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Skip Act Vectors: integrating dialogue context
into sentence embeddings

Jeremy Auguste, Frédéric Béchet, Géraldine Damnati and Delphine Charlet

Abstract This paper compares several approaches for computing dialogue turn
embeddings and evaluate their representation capacities in two dialogue act related
tasks within a hierarchical Recurrent Neural Network architecture. These turn em-
beddings can be produced explicitely or implicitely by extracting the hidden layer
of a model trained for a given task. We introduce skip-act, a new dialogue turn em-
beddings approach, which are extracted as the common representation layer from a
multi-task model that predicts both the previous and the next dialogue act. The mod-
els used to learn turn embeddings are trained on a large dialogue corpus with light
supervision, while the models used to predict dialog acts using turn embeddings are
trained on a sub-corpus with gold dialogue act annotations. We compare their per-
formances for predicting the current dialogue act as well as their ability to predict
the next dialogue act, which is a more challenging task that can have several applica-
tive impacts. With a better context representation, the skip-act turn embeddings are
shown to outperform previous approaches both in terms of overall F-measure and in
terms of macro-F1, showing regular improvements on the various dialogue acts.

1 Introduction

Following the successful application of continuous representation of words into
vector spaces, or embeddings, in a large number of Natural Language Processing
tasks [14][15], many studies have proposed the same approach for larger units than
words such as sentences, paragraphs or even documents [10][11]. In all cases the
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main idea is to capture the context of occurrence of a given unit as well as the unit
itself.

When processing dialog transcriptions, being able to model the context of oc-
currence of a given turn is of great practical use in applications such as automated
dialog system for predicting the next action to perform, or analytics in order, for
example, to pair questions and answers in a corpus of dialog logs. Therefore find-
ing the best embedding representations for dialog turns in order to model dialog
structure as well as the turns themselves is an active field of research.

In this paper, we evaluate different kinds of sentence-like (turns) embeddings
on dialogue act classification tasks in order to measure how well they can capture
dialog structures. In a first step, the dialogue turn embeddings are learned on large
corpus of chat conversations, using a light supervision approach where dialogue act
annotations are given by an automatic DA parser. Even if the annotations are noisy,
this light supervision approach allows us to learn turn-level vector representations
on a large amount of interactions. In a second step, the obtained turn-level vector
representations are used to train dialogue act prediction models with a controlled
supervised configuration.

After presenting the dialogue act parser architecture in Section 3, we will present
the various dialogue turn embeddings approaches in Section 4. The corpus and the
dialogue act annotation framework are presented in Section 5 while Section 6 de-
scribes the experimental results.

2 Related Work

In order to create and then evaluate the quality of embeddings, several different
types of approaches have been proposed. For word embeddings, a lot of work has
been done to try to evaluate how they are able to capture relatedness and similarity
between two words by using manual annotation [9][12][4] and by using cognitive
processes [18][2]. However, on sentence embeddings, it is not easy to tell how sim-
ilar or related two sentences are. Indeed, the context in which they appear is very
important to truly understand the meaning of a sentence and how it interacts with
other sentences.

Multiple papers propose different kinds of evaluation tasks in order to evaluate
different kinds of sentence embeddings. In [8], the authors use the SICK [13] and
STS 2014 [1] datasets to evaluate the similarity between sentences by using simi-
larity ratings. They also use sentiment, opinion polarity and question type tasks to
evaluate the embeddings. As these datasets are composed of sentence pairs without
context, the proposed sentence embeddings approaches are only based on the sen-
tence itself. In [7], sentence embeddings are evaluated by looking at their ability to
capture surface, syntactic and semantic information. Here again, this framework pri-
marily focuses on the sentence itself and not on the context in which it is produced.
In [5], a sentence embeddings evaluation framework is proposed that groups to-
gether most of the previous evaluation tasks in addition to inference, captioning and
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paraphrase detection tasks. In all of the above approaches, the focus is on the evalu-
ation of sentence embeddings such as Skip-thoughts [10], ParagraphVectors [11] or
InferSent [6] in order to find out the embeddings that have the best properties in gen-
eral. However, none of these embeddings and evaluation tasks are built to take into
account dialogues and more specifically, the structure and interactions in a dialogue.
Some work has been done in order to take into account the dialogue context in [17].
In their work, the authors try to take into account this context by using a modified
version of word2vec to learn sentence embeddings on dialogues. These embeddings
are then evaluated by comparing clusters of sentence embeddings with manually as-
signed dialogue acts. This allows to see if the learned embeddings capture informa-
tion about the dialogue context, however it does not use explicit dialogue structure
information to learn the embeddings. In our work, we use a corpus with a noisy
dialogue act annotation to learn specialized sentence embeddings that try to directly
capture information about the context and interactions in the dialogue.

3 Dialogue Act Parser Architecture

In order to be able to create sentence embeddings that take into account the dialogue
context, we will be using dialogue acts. They allow us to partially represent the
structure and the interactions in a dialogue. We use two different kinds of models
to parse these dialogue acts where one kind is used to create sentence embeddings,
while the second kind is used to later evaluate the different embeddings.

The first architecture is a 2-level hierarchical LSTM network where the first level
is used to represent the turns in a conversation, and the second level represents the
conversation, as shown in Figure 1. The input is the sequence of turns which are
themselves sequences of words represented as word embeddings. The word embed-
dings are trained by the network from scratch. The dialogue acts are predicted using
the output for each turn at the second level. Since we do not use a bidirectional
LSTM, the model only makes use of the associated turn and the previous turns of a
conversation in order to predict a given act. It has no information about the future,
nor about the previous acts. This architecture allows us to use the hidden outputs of
the first layer as the sentence embeddings of each turn.

The second architecture is a simple LSTM network which only has a single layer,
as shown in Figure 2. The input sequence that is given to the LSTM is the sequence
of turns of a conversation where each turn is replaced by a pre-trained turn embed-
ding. For each turn, the corresponding output in the LSTM is used to predict its
dialogue act. This architecture is the one used to evaluate the different kinds of fixed
pre-trained embeddings that are described in Section 4.
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Fig. 1: Two level LSTM architecture used to create embeddings. w j
i is the word i of turn j, t j is

the learned turn embedding and a j is the predicted act.
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Fig. 2: LSTM architecture used for evaluation. ti is a fixed pre-trained turn embedding and ai is
the predicted act.

4 Skip-Act vectors

It is possible to construct sentence embeddings using several different means, each
of them being able to capture different aspects of a sentence. In our case, we want
to find out what kind of embeddings are the best at capturing information about
the dialogical structure and the context in which appears a turn. Multiple different
kind of embeddings are thus trained on the DATCHA RAW corpus (the large unanno-
tated corpus described in section 5. The following self-supervised embeddings are
trained:

Word Average This is simply the average of all the word embeddings in the turn.
The word embeddings are learned with FastText [3] on the DATCHA RAW corpus
using a dimension of 2048 and a window size of 6. These can be considered as
our baseline embeddings since they do not directly take into account the context
in which the turns are produced.
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Skip-thought These embeddings are learned using a skip-thought model [10].
This model tries to learn the sentence embeddings by trying to regenerate the
adjacent sentences during the training. Thus, it tries to learn the context in which
a sentence is produced.

In addition to these self-supervised embeddings, we also learned embeddings based
on supervised tasks. To learn these embeddings, we use the 2-level LSTM architec-
ture described in Section 3. The following supervised embeddings are trained:

RNN Curr Act These embeddings are learned by using a hierarchical neural net-
work that is trained to predict the dialogue act of each turn. The embeddings are
the hidden output from the turn layer of the network. Since the DATCHA RAW
corpus is not annotated with dialogue acts, we used a system developed during
the DATCHA1 project based on a CRF model developed in [16] (85.7% accu-
racy) to predict the dialogue acts of each turn of the corpus.

RNN Next Act These embeddings are created similarly to the RNN Curr Act em-
beddings but instead of predicting the current act for a given turn, the following
act is instead predicted.

RNN Prev Act These embeddings are created similarly to the RNN Curr Act em-
beddings but instead of predicting the current act for a given turn, the previous
act is instead predicted.

Skip-Act These embeddings combine the ideas of RNN Prev Act and RNN Next
Act by using the same turn layer in the network for both tasks. This model shares
the idea of the Skip-thought vectors by trying to learn the context in which the
turns are produced. But instead of trying to regenerate the words in the adjacent
turns, we try to predict the dialogue acts of the adjacent turns. This allows us
to hope that the learned embeddings will focus on the dialogue context of turns.
The architecture of this model is presented in Figure 3.

5 Corpus

Chat conversations are extracted from Orange’s customer services contact center
logs, and are gathered within the DATCHA corpus, with various levels of manual
annotations. The DATCHA corpus covers a wide variety of topics, ranging from
technical issues (e.g. solving a connection problem) to commercial inquiries (e.g.
purchasing a new offer). They can cover several applicative domains (mobile, inter-
net, tv).

For our experiments, we use two different subsets of these chats:

• Chats from a full month that do not have any gold annotation (79000 dialogues,
3400000 turns) (DATCHA RAW);

• Chats annotated with gold dialogue act annotation (3000 dialogues, 94000 turns)
(DATCHA DA)

1 http://datcha.lif.univ-mrs.fr
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Fig. 3: Architecture used to create skip-act vectors. w j
i is the word i of turn j, t j is the learned turn

embedding and a j is the predicted act.

These subsets are partitioned into train, test and development parts. The label set
used in the dialogue act annotation is as follows:

Label Meaning Description

OPE Opening Opening turns in the dialogue
PRO Problem description The client’s description of his problem
INQ Information question Turn where a speaker asks for some information
CLQ Clarification question A speaker asks for clarification
STA Statement New information input
TMP Temporisation Starting a break of the dialogue
PPR Plan proposal Resolution proposal of the problem
ACK Acknowledgement A speaker acknowledges the other speaker’s sayings
CLO Closing Closing turn
OTH Other For turns that don’t match other described labels

This set has been designed to be as generic as possible, while taking into account
some particular aspects of professional chat interactions (e.g. Problem description
or Plan proposal). The distribution of the different types of dialogue acts in the
test split of the DATCHA DA corpus can be found in Figure 4. We also indicate the
distributions when considering only a single speaker since they use very different
types of turns. For instance, Plan proposals are almost exclusively uttered by Agents
while, conversely, Problem descriptions are mostly observed on Customers side.
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Fig. 4: Dialogue act distribution in the DATCHA DA test corpus

6 Turn embeddings evaluation

6.1 Evaluation protocol

We want to make sure that the generated embeddings are able to capture the different
aspects of a dialogue. Dialogue acts are one way to partially represent the structure
and interactions in a dialogue. Thus, we evaluate the different embeddings on two
tasks. For the first task, we try to predict the dialogue act of a turn by only using
the sequence of embeddings of the current and previous turns. For the second task,
we do the same thing but instead of predicting the dialogue act of the current turn,
we predict the act of the next turn (without giving the embedding of the next turn
in the input). This second task allows us to tell if the learned embeddings manage
to capture information about not only the turn but also about the context in which
these turns are produced.

Some of the created embeddings are learned using tasks that involve dialogue
acts, thus it is likely that these embeddings obtain the best results. But it is interesting
to see if other embeddings are able to obtain similar or close results.

For both tasks, we use the architectures described in Section 3 with a hidden size
of 512. For each turn, the corresponding output in the RNN is given to a decision
layer which uses a softmax to output a probability distribution of the dialogue acts.
We use cross-entropy as our loss function and Adam as the optimizer with a learning
rate of 0.001. The PyTorch framework is used to build the different architectures.

In order to evaluate the quality of the different predictions, we primarily use 2
metrics:

• accuracy: the percentage of correct decisions;
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• macro F1: the non-weighted average of the F1-measures of the 10 act labels. The
F1-measure is the harmonic mean of precision P and recall R for a given label l
such as F1(l) = 2×P(l)×R(l)

P(l)+R(l) ;

6.2 Results and Analyses

Current Act Next Act

LSTM pre-trained Accuracy Macro-F1 Accuracy Macro-F1architecture embeddings

2-level hierarchical None 83.69 78.15 46.21 26.45

turn level Word Average 82.96 79.47 48.26 30.09
turn level Skip-thought 82.50 75.73 48.30 28.61

turn level RNN Curr Act 84.74 80.47 48.54 31.42
turn level RNN Next Act 84.40 81.42 49.97 34.47
turn level RNN Prev Act 83.02 80.44 48.77 31.96
turn level Skip-act 85.24 82.16 49.96 35.33

Table 1: Evaluation of the prediction of the current and next dialogue acts on all turns

Results of the prediction of the current and next acts are reported in Table 1. The
first line corresponds to the first model described in Figure 1 where no pre-trained
embeddings are used and where the embeddings are learned jointly with the model’s
parameters on the DATCHA DA corpus. The following lines correspond to the single
turn-level architecture presented in Figure 2 using several variants of fixed turn em-
beddings, pre-trained on the large DATCHA RAW corpus. For each embedding type
and task, we only report the results of the configuration that obtained the best re-
sults. We can first note a big difference in performances between the two tasks with
the next act task being much harder than the current act task. It seems to be very
difficult to predict the next act given the history of turns, particularly for some of
them, as can be seen in Figure 5 and Figure 6 where some acts such as CLQ, INQ
or PPR see a drop of 60 points in their F1-score while acts such as STA, CLO or
OPE only have a drop of 20 points. This could be explained by the fact that closings
and openings are easier to locate in the conversation, while statements are the most
represented labels in conversations. On the other hand, it is not necessarily easy to
know that the next turn is going to be a question or a plan proposal. We can also
notice that the OTH act is not at all correctly predicted in the next act task, and even
in the current act task it is the label with the worst F1-score. This is probably due
to the fact that turns that are labeled OTH are usually filled with random symbols or
words and are both very diverse and not frequent.

Unsurprisingly, for both tasks, the best results are obtained with embeddings
learned using dialogue acts. However, the Word Average and Skip-thought vec-
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tors both achieve good results but they still are 2 points lower than the best results.
It is interesting to note that the Skip-thought vectors do not achieve better results
than Word Average vectors on the next act task. This can be surprising since they
would have been expected to better capture information about the surrounding turns,
however the generalization from word level prediction to turn level prediction is not
sufficiently efficient. It is also interesting to note that better results are achieved
by RNN Curr Act embeddings (84.74%), which are learned on a corpus with a
noisy annotation, compared to results achieved by the embeddings learned during
the training on the DATCHA DA corpus (83.69%) which has gold annotation. This
results confirms our choice to train turn embeddings separately with light supervi-
sion on a significantly larger, even though noisy, training corpus.

Another interesting aspect of these results is the comparison of the different kinds
of embeddings learned with dialogue act related tasks. Indeed, on the current act
task, we can notice that RNN Curr Act embeddings obtain slightly lower results
(−0.5 points) than Skip-act embeddings. This is surprising since RNN Curr Act
are learned using the same task than the evaluation, while Skip-act are learned by
trying to predict the next and previous acts only. These results could mean that Skip-
act are more robust since they learn in what context the acts are produced. On the
next act task, both the RNN Next Act and Skip-act achieve the same performances
with 50% accuracy, while the RNN Curr Act embeddings obtain an accuracy of
48.5%.

Fig. 5: F1-scores on the current act task on all turns

We also reported in Table 2 and 3 the results when considering only the turns
from respectively the agent and the client for evaluation. It is important to note
that the label distribution is very different depending on the speaker. Most of the
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Current Act Next Act

LSTM pre-trained Accuracy Macro-F1 Accuracy Macro-F1architecture embeddings

2-level hierarchical None 84.22 77.38 35.87 23.16

turn level Word Average 82.48 77.31 37.78 27.02
turn level Skip-thought 80.36 74.75 37.07 25.39

turn level RNN Curr Act 84.70 79.01 38.90 29.00
turn level RNN Next Act 84.30 82.42 41.29 32.60
turn level RNN Prev Act 83.24 80.11 38.80 28.81
turn level Skip-act 85.48 82.94 42.30 33.56

Table 2: Evaluation of the prediction of the current and next dialogue acts on agent’s turns

Current Act Next Act

LSTM pre-trained Accuracy Macro-F1 Accuracy Macro-F1architecture embeddings

2-level hierarchical None 83.01 58.58 59.48 21.13

turn level Word Average 83.59 60.97 61.71 21.80
turn level Skip-thought 85.31 59.13 62.70 20.49

turn level RNN Curr Act 84.78 64.16 60.89 21.74
turn level RNN Next Act 84.54 63.20 61.09 22.91
turn level RNN Prev Act 82.74 61.88 61.56 21.73
turn level Skip-act 84.93 63.99 59.78 23.79

Table 3: Evaluation of the prediction of the current and next dialogue acts on customer’s turns

questions (CLQ and INQ) and nearly all plan proposals (PPR) and temporisations
(TMP) are from the agent while most of the problem descriptions (PRO) and the
majority of statements (STA) are from the client. When evaluated on the agent side,
Skip-act embeddings are again the best embeddings for both tasks, being 1 point
higher than the RNN Next Act embeddings and 3.5 points higher than the RNN
Curr Act embeddings. These results are interesting since the agent is the speaker
with the most variety in the types of turns, including many turns with questions,
plan proposals or temporisations. This seems to indicate that Skip-acts manage to
capture more information about the dialogue context than the other embeddings.
We can also notice that this time, Skip-thought vectors obtain lower results than
the simple Word Average. When evaluated on the customer side, Skip-thought
vectors obtain the best scores on both tasks when looking at the accuracy (85.31%
and 62.70%) but lower scores in terms of macro-F1. The scores on the next act
task are higher but this is only due to the fact that the STA act represents 57.4% of
the samples, whereas on all the turns and for the agent they respectively represent
40.2% and 27.8% of the samples.
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Fig. 6: F1-scores on the next act task on all turns

7 Conclusion

We have proposed a new architecture to compute dialogue turn embeddings. Within
the skip-act framework, a multitask model is trained in order to jointly predict the
previous and the next dialogue acts. Trained in a lightly supervised way on a large
corpus of chat conversations with an automatic dialogue act annotation, the output
of the common hidden layer provides an efficient turn level vector representation
that tends to capture the dialogic structure of the interactions. We have evaluated
several dialogue turn embeddings configurations on two tasks, first predicting the
associated dialogue act of the current turn, and then predicting the next dialogue act
which is a more challenging task requiring a better representation of the dialogue
structure. Skip-act embeddings achieve the best results on both tasks. In the future,
it would be interesting to combine skip-thoughts and skip-acts in order to be able to
capture the semantic and syntactic information in addition to the dialogue context
of turns.
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