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New hook-content formulas for strict partitions

Introduction

The basic knowledge on partitions, Young tableaux and symmetric functions could be found in [START_REF] Stanley | Enumerative Combinatorics[END_REF]. In this paper, we focus on strict partitions. A strict partition is a finite strict decreasing sequence of positive integers λ = (λ 1 , λ 2 , . . . , λ ℓ ). The integer |λ| = 1≤i≤ℓ λ i is called the size of the partition λ and ℓ(λ) = ℓ is called the length of λ. For convenience, let λ i = 0 for i > l(λ). A strict partition λ can be identified with its shifted Young diagram, which means that the i-th row of the usual Young diagram is shifted to the right by i boxes. Therefore the leftmost box in the i-th row has coordinate (i, i + 1). For the (i, j)-box in the shifted Young diagram of the strict partition λ, we can associate its hook length, denoted by h (i,j) , which is the number of boxes exactly to the right, or exactly above, or the box itself, plus λ j . For example, consider the box = (i, j) = (1, 3) in the shifted Young diagram of the strict partition [START_REF] Han | Difference operators for partitions and some applications[END_REF][START_REF] Han | Hook lengths and shifted parts of partitions[END_REF][START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF][START_REF] Bandlow | An elementary proof of the hook formula[END_REF]. There are 1 and 5 boxes above and to the right of the box respectively. Since λ 3 = 4, the hook length of is equal to 1 + 5 + 1 + 4 = 11, as illustrated in Figure 1. The content of = (i, j) is defined to be c = ji, so that the leftmost box in each row has content 1. Also, let H(λ) be the multi-set of hook lengths of boxes and H λ be the product of all hook lengths of boxes in λ.

Our goal is to find some hook-content formulas for strict partitions, by analogy with that for ordinary partitions. For the ordinary partition ν, it is well known that (see [START_REF] Han | The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension, and applications[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF])

(1.1) f ν = |ν|! H ν and 1 n! |ν|=n f 2 ν = 1,
where H ν denotes the product of all hook lengths of boxes in ν and f ν denotes the number of standard Young tableaux of shape ν. The first author conjectured [START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF] that is always a polynomial in n for all k ∈ N, which was generalized and proved by Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF], and later generalized in [START_REF] Han | Difference operators for partitions and some applications[END_REF] (see also [START_REF] Dehaye | Difference operators for partitions under the Littlewood decomposition[END_REF][START_REF] Han | Hook lengths and shifted parts of partitions[END_REF][START_REF] Han | Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition[END_REF][START_REF] Han | Polynomiality of some hook-content summations for doubled distinct and self-conjugate partitions[END_REF][START_REF] Nekrasov | Seiberg-Witten theory and random partitions[END_REF][START_REF] Olshanski | Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter[END_REF][START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF][START_REF] Panova | Polynomiality of some hook-length statistics[END_REF]).

P (n) = 1 n! |ν|=n f 2 ν ∈ν h 2k 12 
For two strict partitions λ and µ, we write λ ⊇ µ if λ i ≥ µ i for all i ≥ 1. In this case, the skew strict partition λ/µ can be identified with its skew shifted Young diagram. For example, the skew strict partition (7, 5, 4, 1)/(4, 2, 1) is represented by the white boxes in Figure 2. Let f λ (resp. f λ/µ ) be the number of standard shifted Young tableaux of shape λ (resp. λ/µ). The following are well-known formulas (see [START_REF] Bandlow | An elementary proof of the hook formula[END_REF][START_REF] Schur | Über die Darstellung der symmetrischen und der alternienden Gruppe durch gebrochene lineare Substitutionen[END_REF][START_REF] Thrall | A combinatorial problem[END_REF]) analogous to (1.1):

(1.2) f λ = |λ|! H λ and 1 n! |λ|=n 2 n-ℓ(λ) f 2 λ = 1.
In this paper, we generalize the latter equality of (1.2) by means of the following results.

Theorem 1.1. Suppose that Q is a given symmetric function, and µ is a given strict partition. Then

P (n) = |λ/µ|=n 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ H λ Q c 2 : ∈ λ is a polynomial in n, where Q( c 2 :
∈ λ) means that |λ| of the variables are substituted by c 2 for ∈ λ, and all other variables by 0. Theorem 1.2. Suppose that k is a given nonnegative integer. Then

|λ|=n 2 |λ|-ℓ(λ) f λ H λ ∈λ c + k -1 2k = 2 k (k + 1)! n k + 1 .
When k = 0 we derive the latter identity of (1.2). When k = 1, Theorem 1.2 becomes

|λ|=n 2 |λ|-ℓ(λ) f λ H λ ∈λ c 2 = n 2 ,
which could also be obtained by setting µ = ∅ in the next theorem.

Theorem 1.3. Let µ be a strict partition. Then

(1.3) |λ/µ|=n 2 |λ|-ℓ(λ)-|µ|+ℓ(µ) f λ/µ H µ H λ   ∈λ c 2 - ∈µ c 2   = n 2 + n|µ|.
The proofs of those theorems are given in Section 4, by using the difference operator technique.

Difference operators

For each strict partition λ, the symbol λ + (resp. λ -) always represents a strict partition obtained by adding (resp. removing) a box to (resp. from) λ. In other words, |λ + /λ| = 1 and |λ/λ -| = 1. By analogy with the difference operator for ordinary partitions introduced in [START_REF] Han | Difference operators for partitions and some applications[END_REF], we define the difference operator for strict partitions by

D (g(λ)) := ℓ(λ + )>ℓ(λ) g(λ + ) + 2 ℓ(λ + )=ℓ(λ) g(λ + ) -g(λ),
where λ and λ + are strict partitions and g is a function on strict partitions. Notice that #{λ + : ℓ(λ + ) > ℓ(λ)} = 0 or 1.

For each skew strict partition λ/µ, let f ′ λ/µ := 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ . Lemma 2.1. For two different strict partitions λ ⊇ µ we have

f ′ λ/µ = λ -: λ⊇λ -⊇µ ℓ(λ -)<ℓ(λ) f ′ λ -/µ + 2 λ -: λ⊇λ -⊇µ ℓ(λ -)=ℓ(λ) f ′ λ -/µ .
Proof. By the construction of standard shifted Young tableaux we have

f λ/µ = λ⊇λ -⊇µ f λ -/µ
and therefore

2 |λ|-ℓ(λ) f λ/µ = λ -: λ⊇λ -⊇µ ℓ(λ -)<ℓ(λ) 2 |λ -|-ℓ(λ -) f λ -/µ + 2 λ -: λ⊇λ -⊇µ ℓ(λ -)=ℓ(λ) 2 |λ -|-ℓ(λ -) f λ -/µ .
Then by the definition of f ′ λ/µ we prove the claim. Lemma 2.2. For each strict partition µ and each function g of strict partitions, let

A(n) := |λ/µ|=n f ′ λ/µ g(λ)
and

B(n) := |λ/µ|=n f ′ λ/µ Dg(λ).
Then

A(n) = A(0) + n-1 k=0 B(k).
Proof. We have

A(n + 1) -A(n) = |γ/µ|=n+1 f ′ γ/µ g(γ) - |λ/µ|=n f ′ λ/µ g(λ) = |γ/µ|=n+1      γ -: γ⊇γ -⊇µ ℓ(γ -)<ℓ(γ) f ′ γ -/µ + 2 γ -: γ⊇γ -⊇µ ℓ(γ -)=ℓ(γ) f ′ γ -/µ      g(γ) - |λ/µ|=n f ′ λ/µ g(λ) = |λ/µ|=n f ′ λ/µ   ℓ(λ + )>ℓ(λ) g(λ + ) + 2 ℓ(λ + )=ℓ(λ) g(λ + ) -g(λ)   = |λ/µ|=n f ′ λ/µ Dg(λ) = B(n).
Thus

A(n + 1) = A(n) + B(n) = A(n -1) + B(n -1) + B(n) = • • • = A(0) + n k=0 B(k).
Theorem 2.3. Let g be a function on strict partitions and µ be a given strict partition. Then we have

(2.1) |λ/µ|=n 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ g(λ) = n k=0 n k D k g(µ)
and

(2.2) D n g(µ) = n k=0 (-1) n+k n k |λ/µ|=k 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ g(λ).
In particular, if there exists some positive integer r such that D r g(λ) = 0 for every strict partition λ, then the left-hand side of (2.1) is a polynomial in n with degree at most r -1.

Proof. We will prove (2.1) by induction. The case n = 0 is trivial. Assume that (2.1) is true for some nonnegative integer n. Then by Lemma 2.2 we have

|λ/µ|=n+1 f ′ λ/µ g(λ) = |λ/µ|=n f ′ λ/µ g(λ) + |λ/µ|=n f ′ λ/µ Dg(λ) = n k=0 n k D k g(µ) + n k=0 n k D k+1 g(µ) = n+1 k=0 n + 1 k D k g(µ).
Identity (2.2) follows from the Möbius inversion formula [START_REF] Rota | On the foundations of combinatorial theory: I. Theory of Möbius functions[END_REF].

Example. Let g(λ) = 1/H λ . Then Dg(λ) = 0 by Theorem 3.3. The two quantities defined in Lemma 2.2 are:

A(n) = |λ/µ|=n f ′ λ/µ H λ and B(n) = 0.
Consequently,

(2.3) |λ/µ|=n 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ H λ = 1 H µ .
In particular, µ = ∅ implies (2.4)

|λ|=n 2 |λ|-ℓ(λ) f λ H λ = 1,
or equivalently, (2.5)

|λ|=n 2 |λ|-ℓ(λ) f 2 λ = n!.

Corners of strict partitions

For a strict partition λ, the outer corners are the boxes which can be removed to get a new strict partition λ -. Let (α 1 , β 1 ), . . . , (α m , β m ) be the coordinates of outer corners such that α 1 > α 2 > • • • > α m . Let y j = β jα j be the contents of outer corners for 1 ≤ j ≤ m. We set α m+1 = 0, β 0 = ℓ(λ) + 1 and call (α 1 , β 0 ), (α 2 , β 1 ), . . . , (α m+1 , β m ) the inner corners of λ. Let x i = β iα i+1 be the contents of inner corners for 0 ≤ i ≤ m (see Figure 3). The following relations of x i and y j are obvious.

(3.1)

x 0 = 1 ≤ y 1 < x 1 < y 2 < x 2 < • • • < y m < x m .
Notice that

y 1 = 1 iff λ ℓ(λ) = 1. We define (3.2) q k (λ) := m i=0 x i 2 k - m i=1 y i 2 k
for each k ≥ 0. For each partition ν = (ν 1 , ν 2 , . . . , ν ℓ ) we define the function q ν (λ) of strict partitions by

(3.3) q ν (λ) := q ν1 (λ)q ν2 (λ) • • • q ν ℓ (λ).
First we consider the difference between the hook length sets of λ and λ + = λ ∪ { } for some box .

Theorem 3.1. Suppose that λ + = λ ∪ { } such that c = x i . If i = 0, then H λ H λ + = 1≤j≤m x0 2 -yj 2 1≤j≤m x0 2 -xj 2 . If 1 ≤ i ≤ m, then H λ H λ + = 1 2 • 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 .
Proof. First we consider the case i = 0, which means that y 1 ≥ 2. In this case we add the box = (ℓ + 1, ℓ + 2) to λ with c = x 0 = 1 where ℓ is the length of λ. By the definition, it is easy to see that the hook lengths of boxes which are in the (ℓ + 1)-th column and (ℓ + 2)-th column of λ increase by 1, and the hook lengths of boxes in the other columns don't change. Since the boxes which are in the ℓ + 1-column and ℓ + 2-column of λ have hook lengths m j=1 ({h :

y j -1 ≤ h ≤ x j -2} ∪ {h : y j ≤ h ≤ x j -1}) ,
then the boxes which are in the ℓ + 1-column and ℓ + 2-column of λ + have hook lengths

{1} ∪   m j=1 ({h : y j ≤ h ≤ x j -1} ∪ {h : y j + 1 ≤ h ≤ x j })   . Therefore H(λ) \ H(λ + ) = {y 1 , y 1 -1, y 2 , y 2 -1, • • • , y m , y m -1} \ {1, x 1 , x 1 -1, x 2 , x 2 -1, • • • , x m , x m -1}, which means that H λ H λ + = 1≤j≤m y j (y j -1) 1≤j≤m x j (x j -1) = 1≤j≤m x0 2 -yj 2 1≤j≤m x0 2 -xj 2 since x 0 = 1.
Similarly, for the case 1 ≤ i ≤ m, we add the box = (α i+1 + 1, β i + 1) to λ with c = x i . By the definition, it is easy to see that the hook lengths of boxes which are in the (α i+1 + 1)-th column, (β i + 1)-th column and (α i+1 + 1)-th row of λ increase by 1, and the hook lengths of other boxes don't change. Since the boxes

• • • • • • (α m , β m ) (α 2 , β 2 ) (α 1 , β 1 )
Figure 3. A strict partition and its corners. The outer corners are labelled with (α i , β i ) (i = 1, 2, . . . , m). The inner corners are indicated by the dot symbol "•". which are in the (α i+1 + 1)-th column, (β i + 1)-th column and (α i+1 + 1)-th row of λ have hook lengths m j=i+1 {h :

x i + y j -1 ≤ h ≤ x i + x j -2}, m j=i+1 {h : y j -x i ≤ h ≤ x j -x i -1},
and

{h : x i -y 1 ≤ h ≤ x i -1} ∪ {h : x i + y i -1 ≤ h ≤ 2x i -3} ∪ i-1 j=1 ({h : x i -y j+1 ≤ h ≤ x i -x j -1} ∪ {h : x i + y j -1 ≤ h ≤ x i + x j -2})
respectively, then the same boxes which are in the (α i+1 + 1)-th column, (β i + 1)-th column and (α i+1 + 1)-th row of λ + have hook lengths m j=i+1 {h :

x i + y j ≤ h ≤ x i + x j -1}, m j=i+1 {h : y j -x i + 1 ≤ h ≤ x j -x i }, and 
{h : x i -y 1 + 1 ≤ h ≤ x i } ∪ {h : x i + y i ≤ h ≤ 2x i -2} ∪ i-1 j=1 ({h : x i -y j+1 + 1 ≤ h ≤ x i -x j } ∪ {h : x i + y j ≤ h ≤ x i + x j -1})
respectively. Notice that the box = (α i+1 + 1, β i + 1) in λ + has hook length 1, then we have

H(λ) \ H(λ + ) = ({|x i -y j | : 1 ≤ j ≤ m} ∪ {x i + y j -1 : 1 ≤ j ≤ m}) \ {1, x i , 2x i -2} ∪ {|x i -x j | : 1 ≤ j ≤ m, j = i} ∪ {x i + x j -1 : 1 ≤ j ≤ m, j = i} , which means that H λ H λ + = 1 x i (2x i -2) • 1≤j≤m (x i -y j )(x i + y j -1) 1≤j≤m j =i (x i -x j )(x i + x j -1) = 1 2 • 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 . Suppose that a 0 < a 1 < • • • < a m and b 1 < • • • < b m are real numbers. Let (3.4) q k ({a i }, {b i }) := m i=0 a i k - m i=1 b i k for each k ≥ 0 and (3.5) q ν ({a i }, {b i }) := ℓ j=1 q νj ({a i }, {b i })
for the usual partition ν = (ν 1 , ν 2 , . . . , ν ℓ ). Notice that

q k (λ) = q k { x i 2 } 0≤i≤m , { y i 2 } 1≤i≤m .
Theorem 3.2. Let k be a nonnegative integer. Then there exist some

ξ ν ∈ Q such that 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) a k i = |ν|≤k ξ ν q ν ({a i }, {b i })
for all real numbers a 0 < a

1 < • • • < a m and b 1 < b 2 < • • • < b m .
Proof. First notice we just need to prove the case that a i = 0 for all i. Because if we multiply by 0≤i<j≤n (a ia j ) on both sides of the above formula, then both sides become polynomials in a 0 , a 1 , . . . , a m and b 1 , b 2 , . . . , b m , which means they are continuous functions on such variables. Therefore if the above formula is true for all nonzero a i , then it is also true for the case a i = 0 for some i. Let

g(z) = 1≤j≤m (1 -b j z) - 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) 0≤j≤m j =i
(1a j z).

Then for 0 ≤ i ≤ m we obtain

g 1 a i = 1≤j≤m 1 - b j a i - 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) 0≤j≤m j =i 1 - a j a i = 0.
This means that g(z) has at least m + 1 roots, so that g(z) = 0 since g(z) is a polynomial in z with degree at most m. Therefore 0≤i≤m 1≤j≤m

(a i -b j ) 0≤j≤m j =i (a i -a j ) • 1 1 -a i z = 1≤j≤m (1 -b j z) 0≤j≤m (1 -a j z) , which means that 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j )   k≥0 (a i z) k   (3.6) = exp   1≤j≤m ln(1 -b j z) - 0≤i≤m ln(1 -a i z)   = exp   k≥1 q k ({a i }, {b i }) k z k   .
Comparing the coefficients of z k on both sides, we obtain there exist some

ξ ν ∈ Q such that 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) a k i = |ν|≤k ξ ν q ν ({a i }, {b i })
for all real numbers a 0 < a

1 < • • • < a m and b 1 < b 2 < • • • < b m .
By (3.6), when k = 0, 1, 2, we obtain

0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) = 1, (3.7) 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) a i = q 1 ({a i }, {b i }), (3.8) 0≤i≤m 1≤j≤m (a i -b j ) 0≤j≤m j =i (a i -a j ) a 2 i = q 2 1 ({a i }, {b i }) + q 2 ({a i }, {b i }) 2 . (3.9) Let λ i+ = λ∪{ i } such that c i = x i for 1 ≤ i ≤ m. If y 1 > 1, let λ 0+ = λ∪{ 0 } such that c 0 = x 0 = 1.
Theorem 3.3. Suppose that λ is a given strict partition. Then

D 1 H λ = 0.
Proof. Notice that when y 1 = 1, we have {λ

+ : ℓ(λ + ) > ℓ(λ)} = ∅, therefore ℓ(λ + )>ℓ(λ) H λ H λ + = 0 = 1≤j≤m x0 2 -yj 2 1≤j≤m x0 2 -xj 2 .
When y 1 > 1, we have {λ + : ℓ(λ + ) > ℓ(λ)} = {λ 0+ }, therefore by Theorem 3.1 we also obtain

ℓ(λ + )>ℓ(λ) H λ H λ + = 1≤j≤m x0 2 -yj 2 1≤j≤m x0 2 -xj 2 and ℓ(λ + )>ℓ(λ) H λ H λ + + 2 ℓ(λ + )=ℓ(λ) H λ H λ + = 0≤i≤m 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 .
Let a i = xi 2 and b i = yi 2 in (3.7), we obtain

D 1 H λ = 1 H λ   ℓ(λ + )>ℓ(λ) H λ H λ + + 2 ℓ(λ + )=ℓ(λ) H λ H λ + -1   = 0.
Corollary 3.4. Suppose that g is a function on strict partitions. Then

D g(λ) H λ = ℓ(λ + )>ℓ(λ) g(λ + ) -g(λ) H λ + + 2 ℓ(λ + )=ℓ(λ) g(λ + ) -g(λ) H λ +
for every strict partition λ.

Proof. The corollary follows directly from the definition of the operator D and the last identity in the proof of Theorem 3.3.

Theorem 3.5. Let k be a given nonnegative integer and λ be a strict partition. Then there exist some ξ j ∈ Q such that

q k (λ i+ ) -q k (λ) = k-1 j=0 ξ j x i 2 j
for every strict partition λ and every i.

Proof. Denote by X = {x 0 , x 1 , . . . , x m } and Y = {y 1 , y 2 , . . . , y m }. For 1 ≤ i ≤ m, four cases are to be considered.

(i) If β i + 1 < β i+1 and α i+1 + 1 < α i .
Then it is easy to see that the contents of inner corners and outer corners of

λ i+ are X ∪ {x i -1, x i + 1} \ {x i } and Y ∪ {x i } respectively.
(ii) If β i + 1 = β i+1 and α i+1 + 1 < α i , so that y i+1 = x i + 1. Hence the contents of inner corners and outer corners of λ i+ are X ∪{x i -1}\{x i } and Y ∪{x i }\{x i +1} respectively.

(iii) If β i + 1 < β i+1 and α i+1 + 1 = α i , so that y i = x i -1. Then the contents of inner corners and outer corners of λ i+ are X ∪ {x i + 1} \ {x i } and Y ∪ {x i } \ {x i -1} respectively.

(iv) If β i +1 = β i+1 and α i+1 +1 = α i . Then y i +1 = x i = y i+1 -1. The contents of inner corners and outer corners of λ i+ are X \ {x i } and Y ∪ {x i } \ {x i -1, x i + 1} respectively.

For i = 0, two cases are to be considered. (v) If y 1 = 2, the contents of inner corners and outer corners of λ 0+ are X and Y ∪ {1} \ {2} respectively.

(vi) If y 1 > 2, the contents of inner corners and outer corners of λ i+ are X ∪ {2} and Y ∪ {1} respectively.

In each of the six cases, we always have

(3.10) q k (λ i+ ) -q k (λ) = x i + 1 2 k + x i -1 2 k -2 x i 2 k .
Next we have for all z ∈ R,

(z + 2) 2k + (z -2) 2k -2z 2k = 2 1≤j≤k 2k 2j 2 2j z 2k-2j .
Replace z by 2z -1, we obtain

(2z + 1) 2k + (2z -3) 2k -2(2z -1) 2k = 2 1≤j≤k 2k 2j 2 2j (2z -1) 2k-2j , or 8 z + 1 2 + 1 k + 8 z -1 2 + 1 k -2 8 z 2 + 1 k =2 1≤j≤k 2k 2j 2 2j 8 z 2 + 1 k-j .
Then by induction on k we have

x i + 1 2 k + x i -1 2 k -2 x i 2 k = k-1 j=0 ξ j x i 2 j
for some constants ξ j ∈ Q.

Theorem 3.6. Let ν = (ν 1 , ν 2 , . . . , ν ℓ ) be a partition. Then there exist some ξ δ ∈ Q such that

(3.11) D q ν (λ) H λ = |δ|≤|ν|-1 ξ δ q δ (λ) H λ
for every strict partition λ.

Proof. For 0 ≤ i ≤ m, we have (3.12)

ℓ k=1 q ν k (λ i+ ) - ℓ k=1 q ν k (λ) = ( * ) k∈U q ν k (λ) k ′ ∈V q ν k ′ (λ i+ ) -q ν k ′ (λ) ,
where the sum ( * ) ranges over all pairs (U, V ) of positive integer sets such that U ∪ V = {1, 2, . . . , ℓ}, U ∩ V = ∅ and V = ∅. Actually the Identity (3.12) follows by the inclusion-exclusion principle. By Corollary 3.4 and Theorem 3.1 we have

H λ D q ν (λ) H λ = ℓ(λ + )>ℓ(λ)
H λ (q ν (λ + )q ν (λ))

H λ + + 2 ℓ(λ + )=ℓ(λ) H λ (q ν (λ + ) -q ν (λ)) H λ + = 0≤i≤m 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 ℓ k=1 q ν k (λ i+ ) - ℓ k=1 q ν k (λ) = ( * ) k∈U q ν k (λ) 0≤i≤m 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 k ′ ∈V q ν k ′ (λ i+ ) -q ν k ′ (λ) .
Then the claim follows from Theorems 3.5 and 3.2.

Proofs of Theorems

Instead of proving Theorem 1.1, we prove the following more general result, which implies Theorem 1.1 when ν = ∅. Theorem 4.1. Suppose that ν = (ν 1 , ν 2 , . . . , ν ℓ ) is a given partition, µ is a given strict partition and Q is a symmetric function. Then there exists some r ∈ N such that

D r Q c 2 : ∈ λ q ν (λ) H λ = 0
for every strict partition λ. Consequently,

P (n) = |λ/µ|=n 2 |λ|-|µ|-ℓ(λ)+ℓ(µ) f λ/µ H λ Q c 2 : ∈ λ q ν (λ)
is a polynomial in n.

Proof. By linearity we can assume that

Q c 2 : ∈ λ = s t=1 ∈λ c 2 rt
for some tuple (r 1 , r 2 , . . . , r s ). Let

A = q ν (λ), ∆ i A = q ν (λ i+ ) -q ν (λ), B = s t=1 ∈λ c 2 rt , ∆ i B = s t=1 ∈λ i+ c 2 rt - s t=1 ∈λ c 2 rt .
We have 

∆ i A = ( * ) k∈U q ν k (λ) k ′ ∈V q ν k ′ (λ i+ ) -q ν k ′ (λ) , ∆ i B = ( * * ) t∈U ∈λ c 2 rt t ′ ∈V ∈λ i+ c 2 r t ′ - ∈λ c 2 r t ′ = ( * * ) t∈U ∈λ c 2 rt t ′ ∈V x i 2 r t ′
H λ D q ν (λ) s t=1 ∈λ c 2 rt H λ = ℓ(λ + )>ℓ(λ) H λ H λ + q ν (λ + ) s t=1 ∈λ + c 2 rt -q ν (λ) s t=1 ∈λ c 2 rt + 2 ℓ(λ + )=ℓ(λ) H λ H λ + q ν (λ + ) s t=1 ∈λ + c 2 rt -q ν (λ) s t=1 ∈λ c 2 rt = m i=0 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 q ν (λ i+ ) s t=1 ∈λ i+ c 2 rt -q ν (λ) s t=1 ∈λ c 2 rt = m i=0 1≤j≤m xi 2 -yj 2 0≤j≤m j =i xi 2 -xj 2 (A • ∆ i B + B • ∆ i A + ∆ i A • ∆ i B) .
Then by Theorems 3.2, 3.5, and 3.6 each of the above three terms could be written as a linear combination of some s t=1 ∈λ c 2 rt q ν (λ) satisfying one of the following two conditions: (1) s < s; Then by Theorems 3.6 and 2.3 we know that

P (n) = |λ|=n f ′ λ H λ ∈λ c + k -1 2k
is a polynomial in n with degree at most k + 1. On the other hand,

P (k + 1) = f ′ (k+1) 
H (k+1) 2k 2k = 2 k (k + 1)! since λ = (k + 1) is the only strict partition with size k + 1 who has contents greater than k. Moreover, it is obvious that P (0) = P (1) = • • • = P (k) = 0. Since the polynomial P (n) is uniquely determined by those values, we obtain

P (n) = 2 k (k + 1)! n k + 1
.

By Theorem 4.1, the left-hand side of (1.3) is a polynomial in n. To evaluate this polynomial explicitly, we need the following lemma. H λ = 0.

Figure 1 .

 1 Figure 1. The shifted Young diagram of the strict partition (7, 5, 4, 1) with its hook lengths and contents.

Figure 2 .

 2 Figure 2. The skew shifted Young diagram of the skew strict partition (7, 5, 4, 1)/(4, 2, 1).

,

  where the sum ( * ) (resp. ( * * )) ranges over all pairs (U, V ) of positive integer sets such that U ∪ V = {1, 2, . . . , ℓ} (resp. U ∪ V = {1, 2, . . . , s}), U ∩ V = ∅ and V = ∅. It follows from Corollary 3.4 and Theorem 3.1 that

ξ

  ) s = s and |ν| ≤ |ν| -1. Therefore the theorem follows by induction on s and |ν|. Proof of Theorem 1.2. The special case in the proof of Theorem 4.1 with ν = ∅ and s = ν q ν (λ), where ξ ν are some constants. The last equality is due to Theorem 3.2. Notice that (2k)! z + k -

Lemma 4 . 2 . 3 .

 423 Let λ be a strict partition. Thenq 1 (λ) = |λ|.Proof. By the definition of the size of λ, we have |λ| = It is easy to check that both sides of (1.3) are equal for n = 0, 1, 2. By Corollary 3.4, Theorem 3.1 and Identity(3.8) it is easy to see thatH λ D ∈λ c 2 H λ = ℓ(λ + )>ℓ(λ)

Thus by Theorem 2.3 we obtain the following result. 
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