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Ultrasound modulated optical tomography (UOT) is a 
powerful imaging technique to discriminate healthy from 
unhealthy biological tissues based on their optical 
signature. Among the numerous detection techniques 
developed for acousto-optic imaging, only those based on 
spectral filtering are intrinsically immune to speckle 
decorrelation. This paper reports on UOT imaging based 
on spectral hole burning in Tm:YAG crystal under a 
moderate magnetic field (200G) with a well-defined 
orientation. The deep and long-lasting holes translate 
into a more efficient UOT imaging with a higher contrast 
and faster imaging frame rate. We demonstrate the 
potential of this method by imaging calibrated phantom 
scattering gels. 

OCIS codes: (170.1065) Acousto-optics; (120.2440) Filters; 
(160.5690) Rare-earth-doped materials; (110.7050) Turbid media; 
(110.6150) Speckle imaging; (020.7490) Zeeman effect; 
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Non-invasive optical imaging is an active field of research because local absorption and scattering of tissues are critical to medical diagnosis. For example, histology of malignant breast tumors shows they have an optical signature which differs from benign cysts [1]. Optical imaging of biological tissues at depths greater than a few mm is however challenging because of light multiple scattering, making imaging techniques relying on ballistic light inapplicable. Over the last twenty years, ultrasound modulated optical tomography (UOT) has emerged as one of the bimodal-imaging technique allowing to bypass this limitation.  UOT exploits the acousto-optic effect [2] which occurs between ballistic ultrasounds (US) focused along a chosen direction and diffused light. As it propagates, an US burst of carrier frequency fUS  

on the MHz range modulates both the refractive index and the scattering particle positions [2]. This results in the creation of ultrasonically tagged photons shifted from the carrier frequency fL by ±fUS [3] [see Figure 1(a)].  By filtering these tagged photons, we retrieve a signal proportional to the local optical irradiance along the US path, with the spatial resolution of the US [4]. The ratio of tagged photons to the total number of photons lies between 10-3 and 10-4 with short bursts [5].  Two parameters are critical for imaging applications. First, because of scatterers random motion, the technique used to detect the tagged photons must handle speckle decorrelation. Second, the signal to noise ratio (SNR) should be maximal to ensure a large imaging frame rate (>Hz). A good SNR is reached when the tagged and transmitted photons are effectively discriminated for large detection etendue.  The most mature techniques for the detection of tagged photons are based on self-adaptive wavefront holography. Holographic response times close to 1ms or below have been reported, which is promising but still insufficient for in vivo imaging [6-7]. Digital holography is far less sensitive to speckle decorrelation [8]. However, the CCD camera needs to process multiple speckles in parallel thus imposes a frame rate too slow for real-time tracking of the US propagation. As opposed to holographic techniques, the confocal Fabry-Perot detection consists in spectrally filtering the tagged photons. It is intrinsically immune to speckle decorrelation but operates with limited etendue [9]. Spectral Hole Burning (SHB) allows, among other applications, the generation of narrow-band filters, which can discriminate ultrasonically tagged photons over a large etendue. In rare-earth doped crystals at cryogenic temperature, the inhomogeneous absorption linewidth is at least one order of magnitude larger that the homogeneous linewidth. This is why narrow spectral classes of atoms within the inhomogeneous broadening can be selected with SHB. To burn a spectral hole, a spectrally narrow laser saturates the homogeneous line absorption thereby creating a transparency  



Fig. 1.  (a) Spectral filtering of UOT tagged photons. Dashed line: initial absorption spectrum. Solid line: absorption spectrum after spectral holeburning at two frequencies. Colored area: spectrum of the light coming out of the scattering medium (blue photons at the carrier frequency and green tagged photons).  ݂ௌ is the ultrasound frequency (typically 5 MHz). (b) Tm:YAG level scheme in the absence of magnetic field. Optically excited atoms are stored in the metastable 3F4 level for 8ms. (c) Level scheme under magnetic field: optically excited atoms are stored in one of the two ground state sublevels with a 30s lifetime. Δg and Δe are the Zeeman splitting dependence of the ground and excited levels, respectively [19]. window in the absorption profile, called spectral hole. Biological imaging requires the SHB transition to be in the optical diagnosis window [10]. Among many of the materials exhibiting the SHB property, Tm3+ and Nd3+ doped crystals operate at appropriate wavelengths (793nm and 883nm respectively).  UOT-SHB in Tm-doped YAG has been reported in [11-13]. Under laser excitation the resonant atoms at 793nm in Tm:YAG are promoted to the ܪସଷ  excited state, as depicted in Figure 1(b) without magnetic field.  In about 200µs [14], 30% of the atoms relax straight to the ground state while 70% remain in the metastable level ܨସଷ , whose lifetime is 8ms [14]. This time defines the spectral hole lifetime, which is a key parameter for UOT because it will set the maximum number of signals acquired for a given US burst repetition rate. Because refreshing the hole is a time consuming step, a longer lifetime would in overall speed up the imaging process. If a ground state level substructure exists (hyperfine or nuclear Zeeman structure), the hole lifetime can be extended much above the excited state lifetime, typically above a few seconds. This is called the Persistent spectral hole burning (PSHB) regime [15], and allows a more efficient optical pumping process, together with deeper holes. This was demonstrated for example in praseodymium-doped YSO, where a hole lifetime of several thousand seconds was observed at 606nm [16]. Additionally, the optical dispersion due to the steep absorption variation induces a slowing of the tagged photons going through the filter compared to untagged photons. This so-called slow light approach has been used to enhance the filter sensitivity. So far, most significant PSHB-UOT experiments were conducted using slow light at the wavelength (606nm) which is not well adapted for deep tissue imaging [17-18].  In the case of thulium, PSHB can be achieved by applying a static magnetic field, revealing the Zeeman structure [19], as shown in Figure 1(c). As a consequence, atoms relax to their ground state sublevel which acts as a new long lived shelving state. PSHB at 

convenient operation wavelength is therefore possible using thulium.  In this article, we report the first demonstration of UOT-imaging based on PSHB in thulium, without slow light. To improve the detection dynamics, two spectral holes are tuned at the two tagged photons’ frequencies as illustrated in Figure 1(a).  We first compare the SHB and PSHB filters on a weakly scattering sample, and then demonstrate mm imaging resolution on a 1cm scattering sample with two embedded absorbing inclusions. 

 Fig. 2. Optical setup, with a probe beam (green) and a pump beam (red). Stab. LD stabilized laser diode, Ampli 1, 2: laser amplifiers, PBS: polarizing beam splitter, AOM: acousto-optic modulator, US probe: ultrasound probe, x: longitudinal coordinates along US propagation, y: transverse coordinates perpendicular to US propagation, LCF liquid core fiber with high numerical aperture,  S: mechanical shutter, APD: avalanche photodiode, Acq. card: acquisition card. The experiments are conducted using a 10x10x2 mm3 2% at. Tm3+:YAG single crystal (Scientific Materials Corp.) with an optical thickness  close to ܮߙ = 6 along the 2mm dimension, where ߙ and L are respectively the absorption coefficient and the crystal length. The temperature of the crystal is set at about 2K with a variable liquid helium cryostat (SMC-TBT) so that the homogeneous linewidth is a few kHz, and the measured inhomogeneous bandwidth 30GHz. The 234G magnetic field is created by a pair of water-cooled Helmholtz coils. It is oriented along the [001] crystallographic axis [19]. Under these conditions, the lifetime of Zeeman sublevels is about 30s [20]. Indeed, both heteronuclear cross-relaxation with neighboring Al ions observed at 30 and 60G [21] and spin-lattice relaxation due to phonons observed above 500G [22] are prevented. By controlling the power, duration and spectral width of the pump pulse, the spectral holes width (FWHM) is adjusted to 1.7MHz. This corresponds to a tradeoff between the US pulse width (2.4MHz) and an efficient blocking of untagged photons.  The master laser is an extended cavity diode laser stabilized on a Fabry-Perot cavity [23], leading to a measured frequency drift of about 0.1MHz over 30s. The laser is amplified and split into two optical paths (see Figure 2). In the first path, a 200mW probe beam 
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