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Abstract. An infinite ±1-sequence is called Apwenian if its Han-
kel determinant of order n divided by 2

n−1 is an odd number for
every positive integer n. In 1998, Allouche, Peyrière, Wen and Wen
discovered and proved that the Thue–Morse sequence is an Ap-
wenian sequence by direct determinant manipulations. Recently,
Bugeaud and Han re-proved the latter result by means of an appro-
priate combinatorial method. By significantly improving the com-
binatorial method, we prove that several other Apwenian sequences
related to the Hankel determinants with Computer Assistance.

1. introduction

For each infinite sequence c = (ck)k≥0 and each nonnegative integer n
the Hankel determinant of order n of the sequence c is defined by

(1.1) Hn(c) :=
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c0 c1 · · · cn−1

c1 c2 · · · cn
...

...
. . .

...
cn−1 cn · · · c2n−2

∣

∣
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∣

∣

∣

∣

.

We also speak of the Hankel determinants of the power series c̃(x) =
∑

k≥0 ckx
k and write Hn(c̃(x)) = Hn(c). The Hankel determinants are

widely studied in Mathematics and, in several cases, can be evaluated
by basic determinant manipulation, LU -decomposition, or Jacobi con-
tinued fraction (see, e.g., [15, 16, 7, 18, 17]). However, the Hankel de-
terminants studied in the present paper apparently have no closed-form
expressions, and require additional efforts to obtain specific arithmeti-
cal properties.

An infinite ±1-sequence c = (ck)k≥0 is called Apwenian if its Han-
kel determinant of order n divided by 2n−1 is an odd number, i.e.,
Hn(c)/2

n−1 ≡ 1 (mod 2), for all positive integer n. The corresponding
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generating function or the power series c̃(x) is also said to be Apwenian.
Recall that the Thue–Morse sequence, denoted by

e = (ek)k≥0 = (1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1 . . .),

is a special ±1-sequence [10], defined by the generating function

(1.2) ẽ(x) =

∞
∑

k=0

ekx
k =

∞
∏

k=0

(1− x2k),

or equivalently, by the recurrence relations

(1.3) e0 = 1, e2k = ek and e2k+1 = −ek for k ≥ 0.

The Thue–Morse sequence is also called Prouhet–Thue–Morse sequence.
For other equivalent definitions and properties related to the sequence,
see [2, 3, 11, 9, 8]. In 1998, Allouche, Peyrière, Wen and Wen estab-
lished a congruence relation concerning the Hankel determinants of the
Thue–Morse sequence [1].

Theorem 1.1 (APWW). The Thue–Morse sequence on {1,−1} is Ap-
wenian.

Theorem 1.1 has an important application to Number Theory. As a
consequence of Theorem 1.1, all the Hankel determinants of the Thue–
Morse sequence are nonzero. This property allowed Bugeaud [5] to
prove that the irrationality exponents of the Thue–Morse–Mahler num-
bers are exactly 2.

The goal of the paper is to find more Apwenian sequences. Let d be
a positive integer and v = (v0, v1, v2, . . . , vd−1) a finite ±1-sequence of
length d such that v0 = 1. The generating polynomial of v is denoted
by ṽ(x) =

∑d−1
i=0 vix

i. It is clear that the following power series

(1.4) Φ(ṽ(x)) =
∞
∏

k=0

ṽ(xdk)

defines a ±1-sequence. Thus, the power series displayed in (1.2) is
equal to Φ(1 − x). Our main result is stated next.

Theorem 1.2. The following power series are all Apwenian:

F2(x) = Φ(1− x),

F3(x) = Φ(1− x− x2),

F5(x) = Φ(1− x− x2 − x3 + x4),

F11(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7 + x8 − x9

− x10),

F13(x) = Φ(1− x− x2 + x3 − x4 − x5 − x6 − x7 − x8 + x9

− x10 − x11 + x12),
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F17a(x) = Φ(1− x− x2 + x3 − x4 + x5 + x6 + x7 + x8 + x9

+ x10 + x11 − x12 + x13 − x14 − x15 + x16),

F17b(x) = Φ(1− x− x2 − x3 + x4 + x5 − x6 + x7 + x8 + x9

− x10 + x11 + x12 − x13 − x14 − x15 + x16).

Remarks. Let us make some useful comments about the above
Theorem.

(1) The fact that the generating function F2(x) for the Thue–Morse
sequence is Apwenian has already been proved in [1].

(2) By using the Jacobi continued fraction expansion of a power
series F (x), we know that Hn(F (x)) = Hn(F (−x)). See, for
example, [15, 7, 12, 13]. Hence, Theorem 1.2 implies that
F3(−x) = Φ(1+x−x2), F5(−x) = Φ(1+x−x2 +x3+x4), etc.
are all Apwenian.

(3) There is no F7 in Theorem 1.2, but two F17 (we mean F17a and
F17b).

(4) Φ(1 − x− x2 + x3) is Apwenian since it is equal to Φ(1 − x).

Actually, Theorem 1.1 has three proofs. The original proof of The-
orem 1.1 is based on determinant manipulation by using the so-called
sudoku method [1, 14]. The second one is a combinatorial proof derived
by Bugeaud and Han [6]. The third proof is very short and makes use of
Jacobi continued fraction algebra [13]. Unfortunately, the method de-
veloped in the short proof cannot be used for proving our main theorem,
because the underlying Jacobi continued fractions are not ultimately
periodic [13, 12]. However, another analogous result for the sequence
F3(x) when dealing with modulo 3 (instead of modulo 2) is established
using the short method, as stated in the next theorem [12].

Theorem 1.3. For every positive integer n the Hankel determinant
Hn(F3(x)) of the sequence F3(x) verifies the following relation

(1.5) Hn(F3(x)) ≡

{

1 (mod 3) if n ≡ 1, 2 (mod 4);

2 (mod 3) if n ≡ 3, 0 (mod 4).

Combining Theorem 1.3 and Theorem 1.2 yields the following result.

Corollary 1.4. For every positive integer n the Hankel determinant
Hn(F3(x)) verifies the following relation

(1.6)
Hn(F3(x))

2n−1
≡

{

1 (mod 6) if n ≡ 0, 1 (mod 4);

5 (mod 6) if n ≡ 2, 3 (mod 4).

In the following table we reproduce the first few values of the Hankel
determinants of the sequence F3(x) for illustrating Theorems 1.2, 1.3
and Corollary 1.4.
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n 1 2 3 4 5 6 7 8 9 10
Hn(f) 1 −2 −4 8 16 −32 −64 128 4864 −9728

Hn(f) (mod 3) 1 1 2 2 1 1 2 2 1 1

Hn(f)/2
n−1 1 −1 −1 1 1 −1 −1 1 19 −19

Hn(f)
2n−1 (mod 2) 1 1 1 1 1 1 1 1 1 1
Hn(f)
2n−1 (mod 6) 1 5 5 1 1 5 5 1 1 5

Recently, Bugeaud and Han re-proved Theorem 1.1 by means of an
appropriate combinatorial method [6]. The latter method has been sig-
nificantly upgraded to prove that F3(x) is Apwenian. As can be seen,
in Section 3 Step 2, a family of cases (called types) is considered for
proving the various recurrence relations. Roughly speaking, the types
are indexed by words s0s1s2 · · · sd of length d+1 over a d-letter alpha-
bet. Comparing to the original combinatorial method, the upgrading
does not provide a shorter proof; however, it involves of a systematic
proof by exhaustion that only consists of checking all the types. The
proof of Theorem 1.2 is then achieved with Computer Assistance.

In practice, the number of types is very large. For example, as de-
scribed in §2.3 for the study of F11(x), there are 2274558 types! Fortu-
nately, the set of permutations of each type can be decomposed into the
Cartesian product of so-called atoms (see Substep 3(d) in the sequel),
and moreover, the cardinality of each atom can be rapidly evaluated
by a sequence of tests (see Definition 4.1 and Table 4.1).

Problem 1.5. Is the following power series Apwenian:

F19(x) = Φ(1− x− x2 − x3 + x4 − x5 + x6 − x7 − x8 + x9

+ x10 − x11 − x12 − x13 − x14 − x15 + x16 − x17 − x18) ?

Find a fast computer assisted proof for Theorem 1.2 to answer the above
question.

For proving that F17a(x) is Apwenian, our C program has taken
about one week by using 24 CPU cores. No hope for F19(x).

Problem 1.6. Find a human proof of Theorem 1.2 without computer
assistance.

Problem 1.7. Characterize all the finite ±1-sequences v such that
Φ(ṽ(x)) is Apwenian.

As an application of Theorem 1.2 in Number Theory, the irrational-
ity exponents of F5(1/b), F11(1/b), F17a(1/b), F17b(1/b) are proved to be
equal to 2 (see [4]).
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2. Proof of Theorem 1.2

Let d be a positive integer and v = (v0, v1, v2, . . . , vd−1) be a finite
±1-sequence of length d with v0 = 1. Let f = (fk)k≥0 be the ±1-
sequence defined by the following generating function

(2.1) f̃(x) = Φ(ṽ(x)) =

∞
∏

k=0

ṽ(xdk),

where ṽ(x) =
∑d−1

i=0 vix
i. The above power series satisfies the following

functional equation

(2.2) f̃(x) = ṽ(x)

∞
∏

k=1

ṽ

(

xdk
)

= ṽ(x)f̃(xd).

The sequence f can also be defined by the recurrence relations

(2.3) f0 = 1, fdn+i = vifn for n ≥ 0 and 0 ≤ i ≤ d− 1.

We divide the set {1, 2, . . . , d− 1} into two disjoint subsets

P = {1 ≤ i ≤ d− 1 | vi−1 6= vi},

Q = {1 ≤ i ≤ d− 1 | vi−1 = vi}.

Two disjoint infinite sets of integers J and K play an important in the
proof of Theorem 1.2.

Definition 2.1. If vd−1 = −1, define

J = {(dn+ p)d2k − 1 | n, k ∈ N, p ∈ P}
⋃

{(dn+ q)d2k+1 − 1 | n, k ∈ N, q ∈ Q},

K = {(dn+ q)d2k − 1 | n, k ∈ N, q ∈ Q}
⋃

{(dn+ p)d2k+1 − 1 | n, k ∈ N, p ∈ P}.

If vd−1 = 1, define

J = {(dn+ p)dk − 1 | n, k ∈ N, p ∈ P},

K = {(dn+ q)dk − 1 | n, k ∈ N, q ∈ Q}.

From the above definition it is easy to see that N = J ∪K.

Lemma 2.1. For each t ≥ 0 the integer δt := |(ft − ft+1)/2| is equal
to 1 if and only if t is in J .

Proof. Let t = (dn+ ℓ)dk − 1. By (2.3) we have

f(dn+ℓ)dk−1 = fd[(dn+ℓ)dk−1−1]+(d−1) = vd−1f(dn+ℓ)dk−1−1,

and

f(dn+ℓ)dk−1 = vd−1f(dn+ℓ)dk−1−1 = · · · = vkd−1fdn+ℓ−1 = vkd−1vℓ−1fn.

In the same manner,

f(dn+ℓ)dk = f(dn+ℓ)dk−1 = · · · = fdn+ℓ = vℓfn.
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Hence,

δt =

∣

∣

∣

∣

1

2
(f(dn+ℓ)dk−1 − f(dn+ℓ)dk)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
(vℓ − vkd−1vℓ−1)

∣

∣

∣

∣

is odd if and only if

(2.4) vkd−1 · vℓ−1vℓ = −1.

There are two cases to be considered: (i) If vd−1 = 1, condition (2.4)
is equivalent to vℓ−1vℓ = −1, or ℓ ∈ P , or t ∈ J by Definition 2.1.
(ii) If vd−1 = −1, condition (2.4) becomes vℓ−1vℓ = (−1)k+1, which is
equivalent to ℓ ∈ P when k is even and ℓ ∈ Q when k is odd. In other
words, t ∈ J . �

Let Sm = S{0,1,...,m−1} be the set of all permutations on {0, 1, . . . , m−
1}. The following Theorem may be viewed as the combinatorial inter-
pretation of Theorem 1.2.

Theorem 2.2. Let v be a ±1-sequence of length d with v0 = 1. The
sequence f and the set J associated with v are defined by (2.1) and
Definition 2.1 respectively. Then, the sequence f is Apwenian if, and
only if, the number of permutations σ ∈ Sm such that i+ σ(i) ∈ J for
i = 0, 1, . . . , m− 2 (no constraint on m− 1+ σ(m− 1) ∈ N) is an odd
integer for every integer m ≥ 1.

Proof. Let m be a positive integer. By means of elementary transfor-
mations the Hankel determinant Hm(f) is equal to

Hm(f) =

∣

∣

∣

∣

∣

∣

∣

∣

f0 f1 · · · fm−1

f1 f2 · · · fm
...

...
. . .

...
fm−1 fm · · · f2m−2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

f0 − f1 f1 − f2 · · · fm−2 − fm−1 fm−1

f1 − f2 f2 − f3 · · · fm−1 − fm fm
...

...
. . .

...
...

fm−1 − fm fm − fm+1 · · · f2m−3 − f2m−2 f2m−2

∣

∣

∣

∣

∣

∣

∣

∣

= 2m−1 ×

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0−f1
2

f1−f2
2

· · · fm−2−fm−1

2
fm−1

f1−f2
2

f2−f3
2

· · · fm−1−fm
2

fm
...

...
. . .

...
...

fm−1−fm
2

fm−fm+1

2
· · · f2m−3−f2m−2

2
f2m−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By Lemma 2.1, we have

(2.5)
Hm(f)

2m−1
≡

∣

∣

∣

∣

∣

∣

∣

∣

δ0 δ1 · · · δm−2 1
δ1 δ2 · · · δm−1 1
...

...
. . .

...
...

δm−1 δm · · · δ2m−3 1

∣

∣

∣

∣

∣

∣

∣

∣

(mod 2).
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By the very definition of a determinant or the Leibniz formula, the
determinant occurring on the right-hand side of the congruence (2.5)
is equal to

(2.6) Sm :=
∑

σ∈Sm

(−1)inv(σ)δ0+σ0
δ1+σ1

· · · δm−2+σm−2
,

where inv(σ) is the number of inversions of the permutation σ. By
Lemma 2.1 the product δ0+σ0

δ1+σ1
· · · δm−2+σm−2

is equal to 1 if i+σi ∈
J for i = 0, 1, . . . , m − 2, and to 0 otherwise. Hence, the summation
Sm is congruent modulo 2 to the number of permutations σ ∈ Sm such
that i+ σi ∈ J for all i = 0, 1, . . . , m− 2. Hence, f is Apwenian if and
only if the number of permutations σ ∈ Sm such that i+ σ(i) ∈ J for
i = 0, 1, . . . , m− 2 (no constraint on m− 1 + σ(m− 1) ∈ N) is an odd
integer for every integer m ≥ 1. �

For proving that the sequence f is Apwenian by means of Theo-
rem 2.2, it is convenient to introduce the following notations.

Definition 2.2. For m ≥ ℓ ≥ 0 let Jm,ℓ (resp. Km,ℓ) be the set of
all permutations σ = σ0σ1 · · ·σm−1 ∈ Sm such that i + σi ∈ J (resp.
i + σi ∈ K) for i ∈ {0, 1, . . . , m − 1} \ {ℓ}. Let n ≥ 1; for simplicity,
write:

jm,ℓ := #Jm,ℓ, km,ℓ := #Km,ℓ,

Xn :=
n−1
∑

i=0

jn,i, Yn := jn,n, Zn := jn,n−1,

Un :=
n−1
∑

i=0

kn,i, Vn := kn,n, Wn := kn,n−1,

Tn := Xn +XnYn + Yn,

Rn := Un + UnVn + Vn.

Notice that if ℓ = m, then {0, 1, . . . , m−1}\{ℓ} = {0, 1, . . . , m−1},
so that jm,m (resp. km,m) is the number of permutations σ ∈ Sm such
that i+ σ(i) ∈ J (resp. ∈ K) for all i.

By Theorem 2.2 and Definition 2.2 the sequence f is Apwenian if
and only if Zn ≡ 1 (mod 2). In Section 4 we describe an algorithm
enabling us to find and also prove a list of recurrence relations between
Xn, Yn, Xn, Un, Vn,Wn. Then, it is routine to check whether Zn ≡ 1
(mod 2) or not. Our program Apwen.py is an implementation of the
latter algorithm in Python.

We now produce the proof of Theorem 1.2 by means of the program
Apwen.py. Since F2(x) has been proved to be Apwenian in [1], only the
three power series F3(x), F5(x) and F11(x) require our attention. We
can also prove that F13(x), F17a(x), F17b(x) are Apwenian in the same
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manner. However, the full proofs are lengthy and are not reproduced
in the paper.

2.1. F3(x) is Apwenian. Take v = (1,−1,−1) with d = 3 and vd−1 =
−1. Then, the corresponding infinite ±1-sequence f is equal to F3(x).
We have P = {1}, Q = {2} and

J = {(3n+ 1)32k − 1 | n, k ∈ N} ∪ {(3n+ 2)32k+1 − 1 | n, k ∈ N}

= {0, 3, 5, 6, 8, 9, 12, 14, 15, 18, . . .},

K = {(3n+ 2)32k − 1 | n, k ∈ N} ∪ {(3n+ 1)32k+1 − 1 | n, k ∈ N}

= {1, 2, 4, 7, 10, 11, 13, 16, 17, . . .} = N \ J.

By enumerating a list of 24 types of permutations (see Section 3), the
program Apwen.py finds and proves the following recurrences.

Lemma 2.3. For each n ≥ 1 we have

X3n+0 ≡ Un, Y3n+0 ≡ Un + Vn,

X3n+1 ≡ Wn+1(Un + Vn), Y3n+1 ≡ Wn+1Vn,

X3n+2 ≡ Wn+1(Un+1 + Vn+1), Y3n+2 ≡ Wn+1Vn+1,

Z3n+0 ≡ Wn(Un + UnVn + Vn),

Z3n+1 ≡ Wn+1(Un + UnVn + Vn),

Z3n+2 ≡ Wn+1.

As explained in Section 3, the above relations express X, Y, Z in
function of U, V,W since vd−1 = −1. By exchanging the values of P
and Q, J and K, the program Apwen.py yields other relations which
express U, V,W in terms of X, Y, Z by enumerating a list of 26 types
of permutations.

Lemma 2.4. For each n ≥ 1 we have

U3n+0 ≡ Xn, V3n+0 ≡ Xn + Yn,

U3n+1 ≡ Zn+1Yn, V3n+1 ≡ Zn+1Xn,

U3n+2 ≡ Zn+1Yn+1, V3n+2 ≡ Zn+1Xn+1,

W3n+0 ≡ Zn(Xn +XnYn + Yn),

W3n+1 ≡ Zn+1(Xn +XnYn + Yn),

W3n+2 ≡ Zn+1.

From Lemmas 2.3 and 2.4 we obtain the following “simplified” recur-
rence relations based on some elementary calculations.

Corollary 2.5. For each positive integer n we have

Z3n+0 ≡ WnRn, W3n+0 ≡ ZnTn,
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Z3n+1 ≡ Wn+1Rn, W3n+1 ≡ Zn+1Tn,

Z3n+2 ≡ Wn+1, W3n+2 ≡ Zn+1,

T3n+0 ≡ Rn, R3n+0 ≡ Tn,

T3n+1 ≡ Wn+1Rn, R3n+1 ≡ Zn+1Tn,

T3n+2 ≡ Wn+1Rn+1, R3n+2 ≡ Zn+1Tn+1.

Since Z1 = 1, T1 = 3,W1 = 1, R1 = 1, Z2 = 1, T2 = 1,W2 = 1 and
R2 = 7, Corollary 2.5 yields Zm ≡ Tm ≡ Wm ≡ Rm ≡ 1 (mod 2) for
every positive integer m by induction. Hence, F3(x) is Apwenian.

2.2. F5(x) is Apwenian. Take v = (1,−1,−1,−1, 1) with d = 5 and
vd−1 = 1. Then, the corresponding infinite ±1-sequence f is equal to
F5(x). We have

P = {1, 4},

Q = {2, 3},

J = {(5n+ 1)5k − 1 | n, k ∈ N} ∪ {(5n+ 4)5k − 1 | n, k ∈ N}

= {0, 3, 4, 5, 8, 10, 13, 15, 18, 19, 20, 23, 24, 25, 28, 29, 30, 33, . . .},

K = {(5n+ 2)5k − 1 | n, k ∈ N} ∪ {(5n+ 3)5k − 1 | n, k ∈ N}

= {1, 2, 6, 7, 9, 11, 12, 14, 16, 17, 21, 22, 26, 27, 31, 32, 34, 36, . . .}.

By enumerating a list of 225 types of permutations, the Python program
Apwen.py finds and proves the following recurrences.

Lemma 2.6. For each n ≥ 1 we have

X5n+0 ≡ Xn, Y5n+0 ≡ Yn,

X5n+1 ≡ Zn+1Yn, Y5n+1 ≡ Zn+1(Xn + Yn),

X5n+2 ≡ Zn+1(Xn + Yn), Y5n+2 ≡ Zn+1Xn,

X5n+3 ≡ Zn+1(Xn+1 + Yn+1), Y5n+3 ≡ Zn+1Xn+1,

X5n+4 ≡ Zn+1Yn+1, Y5n+4 ≡ Zn+1(Xn+1 + Yn+1),

Z5n+0 ≡ Zn(Xn +XnYn + Yn),

Z5n+1 ≡ Zn+1(Xn +XnYn + Yn),

Z5n+2 ≡ Zn+1(Xn +XnYn + Yn),

Z5n+3 ≡ Zn+1,

Z5n+4 ≡ Zn+1(Xn+1 +Xn+1Yn+1 + Yn+1).

As explained in Section 4, the above relations are between X, Y, Z
without involving U, V,W , since vd−1 = 1. We obtain the following
“simplified” recurrence relations based on some elementary calculations.

Corollary 2.7. For each positive integer n we have

Z5n+0 ≡ ZnTn, T5n+0 ≡ Tn,
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Z5n+1 ≡ Zn+1Tn, T5n+1 ≡ Zn+1Tn,

Z5n+2 ≡ Zn+1Tn, T5n+2 ≡ Zn+1Tn,

Z5n+3 ≡ Zn+1, T5n+3 ≡ Zn+1Tn+1,

Z5n+4 ≡ Zn+1Tn+1, T5n+4 ≡ Zn+1Tn+1.

Since Z1 = 1, T1 = 3, Z2 = 1, T2 = 1, Z3 = 1, T3 = 9, Z4 = 5, T4 =
129, Corollary 2.7 yields Zn ≡ Tn ≡ 1 (mod 2) for each n ≥ 1 by
induction. Hence, F5(x) is Apwenian.

2.3. F11(x) is Apwenian. Take

v = (1,−1,−1, 1,−1, 1, 1, 1, 1,−1,−1)

with d = 11 and vd−1 = −1. Then, the corresponding infinite ±1-
sequence f is equal to F11(x). We have

P = {1, 3, 4, 5, 9},

Q = {2, 6, 7, 8, 10},

J = {0, 2, 3, 4, 8, 11, 13, 14, 15, 19, 21, 22, 24, 25, 26, 30, 33, 35, . . .},

K = {1, 5, 6, 7, 9, 10, 12, 16, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, . . .}.

By enumerating a list of 2274558 types of permutations, the program
Apwen.py finds and proves the following recurrences.

Lemma 2.8. For each n ≥ 1 we have

X11n+0 ≡ Un, Y11n+0 ≡ Un + Vn,

X11n+1 ≡ Wn+1(Vn + Un), Y11n+1 ≡ VnWn+1,

X11n+2 ≡ UnWn+1, Y11n+2 ≡ Wn+1(Vn + Un),

X11n+3 ≡ Wn+1(Vn + Un), Y11n+3 ≡ VnWn+1,

X11n+4 ≡ VnWn+1, Y11n+4 ≡ UnWn+1,

X11n+5 ≡ UnWn+1, Y11n+5 ≡ Wn+1(Vn + Un),

X11n+6 ≡ Un+1Wn+1, Y11n+6 ≡ Wn+1(Un+1 + Vn+1),

X11n+7 ≡ Vn+1Wn+1, Y11n+7 ≡ Un+1Wn+1,

X11n+8 ≡ Wn+1(Un+1 + Vn+1), Y11n+8 ≡ Vn+1Wn+1,

X11n+9 ≡ Un+1Wn+1, Y11n+9 ≡ Wn+1(Un+1 + Vn+1),

X11n+10 ≡ Wn+1(Un+1 + Vn+1), Y11n+10 ≡ Vn+1Wn+1,

Z11n+0 ≡ Wn(Vn + Un + UnVn),

Z11n+i ≡ Wn+1(UnVn + Vn + Un), (i = 1, 2, 3, 4, 5)

Z11n+6 ≡ Wn+1,

Z11n+i ≡ Wn+1(Un+1 + Un+1Vn+1 + Vn+1). (i = 7, 8, 9, 10)

As explained in Section 4, the above relations express X, Y, Z in
function of U, V,W , since vd−1 = −1. By exchanging the values of P
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and Q, J and K, the program Apwen.py yields another list of relations
which express U, V,W in terms of X, Y, Z. For this purpose, a long list
of 2350964 types of permutations are enumerated.

Lemma 2.9. For each n ≥ 1 we have

U11n+0 ≡ Xn, V11n+0 ≡ Xn + Yn,

U11n+1 ≡ YnZn+1, V11n+1 ≡ XnZn+1,

U11n+2 ≡ XnZn+1, V11n+2 ≡ Zn+1(Xn + Yn),

U11n+3 ≡ YnZn+1, V11n+3 ≡ XnZn+1,

U11n+4 ≡ Zn+1(Xn + Yn), V11n+4 ≡ YnZn+1,

U11n+5 ≡ XnZn+1, V11n+5 ≡ Zn+1(Xn + Yn),

U11n+6 ≡ Xn+1Zn+1, V11n+6 ≡ Zn+1(Yn+1 +Xn+1),

U11n+7 ≡ Zn+1(Yn+1 +Xn+1), V11n+7 ≡ Yn+1Zn+1,

U11n+8 ≡ Yn+1Zn+1, V11n+8 ≡ Xn+1Zn+1,

U11n+9 ≡ Xn+1Zn+1, V11n+9 ≡ Zn+1(Yn+1 +Xn+1),

U11n+10 ≡ Yn+1Zn+1, V11n+10 ≡ Xn+1Zn+1,

W11n+0 ≡ Zn(Yn +Xn +XnYn),

W11n+i ≡ Zn+1(XnYn +Xn + Yn), (i = 1, 2, 3, 4, 5)

W11n+6 ≡ Zn+1,

W11n+i ≡ Zn+1(Yn+1 +Xn+1Yn+1 +Xn+1). (i = 7, 8, 9, 10)

From Lemmas 2.8 and 2.9 we obtain the following “simplified” recur-
rence relations based on some elementary calculations.

Corollary 2.10. For each positive integer n we have

T11n+0 ≡ Rn, R11n+0 ≡ Tn,

T11n+i ≡ RnWn+1, R11n+i ≡ TnZn+1, (1 ≤ i ≤ 5)

T11n+i ≡ Rn+1Wn+1, R11n+i ≡ Tn+1Zn+1, (6 ≤ i ≤ 10)

Z11n+0 ≡ RnWn, W11n+0 ≡ TnZn,

Z11n+i ≡ RnWn+1, W11n+i ≡ TnZn+1, (1 ≤ i ≤ 5)

Z11n+6 ≡ Wn+1, W11n+6 ≡ Zn+1,

Z11n+i ≡ Rn+1Wn+1, W11n+i ≡ Tn+1Zn+1. (7 ≤ i ≤ 10)

The first values of Zm, Tm,Wm, Rm are reproduced in the following
table.

m 1 2 3 4 5 6 7 8 9 10

Zm 1 1 3 11 13 25 39 117 739 4431

Tm 3 5 47 237 487 419 3503 66905 3527039 82080975

Wm 1 1 1 1 5 25 177 1091 3839 19791

Rm 1 5 1 11 107 5151 198769 4802755 56576127 2717644635
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Corollary 2.10 yields Zm ≡ Tm ≡ Wm ≡ Rm ≡ 1 (mod 2) for every
positive integer m by induction. Hence, F11(x) is Apwenian.

3. Algorithm for finding the recurrences

Keep the same notations as in Section 2. We will show how to
find and also prove a list of recurrence relations between the quantities
Xn, Yn, Zn, Un, Vn,Wn. The set N of nonnegative integers is partitioned
into d disjoint subsets A0, A1, . . . , Ad−1 according to the value modulo
d:

(3.1) Ai = {dn+ i | n ∈ N} (i = 0, 1, . . . , d− 1).

For an infinite set S let S|m be the set composed of the m smallest
integers in S. Let β : N → N denote the transformation k 7→ ⌊k

d
⌋. In

other words,

(3.2) β(k) = (k − i)/d if k ∈ Ai.

For simplicity, write

J̄ =

{

J if vd−1 = 1,

K if vd−1 = −1,
and K̄ =

{

K if vd−1 = 1,

J if vd−1 = −1.

Then J̄m,ℓ, X̄n, Ȳn, Z̄n mean Jm,ℓ, Xn, Yn, Zn (resp. Km,ℓ, Un, Vn,Wn) if
vd−1 = 1 (resp. vd−1 = −1).

Lemma 3.1. For each p ∈ P and q ∈ Q we have

(i) Ap−1 ⊂ J and Aq−1 ⊂ K;
(ii) Aq−1 ∩ J = ∅ and Ap−1 ∩K = ∅;
(iii) β(Ad−1 ∩ J) = J̄ and β(Ad−1 ∩K) = K̄.

Proof. (i) By the definition of the sets J and K we have

J ⊃ {(dn+ p)d2k − 1 | n, k ∈ N} ⊃ {(dn+ p)d0 − 1 | n ∈ N} = Ap−1;

K ⊃ {(dn+ q)d2k − 1 | n, k ∈ N} ⊃ {(dn+ q)d0 − 1 | n ∈ N} = Aq−1.

(ii) By (i) and the relation K ∩ J = ∅.
(iii) By Definition 2.1 with vd−1 = −1, we have

Ad−1 ∩ J = {(dn+ p)d2k+2 − 1 | n, k ∈ N, p ∈ P}
⋃

{(dn+ q)d2k+1 − 1 | n, k ∈ N, q ∈ Q}.

Thus,

β(Ad−1 ∩ J) = {(dn+ p)d2k+1 − 1 | n, k ∈ N, p ∈ P}
⋃

{(dn+ q)d2k − 1 | n, k ∈ N, q ∈ Q}.

= K = J̄ .

If vd−1 = 1, then Ad−1 ∩ J = {(dn + p)dk+1 − 1 | n, k ∈ N, p ∈ P}.
Thus, β(Ad−1 ∩ J) = {(dn+ p)dk − 1 | n, k ∈ N, p ∈ P} = J = J̄ . The
second part β(Ad−1 ∩K) = K̄ is proved in the same manner. �



COMPUTER ASSISTED PROOF FOR APWENIAN SEQUENCES 13

Let 0 ≤ i, j ≤ d − 1 and x ∈ Ai, y ∈ Aj . For determining the
condition of i and j such that the sum x+ y belongs to J or K, there
are three cases to be considered.

(S1) If i+ j + 1 (mod d) ∈ P , then, x+ y ∈ J ;
(S2) If i+ j + 1 (mod d) ∈ Q, then, x+ y ∈ K;
(S3) If i+ j + 1 (mod d) = 0, then, x + y ∈ Ad−1. In this case, the

sum x+ y may belong to J or K.

Let m ≥ ℓ ≥ 0. We want to enumerate the permutations in Jm,ℓ

modulo 2. Each permutation σ = σ0σ1 · · ·σm−1 ∈ Sm may be written
as the two-line representation

(

0 1 2 · · · m− 1
σ0 σ1 σ2 · · · σm−1

)

.

The columns
(

i

σi

)

are called biletters. For each σ ∈ Jm,ℓ a biletter
(

i

σi

)

in σ is said to be of (normal) form
(

aj
ak

)

(resp. specific form
(

ℓ

ak

)

) if

i 6= ℓ and (i, σi) ∈ Aj × Ak (resp. i = ℓ and σi ∈ Ak). To count the
permutations from Jm,ℓ modulo 2, we proceed in several steps. In most
cases the calculations are illustrated with d = 5.

Step 1. Occurrences of biletters. Since we want to enumerate per-
mutations modulo 2, we can delete suitable pairs of the permutations
and the result will not be changed. Let i ∈ N |d, if a permutation
σ ∈ Jm,ℓ contains more than two biletters of form

(

ai
aj

)

such that i+j+1

(mod d) ∈ P , select the first two such biletters
(

i1
j1

)

and
(

i2
j2

)

. We define
another permutation τ obtained from σ by exchanging j1 and j2 in the
bottom line. This procedure is reversible. By (S1), it is easy to verify
that τ is also in Jm,ℓ, so that we can delete the pair σ and τ . Then,
there only remain the permutations containing 0 or 1 biletter of form
(

ai
aj

)

such that i+ j + 1 (mod d) ∈ P .

Let J′
m,ℓ be the set of permutations σ ∈ Jm,ℓ which, for each i ∈ N |d,

contains 0 or 1 biletter of form
(

ai
aj

)

such that i + j + 1 (mod d) ∈ P .

We have jm,ℓ = #Jm,ℓ ≡ #J′
m,ℓ (mod 2). By (S2), each permutation

σ ∈ J′
m,ℓ does not contain any biletter of form

(

ai
aj

)

such that i+ j + 1

(mod d) ∈ Q. Thus, most of the biletters are of form
(

ai
ad−i−1

)

. In

conclusion, the number of occurrences of each form is summarized in
Table 3.1. A biletter of form

(

ai
aj

)

such that i + j + 1 (mod d) ∈ P is

said to be unsociable. A biletter of form
(

aj
ad−j−1

)

is said to be friendly.

By Table 3.1, each permutation in J′
m,ℓ contains only a few unsociable

biletters. Step 2. Form and type. The two-line representation of a
permutation can be seen as a word of biletters. In fact, the order
of the biletters does not matter. Let m ≥ 2d. The form f(σ) of a
permutation σ ∈ J′

m,ℓ is obtained from σ by replacing each biletter of
σ by its (normal or specific) form. From Table 3.1, the form f(σ) of a
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form total times

{
(

ak
aj

)

| k + j + 1 (mod d) ∈ Q} 0

{
(

ai
aj

)

| i+ j + 1 (mod d) ∈ P} for each i ∈ N |d 0, 1

{
(

aj
ad−j−1

)

| j ∈ N |d} 0, 1, 2, 3, . . .

{
(

ℓ

aj

)

| j ∈ N |d} (ℓ = m) 0

{
(

ℓ

aj

)

| j ∈ N |d} (0 ≤ ℓ ≤ m− 1) 1

Table 3.1. Number of occurrences of biletters

permutation σ ∈ J′
m,ℓ is

(3.3)

(

a0 a0 a0 a1 a1 a1 . . . ad−1 ad−1 ad−1

ad−1 ad−1 s0 ad−2 ad−2 s1 . . . a0 a0 sd−1

)

,

for ℓ = m, or

(3.4)

(

a0 a0 a0 a1 a1 a1 . . . ad−1 ad−1 ad−1 ℓ
ad−1 ad−1 s0 ad−2 ad−2 s1 . . . a0 a0 sd−1 sd

)

,

for 0 ≤ ℓ ≤ m− 1, where

(3.5)

{

si ∈ {aj | i+ j + 1 (mod d) ∈ P ∪ {0}}, (i ∈ N |d)

sd ∈ {a0, a1, . . . , ad−1}.

Consequently, it can be characterized by a word t(σ) = s0s1 . . . sd−1 or
s0s1 . . . sd−1sd, of length d or d+1 respectively. The word t(σ) is called
the type of the permutation σ. We classify the permutations from the
set J′

m,ℓ according to the type t = s0s1 . . . sd−1 (resp. t = s0s1 . . . sd−1sd)
by defining

(3.6) Jt
m,ℓ = {σ ∈ J′

m,ℓ | t(σ) = t}.

Hence,

(3.7) jm,ℓ ≡
∑

t

#Jt
m,ℓ (mod 2).

Some types do not have any contribution for counting the permuta-
tions modulo 2, as stated in the following two lemmas.

Lemma 3.2. Let ℓ = m and t = s0s1s2 . . . sd−1 (resp. ℓ ∈ N |m and
t = s0s1s2 . . . sd−1sd ). If there are 0 ≤ i < j ≤ d − 1 (resp. 0 ≤ i <
j ≤ d ), such that si = sj, si 6= ad−i−1 and sj 6= ad−j−1, then

(3.8) #Jt
m,ℓ ≡ 0 (mod 2).

Proof. If Jt
m,ℓ = ∅, then (3.8) holds. Otherwise, each permutation σ ∈

Jt
m,ℓ has two biletters

(

i1
i2

)

and
(

j1
j2

)

of forms
(

ai
ak

)

and
(

aj
ak

)

, respectively,
where ak = si = sj. We define another permutation τ obtains from σ by
exchanging i2 and j2 in the bottom line. This procedure is reversible.
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By Lemma 3.1(i) or Table 3.1, it is easy to verify that τ is also in
Jt
m,ℓ. Thus, the transformation σ ↔ τ is an involution on Jt

m,ℓ. Hence,
#Jt

m,ℓ ≡ 0 (mod 2). �

Lemma 3.3. Let ℓ ∈ N |m and t = s0s1s2 . . . sd. If there is i ∈ N |m
such that si 6= ad−i−1, then

(3.9)
∑

ℓ∈N |m∩Ai

#Jt
m,ℓ ≡ 0 (mod 2).

Proof. For any ℓ ∈ N |m ∩ Ai, each permutation σ ∈ Jt
m,ℓ contains two

biletters
(

i1
i2

)

and
(

ℓ

σℓ

)

of forms
(

ai
aj

)

and
(

ℓ

ak

)

, respectively. We define

another permutation τ by exchanging i2 and σℓ in the bottom line.
This procedure is reversible. By Lemma 3.1(i) it is easy to verify that
τ ∈ Jt

m,ℓ′, where ℓ′ = i1 ∈ N |m ∩ Ai. Thus, the transformation σ ↔ τ

is an involution on
∑

ℓ∈N |m∩Ai
Jt
m,ℓ. Hence, (3.9) holds. �

Let m = dn+ h (n ≥ 2, h ∈ N |d), k ∈ N |d and

PY := Jt
m,m, PZ := Jt

m,m−1, PX :=
∑

ℓ∈N |m∩Ak

Jt
m,ℓ.

The recurrence relations listed in Lemmas 2.3, 2.4, 2.6, 2.8, 2.9 can
be generated by Algorithm 1. The procedure EvalAtoms(P,t,h,k)

appearing in Algorithm 1 evaluates the cardinality of the set P := PY ,
PZ or PX for each type t, and will be discussed in Section 4 (see
Algorithm 2).

Remark. By Step 2 the recurrence relations generated by Algorithms 1
and 2 are valid for n ≥ 2. However, we can certify that they are also
true for n = 1 by using the method described in Sections 3 and 4.

Algorithm 1 Finding the recurrences

for P in [’PX’, ’PY’, ’PZ’]:

for h in range(d):

Val=0

for k in range(d) if P==’PX’ else range(1):

for t in PossibleTypes(P,h,k):

Val=Val+EvalAtoms(P,t,h,k)

print P,h,k,Val

Step 3. Counting permutations. Throughout this step we fix m =
dn + h (h ∈ N |d). Counting permutations from Jt

m,ℓ is lengthy; it is
made in several substeps. We illustrate the entire calculations by means
of four well-selected examples, using some compressed and intuitive
notations. Then, we explain what those compressed notations mean in
full detail. The examples are given for d = 5. We write A,B,C,D,E
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instead of A0, A1, A2, A3, A4 and a, b, c, d, e instead of a0, a1, a2, a3, a4,
respectively.

Example 3.1. Consider m = ℓ = 5n + 1 and the type ‘adbca’ which
satisfies condition (3.5). We have

Jadbca
5n+1,5n+1

w
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3̃ 8 13
c b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3̃ 8 13
c b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7̃ 12
c c c

∣

∣

∣

∣

3̃ 8 13
b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1 6 11
d d d

)(

2 7̃ 12
c c c

)(

3̃ 8 13
b b b

)(

4 9 14 19
a a a a

)

b
= Zn+1 × Yn ×Xn ×Xn × Zn+1.

Example 3.2. Consider m = 5n+2, ℓ = 5n+1 and the type ‘dcbbaa’
which satisfies condition (3.5). We have

Jdcbbaa
5n+2,5n+1

w
=

(

0 5̃ 10 15
e d e e

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3 8 13
b b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5̃ 10 15
e d e e

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

3 8 13 18
b b b 18

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

2 7̃ 12
c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1̃ 6 11 16
d d d 18

)(

2 7̃ 12
c c c

)(

3 8 13 18
b b b b

)(

4 9 14 19
a a a a

)

b
= Zn+1 ×Xn ×Xn × Zn+1 × Zn+1.

Example 3.3. Consider m = 5n + 4, ℓ ∈ C|n+1 and the type ‘adcbac’
which satisfies condition (3.5). We have

∑

ℓ∈C|n+1

Jadcbac
5n+4,ℓ

w
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5̃ 10 15
e a e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5̃ 10 15
e 19 e e

∣

∣

∣

∣

1 6 11 16
d d d d

∣

∣

∣

∣

2 7̃ 12 17
c c c c

∣

∣

∣

∣

3 8 13 18
b b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5̃ 10 15
e 19 e e

)(

1 6 11 16
d d d d

)(

2 7̃ 12 17
c c c c

)(

3 8 13 18
b b b b

)(

4 9 14 19
a a a a

)
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b
= Zn+1 × Yn+1 ×Xn+1 × Yn+1 × Zn+1.

Example 3.4. Consider m = 5n + 1, ℓ = 5n and the type ‘edcaab’
which satisfies condition (3.5). We have

Jedcaab
5n+1,5n

w
=

(

0 5 10 15
e e e b

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
a b b

∣

∣

∣

∣

4 9 14
a a a

)

a
=

(

0 5 10 15
e e e b

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
a b b

∣

∣

∣

∣

4 9 14 19
a a a 19

)

e
=

(

0 5 10 15
e e e 19

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c c c

∣

∣

∣

∣

3̃ 8 13
b b b

∣

∣

∣

∣

4 9 14 19
a a a a

)

d
=

(

0 5 10 15
e e e 19

)(

1 6 11
d d d

)(

2 7 12
c c c

)(

3̃ 8 13
b b b

)(

4 9 14 19
a a a a

)

b
= Yn × Yn × Yn ×Xn × Zn+1.

Notation 1. In the above compressed writing, the letter w, a, e, d, b
over the symbol “ = ” means that the equality is obtained by substep
3(w), 3(a), 3(e), 3(d), 3(b) respectively.

Notation 2. In the compressed writing the integer n is represented
by the explicit value 3. Hence, the second block in the first equality in
Example 3.1 has the following meaning:

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16 · · · 5n− 4
d d d d · · · d

∣

∣

∣

∣

.

Also, the added biletter
(

19
19

)

(see Substep 3(a)) in the second equality

in Example 3.1 means
(

5n+4
5n+4

)

.

Substep 3(w). Rewrite the set. For each permutation σ from Jt
m,ℓ,

we reorder the biletters of σ such that
(

i

σi

)

is on the left of
(

j

σj

)

if i

mod d < j mod d, or if i ≡ j mod d and i < j. Then, we replace
each letter y ∈ ak in the bottom line by ak. To facilitate readability,
vertical bars are inserted between the biletters

(

i

σi

)

and
(

j

σj

)

such that

i 6≡ j (mod d). We get a biword w, denoted by ρ(σ) = w, called shape
of σ.

Applying this operation on the following permutation σ ∈ Jadbca
5n+1,5n+1

considered in Example 3.1

(3.10) σ =

(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 3 2 7 15 0 13 1 11 10 14 8 12 6 5 9

)

,

we get the shape ρ(σ) = w, where

(3.11) w =

(

0 5 10 15
e a e e

∣

∣

∣

∣

1 6 11
d d d

∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

3 8 13
c b b

∣

∣

∣

∣

4 9 14
a a a

)

.
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Notation 3. In the compressed writing, the above shape w represents
also the set ρ−1(w) of all the permutations σ such that ρ(σ) = w.

Each permutation σ ∈ Jadbca
5n+1,5n+1 contains exactly three unsociable

biletters of form
(

a

a

)

,
(

c

b

)

,
(

d

c

)

, denoted by
(

i0
j0

)

,
(

i1
j1

)

,
(

i2
j2

)

, respectively. So

that, for example, in the block
∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

there is exactly one letter ‘b’ in the bottom line. All other letters are ‘c’.
However, the position of the letter ‘b’ is not fixed. The shape of another
permutation may contain the block

∣

∣

∣

∣

2 7 12
b c c

∣

∣

∣

∣

or

∣

∣

∣

∣

2 7 12
c c b

∣

∣

∣

∣

.

Notation 4. The underlined bileters
(

i

aj

)

in the shape of a permuta-

tion σ means that there is no constraint i+σi ∈ J for the corresponding
biletters

(

i

σi

)

of σ. All other biletters of σ must satisfy the latter con-
straint.

In the first equality of each calculation, there is no underlined biletter
if m = ℓ (Example 3.1) or exactly one underlined biletter if 0 ≤ ℓ ≤
m − 1 (Examples 3.2 and 3.3). In the latter case, the underscore sign
indicates the position of ℓ.

Notation 5. The shape w, with a tilde sign ˜ over a biletter
(

ı̃

aj

)

,

represents the sum of all shapes w′ which are obtained from w by
moving the letter aj , including the underscore sign if it is underlined,
to other non-underlined position in the block. For example, we write
(see Example 3.1)

∣

∣

∣

∣

2 7̃ 12
c b c

∣

∣

∣

∣

:=

∣

∣

∣

∣

2 7 12
b c c

∣

∣

∣

∣

+

∣

∣

∣

∣

2 7 12
c b c

∣

∣

∣

∣

+

∣

∣

∣

∣

2 7 12
c c b

∣

∣

∣

∣

,

and (see Example 3.2)
∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16
c d d a

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d c d a

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d c a

∣

∣

∣

∣

,

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

:=

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

+

∣

∣

∣

∣

1 6 11 16
d d d 18

∣

∣

∣

∣

.

Notice that there is at most one tilde in each block by Lemma 3.3

Substep 3(a). Add biletters. For each σ ∈ Jt
dn+h,ℓ, we add all biletters

(

i

i

)

such that max{dn + h, dn + d − h} ≤ i ≤ dn + d − 1. Thus, the
number of occurrences of aj in the bottom row becomes the same as
the number of occurrences of ad−j−1 for any j ∈ N |d.

For instance, the bottom row of the right-hand side of
w
= in Exam-

ple 3.1 contains 4 × a, 3 × b, 3× c, 3× d, 3× e. By adding the biletter
(

19
19

)

to the shape the number of occurrences of a in the bottom row
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becomes the same as the number of occurrences of e (since 19 is also
an ‘e’). The added biletter in the shape is still represented by

(

19
19

)

,

instead of
(

19
e

)

. Notice that it is underlined (see Notation 4).

Substep 3(e). Exchange. Consider all the biletters of the permuta-
tion σ, which are unsocial, or which were added in Substep 3(a), or
still which have the specific form

(

ℓ

ak

)

with 0 ≤ ℓ ≤ m − 1. Exchange

the bottom letters of those biletters in such a way that all the biletters
will become friendly. In most of the cases, each block contains zero
or one bad biletter. The only exception is the block containing the
specific form

(

ℓ

ak

)

with ℓ = m − 1, and another unsocial biletter
(

i

aj

)

.

In such a case we put the appropriate explicit letter, which was added
in Substep 3(a), under the letter ℓ when the exchange was made. The
whole procedure is reversible.

In Examples 3.1 and 3.2, the exchanges of the bad biletters are real-
ized respectively as follows:

(

· · ·
5̃ 7̃ 3̃ 19
a b c 19

· · ·

)

7→

(

· · ·
5̃ 7̃ 3̃ 19
19 c b a

· · ·

)

(

· · ·
5̃ 1̃ 16 7̃ 18 19
d c a b 18 19

· · ·

)

7→

(

· · ·
5̃ 1̃ 16 7̃ 18 19
19 d 18 c b a

· · ·

)

In the second example, the block
∣

∣

1̃ 16
c a

∣

∣ contains two bad biletters.

We put the explicit letter 18 instead of the symbol ‘d’ under the letter
ℓ = 16.

Substep 3(d). Decomposition. After Substep 3(e) Exchange, the set
Jt
dn+h,ℓ is decomposed, in a natural way, into the Cartesian product of

d sets of biwords, which are called atoms in the sequel. According to
the situation of the tilde and underscore signs, the atoms are classified
into six families:

(i) :

(

1 6 11
d d d

)

,

(

1 6 11 16
d d d d

)

,

(

3 8 13 18
b b b b

)

,

(

2 7 12
c c c

)

;

(i′) :

(

0 5 10 15
e e e 19

)

;

(ii) :

(

4 9 14 19
a a a a

)

,

(

3 8 13 18
b b b b

)

;

(ii′) :

(

0 5̃ 10 15
e 19 e e

)

;

(iii) :

(

2 7̃ 12
c c c

)

,

(

3̃ 8 13
b b b

)

,

(

2 7̃ 12 17
c c c c

)

;

(iii′) :

(

1̃ 6 11 16
d d d 18

)

.

It suffices to count the permutations in each atom.
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Substep 3(b). Beta transformation. The cardinalities of the atoms
can be derived by means of the transformation β defined in (3.2). We
discuss the method according to the classification given in Substep 3(d).

(i) The atom

(3.12) A0 =

(

1 6 11
d d d

)

represents the set
{(

1 6 11
τ1 τ6 τ11

)
∣

∣

∣

∣

{τ1, τ6, τ11} = D|n
i+ τi ∈ J for i ∈ B|n

}

.

If i+ σi ∈ Ad−1, then

i+ σi ∈ J ⇐⇒ β(i) + β(σi) = β(i+ σi) ∈ J̄

by Lemma 3.1 (iii). Applying the transformation β to each letter in
the top and bottom rows of each element τ of A0, we get a permutation
λ from Jn,n:

{

β

(

1 6 11
τ1 τ6 τ11

)

=

(

0 1 2
λ1 λ2 λ3

)
∣

∣

∣

∣

{λ0, λ1, λ2} = N |n
i+ λi ∈ J̄ for i ∈ N |n

}

.

The above transformation is reversible and the atom A0 is in bijection
with J̄n,n. Thus #A0 = #J̄n,n = Ȳn. For example, the second factor

appearing in the right-hand side of the equality
b
= in Example 3.1, is

equal to Ȳn = Yn.
Notation 6. In the compressed writing, a set symbol may designate

also the cardinality of the set, if necessary. For example, we may write
S4 = 24.

(i′) The atom

(3.13) A1 =

(

0 5 10 15
e e e 19

)

represents the set
{(

0 5 10 15
τ0 τ5 τ10 19

)
∣

∣

∣

∣

{τ0, τ5, τ10} = E|n
i+ τi ∈ J for i ∈ A|n

}

.

Thus, it has the same cardinality of the atom A0 defined in (3.12).

(ii) The atom

(3.14) A2 =

(

3 8 13 18
b b b b

)

is meant to be the set
{(

3 8 13 18
τ3 τ8 τ16 τ18

)
∣

∣

∣

∣

{τ3, τ8, τ13, τ18} = B|n+1

i+ τi ∈ J for i ∈ D|n

}

.
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Applying the transformation β to each letter in each element σ in the
atom A2, we get a permutation λ from J̄n+1,n:

{(

0 1 2 3
λ0 λ1 λ2 λ3

)
∣

∣

∣

∣

{λ0, λ1, λ2, λ3} = N |n+1

i+ λi ∈ J̄ for i ∈ N |n

}

.

The transformation is reversible, so that A2 is in bijection with J̄n+1,n.
Hence, #A2 = #J̄n+1,n = Z̄n+1.

(ii′) The atom

(3.15) A3 =

(

0 5̃ 10 15
e 19 e e

)

represents the set
{(

0 5 10 15
τ0 τ5 τ10 τ15

)
∣

∣

∣

∣

{τ0, τ5, τ10, τ15} = E|n+1

i+ τi ∈ J for i ∈ A|n+1 such that τi 6= 5n+4

}

.

By inverting the top and bottom rows of each biword, the above set
becomes

{(

4 9 14 19
ρ4 ρ9 ρ14 ρ19

)
∣

∣

∣

∣

{ρ4, ρ9, ρ14, ρ19} = A|n+1

i+ ρi ∈ J for i ∈ E|n

}

,

which is equal to the atom

(3.16)

(

4 9 14 19
a a a a

)

already studied in (ii).

(iii) The atom

(3.17) A4 =

(

3̃ 8 13
b b b

)

represents the set
∑

r∈D|n

{(

3 8 13
τ3 τ8 τ13

)
∣

∣

∣

∣

{τ3, τ8, τ13} = B|n
i+ τi ∈ J for i ∈ D|n such that i 6= r

}

.

Applying the transformation β, the latter set becomes
n−1
∑

r=0

{(

0 1 2
λ0 λ1 λ2

)
∣

∣

∣

∣

{λ0, λ1, λ2} = N |n
i+ τi ∈ J̄ for i ∈ N |n such that i 6= r

}

.

Hence,

(3.18) A4 =
n−1
∑

r=0

#J̄n,i = X̄n.

(iii′) Similar to (i′), we have
(

1̃ 6 11 16
d d d 18

)

=

(

1̃ 6 11
d d d

)

,

which was already studied in (iii).
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4. Algorithm for evaluating the atoms

Keep the same notations as in Section 3, in particular, m = dn + h
(h ∈ N |d). Let k ∈ N |d. For simplicity, we write

PY := Jt
m,m, PZ := Jt

m,m−1, PX :=
∑

ℓ∈N |m∩Ak

Jt
m,ℓ.

For each type t the cardinality of the set P := PY , PZ or PX , is
evaluated by the substeps 3(w), 3(a), 3(e), 3(d), 3(b), which are fully
described in Section 3. As a consequence, the latter cardinality is
equal to the product of d factors (see Examples 3.1–3.4) corresponding
to the d atoms respectively. In this section, we show that the substeps
in Step 3 can be combined onto one super-step. In fact, each factor
can be evaluated directly by using a prefabricated dictionary.

Definition 4.1. Let i ∈ N |d be a fixed integer. We define several
parameters depending on i, k, d,m, t, where t = s0s1 . . . sd−1 (if P =
PY ) or s0s1 . . . sd−1sd (if P = PX or PZ):

η0 =

{

1, if i+ 1 ≤ h,

0, otherwise ;

η1 =

{

1, if d− i ≤ h,

0, otherwise ;

η2 =

{

1, if si = ad−i−1,

0, otherwise ;

η3 =

{

1, if P 6= PY and sd = ad−i−1,

0, otherwise .

ν =











‘Z’, if P = PZ and m− 1 ∈ Ai,

‘X’, if P = PX and k = i,

‘G’, otherwise ;

µi =











ΨZ(η0, η1, η2, η3), if ν = ‘Z’,

ΨX(η0, η1, η2, η3), if ν = ‘X’,

ΨG(η0, η1, η2), if ν = ‘G’,

where the explicit values of the functions ΨZ ,ΨX ,ΨG are given in Ta-
ble 4.1.

Notice that each permutation contains n + η0 (resp. n + η1) letters
in Ai (resp. in Ad−i−1).

Example 4.1. Consider P = Jadbca
5n+1,5n+1, studied in Example 3.1. In

this case, d = 5, m = 5n + 1, h = 1, ℓ = m = 5n + 1, t = s0s1s2s3s4 =
‘adbca’. For i = 1 we have η0 = 0, η1 = 0, η2 = 1. Hence, µ1 =
ΨG(0, 0, 1) = Ȳn.
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η 000 001 010 011 100 101 110 111
ΨG(η) X̄n Ȳn 0 Z̄n+1 Z̄n+1 0 X̄n+1 Ȳn+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨZ(η) 0 Z̄n 0 0 X̄n Ȳn 0 Z̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨZ(η) 0 Z̄n 0 0 X̄n 0 0 Z̄n+1

η 0000 0010 0100 0110 1000 1010 1100 1110
ΨX(η) 0 X̄n 0 0 0 Z̄n+1 0 X̄n+1

η 0001 0011 0101 0111 1001 1011 1101 1111
ΨX(η) 0 X̄n 0 0 0 0 0 X̄n+1

Table 4.1. Explicit values of the functions ΨZ ,ΨX ,ΨG

Example 4.2. Consider P = Jdcbbaa
5n+2,5n+1, studied in Example 3.2. In

this case, d = 5, m = 5n + 2, h = 2, ℓ = m − 1 = 5n + 1 ∈ A1, t =
s0s1s2s3s4 = ‘dcbbaa’. For i = 1 we have η0 = 1, η1 = 0, η2 = 0, η3 = 0.
So that µ1 = ΨZ(1, 0, 0, 0) = X̄n.

Example 4.3. Consider P =
∑

ℓ∈C|n+1
Jadcbac
5n+4,ℓ, studied in Example

3.3. In this case, d = 5, m = 5n + 4, h = 4, ℓ ∈ A2, t = s0s1s2s3s4 =
‘adcbac’. For i = 2 we have η0 = 1, η1 = 1, η2 = 1, η3 = 1 and
µ2 = ΨX(1, 1, 1, 1) = X̄n+1.

Theorem 4.1. With the above notations, the cardinality of the set
P := PY ,PZ ,PX is equal to

(4.1) #P = µ0 × µ1 × µ2 × · · · × µd−1.

For example, the set P =
∑

ℓ∈C|n+1
Jadcbac
5n+4,ℓ, studied in Example 3.3,

is evaluated by means of Theorem 4.1 as follows:
∑

ℓ∈C|n+1

Jadcbac
5n+4,ℓ

= µ0 µ1 µ2 µ3 µ4

= ΦG(1, 0, 0) ΦG(1, 1, 1)ΨX(1, 1, 1, 1)ΨG(1, 1, 1) ΦG(0, 1, 1)

= Zn+1 Yn+1Xn+1 Yn+1Zn+1.

By Theorem 4.1, the procedure EvalAtoms(P,t,h,k) figured in Al-
gorithm 1, which evaluates the cardinality of the set P := PY , PZ or
PX for each type t, is described in Algorithm 2.

Proof of Theorem 4.1. When we speak of case, we refer to a tuple (ν =
‘G’, η0, η1, η2), (ν = ‘Z’, η0, η1, η2, η3) or (ν = ‘Z’, η0, η1, η2, η3), which
depends on i, k, d,m, t,P by Definition 4.1. The case is reproduced
without non-significant symbols. For example, we write X1000 for the
case (‘X’, 1, 0, 0, 0).

In fact, the cases G101, Z1011, X1011 do not appear in product (4.1)
and can take any value, in particular, zero. In the cases X1000 and
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Algorithm 2 Evaluating the atoms

def EvalAtoms(P,t,h,k):

Prod=1

for i in Ch:

nu=’G’

if P==’PZ’ and i==(h+d-1)%d: nu=’Z’

if P==’PX’ and i==k: nu=’X’

eta=(i+1<=h, d-i<=h, t[i]==d-i-1)

if nu==’X’ or nu==’Z’: eta=eta+(t[d]==d-i-1,)

Prod=Prod*Psi(nu, eta)

return Prod

X1001, we have #P = 0 by Lemma 3.3, so that Identity (4.1) is true.
In the cases (‘G’, 0, 1, 0) and (ν, η) for

ν = ‘Z’, ‘X’;
η = (0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0),

(0, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 0, 1),

Lemma 3.2 implies that #P = 0. Hence, Identity (4.1) is true. All
other cases are proved as follows.

The evaluations of product (4.1) are explained in Section 3, see Ex-
amples 3.1–3.4. The factors µ0, µ1, . . . , µd−1 are obtained at the same
time by proceeding with the substeps 3(w), 3(a), 3(e), 3(d), 3(b). In
fact, we can evaluate each sole factor µi without keeping in mind the
others. For this purpose, we extract all biletters such that either its
top letter is in Ai or its bottom letter is ad−i−1 in the first two substeps
3(w) and 3(a).

Again, consider i = 1 and P = Jdcbbaa
5n+2,5n+1. We extract all biletters

such that either its top letter is in {1, 6, 11, 16, . . .} or its bottom letter
is d in the first two substeps 3(w) and 3(a) of Example 3.2. We have

Jdcbbaa
5n+2,5n+1

w
=

(

5̃
d

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

?

∣

∣

∣

∣

?

∣

∣

∣

∣

?

)

a
=

(

5̃
d

∣

∣

∣

∣

1̃ 6 11 16
c d d a

∣

∣

∣

∣

?

∣

∣

∣

∣

18
18

∣

∣

∣

∣

?

)

,

and

Jdcbbaa
5n+2,5n+1

e
=

(

5̃
19

∣

∣

∣

∣

1̃ 6 11 16
d d d 18

∣

∣

∣

∣

?

∣

∣

∣

∣

18
b

∣

∣

∣

∣

?

)

d
= ?

(

1̃ 6 11 16
d d d 18

)

?
b
= ?Xn???.

It means that µ1 = Xn = X̄n. On the other hand, this case corre-
sponds to the tuple (‘Z’, 1, 0, 0, 0) that takes the value X̄n, as shown in
Example 4.2.

In the sequel, i0 = i, i1 = d + i, i2 = 2d + i, . . . , in−1 = (n − 1)d +
i, in = nd + i are integers from Ai. Let j = d − i − 1, jn = dn + j.
We prove (4.1) case by case using the method described in the above
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example. Without loss of generality, the proof is illustrated for n = 3.

G000 :

(

i0 ı̃1 i2 ?
aj ? aj aj

)

e
=

(

i0 ı̃1 i2
aj aj aj

)

b
= X̄n,

G001 :

(

i0 i1 i2
aj aj aj

)

b
= Ȳn,

G011 :

(

i0 i1 i2 ?
aj aj aj aj

)

a
=

(

i0 i1 i2 ?
aj aj aj aj

)(

in
?

)

e
=

(

i0 i1 i2 in
aj aj aj aj

)

b
= Z̄n+1,

G100 :

(

i0 ı̃1 i2 i3
aj ? aj aj

)

a
=

(

i0 ı̃1 i2 i3
aj ? aj aj

)(

?
jn

)

e
=

(

i0 ı̃1 i2 i3
aj jn aj aj

)

b
= Z̄n+1,

G110 :

(

i0 ı̃1 i2 i3 ?
aj ? aj aj aj

)

e
=

(

i0 ı̃1 i2 i3
aj aj aj aj

)

b
= X̄n+1,

G111 :

(

i0 i1 i2 i3
aj aj aj aj

)

b
= Ȳn+1,

Z0010 :

(

i0 i1 in−1 ?
aj aj ? aj

)

e
=

(

i0 i1 in−1

aj aj aj

)

b
= Z̄n,

Z1110 :

(

i0 i1 i2 in ?
aj aj aj ? aj

)

e
=

(

i0 i1 i2 in
aj aj aj aj

)

b
= Z̄n+1,

Z0011 :

(

i0 i1 in−1

aj aj aj

)

b
= Z̄n,

Z1111 :

(

i0 i1 i2 in
aj aj aj aj

)

b
= Z̄n+1,

Z1000 :

(

i0 ı̃1 i2 in ?
aj ? aj ? aj

)

a
=

(

i0 ı̃1 i2 in ?
aj ? aj ? aj

)(

?
jn

)

e
=

(

i0 ı̃1 i2 in
aj aj aj jn

)

b
= X̄n,

Z1001 :

(

i0 ı̃1 i2 in
aj ? aj aj

)

a
=

(

i0 ı̃1 i2 in
aj ? aj aj

)(

?
jn

)

e
=

(

i0 ı̃1 i2 in
aj aj aj jn

)

b
= X̄n,

Z1010 :

(

i0 i1 i2 in
aj aj aj ?

)

a
=

(

i0 i1 i2 in
aj aj aj ?

)(

?
jn

)

e
=

(

i0 i1 i2 in
aj aj aj jn

)

b
= Ȳn,
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X0010 :

(

i0 ı̃1 i2 ?
aj ? aj aj

)

e
=

(

i0 ı̃1 i2
aj aj aj

)

b
= X̄n,

X0011 :

(

i0 ı̃1 i2
aj aj aj

)

b
= X̄n,

X1110 :

(

i0 ı̃1 i2 i3 ?
aj ? aj aj aj

)

e
=

(

i0 ı̃1 i2 i3
aj aj aj aj

)

b
= X̄n+1,

X1111 :

(

i0 ı̃1 i2 i3
aj aj aj aj

)

b
= X̄n+1,

X1010 :

(

i0 ı̃1 i2 i3
aj ? aj aj

)

a
=

(

i0 ı̃1 i2 i3
aj ? aj aj

)(

?
jn

)

e
=

(

i0 ı̃1 i2 i3
aj jn aj aj

)

b
= Z̄n+1. �

5. Implementation and outputs

Our program Apwen.py is an implementation of Algorithms 1 and 2
in Python. The proofs of Lemmas 2.3, 2.4 and 2.6 are achieved by the
following Outputs 1–3 of the program Apwen.py respectively. For sim-
plicity, the expression n+1 is reproduced by letter m. Thus, "Y(3n+1)
= Vn Wm" means the following recurrence relation

Y3n+1 = VnWn+1,

which appeared in Lemma 2.3. The calculations made in Examples
3.1–3.4 in Section 3 can be found in Output 3, types 168 adbca, 219

dcbbaa, 145 adcbac, 213 edcaab respectively.

Output 1 "python Apwen.py 3"

v= [1, -1, -1] direction = XYZ -> UVW

P= [1]

Q= [2]

J= [0, 3, 5, 6, 8, 9, 12, 14, 15, 18, 21, 23, 24, 27, ...]

K= [1, 2, 4, 7, 10, 11, 13, 16, 17, 19, 20, 22, 25, ...]

k : 3N+0

1 cbac: [Un:X0011] [Vn:G001] [Vn:G001]

2 ccab: [Un:X0010] [Un:G000] [Vn:G001]

3 ccba: [Un:X0010] [Un:G000] [Un:G000]

k : 3N+1

4 abbc: [Un:G000] [Un:X0010] [Un:G000]

5 cbab: [Vn:G001] [Un:X0011] [Vn:G001]

6 cbba: [Vn:G001] [Un:X0010] [Un:G000]

k : 3N+2

7 abac: [Un:G000] [Vn:G001] [Un:X0010]

8 acab: [Un:G000] [Un:G000] [Un:X0010]

9 cbaa: [Vn:G001] [Vn:G001] [Un:X0011]

X(3n+0) = Un
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k : 3N+0

10 cbaa: [Wm:X1010] [Vn:G001] [Wm:G011]

k : 3N+1

11 abab: [Wm:G100] [Un:X0011] [Wm:G011]

k : 3N+2

X(3n+1) = Un Wm + Vn Wm

k : 3N+0

12 cbaa: [Wm:X1010] [Vm:G111] [Wm:G011]

k : 3N+1

13 abab: [Wm:G100] [Um:X1111] [Wm:G011]

k : 3N+2

X(3n+2) = Um Wm + Vm Wm

14 acb: [Un:G000] [Un:G000] [Un:G000]

15 cba: [Vn:G001] [Vn:G001] [Vn:G001]

Y(3n+0) = Un + Vn

16 aba: [Wm:G100] [Vn:G001] [Wm:G011]

Y(3n+1) = Vn Wm

17 aba: [Wm:G100] [Vm:G111] [Wm:G011]

Y(3n+2) = Vm Wm

18 abac: [Un:G000] [Vn:G001] [Wn:Z0010]

19 acab: [Un:G000] [Un:G000] [Wn:Z0010]

20 cbaa: [Vn:G001] [Vn:G001] [Wn:Z0011]

Z(3n+0) = Un Vn Wn + Un Wn + Vn Wn

21 abac: [Un:Z1001] [Vn:G001] [Wm:G011]

22 acab: [Un:Z1000] [Un:G000] [Wm:G011]

23 cbaa: [Vn:Z1010] [Vn:G001] [Wm:G011]

Z(3n+1) = Un Vn Wm + Un Wm + Vn Wm

24 abab: [Wm:G100] [Wm:Z1111] [Wm:G011]

Z(3n+2) = Wm

Output 2 "python Apwen.py -3"

v= [1, -1, -1] direction = UVW -> XYZ

P= [2]

Q= [1]

J= [1, 2, 4, 7, 10, 11, 13, 16, 17, 19, 20, 22, 25, ...]

K= [0, 3, 5, 6, 8, 9, 12, 14, 15, 18, 21, 23, 24, 27, ...]

k : 3N+0

1 cacb: [Xn:X0010] [Xn:G000] [Xn:G000]

2 cbac: [Xn:X0011] [Yn:G001] [Yn:G001]

3 cbca: [Xn:X0010] [Yn:G001] [Xn:G000]

k : 3N+1

4 bbac: [Xn:G000] [Xn:X0010] [Yn:G001]

5 bbca: [Xn:G000] [Xn:X0010] [Xn:G000]

6 cbab: [Yn:G001] [Xn:X0011] [Yn:G001]
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k : 3N+2

7 baac: [Xn:G000] [Xn:G000] [Xn:X0010]

8 caab: [Yn:G001] [Xn:G000] [Xn:X0010]

9 cbaa: [Yn:G001] [Yn:G001] [Xn:X0011]

U(3n+0) = Xn

k : 3N+0

10 caab: [Zm:X1010] [Xn:G000] [Zm:G011]

11 cbaa: [Zm:X1010] [Yn:G001] [Zm:G011]

k : 3N+1

12 bbaa: [Zm:G100] [Xn:X0010] [Zm:G011]

k : 3N+2

U(3n+1) = Yn Zm

k : 3N+0

13 caab: [Zm:X1010] [Xm:G110] [Zm:G011]

14 cbaa: [Zm:X1010] [Ym:G111] [Zm:G011]

k : 3N+1

15 bbaa: [Zm:G100] [Xm:X1110] [Zm:G011]

k : 3N+2

U(3n+2) = Ym Zm

16 bac: [Xn:G000] [Xn:G000] [Xn:G000]

17 cba: [Yn:G001] [Yn:G001] [Yn:G001]

V(3n+0) = Xn + Yn

18 baa: [Zm:G100] [Xn:G000] [Zm:G011]

V(3n+1) = Xn Zm

19 baa: [Zm:G100] [Xm:G110] [Zm:G011]

V(3n+2) = Xm Zm

20 baac: [Xn:G000] [Xn:G000] [Zn:Z0010]

21 caab: [Yn:G001] [Xn:G000] [Zn:Z0010]

22 cbaa: [Yn:G001] [Yn:G001] [Zn:Z0011]

W(3n+0) = Xn Yn Zn + Xn Zn + Yn Zn

23 baac: [Xn:Z1001] [Xn:G000] [Zm:G011]

24 caab: [Yn:Z1010] [Xn:G000] [Zm:G011]

25 cbaa: [Yn:Z1010] [Yn:G001] [Zm:G011]

W(3n+1) = Xn Yn Zm + Xn Zm + Yn Zm

26 bbaa: [Zm:G100] [Zm:Z1110] [Zm:G011]

W(3n+2) = Zm

Output 3 "python Apwen.py 5" (extract)

v= [1, -1, -1, -1, 1] direction = XYZ -> XYZ

P= [1, 4]

Q= [2, 3]

J= [0, 3, 4, 5, 8, 10, 13, 15, 18, 19, 20, 23, 24, 25, 28, 29]

K= [1, 2, 6, 7, 9, 11, 12, 14, 16, 17, 21, 22, 26, 27]
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...

k : 5N+2

144 accbad: [Zm:G100] [Xm:G110] [Xm:X1110] [Ym:G111] [Zm:G011]

145 adcbac: [Zm:G100] [Ym:G111] [Xm:X1111] [Ym:G111] [Zm:G011]

146 adccab: [Zm:G100] [Ym:G111] [Xm:X1110] [Xm:G110] [Zm:G011]

147 dccaab: [Zm:G100] [Xm:G110] [Xm:X1110] [Xm:G110] [Zm:G011]

148 dccbaa: [Zm:G100] [Xm:G110] [Xm:X1110] [Ym:G111] [Zm:G011]

k : 5N+3

149 acbbad: [Zm:G100] [Xm:G110] [Xm:G110] [Xm:X1110] [Zm:G011]

150 acdbab: [Zm:G100] [Xm:G110] [Xm:G110] [Xm:X1111] [Zm:G011]

151 adbbac: [Zm:G100] [Ym:G111] [Xm:G110] [Xm:X1110] [Zm:G011]

152 adcbab: [Zm:G100] [Ym:G111] [Ym:G111] [Xm:X1111] [Zm:G011]

153 dcbbaa: [Zm:G100] [Xm:G110] [Xm:G110] [Xm:X1110] [Zm:G011]

k : 5N+4

X(5n+4) = Ym Zm

...

167 acdba: [Zm:G100] [Xn:G000] [Xn:G000] [Yn:G001] [Zm:G011]

168 adbca: [Zm:G100] [Yn:G001] [Xn:G000] [Xn:G000] [Zm:G011]

169 adcba: [Zm:G100] [Yn:G001] [Yn:G001] [Yn:G001] [Zm:G011]

170 dcbaa: [Zm:G100] [Xn:G000] [Xn:G000] [Xn:G000] [Zm:G011]

Y(5n+1) = Xn Zm + Yn Zm

...

212 edbcaa: [Yn:Z1010] [Yn:G001] [Xn:G000] [Xn:G000] [Zm:G011]

213 edcaab: [Yn:Z1010] [Yn:G001] [Yn:G001] [Xn:G000] [Zm:G011]

214 edcbaa: [Yn:Z1010] [Yn:G001] [Yn:G001] [Yn:G001] [Zm:G011]

Z(5n+1) = Xn Yn Zm + Xn Zm + Yn Zm

215 acbbad: [Zm:G100] [Xn:Z1001] [Xn:G000] [Zm:G011] [Zm:G011]

216 acdbab: [Zm:G100] [Xn:Z1000] [Xn:G000] [Zm:G011] [Zm:G011]

217 adbbac: [Zm:G100] [Yn:Z1010] [Xn:G000] [Zm:G011] [Zm:G011]

218 adcbab: [Zm:G100] [Yn:Z1010] [Yn:G001] [Zm:G011] [Zm:G011]

219 dcbbaa: [Zm:G100] [Xn:Z1000] [Xn:G000] [Zm:G011] [Zm:G011]

Z(5n+2) = Xn Yn Zm + Xn Zm + Yn Zm

...

The proof of that F13 is Apwenian takes 11 hours by using the pro-
gram Apwen.py on a modern personal computer. For proving that F17a

and F17b are Apwenian, it was necessary to rewrite the program in the
C language with some optimizations. The running times of the two
programs are reproduced in the following table:

f F3 F5 F11 F13 F17a, F17b F19

Python < 1s < 1s 11m 11h ∞ ∞
C < 1s < 1s 16s 29m 7 days × 24CPUs ∞
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