10−1 1.306 6.47 ∗ 10−2

1024 0.429 5.06 ∗ 10−1 1.014 1.78 ∗ 10−1 1.302 4.41 ∗ 10−2

2048 0.457 4.26 ∗ 10−1 1.011 1.38 ∗ 10−1 1.300 3.16 ∗ 10−2

Table 3
Estimation : Multiplicative case α0 = 1.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.428 7.58 ∗ 10−1 1.024 2.25 ∗ 10−1 1.709 1.26 ∗ 10−1

256 0.532 6.23 ∗ 10−1 1.016 1.73 ∗ 10−1 1.704 9.16 ∗ 10−2

512 0.605 5.07 ∗ 10−1 1.007 1.14 ∗ 10−1 1.703 6.53 ∗ 10−2

1024 0.680 3.89 ∗ 10−1 0.996 1.06 ∗ 10−1 1.705 4.71 ∗ 10−2

2048 0.702 3.31 ∗ 10−1 1.001 8.36 ∗ 10−2 1.701 3.33 ∗ 10−2

Table 4
Asymptotic variance : Multiplicative case α0 = 0.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 1.15 1.91 0.76
256 1.11 1.89 0.75
512 1.08 1.73 0.72
1024 1.05 1.71 0.74
2048 1.06 1.63 0.74

Theoretical limit 1.10 1.55 0.76

Table 5
Asymptotic variance : Multiplicative case α0 = 1.3

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 1.27 0.85 1.44
256 1.35 0.86 1.50
512 1.39 0.87 1.46
1024 1.46 0.82 1.41
2048 1.48 0.81 1.43

Theoretical limit 1.52 0.84 1.42

Table 6
Asymptotic variance : Multiplicative case α0 = 1.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0)
√
n

log(n)
(σ̂n − σ0)

√
n(α̂n − α0)

128 0.66 0.53 1.42
256 0.58 0.50 1.47
512 0.49 0.49 1.48
1024 0.41 0.49 1.51
2048 0.38 0.50 1.50

Theoretical limit 1.50 0.51 1.50
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(a) Section of the contrast at α = 0.7
Max is reached at θ = 0.480 and
σ = 0.958 and its value is 16154

(b) Section of the contrast at α = 0.6
Max is reached at θ = 0.480 and
σ = 3.961 and its value is 16088

(c) Section of the contrast at α = 0.8
Max is reached at θ = 0.480 and
σ = 0.256 and its value is 16141

(d) Section of the contrast at α = 0.5
Max is reached at θ = 0.480 and
σ = 3.961 and its value is 14726

(e) Section of the contrast at α = 0.9
Max is reached at θ = 0.480 and
σ = 0.1 and its value is 16099

Fig 1: Plot of the cross section at different values of α
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Table 7
Estimation : Multiplicative case α0 = 0.7. Euler approximation for ξx

1/n
(θ)

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.501 7.10 ∗ 10−2 1.235 8.74 ∗ 10−1 0.707 6.72 ∗ 10−2

256 0.500 3.11 ∗ 10−2 1.146 6.46 ∗ 10−1 0.704 4.74 ∗ 10−2

512 0.499 1.71 ∗ 10−2 1.107 4.62 ∗ 10−1 0.700 3.21 ∗ 10−2

1024 0.501 8.06 ∗ 10−3 1.035 3.50 ∗ 10−1 0.702 2.28 ∗ 10−2

2048 0.500 4.25 ∗ 10−3 1.031 2.61 ∗ 10−1 0.700 1.59 ∗ 10−2

Table 8
Correlation between σ̂n and α̂n (multiplicative model)

α
n

128 256 512 1024 2048

0.7 -0.85 -0.89 -0.93 - 0.94 -0.96
1.3 -0.91 -0.93 -0.95 -0.97 -0.97
1.7 -0.90 -0.93 -0.94 -0.96 -0.97

Fig 2: Plot of the cross section at θ = θ0 = 0.5
Max is reached at σ = 0.802 and α = 0.712 and its value is 16157
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where (Sαt )t is a symmetric α-stable process. The assumption NDNM holds true,
and thus we can apply Theorem 3.1. As a consequence the rate of estimation is
n1/α0−1/2 for θ0,

√
n for σ0 and

√
n log(n) for α0. Comparing to multiplicative

case, the rate of estimation is log(n) faster for both parameters σ0 and α0. We
make numerical simulations to see if the rate is indeed faster, in practice, in the
non-multiplicative case than in the multiplicative one. The asymptotic law of
the estimation error is mixed Gaussian by Theorem 3.1, and we define rescaled
errors of estimation that have Gaussian laws. Let us define

Vθ0 =

(∫ 1

0

∂θb(Xs, θ0)2

a(Xs, σ0)2
ds

)−1
(5.2)

Vσ0
=

(∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
ds− (

∫ 1

0

∂σa(Xs, σ0)

a(Xs, σ0)
ds)2

)−1
Vα0 = α4

0

∫ 1

0

∂σa(Xs, σ0)2

a(Xs, σ0)2
dsVσ0 .

Then, from the stable convergence result of Theorem 3.1, we have

V
−1/2
θ0

n1/α0−1/2(θ̂n − θ0)
n→∞−−−−→ N (0, (Ehα0

(Sα0
1 ))−1) (5.3)

V −1/2σ0

√
n(σ̂n − σ0)

n→∞−−−−→ N (0, (Ekα0
(Sα0

1 ))−1) (5.4)

V −1/2α0

√
n log(n)(α̂n − θ0)

n→∞−−−−→ N (0, (Ekα0
(Sα0

1 ))−1) (5.5)

In Tables 9–14, we present results of numerical simulations conducted with the
true values of the parameters θ0 = 0.5, σ0 = 1 and α0 ∈ {0.7, 1.3, 1.7}. We show
a Monte-Carlo evaluation, based on 1000 replications, for the mean and standard
deviation of these estimators. Moreover, we evaluate the standard deviation of
the rescaled errors of these estimators defined as on the left hand-side of (5.3)–
(5.5). We compare these standard deviations with the theoretical limit given
by the standard deviation of the variables appearing on the right hand-side of
(5.3)–(5.5).

From the results in Tables 9–11, we see that the estimation of the three
parameters performs well. Moreover, from Tables 12–14, we see that the asymp-
totic behavior of the estimator is in practice very close to the description given
by theoretical results (5.3)–(5.5). Especially, we observe numerically that the
rate of estimation of σ0, α0 is different in this non-multiplicative model than
for the multiplicative model of Section 5.1. Another difference is that the es-
timation errors of σ0 and α0 are no longer asymptotically proportional in the
non-multiplicative case, which is consistent with the numerical evaluation of the
correlation between these two estimators given in Table 15.
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Table 9
Estimation : Non multiplicative case α0 = 0.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.500 5.85 ∗ 10−2 1.170 8.55 ∗ 10−1 0.703 2.58 ∗ 10−2

256 0.500 2.92 ∗ 10−2 1.056 6.09 ∗ 10−1 0.702 1.69 ∗ 10−2

512 0.500 1.13 ∗ 10−2 1.038 4.63 ∗ 10−1 0.701 9.88 ∗ 10−3

1024 0.500 6.50 ∗ 10−3 1.031 3.69 ∗ 10−1 0.700 6.55 ∗ 10−3

2048 0.500 3.86 ∗ 10−3 1.023 2.51 ∗ 10−1 0.700 4.60 ∗ 10−3

Table 10
Estimation : Non multiplicative case α0 = 1.3

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.458 3.82 ∗ 10−1 1.046 3.51 ∗ 10−1 1.308 5.94 ∗ 10−2

256 0.448 3.44 ∗ 10−1 1.019 2.54 ∗ 10−1 1.302 3.67 ∗ 10−2

512 0.476 3.54 ∗ 10−1 1.008 1.81 ∗ 10−1 1.302 2.35 ∗ 10−2

1024 0.465 2.91 ∗ 10−1 1.002 1.34 ∗ 10−1 1.301 1.59 ∗ 10−2

2048 0.496 2.81 ∗ 10−1 1.003 9.51 ∗ 10−2 1.300 9.82 ∗ 10−3

Table 11
Estimation : Non multiplicative case α0 = 1.7

n Mean θ̂n Std θ̂n Mean σ̂n Std σ̂n Mean α̂n Std α̂n
128 0.410 4.27 ∗ 10−1 0.996 2.28 ∗ 10−1 1.703 7.68 ∗ 10−2

256 0.426 4.16 ∗ 10−1 1.011 1.68 ∗ 10−1 1.704 4.80 ∗ 10−2

512 0.459 4.02 ∗ 10−1 1.012 1.25 ∗ 10−1 1.704 3.33 ∗ 10−2

1024 0.538 4.12 ∗ 10−1 1.004 8.85 ∗ 10−2 1.701 2.10 ∗ 10−2

2048 0.544 3.76 ∗ 10−1 1.002 6.43 ∗ 10−2 1.700 1.38 ∗ 10−2

Table 12
Asymptotic variance : Non multiplicative case α0 = 0.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.23 1.90 1.85
256 1.36 1.93 1.82
512 1.17 2.48 1.87
1024 1.05 3.12 1.84
2048 1.06 2.29 1.86

Theoretical limit 1.05 1.86 1.86

Table 13
Asymptotic variance : Non multiplicative case α0 = 1.3

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.31 1.10 1.16
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2048 1.38 1.16 1.18

Theoretical limit 1.52 1.15 1.15
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Table 14
Asymptotic variance : Non multiplicative case α0 = 1.7

n V
− 1

2
θ0

n
1
α0
− 1

2 (θ̂n − θ0) V
− 1

2
σ0

√
n(σ̂n − σ0) V

− 1
2

α0

√
n log(n)(α̂n − α0)

128 1.06 0.81 0.86
256 1.09 0.84 0.87
512 1.18 0.83 0.91
1024 1.35 0.86 0.92
2048 1.31 0.87 0.91

Theoretical limit 1.50 0.91 0.91
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mal inverse Gaussian Lévy processes with high-frequency sampling. ESAIM

http://www.ams.org/mathscinet-getitem?mr=2433480
http://www.ams.org/mathscinet-getitem?mr=2433480
http://www.ams.org/mathscinet-getitem?mr=3824969
http://www.ams.org/mathscinet-getitem?mr=3945580
http://www.ams.org/mathscinet-getitem?mr=0339376
http://www.ams.org/mathscinet-getitem?mr=3453298
http://www.ams.org/mathscinet-getitem?mr=2859096
http://www.ams.org/mathscinet-getitem?mr=2933665
http://www.ams.org/mathscinet-getitem?mr=2765166


E.Clément et al./Joint estimation 30

Probab. Stat. 17 13–32. MR3002994
[13] Kong, X.-B., Liu, Z. and Jing, B.-Y. (2015). Testing for pure-jump

processes for high-frequency data. Ann. Statist. 43 847–877. MR3325712
[14] Masuda, H. (2009). Joint estimation of discretely observed stable Lévy
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