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The concept of t-difference operator for functions of partitions is introduced to prove a generalization of Stanley's theorem on polynomiality of Plancherel averages of symmetric functions related to contents and hook lengths. Our extension uses a generalization of the notion of Plancherel measure, based on walks in the Young lattice with steps given by the addition of t-hooks. It is well-known that the hook lengths of multiples of t can be characterized by the Littlewood decomposition. Our study gives some further information on the contents and hook lengths of other congruence classes modulo t.

1. Introduction 1.1. Goal. The purpose of this paper is to compute explicit averages over partitions of some statistics of their invariants, such as contents and hook lengths, and establish polynomiality of these averages in the size of the partitions considered. In contrast with previous results, we restrict our attention to subsets of partitions classified by the divisibility properties of those invariants, and we modify the averaging measures accordingly. Our main result is stated in Theorem 1.3.

Basic definitions.

A partition is a finite weakly decreasing sequence of positive integers λ = (λ 1 , λ 2 , • • • , λ r ). The size of the partition λ is defined by the integer |λ| = 1≤i≤r λ i . A partition λ could be represented by its Young diagram, which is a collection of boxes arranged in left-justified rows with λ i boxes in the i-th row. The content of a box = (i, j) in a partition λ is defined by c = ji. With each (i, j)-box is associated its hook length, denoted by h (i,j) , which is the number of boxes exactly to the right, or exactly below, including the box itself. The hook length multi-set of λ is denoted by H(λ). In Figure 1, the Young diagram and hook lengths of the partition (6, 3, 2, 2) are represented. For example, h (1,2) = 8 and h (3,1) = 3.

Let t be a positive integer. A partition is called a t-core partition if none of its hook lengths is divisible by t. For example, from Figure 1 we can see that λ = (6, 3, 2, 2) is a 7-core partition. Let H t (λ) = {h ∈ H(λ) : h ≡ 0 (mod t)} be the multi-set of hook lengths of multiples of t. Each partition λ can be associated with its 01-sequence z(λ) = (z λ,i ) i∈Z = (z i ) i∈Z as follows. First, consider the edges on the boundary of λ, starting at the bottom and ending to the right. Label the vertical (resp. horizontal) edges 0 (resp. 1). We obtain a bi-infinite 01-sequence (z i ) i∈Z beginning with infinitely many 0's and ending with infinitely many 1's. The index 0 of the bi-infinite 01-sequence is defined by the condition #{z i = 0 : i ≥ 0} = #{z i = 1 : i < 0}. Every partition and its 01-sequence are uniquely determined by each other (see Figure 2 for a running example of the constructions presented in this section). unique location where the number of 1's to the left equals the number of 0's to the right, which is between index -1 and 0 in the 01-sequence; visually this corresponds to the main diagonal in the Young diagram). Notice the mnemonic "RGB" for the colourings, starting after the | mark. The grey shapes indicate a sequence of 3-hooks that can be removed from λ, to finally obtain the 3-core (3, 1) of λ. One could start with the yellow shape for instance, and then make various choices for the order of the removals. The process always ends with the same 3-core [START_REF] Bandlow | An elementary proof of the hook formula[END_REF][START_REF] Amdeberhan | Differential operators, shifted parts, and hook lengths[END_REF], irrespective of the order of removals. Quotients will be

• • • 01|1011111 • • • (partition (2)), • • • 0|1111111 • • • (empty partition ∅) and • • • 011|011101 • • • (partition (5, 2)).
The 01-sequences contain a lot of information about partitions (see [START_REF] Armstrong | Results and conjectures on simultaneous core partitions[END_REF][START_REF] James | The Representation Theory of the Symmetric Group[END_REF]). By the construction of 01-sequences the following lemma is obvious. Lemma 1.1. For a partition λ and its 01-sequence z(λ) = (z i ) i∈Z , we have

|λ| = #{(i, j) : i < j, z i = 1, z j = 0}.
Actually, each box in λ is uniquely determined by such a pair (i, j). 1 The hook length of such box is j -i. Also, for an edge labeled by z i = 0, the box to the left has content i; for an edge labeled by z i = 1, the box above has content i + 1.

By Lemma 1.1 a partition λ is a t-core partition if and only if there are no i ∈ Z satisfying z i = 1, z i+t = 0 in the 01-sequence z(λ). If z i = 1, z i+t = 0 (resp. z i = 0, z i+t = 1) in a 01-sequence z(λ) = (z j ) j∈Z , by exchanging the values of z i and z i+t we obtain a new 01-sequence and thus a new partition. We say that this new partition is obtained by removing (resp. adding) a t-hook from (resp. to) λ.

Starting with a partition λ, we can always remove several t-hooks until no more t-hooks could be removed. The final partition we get by this operation is called the t-core of λ and denoted by λ t-core , which is actually independent of the ordering of removing t-hooks from λ (see [START_REF] Armstrong | Results and conjectures on simultaneous core partitions[END_REF][START_REF] James | The Representation Theory of the Symmetric Group[END_REF]). For 0 ≤ i ≤ t -1, the i-th t-quotient of the partition λ is defined to be the partition associated with the 01-sequence obtained by taking the subsequence (z tj+i ) j∈Z of z(λ), which is denoted by λ i . For each positive integer t, we actually build a map {partitions} → {t-core partitions} × {partitions} t which sends a partition λ to (λ t-core ; λ 0 , λ 1 , . . . , λ t-1 ). This map is a bijection, called the Littlewood decomposition of partitions at t [START_REF] Macdonald | Symmetric functions and Hall polynomials, Oxford Mathematical Monographs[END_REF]. In this paper, we always set that a partition λ is identical with its image under the Littlewood decomposition, i.e., we always write λ = (λ t-core ; λ 0 , λ 1 , . . . , λ t-1 ). The Littlewood decomposition has the following two fundamental properties (see [START_REF] Macdonald | Symmetric functions and Hall polynomials, Oxford Mathematical Monographs[END_REF]):

|λ| = |λ t-core | + t(|λ 0 | + |λ 1 | + • • • + |λ t-1 |) and {h/t | h ∈ H t (λ)} = H(λ 0 ) ∪ H(λ 1 ) ∪ • • • ∪ H(λ t-1 ).
Let f λ (resp. f λ/µ ) be the number of standard Young tableaux of shape λ (resp. λ/µ) and H λ = ∈λ h be the product of all hook lengths of boxes in λ. For convenience we set f ∅ = 1 and H ∅ = 1 for the empty partition ∅. It is well known that (see [START_REF] Frame | The hook graphs of Sn[END_REF][START_REF] Han | The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension, and applications[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF])

(1.1) f λ = |λ|! H λ and 1 n! |λ|=n f 2 λ = 1.
The latter identity defines a measure on partitions of size n, called the Plancherel measure. Alternatively, we can see f λ as counting "walks" among Young diagrams up to the shape λ (so-called hook walks, see [START_REF] Greene | A probabilistic proof of a formula for the number of Young tableaux of a given shape[END_REF][START_REF] Greene | Another probabilistic method in the theory of Young tableaux[END_REF]).

1.4. Polynomiality of Plancherel averages and modified hook walks. Expanding on a formula of Nekrasov and Okounkov on hook lengths [START_REF] Nekrasov | Seiberg-Witten theory and random partitions[END_REF], the second author conjectured [START_REF] Han | Some conjectures and open problems on partition hook lengths[END_REF] that

P (n) = 1 n! |λ|=n f 2 λ ∈λ h 2k
is always a polynomial of n for any k ∈ N. This conjecture was generalized and proved by Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF] (see also [START_REF] Amdeberhan | Differential operators, shifted parts, and hook lengths[END_REF][START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF][START_REF] Han | Hook lengths and shifted parts of partitions[END_REF][START_REF] Panova | Polynomiality of some hook-length statistics[END_REF]), and later generalized in [START_REF] Han | Difference operators for partitions and some applications[END_REF][START_REF] Han | New hook-content formulas for strict partitions[END_REF][START_REF] Han | Polynomiality of some hook-content summations for doubled distinct and self-conjugate partitions[END_REF].

Let Q be a symmetric function in infinitely many variables and E be a finite set with n elements. The symbol Q(x : x ∈ E) means that n of the variables are substituted by x for x ∈ E, and all other variables by 0.

Theorem 1.2 (Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF]). Let Q be a symmetric function in infinitely many variables. Then

(1.2) P (n) = 1 n! |λ|=n f 2 λ Q(c : ∈ λ)
and

(1.3) P * (n) = 1 n! |λ|=n f 2 λ Q(h 2 : ∈ λ)
are polynomials in n.

Olshanski [START_REF] Olshanski | Plancherel averages: Remarks on a paper by Stanley[END_REF] also proved the content case of Theorem 1.2.

Let λ and µ be two partitions. We say that λ ≥ t µ if λ could be obtained by adding some t-hooks to µ. Then, the set of all partitions becomes a partially ordered set under this relation. If λ ≥ t µ, define F λ/µ to be the number of ways of removing t-hooks:

(1.4) F µ/µ := 1 and F λ/µ := λ≥tλ -≥tµ |λ/λ -|=t F λ -/µ (for λ = µ).
It is easy to see that F λ/µ = #{(P 0 , P 1 , . . . , P t-1 ) : P i is a Young tableau of shape λ i /µ i , the union of entries in P 0 , P 1 , . . . , P t-1 are 1, 2, . . . , t-1 i=0 |λ i /µ i |}. Hence,

F λ/µ = t-1 i=0 |λ i /µ i | |λ 0 /µ 0 |, |λ 1 /µ 1 |, . . . , |λ t-1 /µ t-1 | t-1 i=0 f λ i /µ i .
These F λ/µ can be seen as counting hook walks distributed among the quotient partitions of λ. Let (1.5)

F λ := F λ/λt-core = n |λ 0 |, |λ 1 |, • • • , |λ t-1 | t-1 i=0 f λ i = n!t n G λ , where n = |λ 0 | + |λ 1 | + . . . + |λ t-1 | and G λ := 1 h∈Ht(λ) h .
When t = 1, we have F λ = f λ and G λ = 1/H λ . Also, when λ is a t-core partition, we have F λ = G λ = 1. 1.5. Difference operators and main result. Let g be a function of partitions and λ a partition. The difference operator D for partitions was defined in [START_REF] Han | Difference operators for partitions and some applications[END_REF] as

Dg(λ) = |λ + /λ|=1 g(λ + ) -g(λ).
In this paper, we introduce a generalization of D. For every integer t, let

(1.6) D t g(λ) = λ + ≥tλ |λ + /λ|=t g(λ + ) -g(λ).
Accordingly, D 1 = D.

The higher-order difference operators for D t are defined by induction:

D 0 t g := g and D k t g := D t (D k-1 t g) (k ≥ 1).
These operators also fit in Stanley's theory of differential posets [START_REF] Stanley | Differential posets[END_REF], although this is a language we will not use here. The following theorem is our main result, which will be proved in Section 5.

Theorem 1.3. Suppose that t is a positive integer, u ′ , v ′ , j u , j ′ v , k u , k ′ v are nonnegative integers and µ is a given t-core partition. Then, there exists some fixed r ∈ N such that

D r t G λ u ′ u=1 ∈λ h ≡±ju(mod t) h 2ku v ′ v=1 ∈λ c ≡j ′ v (mod t) c k ′ v = 0
for every partition λ with λ t-core = µ. Moreover,

P (n) = λt-core=µ |λ/µ|=nt F λ/µ G λ u ′ u=1 ∈λ h ≡±ju(mod t) h 2ku v ′ v=1 ∈λ c ≡j ′ v (mod t) c k ′ v is a polynomial of n (n is a nonnegative integer).
Let Q 1 and Q 2 be two symmetric functions. By Theorem 1.3, there exists some fixed r ∈ N such that

D r t G λ Q 1 (h 2 : ∈ λ)Q 2 (c : ∈ λ) = 0 for every partition λ with λ t-core = µ. Moreover, (1.7) P (n) = λt-core=µ |λ/µ|=nt F λ/µ G λ Q 1 (h 2 : ∈ λ)Q 2 (c : ∈ λ)
is a polynomial of n. When t = 1, µ = ∅, we have (1.7) implies Theorem 1.2.

1.6. Specialization for the square case. We now focus on expressions of square sum of contents or hook lengths, and thereby obtain explicit results. Details of the proofs are given in Section 6. We start by considering individual partitions.

Theorem 1.4. Let 0 ≤ k ≤ t -1.
For every partition λ with λ t-core = ∅ we have

∈λ h ≡k(mod t) h 2 + ∈λ h ≡t-k(mod t) h 2 - ∈λ c ≡k(mod t) c 2 + ∈λ c ≡t-k(mod t) c 2 (1.8) = 2t 2 t-1-k i=0 n i n i+k + k-1 i=0 n i n i+t-k , where n i = |λ i |.
By letting t = 1 we obtain the following well-known result (see [START_REF] Macdonald | Symmetric functions and Hall polynomials, Oxford Mathematical Monographs[END_REF]).

Corollary 1.5. For every partition λ we have

∈λ h 2 - ∈λ c 2 = |λ| 2 .
We now turn to t-Plancherel averages, introducing F λ/µ and G λ as weights in the previous results and summing over λ. The results are stated in two cases according to the divisibility of the hook lengths by t.

Theorem 1.6. Suppose that µ is a given t-core partition and

1 ≤ k ≤ t -1. Then we have λt-core=µ |λ/µ|=nt F λ/µ G λ ∈λ h ≡k(mod t) h 2 + ∈λ h ≡t-k(mod t) h 2 = 6t n 2 + 2k(t -k) + 4t|µ(k)| + 4t|µ(t -k)| n + ∈µ h ≡k(mod t) h 2 + ∈µ h ≡t-k(mod t) h 2 , where µ(k) = {h ∈ H(µ) | h ≡ k (mod t)}, viewed as a multiset. In particular, let µ = ∅. Then we have λt-core=∅ |λ|=nt F λ G λ ∈λ h ≡k(mod t) h 2 + ∈λ h ≡t-k(mod t) h 2 = 6t n 2 + 2k(t -k)n.
Theorem 1.7. Suppose that µ is a given t-core partition. Then we have

λt-core=µ |λ/µ|=nt F λ/µ G λ ∈λ h ≡0(mod t) h 2 = nt 2 + 3t n 2 .
By Theorems 1.6 and 1.7 we obtain the following result.

Corollary 1.8. Suppose that µ is a given t-core partition. Then

λt-core=µ |λ/µ|=nt F λ/µ G λ ∈λ h 2 = 3t 2 n 2 2 + nt(t 2 -3t -1 + 24|µ|) 6 + ∈µ h 2 .
In particular, let µ = ∅. Then we have

λt-core=∅ |λ|=nt F λ G λ ∈λ h 2 = 3t 2 n 2 2 + nt(t 2 -3t -1) 6 .
Similar results for contents can also be obtained.

Theorem 1.9. Let 0 ≤ k ≤ t -1. We have λt-core=∅ |λ|=nt F λ G λ ∈λ c ≡k(mod t) c 2 = t n 2 + k(t -k)n.
Theorem 1.9 implies the following identity.

λt-core=∅ |λ|=nt F λ G λ ∈λ c 2 = t 2 n 2 + (t 3 -t)n 6 . (1.9)
In fact we will derive a more general result in Theorem 6.3 by replacing ∅ by a general t-core partition.

Partitions and t-difference operator

We now turn our attention to preliminary lemmas on the t-difference operators D k t , and in particular a theorem outlining how polynomiality of t-Plancherel averages can be deduced from the vanishing of

D k t for large enough k. It is known [11] that (2.1) D 1 H λ = 0.
We establish a similar result for the t-difference operator.

Lemma 2.1. Suppose that λ is a partition. Then

D t (G λ ) = 0.
In other words,

G λ = λ + ≥tλ |λ + /λ|=t G λ + .
Proof. Suppose that λ = (λ t-core ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (λ t-core ; λ 0 , λ 1 , . . . , λ i-1 , (λ i ) + , λ i+1 , . . . , λ t-1 ) where |(λ i ) + /λ i | = 1. Then, by the definition of G λ we have

G λ + G λ = H λ i tH (λ i ) +
.

By (2.1) we have

|(λ i ) + /λ i |=1 G (λt-core;λ 0 ,λ 1 ,...,λ i-1 ,(λ i ) + ,λ i+1 ,...,λ t-1 ) G λ = 1 t .
Summing the above equality over 0 ≤ i ≤ t -1, we prove our claim.

We now prove a commutation relation between the averaging over partitions of a given weight and the D t operator. Lemma 2.2. Suppose that µ is a given partition and g is a function of partitions. For every n ∈ N, let

P g (n) := λ≥tµ |λ/µ|=nt F λ/µ g(λ). Then P g (n + 1) -P g (n) = P Dtg (n).
Proof. The proof is straightforward and follows from expanding definitions:

P g (n + 1) -P g (n) = ν≥tµ |ν/µ|=(n+1)t F ν/µ g(ν) - λ≥tµ |λ/µ|=nt F λ/µ g(λ) = ν≥tµ |ν/µ|=(n+1)t ν≥tν -≥tµ |ν/ν -|=t F ν -/µ g(ν) - λ≥tµ |λ/µ|=nt F λ/µ g(λ) = λ≥tµ |λ/µ|=nt F λ/µ λ + ≥tλ |λ + /λ|=t g(λ + ) -g(λ) = P Dtg (n). Example. Let g(λ) = G λ . Then D t g(λ) = 0 by Lemma 2.1, which means that P Dtg (n) = 0. Consequently, P g (n + 1) = P g (n) = • • • = P g (0) = G µ , or (2.2) λ≥tµ |λ/µ|=nt F λ/µ G λ = G µ .
Recall that when µ is a t-core partition, we have G µ = 1. This implies

(2.3) λt-core=µ |λ/µ|=nt F λ/µ G λ = 1.
In particular, let µ = ∅, we obtain a generalization of the second identity of (1.1):

(2.4) λt-core=∅ |λ|=nt F λ G λ = 1,
or equivalently, (2.5)

|λ 0 |+|λ 1 |+•••+|λ t-1 |=n n |λ 0 |, |λ 1 |, • • • , |λ t-1 | t-1 i=0 f 2 λ i |λ i |! = t n .
Formulas such as this one can be used to create new measures on partitions, called t-Plancherel.

Recall that the higher-order difference operators for D t are defined by induction D 0 t g := g and

D k t g := D t (D k-1 t g) (k ≥ 1)
. We write D t g(ν) := D t g(λ)| λ=ν for a fixed partition ν.

Theorem 2.3. Let g be a function of partitions and µ be a given partition. Then,

(2.6) P g (n) = λ≥tµ |λ/µ|=nt F λ/µ g(λ) = n k=0 n k D k t g(µ)
and

(2.7) D n t g(µ) = n k=0 (-1) n+k n k P g (k).
In particular, if there exists some positive integer r such that D r t g(λ) = 0 for every partition λ ≥ t µ, then P g (n) is a polynomial in n.

Proof. Identity (2.6) will be proved by induction. The case n = 0 is obvious. Assume that (2.6) is true for some nonnegative integer n. By Lemma 2.2 we obtain

P g (n + 1) = P g (n) + P Dtg (n) = n k=0 n k D k t g(µ) + n k=0 n k D k+1 t g(µ) = n+1 k=0 n + 1 k D k t g(µ).
Identity (2.7) follows from the famous Möbius inversion formula [START_REF] Rota | On the foundations of combinatorial theory: I. Theory of Möbius functions[END_REF].

Corners of partitions

Now we introduce the concept of corners in a partition. For a partition λ, the outer corners (see [START_REF] Bandlow | An elementary proof of the hook formula[END_REF][START_REF] Han | Difference operators for partitions and some applications[END_REF]) are the boxes which can be removed in such a way that after removal the resulting diagram is still a Young diagram. The coordinates of outer corners are denoted by (α 1 , β 1 ), . . . , (α m , β m ) such that

α 1 > α 2 > • • • > α m .
Let y j := β jα j (1 ≤ j ≤ m) be the contents of outer corners. Set α m+1 = β 0 = 0. The inner corners of λ are defined to be the boxes whose coordinates are (α 1 , β 0 ), (α 2 , β 1 ), . . . , (α m+1 , β m ). Let x i = β iα i+1 be the contents of the inner corners for 0 ≤ i ≤ m.

Example. For λ = (6, 3, 2, 2) (see Figure 1) we have m = 3, (α 1 , β 1 ) = (4, 2), (α 2 , β 2 ) = (2, 3) and (α 3 , β 3 ) = [START_REF] Amdeberhan | Differential operators, shifted parts, and hook lengths[END_REF][START_REF] Greene | A probabilistic proof of a formula for the number of Young tableaux of a given shape[END_REF]. Therefore (x 0 , x 1 , x 2 , x 3 ) = (-4, 0, 2, 6) and (y 1 , y 2 , y 3 ) = (-2, 1, 5). Also note that 0≤i≤3 x i -1≤j≤3 y j = 0 and

0≤i≤3 x i 2 -1≤j≤3 y j 2 = 26 = 2|λ|.
Let λ be a partition and x i , y j be the quantities associated to λ defined above. Define (see [START_REF] Han | Difference operators for partitions and some applications[END_REF])

(3.1) q k (λ) := 0≤i≤m x i k - 1≤j≤m y j k
for each integer k, and

(3.2) q ν (λ) := ℓ k=1 q ν k (λ)
for each partition ν = (ν 1 , ν 2 , . . . , ν ℓ ). 2 We need the following results developed in [START_REF] Han | Difference operators for partitions and some applications[END_REF] (see (6.3), (6.6), Theorem 6.1 and Lemma 6.4 in [START_REF] Han | Difference operators for partitions and some applications[END_REF] respectively).

Theorem 3.1. Let λ i+ = λ ∪ { i } with c i = x i for 0 ≤ i ≤ m.
(1) For k = 0, 1, 2, we have q 0 (λ) = 1, q 1 (λ) = 0 and q 2 (λ) = 2 |λ|.

(2) Suppose that k is a nonnegative integer. Then we have

q k (λ i+ ) -q k (λ) = 1≤j≤k/2 2 k 2j x k-2j i .
2 We need to be careful here: in general, qν (λ) = i qν i (λ) = i q ν i (λ), which was used in Theorem 3.4 and commented on in footnote 3. Writing qν allows for a convenient access to |ν|.

(3) Let ν be a partition. Then, there exists some b δ ∈ Q such that

D q ν (λ) H λ = |δ|≤|ν|-2 b δ q δ (λ) H λ
for every partition λ. (4) Let k be a nonnegative integer. Then there exists some b

δ ∈ Q such that 0≤i≤m H λ H λ i+ x i k = |δ|≤k b δ q δ (λ)
for every partition λ.

The next result is easy to prove by Theorem 3.1(4).

Theorem 3.2. Let λ i+ = λ ∪ { i } with c i = x i for 0 ≤ i ≤ m. Then, 0≤i≤m H λ H λ i+ x i = 0 and 0≤i≤m H λ H λ i+ x i 2 = |λ|
for every partition λ.

We obtain the following result, which is a generalization of Theorem 3.1(3).

Theorem 3.3. Let ν be a given partition. Then, there exists some b δ 0 ,δ 1 ,...,δ t-1 ∈ Q such that

(3.3) D t G λ t-1 i=0 q ν i (λ i ) = ( * ) b δ 0 ,δ 1 ,...,δ t-1 G λ t-1 i=0 q δ i (λ i )
for every partition λ, where ( * ) ranges over all partitions δ 0 , δ 1 , . . . , δ t-1 such that

t-1 i=0 |δ i | ≤ t-1 i=0 |ν i | -2. Notice that b δ 0 ,δ 1 ,...,δ t-1 is independent of λ. Furthermore, if r ≥ 1 2 t-1 i=0 |ν i | + 1, then D r t G λ t-1 i=0 q ν i (λ i ) = 0
for every partition λ.

Proof. We have

D t G λ t-1 i=0 q ν i (λ i ) = λ + ≥tλ |λ + /λ|=t G λ + t-1 i=0 q ν i (λ + ) i -G λ t-1 i=0 q ν i (λ i ) = G λ λ + ≥tλ |λ + /λ|=t G λ + G λ t-1 i=0 q ν i ((λ + ) i ) - t-1 i=0 q ν i (λ i ) = 1 t G λ t-1 j=0 0≤i≤t-1 i =j q ν i (λ i ) |(λ j ) + /λ j |=1 H λ j H (λ j ) + q ν j ((λ j ) + ) -q ν j (λ j ) = 1 t G λ t-1 j=0 0≤i≤t-1 i =j q ν i (λ i )H λ j D q ν j (λ j ) H λ j = ( * ) b δ 0 ,δ 1 ,...,δ t-1 G λ t-1 i=0 q δ i (λ i )
for some b δ 0 ,δ 1 ,...,δ t-1 ∈ Q, where ( * ) ranges over all partitions δ 0 , δ 1 , . . . , δ t-1 such that

t-1 i=0 |δ i | ≤ t-1 i=0 |ν i | -2.
The last equality is due to Theorem 3.1(3).

Definition 3.1. Let µ be a t-core partition. A function g of partitions is called µ-admissible, if there exist some functions of partitions η s (here η s depends on t, g, i, µ) such that g(λ

+ ) -g(λ) = s ′ s=0 η s (λ)c s i is a polynomial of c i for every pair of partitions λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ),
where each coefficient η s (λ) is a linear combination of some t-1 j=0 q τ j (λ j ) for some partition τ , 3 and for every partition λ with λ t-core = µ. By Theorem 3.1(2), λ → t-1 i=0 q ν i (λ i ) is µ-admissible for any partition ν and any t-core partition µ. As can be seen in Section 5, the following two functions of partitions

g(λ) = ∈λ h ≡±j(mod t) h 2k and g(λ) = ∈λ c ≡j(mod t) c k
are µ-admissible for any t-core partition µ, any nonnegative integer k, and 0 ≤ j ≤ t -1. This is a consequence of Lemmas 5.2 and 5.4. Theorem 3.4. Let t be a given integer, ν be a partition, and µ be a t-core partition. Suppose that g 1 , g 2 , . . . , g v are µ-admissible functions of partitions. Then, there exists some r ∈ N such that 3 We really need here a t-tuple of partitions. We decide to reuse the quotient notation for this purpose. Different τ with the same t-core would give the same tuple, but the surjectivity is inconsequential here.

D r t G λ v u=1 g u (λ) t-1 i=0 q ν i (λ i ) = 0
for every partition λ with λ t-core = µ. Furthermore, by Theorem 2.3,

(3.4) P (n) = λt-core=µ |λ/µ|=nt F λ/µ G λ v u=1 g u (λ)
is a polynomial in n.

Proof of Theorem 3.4. Notice that this theorem is true for v = 0 by Theorem 3.3. We will prove it by induction. First, we have

D t G λ v u=1 g u (λ) t-1 i=0 q ν i (λ i ) = G λ λ + ≥tλ |λ + /λ|=t G λ + G λ v u=1 g u (λ + ) t-1 i=0 q ν i ((λ + ) i ) - v u=1 g u (λ) t-1 i=0 q ν i (λ i ) = G λ λ + ≥tλ |λ + /λ|=t G λ + G λ A • ∆B + B • ∆A + ∆A • ∆B , where A = v u=1 g u (λ), ∆A = v u=1 g u (λ + ) - v u=1 g u (λ), B = t-1 i=0 q ν i (λ i ), ∆B = t-1 i=0 q ν i ((λ + ) i ) - t-1 i=0 q ν i (λ i ).
Next,

G λ λ + ≥tλ |λ + /λ|=t G λ + G λ A • ∆B = 1 t G λ v u=1 g u (λ) t-1 j=0 0≤i≤t-1 i =j q ν i (λ i ) H λ j D q ν j (λ j ) H λ j , G λ λ + ≥tλ |λ + /λ|=t G λ + G λ B • ∆A = 1 t G λ t-1 i=0 q ν i (λ i ) t-1 j=0 |(λ j ) + /λ j |=1 H λ j H (λ j ) + v u=1
g u (µ; λ 0 , . . . , (λ j ) + , . . . , λ t-1 ) -

v u=1 g u (λ) , G λ λ + ≥tλ |λ + /λ|=t G λ + G λ ∆A • ∆B = 1 t G λ t-1 j=0 |(λ j ) + /λ j |=1 H λ j H (λ j ) + 0≤i≤t-1 i =j q ν i (λ i ) q ν j ((λ j ) + ) -q ν j (λ j ) v u=1
g u (µ; λ 0 , . . . , (λ j ) + , . . . , λ t-1 ) -v u=1 g u (λ) .

By Theorems 3.1 and 3.3 each of the last three terms could be written as a linear combination of some

G λ v ′ u ′ =1 g ′ u ′ (λ) t-1 i=0 q (ν ′ ) i (λ i ) for some µ-admissible functions g ′ u ′
, where either v ′ = v and simultaneously

t-1 i=0 |(ν ′ ) i | ≤ t-1 i=0 |ν i | -2, or v ′ < v.
Then, by Theorem 3.3 and induction we prove the claim.

Further properties of Littlewood decomposition

In this section, we always assume that µ is a given t-core partition with 01sequence z(µ) = (z µ,j ) j∈Z . For 0 ≤ i ≤ t -1, we have µ i = ∅. Thus, µ i has a 01-sequence equal to • • • 0000|11111 • • • , which means that z µ i ,j = 0 for j < 0 and z µ i ,j = 1 for j ≥ 0. Let

b i := b i (µ) = min{j ∈ Z : j ≡ i(mod t), z µ,j = 1}.
Then, there exist some d i ∈ Z such that b i = td i + i for 0 ≤ i ≤ t -1. Therefore, z µ,tj+i = 0 for j < d i and z µ,tj+i = 1 for j ≥ d i .

Example. The 01-sequence of the 3-core partition (5, 3, 1, 1) is

• • • 001001|1011011 • • • . Therefore, b 0 = 0, b 1 = 7, b 2 = -4, d 0 = 0, d 1 = 2, and d 2 = -2. Notice that d 0 + d 1 + d 2 = 0.
We define

B k = {(i, i + k) : 0 ≤ i ≤ t -1 -k} {(i, i + t -k) : 0 ≤ i ≤ k -1},
viewed as multisets for 1 ≤ k ≤ t -1 (i.e., if k equals tk, we keep two copies). Then we have (4.1)

(i,j)∈B k (j -i) 2 = tk(t -k).
Lemma 4.1. Suppose that µ is a given t-core partition. Let b i and d i be defined as above. Then

t-1 i=0 d i = 0. Proof. Let 0 ≤ i ≤ t -1.
First, the fact that µ is a t-core partition implies that z µ,tj+i = 0 for j < d i and z µ,tj+i = 1 for j ≥ d i . By the definition of 01-sequence we have #{z µ,j = 0 : j ≥ 0} = #{z µ,j = 1 : j < 0}. Thus,

t-1 i=0 d i = #{z µ,j = 0 : j ≥ 0} -#{z µ,j = 1 : j < 0} = 0.
For every partition λ and 0 ≤ k ≤ t -1, recall that λ(k) = {h ≡ k(mod t) : ∈ λ}, viewed as a multiset. Lemma 4.2. Suppose that µ is a given t-core partition and

1 ≤ k ≤ t -1. Then, |µ(0)| = 0 and |µ(k)| + |µ(t -k)| = (i,j)∈B k d i -d j 2 .
Proof. First, |µ(0)| = 0 since µ is a t-core partition. By Lemma 1.1 we have

|µ(k)| = #{(i ′ , j ′ ) : i ′ < j ′ , j ′ -i ′ ≡ k(mod t), z µ,i ′ = 1, z µ,j ′ = 0}.
Now we just need to consider the right hand side of the above identity. Notice that for 0 ≤ i ≤ t -1 we have z µ,tj+i = 0 for j < d i and z µ,tj+i = 1 for j ≥ d i . Then, for each (i, j) ∈ B k , we have

#{(i ′ , j ′ ) : i ′ ≡ i(mod t), j ′ ≡ j(mod t), i ′ < j ′ , z µ,i ′ = 1, z µ,j ′ = 0} + #{(i ′ , j ′ ) : i ′ ≡ j(mod t), j ′ ≡ i(mod t), i ′ < j ′ , z µ,i ′ = 1, z µ,j ′ = 0} = 1 + 2 + • • • + (d i -d j -1) = d i -d j 2 = d j -d i + 1 2 whenever d i > d j or d i ≤ d j . This means that |µ(k)| + |µ(t -k)| = (i,j)∈B k d i -d j 2 .
By Lemmas 4.1 and 4.2 we obtain

(i,j)∈B k (2j -2i)(d i -d j ) = t (i,j)∈B k (d i -d j ), (4.2) t 0≤i≤t-1 d 2 i = 0≤i<j≤t-1 (d i -d j ) 2 , (4.3) -2 0≤i≤t-1 id i = 0≤i<j≤t-1 (d i -d j ), (4.4) and |µ| = 0≤i<j≤t-1 d i -d j 2 (4.5) = t 2 0≤i≤t-1 d 2 i + 0≤i≤t-1 id i = 1 2t 2 0≤i<j≤t-1 (b i -b j ) 2 -(i -j) 2 .
Lemma 4.3. Suppose that µ is a given t-core partition and 0 ≤ k ≤ t -1. Let λ be a partition with λ t-core = µ and |λ| = |µ| + nt. Then,

|λ(k)| + |λ(t -k)| -|µ(k)| -|µ(t -k)| = 2n.
Proof. Adding a t-hook to a partition λ means that we change some (z i = 0, z i+t = 1) to (z i = 1, z i+t = 0) in the 01-sequence of λ. Then, the lemma follows directly from Lemma 1.1 and induction on the size of λ.

Contents, Hook lengths and t-difference operators

By the construction of 01-sequences and Lemma 1.1, the following lemma is obvious.

Lemma 5.1. Let z(λ) = (z λ,i ) i∈Z be the 01-sequence of a partition λ. Then, λ has an inner (resp. outer) corner with content k if and only if

z λ,k-1 = 0, z λ,k = 1 (resp. z λ,k-1 = 1, z λ,k = 0).
For each partition λ let C(λ) be the multiset of its contents. We explicitly compute how contents change when adding a box to one of the quotients in the Littlewood decomposition. Lemma 5.2. Suppose that µ is a given t-core partition. Let λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 )

and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ).
Then,

C(λ + ) \ C(λ) = {c i t + b i , c i t + b i -1, . . . , c i t + b i -(t -1)}.
Proof. Suppose that the 01-sequence of λ is (z λ,j ) j∈Z . For each 0 ≤ i ≤ t -1 let (z λ i ,j ) j∈Z be the 01-sequence of λ i . Then, z λ i ,j = z λ,jt+bi since λ t-core = µ. Notice that b i are determined by µ. Let c = c i be the content of i . Then, by Lemma 5.1 adding the box i to λ i means that (z λ i ,c-1 , z λ i ,c ), which is equal to (0, 1) in the 01sequence of λ i , is changed to (1, 0); or equivalently, (z λ,(c-1)t+bi , z λ,ct+bi ) = (0, 1) in the 01-sequence of λ is changed to (1, 0). Then by Lemma 1.1 this means that we add boxes with contents

ct + b i , ct + b i -1, . . . , ct + b i -(t -1)
to λ.

By induction and Lemma 5.2 we obtain the following lemma.

Lemma 5.3. Suppose that µ is a given t-core partition. Then

C(λ) \ C(µ) = t-1 i=0 {tc i + b i -j : 0 ≤ j ≤ t -1, i ∈ λ i }
for every partition λ with λ t-core = µ.

For the partition λ and 0 ≤ i ≤ t -1, let x i,l (0 ≤ l ≤ m i ) be the contents of inner corners of λ i and y i,l (1 ≤ l ≤ m i ) be the contents of outer corners of λ i . Lemma 5.4. Suppose that µ is a given t-core partition, r is a given integer, 1 ≤ k ≤ t -1, and 0 ≤ i ≤ t -1. Let λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ). Then

∈λ + h ≡0(mod t) h 2r - ∈λ h ≡0(mod t) h 2r = t 2r + 0≤l≤mi (t(c i -x i,l )) 2r - 1≤l≤mi (t(c i -y i,l ))
2r and ∈λ + h ≡k(mod t)

h 2r + ∈λ + h ≡t-k(mod t) h 2r - ∈λ h ≡k(mod t) h 2r - ∈λ h ≡t-k(mod t) h 2r = 0≤l≤m i ′ (tc i + b i -tx i ′ ,l -b i ′ ) 2r - 1≤l≤m i ′ (tc i + b i -ty i ′ ,l -b i ′ ) 2r + 0≤l≤m i ′′ (tc i + b i -tx i ′′ ,l -b i ′′ ) 2r - 1≤l≤m i ′′ (tc i + b i -ty i ′′ ,l -b i ′′ ) 2r where 0 ≤ i ′ , i ′′ ≤ t-1 satisfy i ′ ≡ i + k(mod t) and i ′′ ≡ i -k(mod t). Furthermore, ∈λ + h 2r - ∈λ h 2r = t 2r + t-1 j=0 0≤l≤mj (tc i + b i -tx j,l -b j ) 2r - 1≤l≤mj (tc i + b i -ty j,l -b j ) 2r .
Proof. Suppose that the 01-sequence of λ is (z λ,j ) j∈Z . For each 0 ≤ i ≤ t -1, let (z λ i ,j ) j∈Z be the 01-sequence of λ i . Then, by the Littlewood decomposition we have z λ i ,j = z λ,jt+bi . Let c = c i = x i,wi . By Lemma 5.1, adding the box i to λ i means that (z λ i ,c-1 , z λ i ,c ) = (0, 1) in the 01-sequence of λ i is changed to (1, 0), or equivalently, (z λ,(c-1)t+bi , z λ,ct+bi ) = (0, 1) in the 01-sequence of λ is changed to (z λ + ,(c-1)t+bi , z λ + ,ct+bi ) = (1, 0). By Lemma 1.1, to see the difference between hook length sets of λ + and λ, we just need to consider the different pairs (j, j ′ ) where j < j ′ , (1, 0) = (z λ,j , z λ,j ′ ) or (z λ + ,j , z λ + ,j ′ ), and {j, j ′ } {(c -1)t + b i , ct + b i } = ∅ in the 01-sequences of λ and λ + .

Case (i). First consider such pairs (j, j ′ ) satisfying j ′j ≡ 0(mod t). Since (z λ,(c-1)t+bi , z λ,ct+bi ) = (0, 1) and (z λ + ,(c-1)t+bi , z λ + ,ct+bi ) = (1, 0), it follows from Lemmas 1.1 and 5.1 that the hook lengths of λ + for such pairs (j, j ′ ) are

t, t(c -x i,l ), t(c -x i,l -1), • • • , t(c -y i,l+1 + 1) (0 ≤ l ≤ w i -1), t(x i,l -c), t(x i,l -c -1), • • • , t(y i,l -c + 1) (w i + 1 ≤ l ≤ m i ),
and the hook lengths of λ for such pairs are

t(c -x i,l -1), t(c -x i,l -2), • • • , t(c -y i,l+1 ) (0 ≤ l ≤ w i -1), t(x i,l -c -1), t(x i,l -c -2), • • • , t(y i,l -c) (w i + 1 ≤ l ≤ m i ).
Let |a| be the absolute value for every real number a. Thus

{h ∈ H(λ + ) : h ≡ 0(mod t)} \ {h ∈ H(λ) : h ≡ 0(mod t)} = {t} {t(c -x i,l ) : 0 ≤ l ≤ w i -1} {t(x i,l -c) : w i + 1 ≤ l ≤ m i } \ {t(c -y i,l+1 ) : 0 ≤ l ≤ w i -1} {t(y i,l -c) : w i + 1 ≤ l ≤ m i } = {t} {|t(c -x i,l )| : 0 ≤ l ≤ m i , l = w i } \ {|t(c -y i,l+1 )| : 1 ≤ l ≤ m i }, which means that ∈λ + h ≡0(mod t) h 2r - ∈λ h ≡0(mod t) h 2r = t 2r + 0≤l≤mi (t(c -x i,l )) 2r - 1≤l≤mi (t(c -y i,l )) 2r since c = x i,wi .
Case (ii). For 1 ≤ k ≤ t -1 consider such pairs (j, j ′ ) satisfying j ′j ≡ k or t-k(mod t). Let 0 ≤ i ′ , i ′′ ≤ t-1 satisfy i ′ ≡ i+k(mod t) and i ′′ ≡ i-k(mod t). Then, by the similar argument as in Case (i) we obtain Then, the proof is achieved by Theorem 3.4.

{h ∈ H(λ + ) : h ≡ k(mod t)} {h ∈ H(λ + ) : h ≡ t -k(mod t)} \ {h ∈ H(λ) : h ≡ k(mod t)} {h ∈ H(λ) : h ≡ t -k(mod t)} = {|tc -tx i ′ ,l + b i -b i ′ | : 0 ≤ l ≤ m i ′ } {|tc -tx i ′′ ,l + b i -b i ′′ | : 0 ≤ l ≤ m i ′′ } \ {|tc -ty i ′ ,l + b i -b i ′ | : 1 ≤ l ≤ m i ′ } {|tc -ty i ′′ ,l + b i -b i ′′ | : 1 ≤ l ≤ m i ′′ } , which means that ∈λ + h ≡k(mod t) h 2r + ∈λ + h ≡t-k(mod t) h 2r - ∈λ h ≡k(mod t) h 2r - ∈λ h ≡t-k(mod t) h 2r = 0≤l≤m i ′ (tc + b i -tx i ′ ,l -b i ′ ) 2r - 1≤l≤m i ′ (tc + b i -ty i ′ ,l -b i ′ ) 2r + 0≤l≤m i ′′ (tc + b i -tx i ′′ ,l -b i ′′ ) 2r - 1≤l≤m i ′′ (tc + b i -ty i ′′ ,l -b i ′′ ) 2r .

Explicit formulas for the square case

Now we are able to deduce more explicit results. Theorem 6.1. Suppose that µ is a given t-core partition. Recall that b i and d i are defined as in Section 4. Let 1 ≤ k ≤ t -1. For every partition λ with λ t-core = µ we have ∈λ h ≡k(mod t)

h 2 + ∈λ h ≡t-k(mod t) h 2 - ∈λ c ≡k(mod t) c 2 + ∈λ c ≡t-k(mod t) c 2 = ∈µ h ≡k(mod t) h 2 + ∈µ h ≡t-k(mod t) h 2 - ∈µ c ≡k(mod t) c 2 + ∈µ c ≡t-k(mod t) c 2 + (i,j)∈B k 2t 2 n i n j + t(b j + j -2b i )d j n i + t(b i + i -2b j )d i n j - 1 3 t 2 d j q 3 (λ i ) + d i q 3 (λ j ) ,
where

n i = |λ i | for 0 ≤ i ≤ t -1.
Proof. We will prove this result by induction on the size of λ. When λ = µ, we have λ i = ∅, n i = 0 and thus the identity holds. Now suppose that the identity holds for λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ).

We just need to prove it for λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ).

Let 0 ≤ i ′ , i ′′ ≤ t -1 satisfy i ′ ≡ i + k(mod t) and i ′′ ≡ ik(mod t). Set x i,wi = c i . By Lemma 5.4, we have

∈λ + h ≡k(mod t) h 2 + ∈λ + h ≡t-k(mod t) h 2 - ∈λ h ≡k(mod t) h 2 - ∈λ h ≡t-k(mod t) h 2 = 0≤l≤m i ′ (tx i,wi + b i -tx i ′ ,l -b i ′ ) 2 - 1≤l≤m i ′ (tx i,wi + b i -ty i ′ ,l -b i ′ ) 2 + 0≤l≤m i ′′ (tx i,wi + b i -tx i ′′ ,l -b i ′′ ) 2 - 1≤l≤m i ′′ (tx i,wi + b i -ty i ′′ ,l -b i ′′ ) 2 = (tx i,wi + b i -b i ′ ) 2 -2t(tx i,wi + b i -b i ′ ) 0≤l≤m i ′ x i ′ ,l - 1≤l≤m i ′ y i ′ ,l + t 2 0≤l≤m i ′ x 2 i ′ ,l - 1≤l≤m i ′ y 2 i ′ ,l + (tx i,wi + b i -b i ′′ ) 2 -2t(tx i,wi + b i -b i ′′ ) 0≤l≤m i ′′ x i ′′ ,l - 1≤l≤m i ′′ y i ′′ ,l + t 2 0≤l≤m i ′′ x 2 i ′′ ,l - 1≤l≤m i ′′ y 2 i ′′ ,l = (tx i,wi + b i -b i ′ ) 2 + (tx i,wi + b i -b i ′′ ) 2 + 2t 2 n i ′ + 2t 2 n i ′′ .
The last equality is due to Theorem 3.1(1). On the other hand, by Lemma 5.2 we have

∈λ + c ≡k(mod t) c 2 + ∈λ + c ≡t-k(mod t) c 2 - ∈λ c ≡k(mod t) c 2 + ∈λ c ≡t-k(mod t) c 2 = (tx i,wi + b i -i ′ ) 2 + (tx i,wi + b i -i ′′ ) 2 .
By Theorem 3.1(3) we have

q 3 (λ i ∪ { i }) -q 3 (λ i ) = 6x i,wi .
Finally, after putting those identities together we know the theorem is also true for λ + and thus prove the claim.

We now turn to a theorem still focused on one partition at a time, but this time summing over contents or hook lengths divisible by t. Theorem 6.2. Suppose that µ is a given t-core partition. For every partition λ with λ t-core = µ we have

∈λ h ≡0(mod t) h 2 - ∈λ c ≡0(mod t) c 2 = t 2 t-1 i=0 n 2 i -d 2 i n i - 1 3 d i q 3 (λ i ) - ∈µ c ≡0(mod t) c 2 , where n i = |λ i | for 0 ≤ i ≤ t -1.
Proof. We will prove this result by induction on the size of λ. Notice that µ(0) = {h ∈ H(µ) | h ≡ 0 (mod t)} = ∅ since µ is a t-core partition. When λ = µ, we have λ i = ∅, n i = 0 and thus the identity holds. Now suppose that the identity holds for λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ).

We just need to prove it for λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ). Let x i,wi = c i . By Lemma 5.4 we have

∈λ + h ≡0(mod t) h 2 - ∈λ h ≡0(mod t) h 2 = t 2 + 0≤l≤mi (tx i,wi -tx i,l ) 2 - 1≤l≤mi (tx i,wi -ty i,l ) 2 = t 2 + (tx i,wi ) 2 -2t 2 x i,wi 0≤l≤mi x i,l - 1≤l≤mi y i,l + t 2 0≤l≤mi x 2 i,l - 1≤l≤mi y 2 i,l = t 2 + t 2 x 2 i,wi + 2t 2 n i .
The last equality is due to Theorem 3.1 [START_REF] Amdeberhan | Differential operators, shifted parts, and hook lengths[END_REF]. Also, by Lemma 5.2 we have

∈λ + c ≡0(mod t) c 2 - ∈λ c ≡0(mod t) c 2 = t 2 (x i,wi + d i ) 2 .
By Theorem 3.1(3) we have

q 3 (λ i ∪ { i }) -q 3 (λ i ) = 6x i,wi .
Finally, putting these identities together, we prove the claim.

It is clear that Theorem 1.4 is a consequence of Theorems 6.1 and 6.2 by letting µ = ∅.

Theorem 1.6 is on t-Plancherel averages of square sums of congruent hook lengths.

Proof of Theorem 1.6. For two partitions λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ), by Case (ii) of Lemma 5.4 we have

∈λ + h ≡k(mod t) h 2 + ∈λ + h ≡t-k(mod t) h 2 - ∈λ h ≡k(mod t) h 2 - ∈λ h ≡t-k(mod t) h 2 = 0≤l≤m i ′ (tc i + b i -tx i ′ ,l -b i ′ ) 2 - 1≤l≤m i ′ (tc i + b i -ty i ′ ,l -b i ′ ) 2 + 0≤l≤m i ′′ (tc i + b i -tx i ′′ ,l -b i ′′ ) 2 - 1≤l≤m i ′′ (tc i + b i -ty i ′′ ,l -b i ′′ ) 2
where i ′ ≡ i + k(mod t) and i ′′ ≡ ik(mod t).

Let

P (n) := λt-core=µ |λ/µ|=nt F λ/µ G λ ∈λ h ≡k(mod t) h 2 + ∈λ h ≡t-k(mod t) h 2 .
Then, by Lemma 2.2 and Theorems 3.1, 3.2 we have

P (n + 1) -P (n) = 1 t λt-core=µ |λ/µ|=nt F λ/µ G λ t-1 i=0 λ i+ =λ i ∪{ i} H λ i H λ i+ 0≤l≤m i ′ (tc i + b i -tx i ′ ,l -b i ′ ) 2 - 1≤l≤m i ′ (tc i + b i -ty i ′ ,l -b i ′ ) 2 + 0≤l≤m i ′′ (tc i + b i -tx i ′′ ,l -b i ′′ ) 2 - 1≤l≤m i ′′ (tc i + b i -ty i ′′ ,l -b i ′′ ) 2 = 1 t λt-core=µ |λ/µ|=nt F λ/µ G λ t-1 i=0 λ i+ =λ i ∪{ i} H λ i H λ i+ 2t 2 c 2 i + 2t 2 |λ i ′ | + 2t 2 |λ i ′′ | + (b i -b i ′ ) 2 + (b i -b i ′′ ) 2 = 2tn + 2tn + 2tn + 1 t t-1 i=0 (b i -b i ′ ) 2 + (b i -b i ′′ ) 2 .
On the other hand, 

1 t t-1 i=0 (b i -b i ′ ) 2 + (b i -b i ′′ ) 2 = 2 t (i,j)∈B k (b i -b j ) 2 =
h 2 .
Theorem 1.7 is analogous to Theorem 1.6 when looking at t-Plancherel averages of square sums of hook lengths, but only the lengths divisible by t are taken into account.

Proof of Theorem 1.7. For two partitions λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ), by Case (i) of Lemma 5. [START_REF] Carde | Proof of Han's Hook Expansion Conjecture[END_REF] 

n i = t 2 + 3nt.
Thus, we have

P (n) = nt 2 + 3t n 2 + P (0) = nt 2 + 3t n 2 .
Finally, the next two theorems have similar concerns, looking at t-Plancherel averages, but this time for squares of contents. They are differentiated by the restriction in Theorem 6.3 or looking only at contents in one congruence class. Theorem 6.3. Suppose that µ is a given t-core partition and 0 ≤ k ≤ t -1. For each 0 ≤ i ≤ t -1 let i ′ satisfy 0 ≤ i ′ ≤ t -1 and ii ′ ≡ k(mod t). Then λt-core=µ |λ/µ|=nt

F λ/µ G λ ∈λ c ≡k(mod t) c 2 = t n 2 + 1 t t-1 i=0 (b i -i ′ ) 2 n + ∈µ c ≡k(mod t) c 2 .
Proof. For two partitions λ = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i , λ i+1 , . . . , λ t-1 ) and λ + = (µ; λ 0 , λ 1 , . . . , λ i-1 , λ i ∪ { i }, λ i+1 , . . . , λ t-1 ), by Lemma 5.2 we have Then, we have

P (n + 1) -P (n) = 1 t λt-core=µ |λ/µ|=nt F λ/µ G λ t-1 i=0 λ i+ =λ i ∪{ i} H λ H λ i+ (tc i + b i -i ′ ) 2 = tn + 1 t t-1 i=0 (b i -i ′ ) 2 .
Finally, we obtain The last equality is due to (4.3), (4.4) and (4.5).

P (n) = t n 2 + 1 t t-1 i=0 (b i -i ′ )
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Figure 1 .

 1 Figure 1. The Young diagram of the partition (6, 3, 2, 2) and the hook lengths of corresponding boxes.

Figure 2 .

 2 Figure 2. This is our running example for the 01-sequence and the Littlewood decomposition of a partition. The Young diagram of the partition λ = (18, 7, 6) is drawn, together with its 01-sequence • • • 0111|1110101111111111101 • • • (the | indicates the

Finally

  , by Cases (i) and (ii) the proof is completed. Now we are ready to prove Theorem 1.3.Proof of Theorem 1.3. By Lemmas 5.2 and 5.4, the following two functions of partitionsg j (λ) = ∈λ h ≡±j(mod t) h 2k and g ′ j (λ) = ∈λ c ≡j(mod t) c kare µ-admissible for any t-core partition µ, nonnegative integer k, and 0 ≤ j ≤ t-1.

  ∈λ + c ≡k(mod t) c 2 -∈λ c ≡k(mod t) c 2 = (tc i + b ii ′ ) 2 . Let P (n) := λt-core=µ |λ/µ|=nt F λ/µ G λ ∈λ c ≡k(mod t) c 2 .

  2 t (i,j)∈B k t 2 (d id j ) 2 + (ij) 2 + 2t(ij)(d id j ) = 2k(tk) + 4t(|µ(k)| + |µ(tk)|).The last equality is due to (4.2) and Lemma 4.2. Finally,P (n + 1) -P (n) = 6nt + 2k(tk) + 4t|µ(k)| + 4t|µ(tk)|.

	Thus,		
	P (n) = 6t	n 2	+ 2k(t -k) + 4t|µ(k)| + 4t|µ(t -k)| n + P (0)
	= 6t	n 2	+ 2k(t -k) + 4t|µ(k)| + 4t|µ(t -k)| n
	+		h 2 +
			∈µ	∈µ
		h ≡k(mod t)	h ≡t-k(mod t)

  we have 2 = t 2 + t 2 c 2 i + 2t 2 n i .

	Then,						
	P (n + 1) -P (n) =	1 t λt-core=µ |λ/µ|=nt	F λ/µ G λ	t-1 i=0 λ i+ =λ i ∪{ i}	H λ H λ i+	(t 2 + t 2 c 2	i + 2t 2 n i )
		t-1				
	= t 2 + 3t					
		i=0					
		h 2 -					
	∈λ + h ≡0(mod t)	∈λ h ≡0(mod t)			
	Let						
		P (n) :=	F λ/µ G λ	h 2 .		
		λt-core=µ |λ/µ|=nt	∈λ h ≡0(mod t)		

h

  Theorem 6.4. Suppose that µ is a given t-core partition. Then we have

		= t	n 2	+	1 t	t-1 i=0	(b i -i ′ ) 2 n +	∈µ	c 2 .
										c ≡k(mod t)
	λt-core=µ	F λ/µ G λ	∈λ	c 2 = t 2 n 2	+	(t 3 -t)n 6	+ 2tn|µ| +	∈µ	c 2 .
	|λ/µ|=nt								
	Proof. By Theorem 6.3 we have					
				F λ/µ G λ			c 2
		λt-core=µ					∈λ	
		|λ/µ|=nt						
		= t 2 n 2	+	1 t	t-1 i=0	t-1 j=0	(b i -j) 2 n +	∈µ	c 2
		= t 2 n 2	+	(t 3 -t)n 6	+ 2tn|µ| +
										2 n + P (0)

∈µ c 2 .

Notice that here (i, j) is not the coordinate of the box in λ.
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