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THE (t, q)-ANALOGS OF SECANT AND TANGENT NUMBERS

The secant and tangent numbers are given (t, q)-analogs with an explicit combinatorial interpretation. This extends, both analytically and combinatorially, the classical evaluations of the Eulerian and Roselle polynomials at t = -1.

Introduction

As is well-known (see, e.g., [START_REF] Nielsen | Traité élémentaire des nombres de Bernoulli[END_REF]p. 177 are positive integral coefficients, usually called tangent numbers, while the secant numbers E 2n , also positive and integral, make their appearances in the Taylor expansion of sec u:

sec u = 1 cos u = 1 + n≥1 u 2n (2n)! E 2n (1.2) = 1 + u 2 2! 1 + u 4 4! 5 + u 6 6! 61 + u 8 8! 1385 + u 10 10! 50521 + • • •
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1 On the other hand, the expansion

(1.3) 1 -s exp(su) -s exp(u) exp(Y u) = n≥0 u n n! A n (s, 1, 1, Y )
defines a sequence (A n (s, 1, 1, Y )) (n ≥ 0) of polynomials with Positive Integral Coefficients [in short, PIC polynomials], whose specializations (A n (s, 1, 1, 1)) (n ≥ 0) for Y = 1 are called Eulerian polynomials and go back to Euler himself [Eu1755], while the version A n (s, 1, 1, 0) (n ≥ 0) for Y = 0 was introduced and combinatorially interpreted by Roselle [START_REF] Roselle | Permutations by number of rises and successions[END_REF]. The two identities

(1.4) A 2n (-1, 1, 1, 1) = 0; (-1) n A 2n+1 (-1, 1, 1, 1) = T 2n+1 (n ≥ 0); (1.5)

A 2n+1 (-1, 1, 1, 0) = 0; (-1) n A 2n (-1, 1, 1, 0) = E 2n (n ≥ 0); are due to Euler [Eu1755] and Roselle [START_REF] Roselle | Permutations by number of rises and successions[END_REF], respectively and a joint combinatorial proof of them can be found in [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], chap. 5. The purpose of this paper is to prolong those two identities into a (t, q)-environment. Everybody is familiar with all successful attempts that have been made for finding qanalogs of the classical identities in analysis, using the now well-developed theory of q-series ([GR90], [START_REF] Andrews | Special Functions[END_REF]). The main feature in the present approach is the addition of another variable t, in such a way that properties that hold for positive integers or PIC polynomials initially considered, also hold, mutatis mutandis, for the polynomials having the further variables t and q.

The (t, q)-extensions of (1.4) and (1.5) will be obtained by the discoveries of three classes of PIC polynomials (A n (s, t, q, Y )), (T 2n+1 (t, q)), (E 2n (t, q)) (n ≥ 0) such that the following diagram holds

A n (s, t, q, Y ) -A n (s, 1, 1, Y )
? ?

A n (-q -1 , t, q, Y )

-A n (-1, 1, 1, Y ) t = 1, q = 1 t = 1, q = 1 s = -q -1 s = -1
Fig. 1 together with the identities:

(1.4) tq A 2n (-q -1 , t, q, 1) = 0; (-1) n A 2n+1 (-q -1 , t, q, 1) = T 2n+1 (t, q);

(1.5) tq A 2n+1 (-q -1 , t, q, 0) = 0; (-1) n A 2n (-q -1 , t, q, 0) = E 2n (t, q).
Note that the latter identities imply: T 2n+1 (1, 1) = T 2n+1 (the tangent number) and E 2n (1, 1) = E 2n (the secant number). The sequence ((A n (s, t, q, Y )), further defined in (1.12), is a slight modification of a class ((A * n (s, t, q, Y )) of polynomials (see (4.1)) that have been thoroughly studied and used in our previous paper [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF]. However, the extensions T 2n+1 (t, q) and E 2n (t, q) the electronic journal of combinatorics 12 (2011), #R00 of tangent and secant, as true PIC polynomials, are to be truly constructed. This is, indeed, the main goal of the paper.

Using the traditional q-ascending factorial (t; q) n := (1 -t)(1 -tq) • • • (1 -tq n-1 ) for n ≥ 1 and (t; q) 0 = 1, Jackson [START_REF] Jackson | A basic-sine and cosine with symbolic solutions of certain differential equations[END_REF] (also see [START_REF] Gasper | Basic hypergeometric series[END_REF]p. 23]) introduced both q-sine "sin q (u)" and q-cosine "cos q (u)" as being the q-series:

sin q (u) := n≥0 (-1) n u 2n+1
(q; q) 2n+1 ; cos q (u) := n≥0 (-1) n u 2n (q; q) 2n ; so that the q-tangent "tan q (u)" and q-secant "sec q (u)" can be defined by the qexpansions:

tan q (u) := sin q (u) cos q (u) = n≥0 u 2n+1 (q; q) 2n+1 T 2n+1 (q); (1.1) q sec q (u) := 1 cos q (u) = n≥0 u 2n (q; q) 2n E 2n (q). (1.2) q
The coefficients T 2n+1 (q) and E 2n (q) occurring in those expansions are called q-tangent numbers and q-secant numbers, respectively, and known to be PIC polynomials, such that T 2n+1 (1) = T 2n+1 , E 2n (1) = E 2n . See, e.g., [START_REF] Andrews | Divisibility properties of the q-tangent numbers[END_REF], [START_REF] Andrews | Congruences for the q-secant number[END_REF], [START_REF] Foata | Further divisibility properties of the q-tangent numbers[END_REF], [START_REF] Stanley | Enumerative Combinatorics[END_REF].

For each r ≥ 0 we introduce the q-series:

sin (r) q (u) := n≥0
(-1) n (q r ; q) 2n+1 (q; q) 2n+1 u 2n+1 ; (1.6) cos (r) q (u) := n≥0 (-1) n (q r ; q) 2n (q; q) 2n u 2n ; (1.7) tan (r) q (u) := sin (r) q (u) cos (r) q (u) ;

(1.8) sec (r) q (u) := 1 cos (r) q (u) ; (1.9) and define the (t, q)-analogs of the tangent and secant numbers as being the coefficients T 2n+1 (t, q) and E 2n (t, q), respectively, in the following two series:

r≥0 t r tan (r) q (u) = n≥0 u 2n+1 (t; q) 2n+2 T 2n+1 (t, q); (1.1) tq r≥0 t r sec (r) q (u) = n≥0 u 2n (t; q) 2n+1 E 2n (t, q). (1.2) tq
the electronic journal of combinatorics 12 (2011), #R00 Theorem 1.1. The (t, q)-analogs T 2n+1 (t, q) and E 2n (t, q), defined in (1.1) tq and (1.2) tq , have the following properties:

(a) they are PIC polynomials; (b) furthermore,

T 2n+1 (1, q) = T 2n+1 (q); E 2n (1, q) = E 2n (q); (1.10) T 2n+1 (1, 1) = T 2n+1 ; E 2n (1, 1) = E 2n . (1.11)
The first values of those PIC polynomials are next listed.

T 1 (t, q) = t; T 3 (t, q) = t 2 q(1 + q); T 5 (t, q) = t 2 q 2 (1 + q)(1 + tq(1 + 2q + 2q 2 + q 3 ) + t 2 q 6 ); T 7 (t, q) = t 2 q 3 (1 + q)(1 + tq(2 + 5q + 7q 2 + 7q 3 + 5q 4 + 2q 5 ) + t 2 q 3 (1 + 4q + 10q 2 + 15q 3 + 18q 4 + 15q 5 + 10q 6 + 4q 7 + q 8 ) + t 3 q 8 (2 + 5q + 7q 2 + 7q 3 + 5q 4 + 2q 5 ) + t 4 q 14 ); E 0 (t, q) = 1; E 2 (t, q) = t; E 4 (t, q) = t 2 q(1 + 2q + q 2 + tq 3 ); E 6 (t, q) = t 2 q 2 (1 + 2q + q 2 + tq(1 + 4q + 8q 2 + 10q 3 + 8q 4 + 4q 5 + q 6 ) + t 2 q 5 (2 + 5q + 6q 2 + 5q 3 + 2q 4 ) + t 3 q 10 ); E 8 (t, q) = t 2 q 3 (1 + 2q + q 2 + tq(2 + 9q + 20q 2 + 30q 3 + 34q 4 + 30q 5 + 20q 6 + 9q 7 + 2q 8 ) + t 2 q 3 (1 + 6q + 21q 2 + 48q 3 + 81q 4 + 110q 5 + 122q 6 + 110q 7 + 81q 8 + 48q 9 + 21q 10 + 6q 11 + q 12 ) + t 3 q 8 (3 + 14q + 35q 2 + 62q 3 + 86q 4 + 96q 5 + 86q 6 + 62q 7 + 35q 8 + 14q 9 + 3q 10 ) + t 4 q 14 (3 + 9q + 15q 2 + 18q 3 + 15q 4 + 9q 5 + 3q 6 ) + t 5 q 21 ).

The proof of (a) is a consequence of Theorem 1.1a that follows. The proof of (b) will be fully given at the end of Section 3. It uses the following argument: as tan (r) q (u) (resp. sec (r) q (u)) tends to tan q (u) (resp. sec q (u)) when r tends to infinity (by using the topology of formal power series), we can multiply both (1.1) tq and (1.2) tq by (1 -t) and let t = 1 (see, e.g., [START_REF] Foata | The q-series in Combinatorics; permutation statistics (preliminary version[END_REF], p. 163, the "t = 1" Lemma) to obtain the identities

tan q (u) = n≥0 u 2n+1 (q; q) 2n+1 T 2n+1 (1, q); sec q (u) = n≥0 u 2n (q; q) 2n E 2n (1, q); so that T 2n+1 (1, q) = T 2n+1 (q) and E 2n (1, q) = E 2n (q)
, by comparison with (1.1) q and (1.2) q . Now, let (A n (s, t, q, Y )) (n ≥ 0) be the sequence of coefficients occurring in the following factorial expansion:

(1.12)

r≥0 t r 1 -sq 1 (usq; q) r - sq (u; q) r 1 (uY ; q) r = n≥0 A n (s, t, q, Y ) u n (t; q) n+1
.
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Theorem 1.2. For each n ≥ 0 the coefficient A n (s, t, q, Y ) in (1.12) is a PIC polynomial. Furthermore, the diagram of Fig. 1 holds, together with identities (1.4) tq and (1.5) tq .

The fact that each A n (s, t, q, Y ) is a PIC polynomial is a consequence of the further Theorem 1.2a, while the proofs of identities (1.4) tq and (1.5) tq are given in Section 5.

Several combinatorial methods have been developed in Special Functions for proving inequalities, essentially expressing finite or infinite sums as generating functions for well-defined finite structures by positive integral-valued statistics. See the pioneering works by Askey and his followers [START_REF] Askey | Permutation problems and special functions[END_REF], [START_REF] Askey | Weighted permutation problems and Laguerre polynomials[END_REF], [START_REF] Ismail | A combinatorial approach to some positivity problems[END_REF]. Very soon, Zeilberger, following his mentor Gillis [START_REF] Even | Derangements and Laguerre polynomials[END_REF], has brought his decisive contribution to the subject [START_REF] Gillis | A direct combinatorial proof of a positivity result[END_REF], [START_REF] Gillis | On elementary methods in positivity theory[END_REF], [START_REF] Foata | Laguerre polynomials, weighted derangements, and positivity[END_REF].

The method of proof used in this paper is very much inspired by these papers. Both Theorems 1.1 and 1.2, of analytical nature, will get combinatorial counterparts, namely the next Theorems 1.1a and 1.2a, where all three families (T 2n+1 (t, q)), (E 2n (t, q)) and (A n (s, t, q, Y )) (n ≥ 0) will be shown to be generating polynomials for some classes of permutations by well-defined statistics. The underlying combinatorial set-up can be described as follows. As introduced by Désiré André [START_REF] André | Développement de sec x et tg x[END_REF][START_REF] André | Sur les permutations alternées[END_REF], each permutation

σ = σ(1) • • • σ(n) of 1 2 • • • n is said to be alternating (resp. falling alternating) if the following properties hold: σ(1) < σ(2), σ(2) > σ(3), σ(3) < σ(4), etc. (resp. σ(1) > σ(2), σ(2) < σ(3), σ(3) > σ(4), etc.
) in an alternating way. The set of alternating (resp. falling alternating) permutations of order n is denoted by T n (resp. by T ′ n ). Désiré André's main result was to show that tangent and secant numbers were true enumerators for all alternating permutations: #

T 2n+1 = #T ′ 2n+1 = T 2n+1 and #T 2n = #T ′ 2n = E 2n .
It is remarkable that by counting those alternating permutations by the usual number of inversions "inv," the underlying generating polynomial σ∈T n q inv σ is equal to T n (q) (n odd) or E n (q) (n even) (see [START_REF] Andrews | Divisibility properties of the q-tangent numbers[END_REF], [START_REF] Andrews | Congruences for the q-secant number[END_REF], [START_REF] Foata | Further divisibility properties of the q-tangent numbers[END_REF], [St97, p. 148-149]). As "inv" is a traditional q-maker, it was tantalizing to pursue our t-extension with "inv," and add another suitable statistic counted by the variable t. In fact, it was far more convenient to continue with another q-maker having the same distribution over T n as "inv," as is now explained.

For each permutation σ = σ(1)σ(2) • • • σ(n) from the symmetric group S n let IDES σ (resp. ides σ) denote the set (resp. the number) of all letters σ(i) such that for some j < i the equality σ(j) = σ(i) + 1 holds and let imaj σ := σ(i)∈IDES σ σ(i). It is known that "imaj" and "inv" are equally distributed on each set T n , a result that can be proved by means of the so-called second fundamental transformation [START_REF] Foata | Major Index and Inversion number of Permutations[END_REF]. The most natural statistic that can be associated with "imaj" is then "ides." It is again remarkable that Désiré André's set-up will also provide the appropriate combinatorial model needed for our (t, q)-extension, as is now stated.

Theorem 1.1a. The (t, q)-analogs T 2n+1 (t, q) and E 2n (t, q) of the tangent and secant numbers defined by (1.1) tq and (1.2) tq have the following combinatorial interpretations:

T 2n+1 (t, q) = σ∈T 2n+1 t 1+ides σ q imaj σ ; (1.13) the electronic journal of combinatorics 12 (2011), #R00 E 2n (t, q) = σ∈T 2n t 1+ides σ q imaj σ . (1.14)
In particular, they are PIC polynomials.

The combinatorial interpretations of the coefficients A n (s, t, q, Y ) are based on the model introduced in our previous paper [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF]. Each word w = x 1 x 2 • • • x m , of length m, whose letters are positive integers all different, is called a hook if x 1 > x 2 and either m = 2, or m ≥ 3 and

x 2 < x 3 < • • • < x m . As proved by Gessel [Ge91], each permutation σ = σ(1)σ(2) • • • σ(n) admits a unique factorization, called its hook factorization, pτ 1 τ 2 • • • τ k ,
where p is an increasing word and each factor τ 1 , τ 2 , . . . , τ k is a hook. Define pix σ to be the length of the factor p. Finally, for each i let inv τ i be the number of inversions of τ i and define: lec σ := 1≤i≤k inv τ i .

Theorem 1.2a. The coefficients A n (s, t, q, Y ) (n ≥ 0) defined by identity (1.12) have the following combinatorial interpretations:

(1.15) A n (s, t, q, Y ) = σ∈S n s lec σ t ides σ+χ(σ(1)=1) q imaj σ Y pix σ ,
where χ(σ(1) = 1) = 1 if σ(1) = 1 and 0 otherwise. Accordingly, they are PIC polynomials.

In the next section we recall a result on permutation lignes of routes derived in a previous paper of ours [START_REF] Foata | Une nouvelle transformation pour les statistiques Eulermahoniennes ensemblistes[END_REF], then we prove Theorem 1.1a in Section 3. For the proof of Theorem 1.2a, given in Section 4, we actually show that the factorial generating function for the polynomials defined by (1.15) satisfy identity (1.12). Identities (1.4) tq and (1.5) tq are derived in Section 5. We conclude the paper by indicating that besides (1.13) each polynomial T 2n+1 (t, q) may be given two other combinatorial interpretations involving a triple of statistics.

Lignes of route

Let L = {ℓ 1 < • • • < ℓ k }
be a subset of the interval {1, 2, . . . , n -1}. By convention, ℓ 0 := 0 and ℓ k+1 := n. Designate by W r (L, n) the set of all words w = x 1 x 2 • • • x n , of length n, whose letters are nonnegative integers satisfying the inequalities:

r ≥ x 1 ≥ • • • ≥ x ℓ 1 ≥ 0; r ≥ x ℓ 1 +1 ≥ • • • ≥ x ℓ 2 ≥ 0; • • • (2.1) r ≥ x ℓ k +1 ≥ • • • ≥ x n ≥ 0; x ℓ 1 < x ℓ 1 +1 , x ℓ 2 < x ℓ 2 +1 , . . . , x ℓ k < x ℓ k +1 .
Say that the ligne of route of a permutation σ = σ(1)σ(2) • • • σ(n) is equal to L, and write Ligne σ = L, if and only if σ(i) > σ(i + 1) whenever i ∈ L. Notice that IDES σ and ides σ are simply the ligne of route and the number of descents of the inverse permutation σ -1 , respectively.
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The next identity requires some classical techniques on stardardizations of words. It is proved in the forementioned paper ([FH04] Propositions 8.1 and 8.2) and reads

(2.2) σ, Ligne σ=L t ides σ q imaj σ (t; q) n+1 = r≥0 t r w∈W r (L,n) q tot w (n ≥ 1),
where tot w stands for the sum of all letters of w. When L = {2, 4, 6, . . . } the set of all permutations σ from S n such that Ligne σ = L is the set T of all alternating permutations. We then have the subsequent result.

Theorem 2.1. With L = {2, 4, 6, . . . } the following identity holds:

(2.3) σ∈T n t ides σ q imaj σ (t; q) n+1 = r≥0 t r w∈W r (L,n)
q tot w (n ≥ 1).

For each r ≥ 1 and each n ≥ 1 the set V r (L, n) := W r (L, n) \ W r-1 (L, n) consists of all words w = x 1 x 2 • • • x n such that (2.1) holds (in particular, for L = {2, 4, 6, . . . }) with the further property that at least one of the letters x 1 , x ℓ 1 +1 , x ℓ 2 +1 , . . . is equal to r. Let max w the maximum letter in w. Then, (2.4) w ∈ V r (L, n) =⇒ max w = r and tot w -max w ≥ 0.

Note that the sets V r (L, n) are disjoint and

(2.5)

r V r (L, n) = r W r (L, n) =: W (L, n).
Proposition 2.2. For each n ≥ 1 we have

(2.6) (1 -t)
σ∈T n t ides σ q imaj σ (t; q) n+1 {t=1} = σ∈T n q imaj σ (q; q) n .

Proof. We have:

(1 -t)

σ∈T n t ides σ q imaj σ (t; q) n+1 = σ∈T n t ides σ q imaj σ (tq; q) n = (1 -t) r≥0 t r w∈W r (L,n) q tot w [by (2.3)] = w∈W 0 (L,n) q tot w + r≥1 t r w∈V r (L,n) q tot w [by definition of V r (L, n)] = 1 + w∈W (L,n)
t max w q tot w [by (2.4) and (2.5)] = 1 + w∈W (L,n)

(qt) max w q tot w-max w .
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As tot w -max w ≥ 0 for all w ∈ W (L, n) by (2.5), it makes sense to have the substitution tq ← q in the last expression, that is, 1 ← t in σ∈T n t ides σ q imaj σ /(tq; q) n to obtain σ∈T n q imaj σ /(q; q) n .

Proof of Theorem 1.1

For the proof of identity (1.14) we shall start with the definition of cos (r) q (u) given in (1.7), and express sec (r) q (u) = 1/ cos (r) q (u) as a generating series for a class of words with nonnegative integral letters. For this purpose we introduce the set NIW n (r) of all monotonic nonincreasing words c = c 1 c 2 • • • c n , of length n, whose letters are nonnegative integers at most equal to r: r ≥ c 1 ≥ c 2 ≥ • • • ≥ c n ≥ 0. Also, designate the length (resp. the sum of all the letters) of each word w by λw (resp. tot w).

The next identity is classical (see, e.g., [An76, chap. 2]):

(3.1) (q r ; q) n (q; q) n =

w∈NIW n (r-1)

q tot w .
Using (3.1) we get:

cos (r) q (u) = m≥0 (q r ; q) 2m (q; q) 2m (-1) m u 2m = 1 - m≥1 (-1) m-1 u 2m w∈NIW 2m (r-1)
q tot w .

Hence,

(3.2) 1 cos (r) q (u) = 1 + n≥1 u 2n (m 1 ,...,m k ) (w 1 ,...,w k ) (-1) m 1 +•••+m k -k q tot(w 1 •••w k ) ,
where the second sum is over all sequences (m 1 , . . . , m k ) and (w 1 , . . . , w k ) such that

m 1 + • • • + m k = n and w i ∈ NIW 2m i (r -1) (i = 1, . . . , k).
Each sequence (w 1 , . . . , w k ) in the above sum is said to have a decrease at j if 1 ≤ j ≤ k -1 and the last letter of w j is greater than or equal to the first letter of w j+1 [in short, L w j ≥ F w j+1 ]. If the sequence has no decrease and all the factors w j are of length 2, then k = n. If it is not the case, let j be the integer with the following properties:

(i)

λw 1 = • • • = λw j-1 = 2;
(ii) no decrease at 1, 2, . . . , j -1;

(iii) either λw j ≥ 4, or (iv) λw j = 2 and there is a decrease at j. Say that the sequence is of class C j (resp. C ′ j ) if (i), (ii) and (iii) (resp. (i), (ii) and (iv)) hold. If the sequence is of class C j , let

w j = x 1 x 2 • • • x 2m (remember that r -1 ≥ x 1 ≥ • • • ≥ x 2m ) and form the sequence (w 1 , . . . , w j-1 , x 1 x 2 , x 3 • • • x 2m , w j+1 , . . . , w k ) having (k + 1) factors. As L x 1 x 2 = x 2 ≥ x 3 = F x 3 • • • x 2m
, the j-th factor is of length 2 and there is a decrease at j. It then belongs to C ′ j . This defines a sign-reversing involution the electronic journal of combinatorics 12 (2011), #R00

on the set of those sequences. By applying the involution to the above sum, the remaining terms correspond to the sequences (w 1 , w 2 , . . . , w n ), such that λw i ∈ NIW 2 (r -1) (i = 1, 2, . . . , n) and L w 1 < F w 2 , L w 2 < F w 3 , . . . , L w n-1 < F w n . In particular, k = n, m 1 = • • • = m n = 1 and there is no more minus sign left on the right-hand side of (3.2). Those sequences are in bijection with the set W r-1 (L, 2n), described in (2.1), when L = {2, 4, . . . , (2n -2)}. Referring to (3.2) we then have:

(m 1 ,...,m k ) (w 1 ,...,w k ) (-1) m 1 +•••+m k -k q tot(w 1 •••w k ) = w∈W r-1 (L,2n) q tot w , so that (3.3) 1 cos (r) q (u) = 1 + n≥1 u 2n w∈W r-1 (L,2n)
q tot w ; and then by using (2.3)

r≥0 t r 1 cos (r) q (u) = 1 + r≥1 t r 1 cos (r) q (u) = 1 + r≥1 t r 1 + n≥1 u 2n
w∈W r-1 (L,2n)

q tot w = 1 1 -t + n≥1 u 2n r≥1 t r w∈W r-1 (L,2n) q tot w = 1 1 -t + n≥1 u 2n σ∈S 2n ,Ligne σ=L t 1+ides σ q imaj σ (t; q) 2n+1 = 1 1 -t + n≥1 u 2n σ∈T 2n
t 1+ides σ q imaj σ (t; q) 2n+1 and this proves (1.14) with the convention E 0 (t, q) = 1.

For the proof of (1.13) we use the same techniques, in particular identities (3.1) and (3.3). We have:

1 cos (r) q (u) sin (r) q (u) = j≥0 u 2j w∈W r-1 (L,2j) q tot w × i≥0 (-1) i u 2i+1 v∈NIW 2i+1 (r-1) q tot v ,
making the convention that the first sum is equal to 1 for j = 0. Hence,

1 cos (r) q (u) sin (r) q (u) = n≥0 u 2n+1 j+i=n (-1) i w∈W r-1 (L,2j) v∈NIW 2i+1 (r-1) q tot wv . Say that the pair (w, v) is of class (D) (resp. class (D ′ )) if L w < F v and λv ≥ 3 (resp. L w ≥ F v). If (w, v) is of class (D), write v = v 1 v 2 with λv 1 = 2.
Then, define w ′ := wv 1 the electronic journal of combinatorics 12 (2011), #R00 and v ′ := v 2 . As v is monotonic nonincreasing, we have L w

′ = L v 1 ≥ F v 2 = F v ′ , so that the pair (w ′ , v ′ ) is of class (D ′ ).
Moreover, if i = (λv -1)/2 and i ′ = (λv ′ -1)/2, we have: i = i ′ + 1, so that (-1) i q tot wv + (-1) i ′ q tot w ′ v ′ = 0. Consequently, the mapping (w, v) → (w, v ′ ) is a sign-reversing involution. When the involution is applied to the above sum, only remain the pairs (w, v) such that λv = 1 (one-letter word) and L w < F v = v. In particular, v ≤ r -1. The corresponding sign (-1) i is also equal to (-1) (λv-1)/2 = 1. We then get 1 cos (r)

q (u) sin (r) q (u) = n≥0 u 2n+1 w∈W r-1 (L,2n+1)
q tot w , with L = {2, 4, 6, . . . , 2n}. By using (2.3) we can then conclude:

r≥0 t r tan (r) q (u) = n≥0 u 2n+1 σ∈T 2n+1 t 1+ides σ q imaj σ (t; q) 2n+2 .
To complete the proof of Theorem 1.1 (b) we proceed as follows. Let a r := tan (r) q (u) (resp. sec (r) q (u)) and a := tan q (u) (resp. sec q (u)) and for each pair (i, j) let a r (i, j) (resp. a(i, j)) be the coefficient of q i u j in a r (resp. in a). A simple calculation shows that a r -a can be expressed as q r c, where c is a formal series in q, u. Hence, a r (i, j) -a(i, j) = 0 for all r ≥ i + 1 and then lim r a r = a. Let b(t) = r≥0 t r b r := (1 -t) r≥0 t r a r , so that b 0 = a 0 and b r = a r -a r-1 for r ≥ 1. For all r ≥ i + 2 we then have b r (i, j) = a r (i, j)a r-1 (i, j) = a(i, j)-a(i, j) = 0 and the finite sum b 0 (i, j)+b 1 (i, j)+• • •+b r (i, j) is equal to a 0 (i, j) + (a 1 (i, j) -a 0 (i, j)) + • • • + (a i+1 (i, j) -a i (i, j)) = a i+1 (i, j) = a(i, j). This proves that the sum r b r is convergent and converges to a, that is, b(1) = r b r = a.

Thus, (1-t) r≥0 t r tan (r) q (u) t=1 = tan q (u) and (1-t) r≥0 t r sec (r) q (u) t=1 = sec q (u). This achieves the proof of Theorem 1.1 (b) in view of Proposition 2.2 and the combinatorial interpretations derived in Theorem 1.1a.

Proof of Theorem 1.2a

In our previous paper [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF] we have calculated the factorial generating function for the polynomials (4.1) A * n (s, t, q, Y ) = σ∈S n s lec σ t ides σ q imaj σ Y pix σ (n ≥ 0), and found

(4.2) n≥0 A * n (s, t, q, Y ) u n (t; q) n+1 = r≥0 t r 1 -sq 1 (usq; q) r - sq (u; q) r 1 (uY ; q) r+1
.
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Notice that the generating functions for the polynomials A n (s, t, q, Y ) and A * n (s, t, q, Y ) differ only by the fraction 1/(uY ; q) r for the first one (see (1.12)) and 1/(uY ; q) r+1 for the second. From (4.2) we can obtain the factorial generating function for the polynomials A n (s, t, q, Y ) themselves in the following manner. Starting with definition (1.15) we can write:

A n (s, t, q, Y ) = σ∈S n , σ(1) =1 s lec σ t ides σ q imaj σ Y pix σ + σ∈S n , σ(1)=1
s lec σ t ides σ+1 q imaj σ Y pix σ . Now, for n ≥ 1 the transformation

σ = σ(1)σ(2) • • • σ(n -1) → τ = 1 (σ(1) + 1)(σ(2) + 2) • • • (σ(n -1) + 1)
is a bijection of S n-1 onto the set of permutations from S n starting with 1 having the property lec τ = lec σ; ides τ = ides σ; imaj τ = imaj σ + ides σ; pix τ = pix σ + 1.

Hence,

(4.3) Y A * n-1 (s, tq, q, Y ) = σ∈S n ,σ (1)=1 
s lec σ t ides σ q imaj σ Y pix σ , so that, for n ≥ 1, A n (s, t, q, Y ) = A * n (s, t, q, Y ) -Y A * n-1 (s, tq, q, Y ) + tY A * n-1 (s, tq, q, Y ).

It then follows that

n≥0 A n (s, t, q, Y ) u n (t; q) n+1 = 1 1 -t + n≥1 A * n (s, t, q, Y ) -Y (1 -t)A * n-1 (s, tq, q, Y ) u n (t; q) n+1 = n≥0 A * n (s, t, q, Y ) u n (t; q) n+1 -uY n≥0 A * n (s, tq, q, Y ) u n (tq; q) n+1 .
Making use of (4.2) we obtain:

(4.4) n≥0 A n (s, t, q, Y ) u n (t; q) n+1 = r≥0 t r 1 -sq 1 (usq; q) r - sq (u; q) r 1 (uY ; q) r+1 (1 -uq r Y ),
which is identity (1.12).
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Hence,

(5.4) n≥0 1 2 A n (-q -1 , t, q, 1) + A n (-q -1 , t, q, -1) (iu) n (t; q) n+1 = r≥0 t r , while (5.5) n≥0 1 2 A n (-q -1 , t, q, 1) -A n (-q -1 , t, q, -1)

(iu) n (t; q) n+1 = r≥0 t r 1 1 (-iu; q) r + 1 (iu; q) r 1 (-iu; q) r - 1 (iu; q) r = r≥0 t r i tan (r)
q (u).

We conclude that A n (-q -1 , t, q, 1) + A n (-q -1 , t, q, -1) = 0 for all n ≥ 1, and A n (-q -1 , t, q, 1)-A n (-q -1 , t, q, -1) = 0 for all n ≥ 1 even. Also (A 2n+1 (-q -1 , t, q, 1)-A 2n+1 (-q -1 , t, q, -1))(-1) n = T 2n+1 (t, q) for all n ≥ 0. This proves (1.4) tq and (1.5) tq .

Concluding remarks

Recall that the number of excedances, "exc σ," of a permutation σ = σ(1) • • • σ(n) from S n is defined by exc σ := #{i : 1 ≤ i ≤ n, σ(i) > i}, while the number of descents, "des σ" (resp. the major index, "maj σ") is the number (resp. the sum) of all elements in Ligne σ. Also, let iexc σ := exc σ -1 and let fix σ be the number of fixed points of σ. As shown in our previous paper [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF], the three quadruples (exc, des, maj, fix), (lec, ides, imaj, pix), (iexc, ides, imaj, fix) are equally distributed on S n . It then follows that (1.4) tq implies the identity: σ∈T 2n t 1+ides σ q imaj σ = (-1) n σ∈S 2n , fix σ=0 (-q -1 ) iexc σ t ides σ q imaj σ .

As "imaj" and "inv" are equally distributed on each set T n , we also have (6.1)

T 2n+1 (1, q) = σ∈T 2n+1 q inv σ , E 2n (1, q) = σ∈T 2n q inv σ ,
which are the traditional combinatorial interpretations of the q-tangent T 2n+1 (q) and q-secant E 2n (q) numbers. Now, let t = 1 in identities (1.4) tq -(1.5) tq . Taking (6.1) into account we get: E 2n (q) = (-1) n σ∈S 2n , pix σ=0

(-q -1 ) lec σ q imaj σ ;
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T 2n+1 (q) = (-1) n σ∈S 2n+1

(-q -1 ) lec σ q imaj σ ; 0 = σ∈S 2n+1 , pix σ=0

(-q -1 ) lec σ q imaj σ ; and for n ≥ 1 0 = σ∈S 2n (-q -1 ) lec σ q imaj σ .

But, as the triples (lec, imaj, pix) and (lec, inv, pix) and (exc, maj, fix) are all equidistributed on each S n [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF], the previous identities can be rewritten as:

E 2n (q) = (-1) n σ∈S 2n , fix σ=0 
(-q -1 ) exc σ q maj σ ;

T 2n+1 (q) = (-1) n σ∈S 2n+1

(-q -1 ) exc σ q maj σ ; 0 = σ∈S 2n+1 , fix σ=0

(-q -1 ) exc σ q maj σ ; and for n ≥ 1 0 = σ∈S 2n (-q -1 ) exc σ q maj σ , four identities that were previously derived in [START_REF] Foata | The q-tangent and q-secant numbers via basic Eulerian polynomials[END_REF]. The polynomials T 2n+1 (t, q), E 2n (t, q) (n ≥ 0) introduced in this paper have been referred to as being the (t, q)-analogs of the tangent and secant numbers, respectively. They may be regarded as the graded forms of the traditional q-tangent and q-secant numbers T 2n+1 (q), E n (q) defined in (1.1) q and (1.2) q . The order of the variables t, q matters, as other authors have spoken of (q, t)-analogs, in particular Reiner and Stanton [RS09] in their extensions of the binomial coefficients, in connection with their study of Hilbert series from the invariant theory of GL n (F q ). Other studies of (q, t)-analogs are due to Garsia, Haglund, Haiman [START_REF] Garsia | A remarkable q, t-Catalan sequence and q-Lagrange Inversion[END_REF][START_REF] Garsia | A proof of the q, t-Catalan positivity conjecture[END_REF] in their works on (q, t)-Catalan numbers, and to Haiman and Woo [START_REF] Haiman | Geometry of q and q, t-analogs in combinatorial enumeration[END_REF] in enumeration problems occurring in Geometric Combinatorics.

At the Z = 60 conference in honor of Doron Zeilberger the attention of the first author has been drawn by Sergei Suslov to the study of q-trigonometric functions occurring in a new theory of basic Fourier series, based on another basic analog of the exponential function (see [START_REF] Suslov | Some Expansions in Basic Fourier Series and Related Topics[END_REF], [START_REF] Suslov | An Introduction to Basic Fourier Series[END_REF]). Several classical functions and identities have elegant counterparts in this new q-world. For the time being, it remains to be seen whether combinatorial techniques could bring a new light to this theory.
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  -178],[START_REF] Comtet | Advanced Combinatorics[END_REF]), the coefficients T 2n+1 of the Taylor expansion of tan u, namely

	(1.1)	tan u =	n≥0	u 2n+1 (2n + 1)!	T 2n+1				
		=	u 1!	1 +	u 3 3!	2 +	u 5 5!	16 +	u 7 7!	272 +	u 9 9!	7936 +	u 11 11!	353792 + • • •

5. The identities (1.4) tq and (1.5) tq First, derive other expressions for cos (r) q (u) and sin (r) q (u) using the q-binomial theorem (see, e.g., [START_REF] Gasper | Basic hypergeometric series[END_REF], p. 9): 1 (iu; q) r + 1 (-iu; q) r = n≥0 (q r ; q) n (q; q) n (iu) n + (q r ; q) n (q; q) n (-iu) n (5.1) = 2 n≥0 (-1) n (q r ; q) 2n (q; q) 2n u 2n = 2 cos (r) q (u). Also 1

Let s ← -q -1 , u ← iu in (4.4). We get n≥0

A n (-q -1 , t, q, Y ) (iu) n (t; q) n+1 = r≥0 t r 2 1 (-iu; q) r + 1 (iu; q) r 1 (iuY ; q) r .

Hence, by (5.1) n≥0

A n (-q -1 , t, q, 0) (iu) n (t; q) n+1 = r≥0 t r 1 cos (r)

By definition of sec (r) q (u) given in (1.2) tq we deduce for n ≥ 0:

A 2n (-q -1 , t, q, 0)(-1) n = E 2n (t, q); A 2n+1 (-q -1 , t, q, 0) = 0.

With Y ← 1 we obtain n≥0

A n (-q -1 , t, q, 1)

and with Y ← -1 n≥0

A n (-q -1 , t, q, -1) (iu) n (t; q) n+1 = r≥0 t r 2 1 (-iu; q) r + 1 (iu; q) r 1 (-iu; q) r .
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