
HAL Id: hal-02125337
https://hal.science/hal-02125337v1

Submitted on 10 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting Petri net markings from reduction equations
Bernard Berthomieu, Didier Le Botlan, Silvano Dal Zilio

To cite this version:
Bernard Berthomieu, Didier Le Botlan, Silvano Dal Zilio. Counting Petri net markings from reduction
equations. International Journal on Software Tools for Technology Transfer, 2020, 22, pp.163-181.
�10.1007/s10009-019-00519-1�. �hal-02125337�

https://hal.science/hal-02125337v1
https://hal.archives-ouvertes.fr

Published in Int J Softw Tools Technol Transfer (2019).
https://doi.org/10.1007/s10009-019-00519-1

Counting Petri Net Markings From Reduction Equations

Bernard Berthomieu · Didier Le Botlan · Silvano
Dal Zilio

April 2019

Abstract We propose a method to count the number of reachable markings of a Petri net
without having to enumerate these �rst. The method relies on a structural reduction system
that reduces the number of places and transitions of the net in such a way that we can faithfully
compute the number of reachable markings of the original net from the reduced net and the
reduction history. The method has been implemented and computing experiments show that
reductions are e�ective on a large benchmark of models.

Keywords model counting · model-checking

1 Introduction

Structural reductions are an important class of optimization techniques for the analysis of Petri
Nets (PN for short). The idea is to use a series of reduction rules that decrease the size of a net
while preserving some given behavioral properties. These reductions are then applied iteratively
until an irreducible PN is reached on which the desired properties are checked directly. This
approach, pioneered for Petri nets by Berthelot [2,3], has been used to reduce the complexity of
several problems, such as checking for boundedness of a net, for liveness analysis, for checking
reachability properties [12] or for LTL model checking [7].

In this paper, we enrich the notion of structural reduction by keeping track of the relation
between the markings of an (initial) Petri net, N1, and its reduced (�nal) version, N2. We use
reductions of the form (N1, Q,N2), where Q is a system of linear equations that relates the
(markings of) places in N1 and N2. We say that Q is a set of reduction equations.

In our approach, reductions are tailored so that the state space of N1 (its set of reachable
markings) can be faithfully reconstructed from that of N2 and equations Q. In particular, when

Bernard Berthomieu
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
E-mail: bernard.berthomieu@laas.fr

Didier Le Botlan
LAAS-CNRS, Université de Toulouse, INSA, Toulouse, France
E-mail: didier.le-botlan@insa-toulouse.fr

Silvano Dal Zilio
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
E-mail: silvano.dal.zilio@laas.fr

https://doi.org/10.1007/s10009-019-00519-1

N1 is totally reduced (N2 is then the empty net), the state space of N1 corresponds with the
set of non-negative integer solutions to Q. In some sense, Q acts as a symbolic, �equational�
representation of the reachable markings, in much the same way one can use decision diagrams
or SAT-based techniques to compute on sets of states.

In practice, reductions often lead to an irreducible non-empty residual net. In this case, we
can still bene�t from an hybrid representation combining the state space of the residual net
(expressed, for instance, using a decision diagram) and the symbolic representation provided by
linear equations.

This approach can provide a very compact representation of the state space of a net. Therefore
it is suitable for checking reachability properties, that is whether some reachable marking satis�es
a given set of linear constraints. However, checking reachability properties could bene�t of more
aggressive reductions since it is not generally required there that the full state space is available
(see e.g. [12]). At the opposite, we focus on computing a (symbolic) representation of the full
state space. A positive outcome of our choice is that we can derive a method to count the number
of reachable markings of a net without having to enumerate them �rst.

Computing the cardinality of the reachability set has several applications. For instance, it is
a straightforward way to assess the correctness of tools�all tools should obviously �nd the same
results on the same models. This is the reason why this problem was chosen as the �rst category
of examination in the recurring Model-Checking Contest (MCC) [8,9]. We have implemented
our approach in the framework of the TINA toolbox [5] and used it on the large set of examples
provided by the MCC (see Sect. 7). Our results are very encouraging, with numerous instances
of models where our performances are several orders of magnitude better than what is observed
with the best available tools.

Outline. We �rst de�ne the notations used in the paper then describe the reduction system
underlying our approach, in Sect. 3. After illustrating the approach on some full examples, in
Sect. 4, we prove in Sect. 5 that the equations associated with reductions allow one to reconstruct
the state space of the initial net from that of the reduced one. Section 6 discusses how to count
markings from our representation of a state space while Sect. 7 details our experimental results.
We conclude with a discussion on related works and possible future directions.

Many results and de�nitions were already presented in a shorter version of the paper [4].
This extended version contains several additions. We de�ne an improved set of reductions rules
that adds generalized versions of rules for agglomerating chains and cycles of places. These new
rules allow us to reduce more instances of Petri nets and to reduce some instances further.
(We show the impact of this new reduction strategy, called compact+, on our benchmarks in
Sect. 7.) We also consider a speci�c rule for simplifying, under some conditions, a sub-part of a
net that is a Marked Graph (see Sect. 2). To better understand the e�ect of this new strategy,
we have extended the text that illustrates our approach with a new example, see Sect. 4.2, and
we give more detailed proofs when studying the correctness of our approach. Finally, we have
enriched our discussion on the methods used to compute the number of reachable markings from
the set of reduction equations. Most particularly, we describe our own combinatorial method
for computing the number of solutions to a set of reduction equations (see the discussion on
polycount in Sect. 6.2).

2 Petri Nets

Some familiarity with Petri nets is assumed from the reader. We recall some basic terminology.
Throughout the text, comparison (=,≥) and arithmetic operations (−, +) are extended pointwise
to functions.

2

A marked Petri net is a tuple N = (P, T,Pre,Post,m0) in which P , T are disjoint �nite
sets, called the places and transitions, Pre,Post : T → (P → N) are the pre and post condition
functions. A marking is a function mapping a number of tokens to every place, m0 : P → N is
the initial marking.

Figure 1 gives an example of Petri net, taken from [20], using a graphical syntax: places
are pictured as circles, transitions as squares, there is an arc from place p to transition t if
Pre(t)(p) > 0, and one from transition t to place p if Post(t)(p) > 0. The arcs are weighted by
the values of the corresponding pre or post conditions (default weight is 1). The initial marking
of the net associates integer 1 to place p0 and 0 to all others.

t0

p1

t1

p2

p5

t4

p6

p7

t5

p8

t2

p3

t3

t6

p9

p0

p4

Fig. 1 An example Petri net

A transition t in T is said enabled at marking m if m ≥ Pre(t). If enabled at m, transition

t may �re yielding a marking m′ = m − Pre(t) + Post(t). This is written m
t→ m′, or simply

m→ m′ when only markings are of interest. Intuitively, places hold integers and together encode
the state (or marking) of a net; transitions de�ne state changes.

The reachability set, or state space, of N is the set of markings R(N) = {m | m0
∗→ m },

where
∗→ is the re�exive and transitive closure of →.

A �ring sequence σ over T is a sequence t1 . . . tn of transitions in T such that there are some
markings m1 . . . ,mn+1 with m1

t1→ m2 ∧ . . . ∧mn
tn→ mn+1. This can be written m1

σ→ mn+1. Its

3

displacement, or marking change, is ∆(σ) = Σni=1(Post(ti)−Pre(ti)), where ∆ : T ∗ → P → Z,
and its hurdle H(σ), where H : T ∗ → P → N, is the smallest marking (pointwise) from which
the sequence is �rable. The hurdle of a sequence is ensured to exist and is unique [10]; its
coordinates can be computed independently: for any p ∈ P , t ∈ T , σ ∈ T ∗, we have H(λ)(p) = 0,
H(σ.t)(p) = max(H(σ)(p),Pre(t)(p)−∆(σ)(p)) where λ is the empty sequence.

As an illustration, the displacement of sequence t2t5t3 in the net of Fig. 1 is the vector
(0, 0,−1, 0, 0, 1, 0, 0, 0, 1), which can be written more compactly as {(p2,−1), (p5, 1), (p9, 1)}. The
hurdle for this sequence is {(p2, 1), (p3, 1), (p7, 1)}.

The postset of a transition t is t• = { p | Post(t)(p) > 0 }, its preset is •t = { p | Pre(t)(p) >
0 }. Symmetrically for places, p• = { t | Pre(t)(p) > 0 } and •p = { t | Post(t)(p) > 0 }.

A net is ordinary if all its arcs have weight one, meaning that for all transition t in T , and
place p in P , we have Pre(t)(p) ≤ 1 and Post(t)(p) ≤ 1. Otherwise it is said generalized.

A net N is bounded if there is an (integer) bound b such that m(p) ≤ b for all m ∈ R(N) and
p ∈ P . The net is said safe when the bound is 1. All nets considered in this paper are assumed
bounded.

A net N is live if from any m ∈ R(N) and any transition t ∈ T we can always reach a
marking where t can �re. Liveness encompasses pseudo-liveness (absence of markings from which
no transition is �rable, also called deadlocks) and quasi-liveness (that any t ∈ T is �rable at least
once).

For example, the net in Fig. 1 is ordinary and safe, but not live. Its state space holds 14
markings.

Two special cases of nets of interest. In the following, we will refer to two particular (struc-
tural) categories of nets. A net is a State Machine if it is ordinary and for each t ∈ T , transition
t has exactly one input and one output place (•t and t• are singleton sets). Symmetrically, a net
is a Marked Graph if it is ordinary and for each p ∈ P , •p and p• are singletons.

Clearly, any State Machine can be seen as a directed graph in which the vertices are the
places of the net and its edges are the net transitions, and symmetrically for Marked Graphs.
We say that a State Machine (resp. Marked Graph) is strongly connected if its underlying graph
is strongly connected.

These categories of nets exhibit some additional properties. For example, a State Machine is
necessarily live when it is strongly connected and at least one of its places is marked. A Marking
Graph is live i� it does not include a token-free circuit of places, and a live and connected marking
graph is necessarily strongly connected [6].

Figure 2 below shows a state machine; a marked graph is represented in Figure 13. Both nets
are bounded and live; the �rst admits 45 reachable markings and the second 25176065 markings.

p0

t0

t2

t1

t3

3 p1

5 p2

Fig. 2 An example State Machine

4

3 The Reduction System

We describe our set of reduction rules using three main categories. For each category, we give a
property that can be used to recover the state space of a net, after reduction, from that of the
reduced net. The set of rules described here enriches that presented in [4].

3.1 Removal of Redundant Transitions

A transition is redundant when its marking change can always be achieved by �ring instead an
alternative sequence of transitions. Our de�nition of redundant transitions slightly strengthens
that of bypass transitions in [17]. It is not fully structural either, but makes it easier to identify
special cases structurally.

De�nition 1 (T: Redundant transition) Given a net (P, T,Pre,Post,m0), a transition t in
T is redundant if there is a �ring sequence σ over T \{t} such that ∆(t) = ∆(σ) and H(t) ≥ H(σ).
�

There are special cases that do not require to explore sequences of transitions. This includes
identity transitions, such that ∆(t) = 0, and duplicate transitions, such that for some other
transition t′ and integer k, ∆(t) = k.∆(t′). Finding redundant transitions using De�nition 1 can
be convenient too, provided the candidate σ are restricted (e.g. in length). Clearly, removing a
redundant transition from a net does not change its state space.

Figure 3 shows some examples of redundant transitions. Transitions a and b have null displace-
ment, they obey De�nition 1 taking as σ the empty �ring sequence. For transition e, observe that
H(e) = H(c)+H(g)+H(d), meaning that whenever transition e is �rable, any sequence �ring once
each of transitions c, g, d (in any order) is also �rable. Further, since ∆(e) = ∆(c)+∆(g)+∆(d),
�ring that sequence produces the same marking as �ring e. Similarly, whevener transition c is
enabled, the sequence g.g is �rable and produces the same marking as �ring c. Finally, �ring d
has exactly the same e�ects on markings than �ring sequence h.f , and that latter sequence is
always �rable when d is since H(d) = H(h.f), hence d is redundant.

Theorem 1 If net N ′ is the result of removing some redundant transition in net N then R(N) =
R(N ′)

3.2 Removal of Redundant Places

Intuitively, a place is redundant if removing it from the net would not change its language of
�ring sequences. But we wish to avoid enumerating marking for detecting such places, and further
be able to recover the marking of a redundant place from those of the other places. For these
reasons, our de�nition of redundant places is a slightly strengthened version of that of structurally
redundant places in [3] (last clause is an equation).

De�nition 2 (R: Redundant place) Given a net (P, T, Pre,Post,m0), a place p in P is
redundant if there is some set of places I from P \ {p}, some valuation v : (I ∪{p})→ (N−{0}),
and some constant b ∈ N such that, for any t ∈ T :

1. The weighted initial marking of p is not smaller than that of I:
b = v(p).m0(p)− Σq∈Iv(q).m0(q)

2. To �re t, the di�erence between its weighted precondition on p and that on I may not be
larger than b: v(p).Pre(t)(p)− Σq∈Iv(q).Pre(t)(q) ≤ b

5

e

f

g
h

d

b

c

a

2

2

2
2

3

3

identity (a,b), duplicate (c)
general redundant (d,e)

Fig. 3 Some examples of redundant transitions

3. When t �res, the weighted growth of the marking of p is equal to that of I:
v(p).∆(t)(p) = Σq∈Iv(q).∆(t)(q) �

This de�nition can be rephrased as an integer linear programming problem [19], convenient in
practice for computing redundant places in reasonably sized nets (say when |P | ≤ 50). Like with
redundant transitions, there are special cases that lead to easily identi�able redundant places.
These are constant places�those for which set I in the de�nition is empty�and duplicated places,
when set I is a singleton.

Figure 4 gives some examples of such places. For each reachable marking m of the net in
Figure 4, we have m(a) = 1, m(b) = 2, m(c) = 2 ∗m(g) + 3, m(d) = m(h) + m(f) and m(e) =
3 ∗m(g) +m(h) +m(f) + 3. One will easily check that for each redundant place r ∈ {a, b, c, d, e}
and transition t we have m\r ≥ (Pre(t))\r ⇒ m ≥ Pre(t), where f\r is function f : P → N
restricted to the domain P − {r}. So removing places a, b, c, d and e does not change the set of
�rable �ring sequences of the net.

From De�nition 2, we can show that the marking of a redundant place p can always be
computed from the markings of the places in I and the valuation function v. Indeed, for any
marking m in R(N), we have v(p).m(p) = Σq∈Iv(q).m(q) + b, where the constant b derives from
the initial marking m0. Hence we have a relation kp.m(p) = ρp(m), where kp = v(p) and ρp is
some linear expression on the places of the net.

Theorem 2 If N ′ is the result of removing some redundant place p from net N , then there
is an integer constant k ∈ N∗, and a linear expression ρ, such that, for all marking m: m ∪
{(p, (1/k).ρ(m))} ∈ R(N)⇔ m ∈ R(N ′).

3.3 Place Agglomerations

Conversely to the rules considered so far, place agglomerations do not preserve the number of
markings of the nets they are applied to. They constitute the cornerstone of our reduction system;
the purpose of the previous rules is merely to simplify the net so that agglomeration rules can
be applied.

6

g 3

e

h

d

a

f

3

c

2

b

2

2

32

32

constant (a,b), duplicate (c)
general redundant (d,e)

Fig. 4 Some examples of redundant places

We start by introducing a convenient notation.

De�nition 3 (Sum of places) A place a is the sum of places p and q, written a = p � q,
if: m0(a) = m0(p) + m0(q) and, for all transition t, Pre(t)(a) = Pre(t)(p) + Pre(t)(q) and
Post(t)(a) = Post(t)(p) + Post(t)(q). �

Clearly, operation � is commutative and associative. Place agglomeration rules will all make
use of the following net transformation.

De�nition 4 (Substitution of a transition) Assume transition t of net N is such that:

� It has n input places E = {p1, . . . , pn} and m output places F = {q1, . . . , qm}, with n,m > 0;
� E ∩ F = ∅;
� All arcs adjacent to t have weight 1.

Then substituting transition t in net N consists of replacing the places in E ∪ F by those in set
A = {pi � qj | pi ∈ E ∧ qj ∈ F}, and then removing transition t. �

Witness equations: With each substitution of a transition we will associate an equation sys-
tem, referred to as its witness equation system. That system relates the markings of the places
introduced (the agglomeration places) to those of the places removed (the agglomerated places).
For readability, the variables representing the markings of places bear the same name as the
places they are referred to.

An example transition substitution, together with its witness equation system, is shown in
Fig. 5. The place representing pi � qj is named aij .

We are not interested in all transition substitutions, but only in those such that the reachable
markings of the original net (before substitution) can be computed from those of the reduced
net (after substitution).

We now de�ne agglomeration rules. There are two categories of place agglomeration rules,
called chain agglomerations and loop agglomerations, respectively. Each rule consists of the sub-
stitution of some transition(s). In addition, for technical reasons that will be made clear in Sect.

7

t

q2 2 q3

p1 p2

q1

→ a12a11 a21 a22 3 a13 2 a23

a11 = p1 + q1
a21 = p2 + q1

a12 = p1 + q2
a22 = p2 + q2

a13 = p1 + q3
a23 = p2 + q3

Fig. 5 Substitution of transition t (above) and witness equation system (below)

6, we de�ne two rules in each category: one addressing a particular case, and another, more
general, rule.

In all rule de�nitions we start from a net N = (P, T,Pre,Post,m0). We start with the
simpler agglomeration rules:

De�nition 5 (SCA: Simple chain agglomeration) If net N contains a transition t ∈ T and
two places p, q in P such that:

1. •t = {p}, t• = {q} and •q = {t}
2. Pre(t)(p) = Post(t)(q) = 1
3. m0(q) = 0

Then transition t is substituted.
The transformation amounts to replace places p and q by a place a equal to their sum: a = p� q
and then removing transition t. �

De�nition 6 (SLA: Simple loop agglomeration) If there is in net N a sequence of n places
(πi)

n−1
i=0 such that:

(∀i < n)(∃t ∈ T)(Pre(t) = {(πi, 1)}
∧ Post(t) = {(π(i+1)(mod n), 1)}) .

Then all transitions having an input place and an output place in sequence (πi)
n−1
i=0 are succes-

sively substituted. The transformation amounts to replace places π0, . . . , πn−1 by a single place,
a, de�ned as their sum: a = �n−1i=0 πi, and then removing the transitions linking them (the t
transitions in the above condition). �

Simple agglomerations are illustrated in Fig. 6.

Clearly, whenever some place a of a net obeys a = p� q for some places p and q of the same
net, then place a is redundant in the sense of de�nition 2. The e�ects of simple agglomerations
on markings are stated by Theorem 3.

Theorem 3 Let N and N ′ be the nets before and after simple agglomeration of some set of
places A as place a. Then for all markings m over (P \ A) and m′ over A we have: (m ∪m′) ∈
R(N)⇔ m ∪ {(a,Σp∈Am′(p)} ∈ R(N ′) .

8

X p

t

q

→ X a

t1

t0

t2

Y

p1

Z

p2

X p0 → X+Y+Z a

Fig. 6 Simple agglomeration examples: chain (top), loop (for n = 3, bottom)

Proof Assume N is a net with set of places P .
1. Let us �rst consider the case of SLA, the chain agglomeration rule in Fig. 6 (top). We have to
prove that for all marking m of P \ {p, q} and for all values x, y in N:

m ∪ {(p, x), (q, y)} ∈ R(N)⇔ m ∪ {(a, x+ y)} ∈ R(N ′)

Left to right (L): Let N+ be net N with place a = p � q added. Clearly, a is redundant in
N+, with v(a) = v(p) = v(q) = 1. So N and N+ admit the same �ring sequences, and for any
m ∈ R(N+), we have m(a) = m(p) +m(q). Next, removing places p and q from N+ (the result
is net N ′) can only relax �ring constraints, hence any σ �rable in N+ (and thus in N) is also
�rable in N ′, which implies the goal.

Right to left (R): we use two intermediate properties (∀m,x, u, v implicit). We write m ∼ m′
when m and m′ agree on all places except p, q and a, and m ≈ m′ when m ∼ m′ ∧ m(p) =
m′(a) ∧m(q) = 0.

Property (1): m ∪ {(a, x)} ∈ R(N ′)⇒ m ∪ {(p, x), (q, 0)} ∈ R(N).

Since ∆(t) = 0, any marking reachable in N ′ is reachable by a sequence not containing t,
call these sequences t-free. Property (1) follows from a simpler relation, namely (Z): whenever
m ≈ m′ (m ∈ R(N), m′ ∈ R(N ′)) and m′

δ→ w′, (δ t-free), then there is a sequence ω such that

m
ω→ w and w ≈ w′.
Any t-free sequence �rable in N ′ but not in N can be written σ.t′.γ, where σ is �rable in N

and transition t′ is not �rable in N after σ. Let w, w′ be the markings reached by σ in N and N ′,
respectively. Since σ is �rable in N , we have w ≈ w′, by (L) and the fact that σ is t-free (only

9

t

X p1

q2 q3q1

→ X a11 X a12 X a13

X p0

t

t′

Y p1 Z p2 → X+Z a2X+Y a1

Fig. 7 General agglomeration examples: chain (top), loop (for n = 2, bottom)

t can put tokens in q). That t′ is not �rable at w but �rable at w′ is only possible if t′ is some
output transition of a since w ∼ w′ and the preconditions of all other transitions of N ′ than a
are identical in N and N ′. That is, t′ must be an output transition of either or both p or q in
N . If t′ has no precondition on q in N , then it ought to be �rable at w in N since w(p) = w′(a).
So t′ must have a precondition on q; we have w(q) 6≥ Pre(t′)(q) in N and w′(a) ≥ Pre′(t′)(a)
in N ′. Therefore, we can �re transition t n times from w in N , where n = Pre(t′)(q), since
w′(a) = w(p) and t′ is enabled at w′, and this leads to a marking enabling t′. Further, �ring t′

at that marking leaves place q in N empty since only transition t may put tokens in q. Then the
proof of Property (1) follows from (Z) and the fact that De�nition 5 ensures m0 ≈ m′0.
Property (2): if m ∪ {(p, x), (q, 0)} ∈ R(N) and (u+ v = x) then m ∪ {(p, u), (q, v)} ∈ R(N).

Obvious from De�nition 5: the tokens in place p can be moved one by one into place q by
�ring t in sequence v times.

Combining Property (1) and (2) is enough to prove (R), which completes the proof for chain
agglomerations.
2. For loop agglomerations (Fig. 6 (bottom), for instance) observe that, in net N , tokens may
freely �ow in the places of A by �ring only the transitions substituted in Defn. 6. So, if the
set of places A is marked with k tokens and the other places are marked as in m (say), then
any marking putting k tokens in the places in (πi)

n−1
i=0 and leaving the other places unchanged

(marked as in m) is reachable in N ; which is exactly what we had to prove for the case SLA. ut

We now de�ne generalizations of both simple agglomeration rules, still starting from a net
N = (P, T,Pre,Post,m0).

De�nition 7 (GCA: Generalized chain agglomeration) If there is in net N a place p, a
set F ⊆ P and some t ∈ T such that:

1. •t = {p}; t• = F ; p 6∈ F , Pre(t)(p) = 1;
2. for any q ∈ F : Post(t)(q) = 1; •q = {t} and m0(q) = 0.

Then transition t is substituted. �

10

Transition circuits will help de�ning the richer loop agglomerations.

De�nition 8 (transition circuit) Let a transition circuit in net N be a sequence of transitions
(τi)

n−1
i=0 such that, for any i, j < n, i 6= j and any p ∈ P :

� Post(τi) = Pre(τ(i+1) mod n)
� Pre(τi)(p) ≤ 1 ∧Post(τi)(p) ≤ 1
� τ•i and τ•j are disjoint. �

Clearly, if some transition τi in a transition circuit is enabled at some marking m, then the

transition sequence (τj)
(i+n)(mod n)
j=i , including exactly all transitions of the circuit, is �rable at

m and is cyclic.

De�nition 9 (GLA: Generalized loop agglomeration) If there is in net N a sequence of
n subsets of places (Πi)

n−1
i=0 and a circuit (τi)

n−1
i=0 of transitions such that:

(∀i < n)(Πi = Pre(τi) ∧Π(i+1) mod n = Post(τi))

Then all transitions in circuit (τi)
n−1
i=0 are successively substituted.

The transformation amounts to add for each tuple {z0, · · · , zn−1} ∈ Π0 × · · · ×Πn−1 a place
equal to z0 � · · · � zn−1 and then removing the places in (Πi)

n−1
i=0 and the transitions in circuit

(τi)
n−1
i=0 . �

Theorem 4 Let N and N ′ be the nets before and after application of rule GCA or GLA.
Let E be the set of places in N ′ but not in N (the agglomeration places introduced by the

rule), and A : E → P the function associating with each agglomeration place the set of places of
N it agglomerates. Function A is directly derived from the witness equation system produced by
the rule applied.

Let AA =
⋃
i∈E(A(i)).

Then for all markings m over (P \ AA) and m′ over AA we have: (m ∪ m′) ∈ R(N) ⇔
m ∪ (i,Σp∈A(i)m

′(p))i∈E ∈ R(N ′) .

Proof
1. case GCA

Generalized chain agglomerations di�er from simple agglomerations by the fact that the
transition substituted may have several output places. Their e�ects are that they simultaneously
agglomerate each output place of the substituted transition with a copy of its input place.

The proof scheme for this case is essentially similar to that of case SLA in the proof of
Theorem 3, except that we have to consider the several agglomerations simultaneously.
2. case GLA

Consider the subnet L of N constituted of the places in (Πi)
n−1
i=0 , the transitions in (τi)

n−1
i=0

and the arcs connecting them. Clearly, the case to be proven in net N is true if it is true in
subnet L; we prove it in subnet L.

Next, by construction, all places in each Πi in subnet L have the save input transition and
the same output transition. So in each Πi, all places are redundant except one with the smallest
initial marking. Without loss of generality, assume the non redundant places are the �rst place
of each Πi, let us denote them Π0

0, · · · ,Π0
n−1. Further, still by construction, all arcs of subnet L

have weight 1. So the markings of all redundant places in each Πi only di�er from that of the
non redundant one Π0

i by some added constant.
In the reduced subnet, there is by construction a place summing the non redundant places of

each Πi: a0,···,0 = Π0
1 � · · · � Π0

n−1. By Theorem 3 (case SLA), we have that for any marking k
of that place, and any integers k0, · · · , kn−1 such that their sum is k, there is a marking in the
initial net such that place Π0

i is marked with ki tokens, for each i.

11

Let us consider now the redundant places. It is easily seen that any place in the reduced
subnet resulting from a sum of places of the initial net involving a redundant place of some Πi

is redundant versus place a0,···,0 in the reduced L and that its markings only di�er from that of
a0,···,0 by some added constant. So the proposition holds for the redundant places too since, in
the initial subnet L and its reduction, their markings are uniquely determined from those of the
non redundant places. ut

3.4 The Reduction System

We say that a net is totally reduced when its set of places and transitions are empty (P = T = ∅).
The three categories of rules introduced in the previous sections constitute the core of our

reduction system. Our implementation actually adds to those a few special purpose rules. We
mention three examples of such rules here, because they play a signi�cant role in the experimental
results of Sect. 7, but without technical details. The �rst two are useful on nets generated from
high level descriptions, that often exhibit translation artifacts like dead transitions or source
places.

The �rst extra rule is the dead transition removal rule. It is sometimes possible to determine
statically that some transitions of a net are never �rable. A fairly general rule for identifying
statically dead transitions is proposed in [7]. Removal of statically dead transitions from a net
has no e�ects on its state space.

A second rule allows one to remove a transition t from a net N when t is the sole transition
enabled at the initial marking and t is �rable only once. Then, instead of counting the markings
reachable from the initial marking of the net, we count those reachable from the output marking
of t in N then add 1. Removing such transitions often yields structurally simpler nets.

The rules in the third group can be used to do away with nets or subnets for which an equa-
tional description of their reachable markings can be computed by other means than reductions.

The �rst handles some particular nets or subnets containing only a single place.

De�nition 10 (SSP: Source-sink pair) A pair (p, t) in net N is a source-sink pair if •p = ∅,
p• = {t}, Pre(t) = {(p, 1)} and Post(t) = ∅.

Remove any source-sink pair from the net and add to the inequality system the inequality
p ≤ m0(p). �

Theorem 5 (Source-sink pairs) If N ′ is the result of removing a source-sink pair (p, t) in net
N then (∀z ≤ m0(p))(∀m)(m ∪ {(p, z)} ∈ R(N)⇔ m ∈ R(N ′)).

Besides trivial nets, there are at least two subclasses of nets for which one can compute an
equational description of their reachability set, these are the live state machines and the live
marked graphs.

Concerning live state machines, note that they are already totally reduced by rule SLA
(Defn. 6) and removal of a constant place, so no additional rule is needed to handle them.

On the other hand live marked graphs are not generally totally reduced by our system. But
it is known that the reachability set of a live marked graph is the solution set of the equation
system constituting its basis of place-invariants. Those equations can be e�ciently obtained from
a basis of circuits of the underlying graph and the initial marking of the net. Hence we added a
rule capturing the case where the residual net is a live marked graph.

De�nition 11 (LMG: Live Marked Graph) When net N is a live marked graph, add to the
equation system its basis of place invariants, then remove the whole net. �

12

Omitting for the sake of clarity the �rst two extra rules mentioned above, our �nal reduction
system resumes to removal of redundant transitions (referred to as the T rule), removal of re-
dundant places (R rule), agglomerations of places, and application of the above two �do-away�
rules.

Rule T has no e�ects on markings. For the other three rules, the e�ect on the markings is
captured by a system of equations or inequalities. In these systems, the variables are marking
variables. For readability, we will typically use the name of the place instead of its associated
marking variable. For instance, the marking equation 2.m(p) = 3.m(q) + 4, resulting from appli-
cation of rule (R), would be simply written 2.p = 3.q + 4.

We will refer in the following sections to three particular subsets of the reduction rules, de�ned
as follows:

� The clean rule set, constituted of rules R and T ;
� The compact rule set, adding to the clean set rules SCA, SLA and SSP;
� The compact+ rule set, adding to the clean set rules GCA, GLA, SSP and LMG.

We show in Sect. 5 that the state space of a net can be reconstructed from that of its reduced
net and the set of inequalities collected when rules are applied. Before considering this result, we
illustrate the e�ects of reductions on two full examples.

4 Two illustrative examples

We illustrate our approach on two examples of Petri net taken from the Model Checking Contest
(MCC, http://mcc.lip6.fr), a recurring competition of model-checking tools [8].

4.1 HouseConstruction-10

Our �rst example is a variation of a Petri net model found in [16], which is itself derived from
the PERT chart of the construction of a house found in [13]. The model found in the MCC
collection, reproduced in Fig. 8, di�ers from that of [16] in that it omits time constraints and a
�nal sink place. In addition, the net represents the house construction process for a number of
houses simultaneously rather than a single one. The number of houses being built is represented
by the marking of place p1 of the net (10 in the net represented in Fig. 8).

This example is totally reduced by rule set compact. We list in Fig. 9 a possible reduction
sequence for our example, where each line describes one application of a rule. To save space, we
have omitted the removal of redundant transitions. For each reduction, we give an indication of
its kind (the same names given to the reduction rules in Sect. 3), the resulting marking equation
witnessing the reduction, and a short description. The �rst reduction, for instance, states that
place p19 is removed, being a duplicate of place p20. At the second step, places p11 and p7 are
agglomerated into a �fresh� place a1.

Each reduction is associated with an equation or inequality linking the markings of the net
before and after application of a rule. The system of inequalities gathered is shown in Fig. 10,
with agglomeration places ai eliminated. We show in the next section that the set of solutions of
this system, taken as markings, is exactly the set of reachable markings of the net.

4.2 SmallOperatingSystem-8192-4096

Our second example is shown in Fig. 11. It abstracts the lifecycle of a task in a simpli�ed
operating system handling the execution of tasks on a machine with several memory segments,

13

http://mcc.lip6.fr

10 p1

p10

p11

p13
p14

p15

p16 p17

p18 p19

p20
p21 p22

p26

p27

p3

p5

p6

p7

p9

t1

t10 t11

t12 t13

t14 t15

t16 t17

t18

t3

t4 t5 t6

t7

t8

t9

p8

p12

p4

p25

p23

t2

p2

Fig. 8 HouseConstruction-10 example net
.

disk controller units, and cores. The initial marking of the net gives the number of resources
available (e.g. there are 8192 available memory segments in our example).

This net is totally reduced by the compact+ strategy. The reduction traces are shown in
Fig. 12.

There are two interesting examples of reductions in Fig. 12 that feature the e�ectiveness of
strategy compact+.

A �rst example is the application of rule GLA that detected a (general) agglomeration loop
of size 2 involving places CPUUnit, TaskSuspended and ExecutingTask. (For added legibility,
we have colored the places and transitions involved in the �gure). In this context, transition

14

R |- p19 = p20 p19 duplicate

SCA |- a1 = p11 + p7 agglomeration

SCA |- a2 = p17 + p14 agglomeration

SCA |- a3 = p2 + p1 agglomeration

SCA |- a4 = p21 + p18 agglomeration

SCA |- a5 = p22 + p20 agglomeration

SCA |- a6 = p25 + p16 agglomeration

SCA |- a7 = p15 + a1 agglomeration

SCA |- a8 = p3 + a3 agglomeration

R |- p12 = p10 + p8 p12 redundant

R |- p13 = p10 + p9 p13 redundant

R |- a4 = a5 + p23 a4 redundant

R |- p27 = p23 + p26 p27 redundant

R |- p4 = p6 + a7 p4 redundant

SCA |- a9 = a2 + p10 agglomeration

SCA |- a10 = a6 + a7 agglomeration

SCA |- a11 = p23 + a5 agglomeration

SCA |- a12 = p9 + p5 agglomeration

SCA |- a13 = a11 + p26 agglomeration

SCA |- a14 = a13 + a9 agglomeration

R |- a12 = p6 + p8 a12 redundant

R |- a10 = a14 + p8 a10 redundant

SCA |- a15 = a14 + p8 agglomeration

SCA |- a16 = p6 + a8 agglomeration

SCA |- a17 = a15 + a16 agglomeration

SSP |- a17 <= 10 a17 source

Fig. 9 Reduction traces for net HouseConstruction-10

p19 = p20
p4 = p6 + p15 + p11 + p7

p12 = p10 + p8
p9 + p5 = p6 + p8

p13 = p10 + p9
p21 + p18 = p22 + p20 + p23

p27 = p23 + p26
p25 + p16 + p15 + p11 + p7 =

p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8
p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8 +

p6 + p3 + p2 + p1 ≤ 10

Fig. 10 HouseConstruction-10 inequality system.

startNext plays the role of transition t in the GLA rule depicted in Fig. 7 and suspend plays the
role of t′. After reduction, we introduce two new places, a1 and a2, in place of the initial three.

Our second example is the last rule of the reduction; an occurrence of rule LMG (see Def-
inition 11). The reduced net obtained just before the last reduction step is shown in Fig. 13.
This residual net is clearly a live marked graph. Its basis of marking invariants is added to the
equations by rule LMG. The �nal simpli�ed equation system is shown in Fig. 14.

These examples are instances of totally reducible nets. We have found many other examples
of totally reducible nets in the MCC benchmarks. In the general case, our reduction system is
not complete however; some nets may be only partially reduced, or not at all. When a net is only
partially reducible, the inequalities, together with an explicit or logic-based symbolic description
of the reachability set of the residual net, yield a hybrid representation of the state space of
the initial net. Such hybrid representations are certainly less convenient than a full equational
representation but are nonetheless suitable for model checking reachability properties or counting
markings.

15

8192

TaskOnDiskstartLoading

8192

FreeMemSegment

endLoading 4096

DiskControllerUnit startUnload

endUnload

LoadingMem

TransferToDisk

TaskReady

startF irst

TaskSuspended

freeMemory

suspend

8192

CPUUnit startNext

ExecutingTask

Fig. 11 Small Operating System Petri net

R |- TaskOnDisk = DiskControllerUnit + 4096

GLA |- a1 = CPUUnit + ExecutingTask

a2 = TaskSuspended + ExecutingTask

R |- a1 = 8192

SCA |- a3 = a2 + TaskReady

GLA |- a4 = DiskControllerUnit + TransferToDisk

a5 = a3 + TransferToDisk

LMG |- a4 + LoadingMem = 4096

FreeMemSegment + LoadingMem + a5 = 8192

Fig. 12 Reduction traces for net SmallOperatingSystem

startLoading

LoadingMem

endLoading

8192

FreeMemSegment

a5

freeMemory 4096

a4

Fig. 13 Residual net before application of rule LMG

16

DiskControllerUnit+ TransferToDisk +
LoadingMem = 4096

FreeMemSegment+ LoadingMem +
TaskSuspended+ ExecutingTask +

TaskReady + TransferToDisk = 8192
CPUUnit+ ExecutingTask = 8192

TaskOnDisk −DiskControllerUnit = 4096

Fig. 14 SmallOperatingSystem equation system.

5 Correctness of Markings Reconstruction

5.1 Net-abstractions and correctness

We prove that we can reconstruct the markings of an (initial) net, before application of a rule,
from that of the reduced net. This property ensues from the de�nition of a new relation, the net-
abstraction relation, which we de�ne below. For readability, we prove this result for the compact
rule set; the proof for rule set compact+ would be along the same lines.

We start by de�ning some notations useful in our proofs. We use U ,V, . . . for �nite sets of
non-negative integer variables. We use Q,Q′ for systems of linear equations (and inequalities) and
the notation V(Q) for the set of variables occurring in Q. The system obtained by concatenating
the relations in Q1 and Q2 is denoted (Q1;Q2) and the �empty system� is denoted ∅.

Let V be the set of variables occurring in Q, that is V = V(Q). A valuation e of NV is a
function from V to natural numbers. It is a solution of Q if all the relations in Q are (trivially)
valid when replacing all variables x in V by their value e(x). We denote 〈Q〉 the subset of NV
composed of all the solutions of Q.

If E ⊆ NV and U ⊆ V, then E ↓ U is the projection of E over variables U , that is the subset of
NU obtained from E by restricting the domain of its elements to U . Conversely, if U ⊇ V, we use
E ↑ U to denote the lifting of E to U , that is the largest subset E′ of NU such that E′ ↓ V = E.

De�nition 12 (Net-abstraction) A triple (N1, Q,N2) is a net-abstraction, or simply an ab-
straction, if N1, N2 are nets with respective sets of places P1, P2 (we may have P1 ∩ P2 6= ∅), Q
is a linear system of equations, and:

R(N1) = ((R(N2) ↑ V) ∩ (〈Q〉 ↑ V)) ↓ P1

where V = V(Q) ∪ P1 ∪ P2 .

Intuitively, N2 is an abstraction of N1 (through Q) if, from every reachable marking m ∈
R(N2), the markings obtained from solutions of Q�restricted to those solutions such that x =
m(x) for all �place variable� x in P2�are always reachable in N1. The de�nition also entails that
all the markings in R(N1) can be obtained this way.

Theorem 6 (Net-abstractions from reductions) For any nets N , N1, N2:

1. (N, ∅, N) is an abstraction;
2. If (N1, Q,N2) is an abstraction then (N1, Q

′, N3) is an abstraction if either:

(T) Q′ = Q and N3 is obtained from N2 by removing a redundant transition (see Sect. 3.1);
(R) Q′ = (Q; k.p = l) and N3 is obtained from N2 by removing a redundant place p and k.p = l

is the associated marking equation (see Sect. 3.2);
(A) Q′ = (Q; a = Σp∈A(p)), where a 6∈ V(Q) and N3 is obtained from N2 by agglomerating

the places in A as a new place, a (see Sect. 3.3);
(L) Q′ = (Q; p ≤ k) and N3 is obtained from N2 by removal of a source-sink pair (p, t) with

m0(p) = k (see Sect. 3.4).

17

Proof Property (1) is obvious from De�nition 12. Property (2) is proved by case analysis. First,
let V = V(Q) ∪ P1 ∪ P2 and U = V ∪ P3 and notice that for all candidate (N1, Q

′, N3) we have
V(Q′) ∪ P1 ∪ P3 = U . Then, in each case, we know (H) : R(N1) = (R(N2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1

and we must prove (G) : R(N1) = (R(N3) ↑ U ∩ 〈Q′〉 ↑ U) ↓ P1.

Case (T) : Q′ = Q. By Th. 1, we have P3 = P2, hence V = U , and R(N3) = R(N2). Replacing
R(N2) by R(N3) and V by U in (H) yields (G).

Case (R) : By Th. 2 we have : R(N2) = R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑ P2. replacing R(N2) by this
value in (H) yields R(N1) = ((R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑ P2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1. Since P2 ⊆ V,
we may safely lift to V instead of P2, so: R(N1) = (R(N3) ↑ V ∩ 〈k.p = l〉 ↑ V ∩ 〈Q〉 ↑ V) ↓ P1.
Which is equivalent to: R(N1) = (R(N3) ↑ V ∩ 〈Q; k.p = l〉 ↑ V) ↓ P1, and equal to (G) since
P3 ⊆ V and Q′ = (Q; k.p = l).

Case (A): Let Sp denotes the value Σp∈A(p). By Th. 3 we have:R(N2) = (R(N3) ↑ (P2∪P3)∩〈a =
Sp〉 ↑ (P2 ∪ P3)) ↓ P2. Replacing R(N2) by this value in (H) yields: R(N1) = (((R(N3) ↑
(P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1. Instead of V, we may lift to U
since U = V ∪ {a}, a 6∈ V(Q) and a 6∈ P1, so: R(N1) = (((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑
(P2 ∪ P3)) ↓ P2) ↑ U ∩ 〈Q〉 ↑ U) ↓ P1. Projection on P2 may be omitted since P2 ∪ P3 = P2 ∪ {a}
and a 6∈ V(Q), leading to:
R(N1) = ((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↑ U ∩ 〈Q〉 ↑ U) ↓ P1.

Since P2 ∪ P3 ⊆ U , this is equivalent to: R(N1) = (R(N3) ↑ U ∩ 〈a = Sp〉 ↑ U ∩ 〈Q〉 ↑ U) ↓ P1.
Grouping equations yields: R(N1) = (R(N3) ↑ U ∩ 〈Q; a = Sp〉 ↑ U) ↓ P1, which is equal to (G)
since Q′ = (Q; a = Sp).

case (L): The proof is similar to that of case (R) and is based on the relation R(N2) = R(N3) ↑
P2 ∩ 〈p ≤ k〉 ↑ P2, obtained from Th. 5. ut

Theorem 6 states the correctness of our reduction systems, since we can compose reductions
sequentially and always obtain a net-abstraction. In particular, if a net N is fully reducible, then
we can derive a system of linear equations Q such that (N,Q, ∅) is a net-abstraction. In this case
the reachable markings of N are exactly the solutions of Q, projected on the places of N . If the
reduced net, say Nr, is not empty then each marking m ∈ R(Nr) represents a set of markings
〈Q〉m ⊂ R(N): the solution set of Q in which the places of the residual net are constrained as in
m, and then projected on the places of N . Moreover the family of sets { 〈Q〉m | m ∈ R(Nr)} is
a partition of R(N).

5.2 Order of application of rules and con�uence

Our reduction system does not constrain the order in which reductions are applied. Instead, our
tool attempts to apply them in an order that minimizes reduction costs.

Rules can be classi�ed into �local� rules, detecting some structural patterns on the net and
transforming them (like removal of duplicate transitions or places, or chain agglomerations), and
`'non-local� rules, like removal of redundant places in the general case (using integer program-
ming). Our implementation defers the application of the non-local rules until no more local rule
can be applied. This decreases the cost of non-local reductions as they are applied to smaller
nets.

Another issue is the con�uence of the rules. Our reduction systems compact and compact+

are not con�uent: di�erent reduction sequences for the same net could yield di�erent residual
nets. For rule set compact this follows from the fact that agglomeration rules do not preserve in
general the ordinary character of the net (that all arcs have weight 1), while agglomeration rules
require that the candidate places are connected by arcs of weight 1 to the same transition.

18

An example net exhibiting the problem is shown in Fig. 15(a). Agglomeration of places p3
and p4 in this net by rule SLA yields the net in Fig. 15(b). Place a1 in the reduced net is the
result of agglomerating p3 and p4; this is witnessed by equation a1 = p3 + p4. Note that the arcs
connecting place a1 to transitions t0 and t1 both have weight 2.

t0

t1

p2 p3 p4t2

t3

p0

p1

(a)

t0

t1

p2 a1

p0

p1

2

2

(b)

Fig. 15 Non con�uence of rule set compact

Next, place p2 in the reduced net is a duplicate of place a1, according to the de�nitions of
Sect. 3.2, the corresponding equation is 2.p2 = a1. But, from the same equation, a1 is a duplicate
of p2 as well. But removing p2 or a1 have di�erent e�ects:

� If a1 is removed, then we can fully reduce the net by the following sequence of reductions:
SCA |- a2 = p1 + p2 Simple chain agglomeration

SCA |- a3 = a2 + p0 Simple chain agglomeration

R |- a3 = 1 constant place

� If p2 is removed instead, then the resulting net cannot be reduced further: places p0, a1 and
p1 cannot be agglomerated because of the presence of arcs with weight larger than 1.

So, rule set compact is not con�uent. But the lack of con�uence in this case is due to a self-
imposed limit of our agglomeration reductions. This constraint could be slightly relaxed, taking
advantage of the fact that multiplying or dividing by some constant the edges adjacent to a place
and its marking would not change the number of markings. Handling some patterns of weighted
arcs in agglomerations is indeed a scheduled extension to our agglomeration rules.

But even if agglomerations were not introducing weighted arcs, rule set compact+ would not
be con�uent, as illustrated by the next example.

By the following reduction sequence, the net in
Fig. 16(a) reduces to the net of Fig. 16(b), which is irreducible by our strongest system compact+.

SCA |- a1 = p2 + p3 Simple chain agglomeration

SCA |- a2 = p1 + a1 Simple chain agglomeration

GCA |- a3 = p4 + a2 General chain agglomeration

a4 = p5 + a2

But by the following alternative reduction sequence, the same net reduces to the net of
Fig. 16(c), also irreducible and di�erent from the net of Fig. 16(b).

19

p3

t6

t4 t2

p2

p1

t3

p6

p5 p4

t1

t5

(a)

t3

a4

t1

p6

a3

(b)

t4

a4

p6

a3

p1

t3 t1

(c)

Fig. 16 Non con�uence of rule set compact+

GCA |- a1 = p4 + p2 General chain agglomeration

a2 = p5 + p2

GCA |- a3 = a1 + p3 General chain agglomeration

a4 = a2 + p3

The non-con�uence of these reductions introduces two directions for future works. First, the
cases of non-con�uence should be investigated further, and may inspire new reductions that
would make them con�uent. Second, it would be worth �nding an algorithm which determines
if a net is totally reducible, and �nds the correct reduction strategy.

6 Counting Markings

We consider the problem of counting the number of markings of a net N from the set of markings
of the residual net Nr and the (collected) system of linear equations Q. For totally reduced nets,
the problem of counting the markings of N translates to that of counting the number of non-
negative integer solutions to Q. For partially reduced nets, a similar process must be iterated
over all markings m reachable in Nr (we discuss a better implementation later).

6.1 O� the shelf methods

Counting the number of integer solutions of a linear system of equations (inequalities can always
be represented by equations through the addition of slack variables) is an active area of research.

A method was proposed in [1], implemented in the tool azove, for the particular case where
variables take their values in {0, 1}. The method consists of building a Binary Decision Diagram
for each equation, using Shannon expansion, and then to compute their conjunction (this is done
with a specially tailored algorithm). The number of paths of the BDD gives the expected result.
Our experiments with azove show that its performances heavily depend on the ordering chosen

20

for the BDD variables; this is typical of decision diagram based techniques. In any case, its usage
in our context would be limited to safe nets.

For the general case, the current state of the art can be found in the work of De Loera et
al. [14,15] on counting lattice points in convex polytopes. Their approach is implemented in a tool
called LattE; it relies on algebraic and geometric methods; namely the use of rational functions
and the decomposition of cones into unimodular cones. Our experiments with LattE show that
it can be conveniently used on systems with, say, less than 50 variables. For instance, LattE is
strikingly fast (less than 1s) at counting the number of solutions of the systems computed in
Sect. 4. Moreover, its running time does not generally depend on the constants found in the
system. As a consequence, computing the reachability count for 10 or, say, 1012 houses in the
HouseConstruction net, takes exactly the same time.

An alternative to LattE is the barvinok tool, that provides a library for counting the number
of integer points in parametric and non-parametric polytopes. The underlying methods behind
this tool are presented in [22].

On totally reduced nets, we found LattE and barvinok equally convenient, though barvinok

seems able to handle larger systems (up to a few hundred variables). Performances of both LattE

and barvinok may slightly vary depending on the options selected when running the tools (many
are available), which makes a rigorous comparison di�cult.

On partially reduced net, that is in the case where we need to count the solutions of many
instances of the same linear system di�ering only by some constants, LattE does not provide
any builtin support. On the other hand barvinok supports so-called parameterized polytopes:
Given an equation system in which some variables are declared as parameters, it is able to
compute an expression (a quasi-polynomial) computing the number of solutions of the system
given values for the parameters. This should be exactly what we need for handling partially
reduced nets, but our preliminary experiments suggest that the method is limited to a small
number of parameters, otherwise the expressions computed tend to be huge. It is interesting
however, for further investigations, that a theory is available to solve such problems.

Though our experiments with LattE and barvinok su�ce to show that these approaches are
practicable, we implemented our own counting method in a library called Polycount. The methods
underlying Polycount are described in the next section.

Polycount takes advantage of the strati�ed structure of the systems obtained from reductions,
and it relies on combinatorial rather than geometric methods. Its main bene�ts over LattE and
barvinok, important for practical purposes, are that it can handle systems with many variables
(say thousands), though it can be slower than those on small systems. For partially reduced
nets (i.e. for parameterized equation systems), Polycount can compute e�ciently small symbolic
expressions or multivariate polynomials acting as generating functions. But these bene�ts come
at a cost: Polycount cannot handle the full rule set compact+, its usage is limited to the simpler
set compact (see their de�nitions at the end of Sect. 3).

6.2 Polycount � an adhoc counting method

Polycount is a library which takes as input the system of linear equationsQ generated by compact,
and produces a multivariate polynomial g(Q). The variables of the resulting polynomial corre-
spond to the places of the residual net Nr. At the moment, polycount is not able to handle all
the constraints generated using the compact+ strategy.

Given a reduction (N,Q,Nr) and a marking m of the residual net, that is a valuation of
the variables in g(Q), the expression g(Q)(m) evaluates to the number of markings in N that
correspond to the marking m in Nr. As a particular case, when N is totally reduced, Nr has

21

no places, which implies that the resulting polynomial is a constant (a zero degree polynomial)
equal to the number of reachable marking in N .

We start by giving a syntactic de�nition of the possible set of equations Q generated with
compact, and de�ne inp(Q) as the set of variables remaining in the residual net Nr. The system
of equations (Q) generated by the reductions in compact can be described by the following
grammar, where, for the sake of conciseness, we write A ` instead of SCA ` or SLA ` for
constraints originating from agglomerations.

Q ::= ∅ | Q,A ` x = y + z | Q,R ` x = L(y1, .., yk)

where x, y, z, yi are variables and L(y1, .., yk) is a linear combination of y1, .. yk. Basically, Q is
a (comma-separated) list of equations of the form A ` ... or R `

We assume that P is the set of places of N in the reduction (N,Q,Nr). Then, the set of
places of Nr only depends on N and Q, and is written inpP (Q), or simply inp(Q) when P is
obvious from the context. We call inp(Q) the set of input variables of Q. It can be de�ned by
induction on the list Q.

inpP (∅) = P
inpP (Q,A ` x = y + z) = {x} ∪ (inpP (Q) \ {y, z})
inpP (Q,R ` x = L(y1, .., yk)) = inpP (Q) \ {x}

The empty set of equations ∅ implies that no reduction has been applied to N , hence Nr = N ,
and inpP (∅) = P . In the agglomeration case A ` x = y+ z, a new place x is introduced, whereas
two places y and z are removed from the net. The de�nition of inp(Q,A ` x = y + z) re�ects
the introduction of x and the removal of y and z. Similarly, the de�nition of inp(Q,R ` x =
L(y1, .., yk)) re�ects the removal of the redundant place x.

As a particular case, if N is totally reduced by an abstraction (N,Q, ∅), then inp(Q) is empty.

Counting the number of solutions. In order to count the number of reachable markings
of N , we de�ne a function g parameterized by a system of equations Q. The function g(Q) :

Ninp(Q) → N, applied to a marking of the residual net Nr, computes the number of associated
markings in the original netN . It will be shown that g(Q) is actually a polynomial in the variables
of inp(Q). We build the parameterized function g(Q) incrementally by providing a (computable)
term whose free variables are included in inp(Q). Then, we show that this term is actually a
multivariate polynomial.

g(∅) = 1
g(Q,A ` x = y + z) =

∑x
y=0 g(Q) [z := x− y]

g(Q,R ` x = L(y1, .., yk)) = g(Q) [x := L(y1, .., yk)]

where g(Q) [x := α] is the substitution of variable x by α in g(Q).
The empty case g(∅) = 1 holds for an unreduced net N . It returns the term 1, to be considered

as a constant function with domain Ninp(∅), that is NP . This means that, given one marking
of N (that is an element of NP), the number of associated markings in N is, obviously, 1. In
contrast, the term g(Q,A ` x = y + z) is obtained by counting all markings where y and z
are such that y + z = x, that is y takes all values in [0;x] (hence

∑x
y=0) and z must be equal

to x − y (hence the substitution). Similarly, the term g(Q,R ` x = L(y1, .., yk)) re�ects the
redundancy between x and the places (yi) with the substitution of x by L(y1, .., yk). As an
example, consider g(R ` x = L(y1, .., yk)), that is a redundancy occurring in the initial net N .
It is equal to g(∅) [x := L(y1, .., yk)], that is 1. This shows that a redundant place in the initial
net does not contribute to additional markings.

22

We illustrate the computation of the number of markings by considering the subset of the
HouseConstruction example inside the dashed zone (see �g. 8). This net consists of places in the
range p18�p27 and is reduced by our system to a single place, a13. The subset of equations (Q)
related to this subnet is:

(i) R ` p19 = p20 (v) R ` p27 = p23 + p26
(ii) A ` a4 = p21 + p18 (vi) A ` a11 = a5 + p23

(iii) A ` a5 = p22 + p20 (vii) A ` a13 = a11 + p26
(iv) R ` a4 = a5 + p23

One checks that inp(Q) = {a13}, as expected. Let us compute the term g(Q) in an incremental
way. We will de�ne g1 as the expression g((i)) �the system consisting of equation (i) alone�g2
as g((i), (ii)); and so on, ending with g7 = g(Q).

We introduce a useful notation: let ((k))(x) be the expression
(
x+k−1
k−1

)
, which denotes the

number of ways to put x tokens into k slots. It is also the number of positive solutions to the
equation y1 + · · · + yk = x. We observe that ((1))(x) = 1, and for any x > 0,

∑x
y=0((k))(y) =

((k + 1))(x) (the proof is left as a combinatorial exercise).

� By de�nition, g1 is g((i)) = g(∅) [p19 := p20], that is g1 = 1.
� g2 is

∑a4
p21=0 g1 [p18 := a4 − p21], that is g2 =

∑a4
p21=0 1, which happens to be a4 + 1 or, using

our notation, g2 = ((2))(a4).
� g3 is

∑a5
p22=0 g2 [p20 := a5 − p22], that is g3 =

∑a5
p22=0((2))(a4) = ((2))(a4)× ((2))(a5).

� g4 = ((2))(a5 + p23)× ((2))(a5).
� Equation (v) has no e�ect since p27 does not occur in g4, hence g5 = g4.
� g6 is

∑a11
a5=0 g5 [p23 := a11 − a5], that is g6 =

∑a11
a5=0((2))(a11) × ((2))(a5), which is simpli�ed

into g6 = ((2))(a11)× ((3))(a11).
� The last equation leads to g7 =

∑a13
a11=0 g6 [p26 := a13 − a11], that is g7 =

∑a13
a11=0 g6.

Hence, we �nally get g =
∑a13
a11=0((2))(a11)× ((3))(a11), which, unfortunately, cannot be easily

simpli�ed. As explained next, this expression is actually a polynomial of degree 4 in the variable
a13. With some extra computations we can actually show that g is equivalent to 1

8a
4
13 + 11

12a
3
13 +

19
8 a

2
13 + 31

12a13 + 1.

Theorem 7 Given a system of reduction equations Q obtained with strategy compact, the term
g(Q) is equal to a polynomial with variables included in inp(Q).

Proof This is shown by structural induction on Q. The case Q = ∅ is immediate. The case Q =
(Q′, R ` x = L(y1, .., yk)) is shown with no di�culty by induction hypothesis. The case Q =
(Q′, A ` x = y + z) introduces the term

∑x
y=0 g(Q′) [z := x− y] whose variables are included

in the set {x} ∪ (inp(Q′) \ {y, z}) = inp(Q). Besides, this term happens to be a polynomial,
as a consequence of the following: �rst notice that by induction hypothesis, g(Q′) [z := x− y]
is a polynomial with variables in inp(Q) \ {z}. Therefore it can be decomposed into a �nite
sum

∑
i∈I αiy

i, where αi are polynomials with variable in inp(Q) \ {z, y}. The result follows
from the fact that the term Si =

∑x
y=0 y

i is equal to a polynomial in x. Actually we have that Si
is a polynomial in x of degree i+ 1 since, thanks to a well-known induction formula, it is known
that (i+ 1)Si = (x+ 1)i+1 −

∑i−1
k=0

(
i+1
k

)
Sk. ut

Polynomial optimizations. By applying some local rewriting rules, we are sometimes able to
simplify the expression of g(Q) (e.g. factorize a subterm out of a sum, when it does not depend
on the sum variable). In the most favorable cases, we may factorize the polynomial g(Q) into a
product of the form Πx∈inp(Q)gx, where gx is a polynomial on the single variable x. We call this

23

a partitioned form of g(Q). Such a form exists, for instance, when the initial net is composed
of independent subnets. Partitioned forms are e�ciently computed in the context of SDDs (see
next).

Reducible and non-reducible nets. In practice, even when the input net is fully reducible,
that is when g(Q) is a constant, we may have to compute very complex, intermediate polynomial
expressions g1, g2, . . .With polycount, when polynomial optimizations apply gracefully, we are
able to compute g(Q) e�ciently for nets having up to a few thousands places. On the contrary,
if intermediate polynomials cannot be optimized, computation can quickly become untractable:
it requires to repeatedly multiply polynomials having hundreds of variables and a degree over a
few hundreds.

When the reduction (N,Q,Nr) is only partial, the computation of the number of markings
can be performed by iterating over all markings mr of Nr and accumulating, for each reduced
marking, the value of g(Q)(mr). This approach is obviously very ine�cient when R(Nr) is large.

When the set of markings of Nr is represented by a decision diagram, each level in the diagram
concerns only a given place of Nr. The computation of g(Q)(mr) for all markingsmr still requires
to iterate over all markings, that is all paths of the diagram, which is expensive and ine�cient
in general. However, if g(Q) is in partitioned form (as de�ned above), then each subterm of the
partitioned polynomial g(Q) can be computed locally, at each level of the diagram. Hence, the
computation of g(Q) directly matches the structure of the diagram and the number of markings
of N can be computed very e�ciently in a single recursive traversal of the diagram. Polycount
tries to return its result, as much as possible, in a partitioned form.

7 Computing Experiments

Fig. 17 Distribution of reduction ratios (place count) over the 766 PN instances.

We have integrated our reduction system and counting method inside a state space generation
tool called tedd. The tool is part of our Petri nets analysis toolbox called TINA [5] (www.laas.
fr/tina). Tool tedd makes use of symbolic exploration and stores markings in a Set Decision
Diagram [21]. For counting markings in presence of agglomerations, one has the choice between
using the external tool LattE or using our native counting method (Polycount) discussed in Sect.
6.

Benchmarks. Our benchmark is made of the full collection of Petri nets used in the Model
Checking Contest [8,11]. It includes 766 instances of Petri nets, organized into 82 classes (simply

24

www.laas.fr/tina
www.laas.fr/tina

Fig. 18 Cumulative reduction ratios (place count) over the 766 PN instances.

called models). Each class includes several nets (called instances) that typically di�er by their
initial marking or by the number of components constituting the net. The size of the nets vary
widely, from 9 to 50 000 places, 7 to 200 000 transitions, and 20 to 1 000 000 arcs. Most nets
are ordinary (arcs have weight 1) but a signi�cant number are generalized nets. Overall, the
collection provides a large number of PN with various structural and behavioral characteristics,
covering a large variety of use cases.

Reduction ratio and prevalence. Our �rst results are about how well the reductions perform.
We provide three di�erent reduction strategies:

� clean, that only applies removal of redundant places and transitions (rules R and T in
Sect. 3);

� compact, that extends strategy clean with rules for reduction of simple loop and chain
agglomerations (rules SLA and SCA from De�nitions 5 and 6) as well as simple source-sink
pairs elimination (rule SSP);

� compact+, that extends strategy compact with generalized versions of loop and chain agglom-
eration (rules GLA and GCA from Def. 9 and 7) as well as the simpli�cation of Live Marked
Graphs (rule LMG).

We give in Fig. 17 the reduction ratios obtained with our three strategies. The reduction
ratio is expressed in terms of number of places (before and after reduction) for each of the MCC
instances, sorted in descending order. We overlay the results for the di�erent strategies (the lower,
in dark/green color, for clean; the middle, in light/yellow color for compact; and the upper, in
orange, for compact+), which means that values at the same instance count (points with the
same abscissa but on di�erent curves) may not correspond to the same benchmark instance.

With this �gure, we see that there is a surprisingly high number of models that are totally
reducible by our approach, since about a quarter of the models (188 instances out of 766) are
fully reducible. We also observe that the impact of strategy clean alone is minor compared
to compact, and that compact+ allows us to completely reduce about 50 more instances than
compact alone.

In Fig. 18, we display a �cumulative version� of the same results. For a given reduction ratio,
in abscissa, we give the total number of instances that are reduced by at least this amount.
(Figure 18 can be interpreted as an alternative presentation of the data in Fig. 17 where we
have switched the axis.) With this �gure, we can easily answer questions of the form �how
many instances are reduced by X% or more with strategy Y?�. Globally, our results show that
reductions have a signi�cant impact on about half the instances, with a very high impact on
about a quarter of them. For instance, we can observe that about half the instances are reduced

25

by a factor of more than 25% with strategy compact+. Also, there are about 150 instances that
cannot be reduced.

Computing time of reductions. Many of the reduction rules implemented have a cost poly-
nomial in the size of the net. The rule removing redundant places in the general case is more
complex, since it requires to compute invariants on the net and therefore may require to solve
an integer programming problem. For this reason we limit its application to nets with less than
50 places. With this restriction, reductions are computed in a few seconds in most cases, and in
about 3 minutes for the largest nets. The restriction is necessary but, because of it, we do not
reduce some nets that would be fully reducible otherwise.

Impact on the marking count problem. In our benchmark, there are 218 models (out of
766) for which no tool was ever able to compute a marking count in the condition of the MCC
(1 hour of computation with a cap of 16 Gb on active memory). Those are the most di�cult
instances in the contest. With our method, we can count the markings of at least 22 of these
�most di�cult� instances.

Net instance size MCC best tedd native tedd LattE speed-up
] places] states

DLCround-13a 463 2.40e17 9 0.33 - 27
FlexibleBarrier-22a 267 5.52e23 5 0.25 - 20
NeighborGrid-d4n3m2c23 81 2.70e65 330 0.21 44 1571
NeighborGrid-d5n4m1t35 1 024 2.85e614 - 340 - ∞
Referendum-1000 3 001 1.32e477 29 12 - 2
RobotManipulation-00050 15 8.53e12 94 0.1 0.17 940
RobotManipulation-10000 15 2.83e33 - 102 0.17 ∞
Di�usion2D-50N050 2 500 4.22e105 1 900 5.84 - 325
Di�usion2D-50N150 2 500 2.67e36 - 5.86 - ∞
DLCshifumi-6a 3 568 4.50e160 950 6.54 - 145
Kanban-1000 16 1.42e30 240 0.11 0.24 2182
HouseConstruction-100 26 1.58e24 630 0.4 0.85 1575
HouseConstruction-500 26 2.67e36 - 30 0.85 ∞
ERK-1000 11 1.41e16 550 - 0.13 4231
ERK-100000 11 1.39e28 - - 0.13 ∞
SmallOS-2048-512 9 1.04e14 1500 - 0.15 10000
SmallOS-8192-4096 9 2.50e17 - - 0.14 ∞
Airplane-4000 28 019 2.18e12 2520 102 - 25
AutoFlight-48a 1127 1.61e51 19 3.57 - 5
DES-60b 519 8.35e22 2300 364 - 6
Peterson-4 480 6.30e8 470 35.5 - 13
Peterson-5 834 1.37e11 - 1200 - ∞

Table 1 Times in seconds and speed-up for counting markings on some totally (top) and partially (bottom)
reduced nets

If we concentrate on tractable nets�instances managed by at least one tool in the MCC
2018�our approach yields generally large improvements on the time taken to count markings;
sometimes orders of magnitude faster.

Table 1 (top) lists the CPU time (in seconds) for counting the markings on a selection of fully
reducible instances. We give the best time obtained by a tool during the last MCC (third column)
and compare it with the time obtained with tedd, using two di�erent ways of counting solutions
(�rst with our own, Polycount, method then with LattE). We also give the resulting speed-up.
These times also include parsing and applying reductions. An absent value (−) means that it
cannot be computed in less than 1 hour with 16 Gb of storage, or that particular method is not

26

applicable to that model (e.g. the last four totally reducible models require strategy compact+,
which is not supported by Polycount).

Concerning partially reducible nets, the improvements are less spectacular in general, though
still signi�cant. Counting markings in this case is more expensive than for totally reduced nets.
But, more importantly, we have to build in that case a representation of the state space of the
residual net, which is typically much more expensive than counting markings. Furthermore, if
using symbolic methods for that purpose, several other parameters come into play that may
impact the results, like the choice of an order on decision diagram variables or the particular
kind of diagrams used. Nevertheless, improvements are clearly visible on a number of example
models; some speedups are shown in Table 1 (bottom). Also, to minimize such side issues, instead
of comparing tedd with compact reductions with the best tool performing at the MCC, we
compared it with tedd without reductions or with the weaker clean strategy. In that case,
compact reductions are almost always e�ective at reducing computing times.

Finally, there are also a few cases where applying reductions lower performances, typically
when the reduction ratio is very small. For such quasi-irreducible nets, the time spent computing
reductions is obviously wasted.

8 Related Work and Conclusion

Our work relies on well understood structural reduction methods, adapted here for the purpose
of abstracting the state space of a net. This is done by representing the e�ects of reductions by
a system of linear equations. To the best of our knowledge, reductions have never been used for
that purpose before.

Linear algebraic techniques are widely used in Petri net theory but, again, not with our exact
goals. It is well known, for instance, that the state space of a net is included in the solution set of
its so-called �state equation�, or from a basis of marking invariants. But these solutions, though
exact in the special case of live marked graphs, yield approximations that are too coarse. Other
works take advantage of marking invariants obtained from semi�ows on places, but typically for
optimizing the representation of markings in explicit or symbolic enumeration methods rather
than for helping their enumeration, see e.g. [18,23]. Finally, these methods are only remotely
related to our.

Another set of related work concerns symbolic methods based on the use of decision diagrams.
Indeed they can be used to compute the state space size. In such methods, markings are computed
symbolically and represented by the paths of some directed acyclic graph, which can be counted
e�ciently. Crucial for the applicability of these methods is determining a �good� variable ordering
for decision diagram variables, one that maximizes sharing among the paths. Unfortunately,
�nding a convenient variable ordering may be an issue, and some models are inherently without
sharing. For example, the best symbolic tools participating to the MCC 2018 can solve our
illustrative example only for p1 ≤ 200, at a high cost, while we compute the result in a fraction
of a second for virtually any possible initial marking of p1.

Finally, though not aimed at counting markings nor relying on reductions, the work reported
in [20] is certainly the closest to our. It de�nes a method for decomposing the state space of
a net into the product of �independent sets of submarkings�. The ideas discussed in the paper
resemble what we achieved with agglomeration. In fact, the running example in [20], reproduced
here in Fig. 1, is a fully reducible net in our approach. But no e�ective methods are proposed
to compute decompositions.

27

Concluding remarks.We propose a new symbolic approach for representing the state space of
a PN relying on systems of linear equations. Our results show that the method is almost always
e�ective at reducing computing times and memory consumption for counting markings. Even
more interesting is that our methods can be used together with traditional explicit and symbolic
enumeration methods, as well as with other abstraction techniques like symmetry reductions for
example. They can also help for other problems, like reachability analysis.

There are many opportunities for further research. For the close future, we are investigating
richer sets of reductions for counting markings and application of the method to count not only
the markings, but also the number of transitions of the reachability graph. Model-checking of
linear reachability properties is another obvious prospective application of our methods. On the
long term, we also plan to �nd e�cient methods for describing the state spaces of bounded Petri
nets using only sets of solutions to systems of linear equations; that is a method for computing
a fully equational descriptions of its state space.

References

1. Markus Behle and Friedrich Eisenbrand. 0/1 vertex and facet enumeration with BDDs. In 9th Workshop on
Algorithm Engineering and Experiments. SIAM, 2007.

2. Gérard Berthelot. Checking properties of nets using transformations. In European Workshop on Applications
and Theory in Petri Nets, pages 19�40. Springer, 1985.

3. Gérard Berthelot. Transformations and decompositions of nets. In Advanced Course on Petri Nets, pages
359�376. Springer, 1986.

4. Bernard Berthomieu, Didier Le Botlan, and Silvano Dal Zilio. Petri net reductions for counting markings. In
International Symposium on Model Checking Software, volume 10869 of LNCS, pages 65�84. Springer, June
2018.

5. Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. The tool TINA�construction of abstract
state spaces for Petri nets and Time Petri nets. International journal of production research, 42(14):2741�
2756, 2004.

6. Frederic Commoner, Anatol W. Holt, Shimon Even, and Amir Pnueli. Marked directed graphs. Journal of
Computer and System Sciences, 5(5):511�523, 1971.

7. Javier Esparza and Claus Schröter. Net reductions for LTL model-checking. In Advanced Research Working
Conference on Correct Hardware Design and Veri�cation Methods, pages 310�324. Springer, 2001.

8. Fabrice Kordon et al. Complete Results for the 2018 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2018/results.php, June 2018.

9. Fabrice Kordon et al. MCC'2017�The Seventh Model Checking Contest. In Transactions on Petri Nets and
Other Models of Concurrency XIII, pages 181�209. Springer, 2018.

10. Michel Hack. Decidability questions for Petri Nets. PhD thesis, Massachusetts Institute of Technology, 1976.
11. Lom M. Hillah and Fabrice Kordon. Petri Nets Repository: a tool to benchmark and debug Petri Net tools. In

38th International Conference on Petri Nets and Other Models of Concurrency (Petri Nets), volume 10258
of LNCS. Springer, June 2017.

12. Jonas F Jensen, Thomas Nielsen, Lars K Oestergaard, and Ji°í Srba. TAPAAL and reachability analysis of
P/T nets. In Transactions on Petri Nets and Other Models of Concurrency XI, pages 307�318. Springer,
2016.

13. Ferdinand K Levy, Gerald L Thompson, and JD Wiest. Introduction to the critical-path method. Industrial
Scheduling, Prentice-Hall, Englewood Cli�s (NJ), 1963.

14. Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and Geometric Ideas in the Theory
of Discrete Optimization. SIAM, 2013.

15. Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. E�ective lattice point
counting in rational convex polytopes. Journal of Symbolic Computation, 38(4), 2004.

16. James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1981.

17. Laura Recalde, Enrique Teruel, and Manuel Silva. Improving the decision power of rank theorems. In
1997 IEEE Int. Conf. on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation,
volume 4, pages 3768�3773, 1997.

18. Karsten Schmidt. Using Petri net invariants in state space construction. Tools and Algorithms for the
Construction and Analysis of Systems, pages 473�488, 2003.

28

19. Manuel Silva, Enrique Teruel, and José Manuel Colom. Linear algebraic and linear programming techniques
for the analysis of place/transition net systems. In Advanced Course on Petri Nets, pages 309�373. Springer,
1996.

20. Christian Stahl. Decomposing Petri net State Spaces. In 18th German Workshop on Algorithms and Tools
for Petri Nets (AWPN 2011), Hagen, Germany, Sep 2011.

21. Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and Fabrice Kordon. Hierarchical set decision
diagrams and regular models. In TACAS�Tools and Algorithms for the Construction and Analysis of Systems,
pages 1�15, 2009.

22. Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe. Counting
integer points in parametric polytopes using barvinok's rational functions. Algorithmica, 48(1):37�66, 2007.

23. Karsten Wolf. Generating Petri net state spaces. Petri Nets and Other Models of Concurrency�ICATPN
2007, pages 29�42, 2007.

29

	Introduction
	Petri Nets
	The Reduction System
	Two illustrative examples
	Correctness of Markings Reconstruction
	Counting Markings
	Computing Experiments
	Related Work and Conclusion

