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Abstract: In-line digital holography is a simple yet powerful tool to image absorbing and/or
phase objects. Nevertheless, the loss of the phase of the complex wavefront on the sensor can be
critical in the reconstruction process. The simplicity of the setup must thus be counterbalanced
by dedicated reconstruction algorithms, such as inverse approaches, in order to retrieve the object
from its hologram. In the case of simple objects for which the diffraction pattern produced in
the hologram plane can be modeled using few parameters, a model fitting algorithm is very
effective. However, such an approach fails to reconstruct objects with more complex shapes, and
an image reconstruction technique is then needed. The improved flexibility of these methods
comes at the cost of a possible loss of reconstruction accuracy. In this work, we combine the
two approaches (model fitting and regularized reconstruction) to benefit from their respective
advantages. The sample to be reconstructed is modeled as the sum of simple parameterized
objects and a complex-valued pixelated transmittance plane. These two components jointly
scatter the incident illumination, and the resulting interferences contribute to the intensity on the
sensor. The proposed hologram reconstruction algorithm is based on alternating a model fitting
step and a regularized inversion step. We apply this algorithm in the context of fluid mechanics,
where holograms of evaporating droplets are analyzed. In these holograms, the high contrast
fringes produced by each droplet tend to mask the diffraction pattern produced by the surrounding
vapor wake. With our method, the droplet and the vapor wake can be jointly reconstructed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The in-line holography principle was first introduced by Gabor in the late 1940s [1]. As
schematically presented in Fig. 1(a), in this kind of microscopy, a coherent light source is
scattered by the sample, which produces a diffracted wave. The incident beam and the diffracted
wave interfere on the sensor plane. The sensor records the resulting intensity. These interferences
are sensitive to the amplitude changes and phase shifts induced by the objects, making this
technique particularly suitable for image and study absorbing and/or phase samples. Today, this
high sensitivity is used in numerous fields including biology [2–7], fluid mechanics [8–11], and
particle characterization [12–14].

The simplicity of the experimental setup is counterbalanced by an inherent drawback: the lack
of a reference arm. This leads to a loss of the information concerning the wavefront phase on the
sensor plane. Based on the solution of the diffraction equations [15], simple backpropagation can
be applied to refocus a hologram. Nonetheless, this technique leads to strong artifacts such as
border effects and twin-images. Thus, dedicated algorithms need to be developed to improve the
reconstruction of the objects [16].
Numerous iterative algorithms proposed in the literature are based on a phase retrieval
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formulation, where the unknown is the unmeasured phase on the sensor plane. After the phase
recovery, the complex amplitude at the sensor plane is backpropagated, leading to improved
focusing in the object space [17,18]. An inherent limitation of such approaches is the presence of
artifacts due to signal truncation at the borders of the hologram. These approaches also focus on
reconstructing the complex wavefront and not the object itself, leading to a non straightforward
analysis of the object’s properties.

Recent techniques have emerged, based on inverse problems formulations, where the unknown
is directly the object. The reconstruction consists in maximizing the fidelity between the actual
measurements and the data simulated by a hologram formation model, the so-called "forward
model".
Two classes of inversion methods exist depending on the object to be reconstructed:

• If the object is sufficiently simple, it can be described by a limited number of parameters,
such as its 3D location, shape parameters or optical parameters. In that case, the
forward model depends only on these parameters, and model fitting approaches, so-
called "parametric" approaches, provide robust and highly accurate reconstructions of the
samples [6, 9, 12–14,19, 20]. Model fitting and greedy algorithms belong to this class of
methods.

• If the object is too complex to be described by a few parameters, it is approximated in a
pixelated space such as a transmittance plane sampled on a 2D grid [21] or a scattering
potential sampled on a 3D grid [22]. In that case, the forward model consists in numerically
propagating the diffracted wave through the sample, up to the sensor plane. The addition
of physical constraints and wisely chosen regularizations is then necessary to solve the ill-
posed problem, in so-called "non-parametric" approaches. Recent works have demonstrated
the feasibility of such regularized reconstructions to retrieve the lost phase information from
a single in-line hologram of absorbing and/or phase objects [4,23,24]. Penalized-likelihood
image reconstruction [25], Maximum A Posteriori [26] and Compressive sensing [27–29]
frameworks belong to this second class of methods.

In this work, we combine the two approaches by reconstructing the sample using both models,
as presented in Fig. 1(b). The aim of combining the two complementary methods is to obtain a
more accurate model of the object, leading to better reconstructions.

2. Proposed method

The objective is to reconstruct an object from its experimental in-line intensity hologram Id,
assuming that the object can be divided into two subparts u and v. A diffraction model is used
for each of these two parts to predict the diffracted wave Udi f on the sensor: a parametric model
for u and a non-parametric model for v as seen on Fig. 1(b).
The idea is to combine an accurate parametric reconstruction of simple shaped objects by

model fitting and a regularized reconstruction with penalties adapted to the remaining part of
the sample. For instance, in the chosen example in fluid mechanics, this approach enables the
simultaneous accurate reconstruction of droplets that act as amplitude objects and a vapor wake
that acts as a pure phase object. By accounting for two diffraction models, the proposed joint
approach aims at improving the reconstruction of all the objects.
The global forward model consists in simulating the intensity Is in the hologram plane. It is

obtained from the linearity of the wave equation by the superposition of the incident wave Uinc

and the waves diffracted by the two parts of the object described by u and v:

Is (u, v) = ���Uinc +Up
di f

(u) +Unp
di f

(v)���
2
. (1)



Fig. 1. (a) General scheme of in-line holography: a coherent light source produces a
coherent incident wavefront Uinc that is scattered by the sample, producing a diffracted
wavefront Udi f . These wavefronts interfere on the sensor plane that records the resulting

intensity Itot =
���Uinc +Udi f

���
2
. Note that optional beam shaping optics or imaging optics

to magnify the image are not depicted. (b) Scheme of the proposed model in the case of an
evaporating droplet: the object to be reconstructed is composed of two subparts. The wave
diffracted by the spherical droplet is given by the Mie model, which is an analytic parametric
solution of the diffraction equations. The vapor wake is described by a phase transmittance
plane whose diffracted wave is propagated according to the Rayleigh-Sommerfeld theory.
Based on the linearity of the equations of the diffraction, these two subparts interfere to
create the total wave diffracted by the object: Udi f = Up

di f
+Unp

di f
.

The underlying hypothesis corresponds to the first Born approximation [30]: each part of the
sample diffracts an incident wavefront Uinc that is assumed to be unperturbed.
Reconstructing u and v can be stated in the form of a problem consisting in minimizing the

residues between the data Id and the intensity Is simulated by the model, sampled at the same
spatial points as the sensor pixels (i, j). To do so, the estimations û and v̂ of u and v are obtained
by solving the following optimization problem:

(û, v̂) = argmin
u,v

Cdata (Id, Is (u, v) ,W ) , (2)

with the cost function Cdata defined by:

Cdata (Id, Is,W ) = min
c

∑
i, j

[W ]i, j
(
[Id]i, j − c [Is]i, j

)2
, (3)

where c is a real-valued coefficient to account for the scaling of the acquisition dynamics and W
is a matrix of weighting coefficients to possibly account for the presence of defective pixels
or the limited size of the sensor [13, 31]. These coefficients are inversely proportional to the



pixel variances and account for the confidence one has in the data value [Id]i, j at pixel with 2D
coordinates (i, j). For example, for a defective pixel, [W ]i, j = 0 (see appendix for more details).
To solve this joint problem (2), the implemented reconstruction scheme alternates between

optimization of the parametric model depending on u and optimization of the non-parametric
model depending on v.
The optimization on u consists in estimating a limited number of parameters from a large

number of measurements (typically a picture or a sequence of pictures with hundreds of thousands
of pixels). As a consequence, the dedicated methods are robust and accurate [12, 13].
Conversely, minimizing (2) on v is not sufficient to obtain a satisfactory reconstruction since

the image-based problem is ill-posed: several solutions v can solve the minimization problem, by
perfectly matching the noisy data. Yet, none of these correspond to a good reconstruction because
of the noise amplification phenomenon. It is thus necessary to stabilize the estimation by adding
adequate prior information about the object. These priors take the form of hard constraints on the
domain D (v) admissible for v and/or regularization terms C r

reg in the cost function, whose aim
is to favor more realistic solutions. The optimization with respect to v consequently becomes, for
a given u:

v̂ = argmin
v∈D (v)

Cdata (Id, Is (u, v) ,W ) +
∑
r

µrC
r
reg (v) , (4)

where µr are hyperparameters to balance the regularization terms C r
reg compared to the data

fidelity term Cdata.
The proposed method is summarized by algorithm 1.

Algorithm 1 Hologram reconstruction by a joint diffraction model

1: procedure Recons(Id,W, {µr } ,
{
C r
reg

}
, u0, v0)

2: u ← u0 . Initialization of the parametric part of the object

3: v ← v0 . Initialization of the non-parametric part of the object

4: for i from 1 to Nit do . Loop on Nit iterations

5: u ← argmin
u

Cdata (Id, Is (u, v) ,W ) . Optimization with v fixed

6: v ← argmin
v∈D (v)

Cdata (Id, Is (u, v) ,W ) +
∑

r µrC
r
reg (v) . Optimization with u fixed

7: return (u, v)

3. Results

We illustrate the reconstruction method with an application in fluid mechanics, on holograms of
evaporating droplets surrounded by a vapor plume.
It was recently proposed on similar types of datasets to combine a parametric estimation of

the spherical objects with a simple backpropagation of the residues [9]. This method succeeds
in reconstructing a rough orientation and shape of the vapor plume but fails to provide any
information about the object phase. Indeed, as it works directly on differences of intensities, it
can not correctly account for the interferences between the different parts of the sample.

With our proposed method, we propose a more accurate forward model that accounts for these
interferences, with the aim of obtaining better reconstructions.
In this case, the parametric part of the object is the set of the Nd spherical droplets present

in the sample. These droplets can be described by a limited number of parameters: u =
{ud = (xd, yd, zd, rd)}d∈J1,NdK, respectively their 2D position on the sensor plane, their distance
to the sensor and their radius. Due to the large distances between the droplets and the sensor,
their refractive index nd has a negligible influence on their hologram and is consequently not a
fitted parameter.



The non-parametric part v of the object corresponds to the map of the phase shift introduced
by the surrounding medium and the vapor wakes generated by evaporation of the droplets. Under
the hypothesis of an optically thin medium, it represents the 2D projection of the 3D object along
the line of sight.

Up
di f

(u) is computed with the Lorenz-Mie theory while Unp
di f

(v) is obtained with a multi-z
Rayleigh-Sommerfeld propagation (see appendix for more details on the forward model).
A simulation and an experimental hologram are reconstructed. In both cases, Nit = 20

iterations are performed in algorithm 1.

3.1. Validation on simulated data

3.1.1. Data simulation

In this section, a synthetic hologram with theoretical parameters
{
uth
d

}
d∈J1,NdK

is simulated
to test the proposed method as presented in Fig. 2(a). The sample is composed of Nd = 2
droplets placed at xth1 = yth1 = −1.7 mm and xth2 = yth2 = 1.7 mm at distances of zth1 = 0.5 m
and zth2 = 0.45 m. They have a radius of r th1 = 50 µm and r th2 = 70 µm.
In the simulation, the first droplet is surrounded by a spherical vapor cloud whose refractive

index ncloud (r) in terms of radial distance r from the center of the droplet presents an exponential
decay from the droplet surface:

ncloud (r) − nair = (ns − nair ) e−
r−rd
σ , (5)

where ns = nair +10−4 is the refractive index at the surface of the droplet and the decay parameter
is σ = 100 µm. The cloud is numerically cut at rc = 6σ. The phase shift produced by this vapor
cloud is obtained by integration along the line of sight as presented in Fig. 2(b). This projection
serves as the ground truth for the non-parametric reconstruction vth .

The second droplet is not surrounded by a vapor cloud and consequently does not induce any
phase shift in its vicinity.

The hologram of this synthetic object must be simulated. Asmentioned in appendix, the Lorenz-
Mie theory provides a rigorous solution of the light propagation equations for homogeneous and
isotropic spheres. This model has been extended to radially inhomogeneous spheres [32, 33].
This makes possible to simulate the hologram produced by an evaporating homogeneous droplet
surrounded by a vapor cloud with spherical symmetry [19].

In this simulation, the sensor plane is composed of 512× 512 pixels with a pitch of p = 20 µm.
The illumination is a monochromatic plane wave of wavelength λ = 532 nm with a normalized
amplitude of Uinc = 1 on the sensor plane.

Finally, a white Gaussian noise ε of standard deviation σε = 0.02 (SNR = 50) is added to the
simulated hologram Ith and a scaling factor cth = 0.9 is applied:

Isim = cth (Ith + ε ) . (6)

The results are shown in Fig. 2 and Table 1.

3.1.2. Reconstructed parametric part u

As expected, Figs. 2(a)-2(c) show that the hologram produced only by the parametric part u of the
model perfectly matches the signal produced by the second droplet, but fails to explain the bright
center of the hologram of the first droplet. This characteristic feature is due to the surrounding
vapor cloud [19].

Focusing on the blue values in Table 1, it will be noted that the parameters fitted by the
parametric part of the model correctly retrieve the theoretical values. The errors on the xy-
positions and the radii are compared to the pixel pitch p = 20 µm. They are less than 5 %, that is



Fig. 2. Reconstruction of a simulated hologram with the proposed method. (a) Simulated
intensity produced by the synthetic object. (b) Theoretical projection of the phase shift
(radians) induced by the synthetic object along the line of sight. The droplets are masked.
(c) Intensity of the hologram due to the reconstructed parametric part of the model. (d) Phase
shift (radians) reconstructed by the non-parametric part of the model. (e) Residues Id −
cIs (u, v) of the model. (f) Evolution of the first (full line) and second (dashed line) droplet
parameters along the iterations: the position

(
xd, yd

)
, the distance

(
zd

)
and the radius

(
rd

)
.

The parameter values χ are normalized by their initial and final values: χ̃ = χ−χ f

χi−χ f . After

the 10th iteration, they stop evolving. Insets (a): pixelated representation of the droplets
reconstructed by the parametric model. Insets (b): zooms on the framed regions of interest.
Insets (c): zooms on the difference between the reconstructed (d) and theoretical (b) phases
(radians) in the two regions of interest. Insets (d): zooms on the framed regions of interest.
Insets (e): zooms on the framed regions of interest.

to say under the micron in a field of several millimeters and for sizes of several tens of microns.
Concerning the propagation distances, the errors oscillate around a few hundreds of microns for
theoretical values of several tens of centimeters.
The high precision of the droplet parameters supports the proposed joint method. Indeed, a

reconstruction only based on a non-parametric model would have a resolution limited by the
pixel size, and consequently an accuracy on the radii and the xy-positioning in the same order
of magnitude. In the present case, the parametric model achieves a precision two orders of
magnitude below the pixel size.

Table 1 shows that the accuracy on the second droplet d = 2 parameters estimation is one order
of magnitude better than for the first droplet d = 1. This result was expected as its hologram
is not perturbed by a vapor cloud. In addition, the first (in red) and final (in blue) estimates in
Table 1 as well as the curves in Fig. 2(f), show that the accuracy of the parametric estimation is
not affected by the fact that the algorithm has the degree of freedom to reconstruct a phase in the



Table 1. Percentage errors on the two droplets parameters ud compared to their
theoritical values uth

d
relative to the pixel pitch p = 20 µm for the positions xd and yd

and the radii rd and relative to the theoretical values zth
d

for the distances. In red,
error on the first estimate ui

d
. In blue error on the final estimate u f

d
.

Errors on parameters estimation d = 1 d = 2

(xi
d
− xth

d
)/p | (x f

d
− xth

d
)/p 4.3 % | 3.7 % −0.12 % | 0.41 %

(yi
d
− yth

d
)/p | (y f

d
− yth

d
)/p 5.7 % | 4.7 % 0.18 % | 0.12 %

(r i
d
− r th

d
)/p | (r f

d
− r th

d
)/p −3.5 % | −3.0 % 1.2 % | 1.2 %

(zi
d
− zth

d
)/zth

d
| (z f

d
− zth

d
)/zth

d
−0.27 % | −0.10 % 2.8 10−3 % | 7.4 10−3 %

pixelated component of the non-parametric part.
The fitting of the parameters of the first droplet, whose diffraction pattern is impacted by the

vapor cloud, is slightly improved by the joint modeling (see column d = 1 in table 1).

3.1.3. Reconstructed non-parametric part v

Figure 2(d) shows the phase shift reconstructed by non-parametric part of the model. The
structure, the shape and the support of the vapor cloud of the first droplet is in good agreement
with its theoretical projection as shown in Fig. 2(b). These results support the validity of the
optically thin media hypothesis.

Interestingly, the reconstructed vapor cloud is not continuous and is reset to zero on the droplet
support by the reconstruction algorithm. This supports the fact that the phase shift information
just before and after the droplet is lost through the refraction process and can not be reconstructed.
Given the difference between the reconstruction and the theory, as shown in the insets in

Fig. 2(c), it appears that the phase is slightly underestimated, apparently due to the regularizations.
Nonetheless, these terms can not be further diminished without producing noisy reconstructions.
Thus, the missing signal is under the noise level.

As expected, no phase is reconstructed around the second droplet. This shows that the proposed
joint model correctly splits the phase shift effects from the droplets signal. Since the fringes of
the second droplets are fitted by the parametric model, no phase is needed in the non-parametric
part of the object.
Combining the two parts of the model allows a perfect fit of the simulated hologram as no

structure is observed in the residues: only the noise remains in Fig. 2(e).
The chosen regularizations aslo prevent the appearance of any twin-image artifacts around the

droplets and the vapor cloud, which are generally present in in-line holographic reconstructions.

3.2. Reconstruction of experimental holograms

3.2.1. Data acquisition

The proposedmethod is applied to the experimental holograms of diethyl ether droplets evaporating
in a turbulent flow. As further described in [9, 19, 24], a piezoelectric jetting device injects
droplets of ∼ 100 µm in a turbulent flow generated and controlled by three pairs of woofers. The
in-line holographic setup is composed of a monochromatic beam of wavelength λ = 532 nm and
a Phantom V611 high speed camera with a framerate of 3 kHz. The CMOS sensor is composed
of 1280 × 800 pixels with a pitch of 20 µm.

Figure 3 shows the reconstruction of a hologram extracted from a sequence of 208 holograms



acquired over 70 ms (see Visualization 1).

Fig. 3. Reconstruction of an in-line hologram of evaporating droplets (see Visualization 1).
(a) Residues Id − cIs (u, v) of the reconstruction. (b) Absorption of the sample reconstructed
by the parametric part of the model. (c) Phase shift induced by the vapor wake and
the surrounding flow (radians) reconstructed by the non-parametric part of the model.
(d) Original raw hologram. (e,h) Intensity and phase (radians) predicted by the parametric
part of the model. (f,i) Intensity and phase (radians) predicted by the non-parametric part of
the model. (g) Retrieved phase (radians) on the sensor plane. (j,k,l,m,n,o) are zooms on the
regions of interest framed in (a,d,b,e,c,f).

In Fig. 3(d), the experimental hologram presents the typical circular fringes with high spatial
frequencies associated with the droplets. The smooth traces of three vapor wakes can easily be
identified. In addition, a global structured faint signal is present all over the field of view.

3.2.2. Reconstructed parametric part u

The parametric part of the model actually fits eight droplets, one being slightly out of the field of
view as sketched in Fig. 3(b). As previously observed in the simulated case, the corresponding
intensity, given in Fig. 3(e) only accounts for the high contrast fringes but can not explain the
overall background evolution neither the vapor wakes hologram.

Fig. 3(b) shows that, despite the fact that their holograms fill extended parts of the field of view,
the droplets are so small that they only spread over a few pixels in a non-parametric representation
and are pixelated. As previously concluded for the simulated case, this highlights the fact that a
parametric approach not based on pixels reconstruction is particularly adapted to explain this
part of the sample.



The parameter evolutions along the iterations resembles those emphasized in the simulation
analysis of Fig. 2(f) and the parameter refinements also stop evolving after the 10th iteration.
The corresponding curves are consequently not presented here. Table 2 sums up their initial
and final values. The diversity of propagation distances zd that are present in the field of view,
ranging from 0.257 m to 0.961 m, confirms the relevance of the multi-z approach proposed in
the forward model (see appendix).

Table 2. Table of the parameters u f
d
of the eight droplets at the final iteration as well

as the difference in their estimation ui
d
at the initial iteration of the proposed method.

Droplet d1 d2 d3 d4 d5 d6 d7 d8

x f
d

(mm) −3.91 2.42 −6.17 8.81 −1.14 1.14 −3.85 1.25

xi
d
− x f

d
(nm) 140 −107 225 −31.1 39.0 −23.4 16.1 −37.1

y
f
d

(mm) 5.14 −4.11 2.72 −0.115 −7.44 −1.16 −1.42 −8.73

yi
d
− y

f
d

(nm) −136 644 −171 5.47 6.35 12.3 13.3 31.5

z f
d

(m) 0.933 0.961 0.499 0.898 0.765 0.428 0.257 0.669

zi
d
− z f

d

(
µm

)
−614 −275 −560 −33.5 3.99 57.0 −1.26 73.4

r f
d

(
µm

)
87.5 78.5 47.4 41.7 19.3 15.0 9.04 30.0

r i
d
− r f

d
(nm) −60.1 −38.9 222 −74.8 −17.4 −99.3 −43.2 116

Like the simulated case, the change in the parameters along the iteration is several orders of
magnitude below their initial estimates. This can be explained by the fact that the vapor wake
perturbs only a small part of the circular fringes. Most of the signal on which the parametric
approach bases its reconstruction is consequently unperturbed and the reconstruction accuracy
only slightly benefits from the vapor wake estimation. Nonetheless, like the simulated case, the
first three droplets that produce a strong vapor wake, present the strongest relative change in their
parameter estimates, supporting the fact that even if it is small, there is an improvement in these
parameters along the iterations of the alternate approach.

3.2.3. Reconstructed non-parametric part v

The non-parametric part of the reconstructed object, given in Fig. 3(c), clearly shows the three
vapor wakes as well as the faint turbulent background. As shown on Fig. 3(f), the corresponding
intensity explains part of the high frequencies of the recorded hologram, generated by the sharp
edges of the droplets shadow, as well as the large scale faint holograms beyond the reach of the
parametric model.
Thus, the vapor wakes spread over long distances while the turbulent background presents

large-scale structures. These properties support the choice of a non-parametric approach to
reconstruct them.
The global forward model accounting for the interferences between the two subparts, it is

possible to retrieve the phase information lost in the sensor plane during the acquisition, as
presented in Fig. 3(g), by combining the phase predicted by the parametric model, given in
Fig 3(h), and the phase propagated by the non-parametric approach, given in Fig. 3(i).
Finally, one may wonder if the background structures reconstructed by the non-parametric

approach are artifacts due to the regularization or are an actual signal. In themovie in Visualization
1, the 208 frames of the sequence have been reconstructed independently. The large scale structures



appear to evolve coherently frame after frame. They are consequently a meaningful signal present
in the data rather than reconstruction artifacts.

4. Discussion and conclusion

In this work we provide the proof of concept that a combined parametric and non-parametric
approach is feasible for accurate reconstructions from a single in-line hologram. The parametric
part of the reconstruction fits the high contrast fringes thereby enabling the non-parametric part
to retrieve the faintest parts of the object. These reconstructions are performed jointly, meaning
that their interferences are taken into account, in contrast to the previous method that works on
subtracted intensities [9].

The choices of the Mie model and the Rayleigh-Sommerfeld propagation make the proposed
method adapted to a large domain of validity extending to absorbing and/or dephasing spherical
objects and transmittance planes without any restriction on the recording distance. Thus, other
applications can be considered such as lens-free microscopy [4, 5, 7, 34] or in-line microscopy in
biology [11, 14, 24] where the Lorenz-Mie model fitting and the non-parametric reconstruction
techniques have independently shown their efficiency. The proposed method would be particularly
well suited to reconstruct samples in which spherical objects are present among objects of more
complex shapes [35, 36].
Finally, some work remains, especially on the non-parametric part of the algorithm. Indeed,

some signal remains in the residues, in high intensity area such as close to the droplets or in the
highest concentration parts of the vapor wakes. This suggests that a better choice of regularization
and associated hyper-parameters would improve the reconstruction to more accurate quantitative
values.

Appendix A: Forward model

This appendix details the forward model used in section 3. Placed in the context of monochromatic
plane wave illumination of wavelength λ, it can be assumed without loss of generality that it is
normalized to Uinc = 1 on the sensor plane z = 0. Thus, at a given geometrical distance z > 0 of
this plane, the incident wavefront is:

Uinc (z) = e−ikz , (7)

where k = 2π/λ is the wavenumber and the minus sign accounts for the propagation of the
illumination toward the sensor.

Parametric step: model fitting of the Lorenz-Mie theory

In our application in fluid mechanics, the parametric part u of the object is a set of droplets of
ether. Assuming they are homogeneous spheres with a known complex refractive index, their
diffraction can be modeled via the Lorenz-Mie theory [19, 37–40]. This provides an analytic
solution for the diffracted electromagnetic fields ~Edi f and ~Hdi f scattered by a sphere, in spherical
coordinates (r, θ, ϕ) centered on the sphere center. In the case of plane wave illumination, each
component of the electromagnetic field is written as finite series over a single integer n, involving
Ricatti-Bessel function ξn, Legendre polynomials πn and τn and the Mie scattering coefficients an

and bn which depend only on the wavelength λ, the sphere radius and its refractive index. For
example, the θ component of the scattered electric field Eθ

di f
(r, θ, ϕ) is written as:

Eθdi f = −
E0

kr

∞∑
n=0

cpwn
[
anξ

′
n (kr) τn (cos θ) cos ϕ − ibnξn (kr) πn (cos θ) sin ϕ

]
, (8)

where E0 is a normalization factor and cpwn = (−i)n 2n+1
n(n+1) . A change of variable provides the

electric and magnetic field components in a Cartesian coordinates system (x, y, z).



In the present case, the distances between the droplets and the sensor are large. As a consequence,
the problem can be expressed in the realm of the scalar theory of light propagation [15]. In that
case, the complex scalar amplitude can be identified with a given component of the Cartesian
vector field, for instance the one on the x-axis: UMie

di f
= Ex

di f
.

Thus, the light diffracted by Nd spherical droplets is described by a limited number of
parameters: u = {ud = (xd, yd, zd, rd, nd)}d∈J1,NdK, respectively their 2D position on the sensor
plane, their distance to the sensor, their radius and their complex refractive index. In the
present situation, the diffraction pattern does not depend on the refractive index due to the long
distance between the droplets and the sensor. The light diffracted by the droplets is lost and as a
consequence they behave as opaque objects. Thus their refractive index nd is removed from the
set of unknown parameters.
For each particle in the field, the parameters ud are locally optimized with the Lorenz-Mie

model, in an iterative inverse problem approach with a numerical estimation of the gradient at
each step. Note that even if a simpler formalism would be sufficient in the present case [13, 20],
the Lorenz-Mie model is kept, without far field approximation, to provide the most general
framework.
Thus:

Up
di f

(u) =
Nd∑
d=1

UMie
di f (ud) , (9)

and at a given iteration of the alternative approach 1, u is updated as follows:

u ← argmin
u={ud }d∈J1,NdK

Cdata
*.
,
Id,

������
1 +Unp

di f
(v) +

Nd∑
d=1

UMie
di f (ud)

������

2

,W+/
-
. (10)

Asmentioned above, this kind of parametric model fitting is robust. Thus, this optimization (10)
is not sensitive to the minimization on c in the data fidelity term definition (3). In addition, in
the present case, most of the signal in the data consists of high contrast fringes produced by the
droplets. These fringes being efficiently "explained" by the parametric step, the data is correctly
fitted in terms of contrast. Therefore the estimation of the parameter c in the non-parametric step
is better constrained.
The proposed method consequently provides a way to calibrate the acquisition dynamics.

Non-parametric step: Rayleigh-Sommerfeld propagation for an image-based reconstruc-
tion

Diffraction model

In the present application in fluid mechanics, the non-parametric part v of the object is linked
to the vapor wake generated by evaporation of the ether droplets. Then, an intuitive unknown
would be a 2D map of its complex transmittance t2D . Under the hypothesis of an optically thin
medium, it represents the projection of the sample along the line of sight.
The diffracted wave Unp

di f
is produced by the difference in the transmittance to the unitary

plane: t2D − 1. After propagation from the object plane at a distance z, the resulting diffracted
wave on the sensor plane is given by the convolution:

URS
di f (t2D, z) = hz (x, y) ∗

[
Uinc (z) × (t2D (x, y) − 1)

]
= e−ikzhz (x, y) ∗ (t2D (x, y) − 1) ,

(11)

where the convolution kernel hz (x, y) is the Rayleigh-Sommerfeld propagator [15] at the



illumination wavelength λ and for a propagation distance z:

hz (r) =
1
iλ

z
r

(
1 −

1
ikr

)
eikr

r
, (12)

where r =
√

x2 + y2 + z2.
To describe the complex transmittance plane, by splitting the absorbing and dephasing properties

of the object, t2D is actually modeled by its complex optical length difference `: t2D = e
2iπ
λ ` .

The real part of ` consequently defines the dephasing properties of the object, and its imaginary
part the absorption.

Constraints and regularizations

As mentioned earlier, minimizing (4) implies adding adequate prior information about the object.
In the present case, the droplets are the only objects that behave as absorbing ones, described

by u in the parametric part of model. Thus, their vapor wakes and the surrounding medium can
be considered as purely phase objects, described by a real-valued difference in optical length,
leading to the following constraint on the imaginary part of `:

Im (`) = 0⇔ ∀ (i, j) , [`]i, j ∈ R . (13)

In terms of regularization, the assumption of an optically thin medium supposes a slow spatially
varying object v. This is favored by a low energy gradient. For a given 2D real-valued image M ,
it consists in minimizing the following regularization term:

C 1
reg (M,W ) =

∑
i, j

[W ]i, j
[(

[M]i+1, j − [M]i, j
)2
+

(
[M]i, j+1 − [M]i, j

)2]
, (14)

where the directional gradients on x ↔ j and y ↔ i are computed by finite differences between
adjacent pixels and where W is a weighting matrix.
This assumption is nevertheless not fulfilled in the vicinity of the absorbing droplets that

introduce a high contrast change in the transmittance plane co-localized with their edges as can
be seen in Figs. 2(b)-2(d) and Figs. 3(c)-3(n). In other words, the opaque droplets mask the vapor
wake, which induces a zero-valued phase on their support, i.e. a sharp edge at the frontier, as
shown in Fig. 2(d). Favoring sharp-edged objects is achieved by concentrating the energy of its
gradient. For a given 2D real image M, it consists in minimizing the following regularization
term, to enforce a sparse gradient [41, 42]:

C 2
reg (M,W, ε ) =

∑
i, j

[W ]i, j

√(
[M]i+1, j − [M]i, j

)2
+

(
[M]i, j+1 − [M]i, j

)2
+ ε2 , (15)

where the directional gradients on x ↔ j and y ↔ i are computed by finite differences between
adjacent pixels, W is a weighting matrix and ε is a small real-valued constant to relax the
regularization and insure its differentiability.

An adequate trade-off is required to combine these regularizations. To this end, the parameters u
estimated by the step (10) are used to build specific weighting matrices W d

r for the Nd droplets
acting as a mask on the droplets, as presented in Figs. 5(e)-5(f):

• W d
r = 1 on a disk of radius ηinrd around the dth droplet of radius rd ,

• W d
r = 0 outside a disk of radius ηoutrd around the dth droplet of radius rd ,

• a power law is used to obtain a smooth transition between the inner disk and the outer disk.



Multi-z reconstructions

A final ingredient can be added to the model to correctly account for the strong diversity of the
droplet distances.
Due to the low spatial frequencies of the vapor wakes in the context of the optically thin

medium, the propagation distance z is not critical for the range of droplet depths. Nonetheless,
the high spatial frequencies, i.e. sharp edges, held in the vicinity of the droplet make this
reconstruction distance critical to correctly focus the shadowod of the droplets in the transmission
plane.
Figure 4 highlights the need to correctly account for the different propagation distances.

In the case where the reconstruction plane is set at an unique droplet distance, like in
Figs. 4(b),4(d),4(g),4(h), only the corresponding droplet shadow is correctly reconstructed.
The high frequencies produced by the other droplets cannot be explained by the model: the
residues worsen and a defocused image of the droplets shadows impacts the reconstruction.

Fig. 4. Comparison of amulti-z reconstruction with the proposedmethod (a,c,e,f) and amono-
z reconstruction (b,d,g,h). (a,b) Reconstructed phase shifts (radians). (c,d) Residues Id −
cIs (u, v). (e,f) Zooms on the regions of interest framed in red and green in (a). (g,h) Zooms
on the regions of interest framed in red and green in (b).

Conversely, with the method proposed in the following, the different propagation distances
are taken into consideration. In so doing, Figs. 4(a),4(c),4(e),4(f) show that the phase map
is discontinuous as expected at the droplet positions and the high contrast fringes are better
explained in the residues.
Thus, if several droplets are present at different distances in the field, the forward model (11)

must be adapted accordingly. To do so, Nd patches are built for the Nd droplets, having the same
support as their corresponding weight W d

r . Under the first Born approximation [30], each of
these patches `d scatters the unperturbed incident wavefront Uinc (z), assuming that the latter



was not modified by the upstream planes. All the resulting waves interfere on the sensor plane, as
sketched in Figs. 5(a)-5(d). By convention, the slowly evolving phase is placed on the plane z1 of
the first droplet. According to the optically thin medium hypothesis, the overall optical length
is ` =

∑Nd

d=1 `d .

Fig. 5. Scheme of the multi-z propagation model. (a,b) v1 =
2π
λ `1 contains the global

phase shift produced by the 3D sample according to the optically thin medium hypothesis
as well as the first droplet shadow footprint. (a,c) The Nd − 1 other patches are placed
at their corresponding zd and are null except in the vicinity of the droplet concerned, on
the support of Wd

r . (a,d) The resulting phase shift introduced by the sample is: vtot =∑Nd

d=1
2π
λ `d . (e) Weighting matrix

∑Nd

d=1 Wd
r that makes it possible to combine edge-

preserving regularization around the droplets (w = 1, white) and smoothing regularization
on the background (w = 0, black). In the transition areas, the two regularizations are
combined. (f) Profile of the weighting coefficients drawn along the dashed line of (e) on the
first droplet. The droplet radius r1 is emphasized as are the boundaries defined by ηinr1
and ηoutr1, linked by a power law.

Thus, defining the non-parametric part of the object v as the set of all the phase shifts introduced
by the optical lengths `d: v = {vd = 2π

λ `d }d∈J1,NdK, the diffracted wave is:

Unp
di f

(
v = {vd }d∈J1,NdK

)
=

Nd∑
d=1

URS
di f

(
eivd , zd

)
, (16)

where zd are the distances obtained in the parametric step.
Combining the constraint (13), the regularizations (14) and (15) and the propagationmodel (16),

at a given iteration of algorithm 1, v is updated as follows:

v ← argmin
v∈D

(
v={vd }d∈J1,NdK

) Cdata
*.
,
Id,

������
1 +Up

di f
(u) +

Nd∑
d=1

URS
di f

(
eivd , zd

) ������

2

,W+/
-
+

µ1C
1
reg

*
,

Nd∑
d=1

vd, 1 −
Nd∑
d=1

W d
r

+
-
+ µ2C

2
reg

*
,

Nd∑
d=1

vd,

Nd∑
d=1

W d
r , ε

+
-
, (17)

with the constraints D on the domain of v:

D (v) =


v = {vd }d∈J1,NdK/∀ (i, j) ,




∀d, [vd]i, j ∈ R
∀d > 1, [vd]i, j = 0 if

[
W d

r

]
i, j
= 0



, (18)



and where µ1 and µ2 are hyperparameters to balance the regularization terms compared to the
data fidelity term.
It should be mentioned here that for any v, an analytic solution for the scaling factor c in the

definition of the data fidelity term (3) can be computed on the fly. Indeed, the optimal scaling
factor ĉ is given by:

ĉ = argmin
c

∑
i, j

[W ]i, j
(
[Id]i, j − c [Is]i, j

)2
=

∑
i, j [W ]i, j [Id]i, j [Is]i, j∑

i, j [W ]i, j [Is]2
i, j

. (19)

The minimization problem (17) is solved with a limited-memory quasi-Newton method
with bound constraints, VMLM-B [43]. We use the version implemented in the GlobalBioIm
framework [44]. Solving (17) implies evaluating the gradient of the data fidelity term. This
term contains a squared complex modulus depending on the complex-valued unknowns. The
derivation of the close-form expression of the gradient is detailed in appendix.

Numerical reconstructions

In this paper, all the reconstructions presented are run with the following empirically chosen
parameters:

• a first rough estimation u0 of the parametric part u is performed following a matching
pursuit algorithm by browsing the discretized space of the parameters around the radii rd
and the distances zd estimated via a simple backpropagation of the hologram,

• v is initialized to null dephasing planes v0 = {vd = 0}d∈J1,NdK

• c is estimated on the fly via Eq. (19),

• ηin = 1.5 and ηout = 12.5 with a second degree power law to link the two regularizations,

• At each loop, Nnp
it = 50 iterations are performed to solve the problem (17),

• In equation 11, the propagation - a discrete convolution by the kernel hz - is performed in
the Fourier space with fast Fourier transforms involving a zero-padding operation to avoid
aliasing effects. This final operation can also be used as a masking step in the forward
model to allow reconstruction of the vapor wakes on a greater field of view than the one
seen by the sensor [13, 31].

Appendix B: Complex modulus gradient for the non-parametric model

The aim of this appendix is to compute the gradient of the data fidelity term (3) as a function of
the non-parametric part v, for a fixed u.

Matrix notations

For this purpose, matrix formalism is used: the N-D matrices of the data, the model and the
variables are unfolded in a vector shape as:

[Id]→ d ∈ RNp ; c [Is (u, v)]→ m (v) ∈ RNp ; {vd }d∈J1,NdK → v ∈ CNd×Nz , (20)

where Np is the total number of pixels in the data plane and Nz the number of pixels in one
of the Nd droplet planes. Noting W ∈ RNp×Np the diagonal matrix composed of the element
of [W ]i, j , the sum in equation 3 can be rewritten:∑

i, j

[W ]i, j
(
[Id]i, j − c [Is]i, j

)2
→ C (v) = (m (v) − d)t W (m (v) − d) . (21)



Gradient in terms of the complex variable v

Let us compute the gradient of C (v) in which the model m (v) = a
(
|b (v) |2

)
involves a squared

complex modulus:

C (v) = a
(
|b (v) |2

)
− d

2

W
=

(
a

(
|b (v) |2

)
− d

) t
W

(
a

(
|b (v) |2

)
− d

)
, (22)

where a is a real-valued operator defined on real-valued variables and b is a complex-valued
operator defined on complex-valued variables, and where the modulus is computed element-wise.
The gradient is given by the linear variations introduced by a small variation δv in v.

Noting:

• M the complex conjugate of a given complex matrix M ,

• M? = M
t
the Hermitian transposition of M ,

• A =Ja

(
|b (v) |2

)
the Jacobian matrix of a at |b (v) |2,

• B =Jb (v) the Jacobian matrix of b at v

and with diag (z) the diagonal matrix whose diagonal is defined by the vector z, it comes, keeping
only the terms of lowest degree in δv:

C (v + δv) = a
(
|b (v + δv) |2

)
− d

2

W
'

a
(
|b (v) + Bδv |2

)
− d

2

W

'
a

(
|b (v) |2 + 2Re

(
diag

(
b (v)

)
Bδv

))
− d

2

W

'
m (v) + A2Re

(
diag

(
b (v)

)
Bδv

)
− d

2

W

' C (v) + 2 (m (v) − d)t W
(
A2Re

(
diag

(
b (v)

)
Bδv

))
' C (v) + 4Re

(
(m (v) − d)t WAdiag

(
b (v)

)
BMR→C

)
δvR ,

(23)

with a decomposition of v on its real and imaginary parts:

vR =
*.
,

Re (v)

Im (v)
+/
-
and MR→C =

(
In iIn

)
. (24)

Hence:
∇C (vR) = 4

[
Re

(
(m (v) − d)t WAdiag

(
b (v)

)
BMR→C

)] t

= 4Re
( [

(m (v) − d)t WAdiag
(
b (v)

)
BMR→C

]?)
= 4Re

(
M?
R→CB

?diag (b (v)) AtW (m (v) − d)
)
.

(25)

However for a complex vector z ∈ Cn:

Re
(
M?
R→C z

)
= Re

*.
,

*.
,

In

−iIn

+/
-

(Re (z) + iIm (z))+/
-
=

*.
,

Re (z)

Im (z)
+/
-
. (26)

It consequently appears that the gradient along the real and imaginary parts of v in vR are:




∇C (vR) |Re(v) = Re
(
4B?diag (b (v)) AtW (m (v) − d)

)
∇C (vR) |Im(v) = Im

(
4B?diag (b (v)) AtW (m (v) − d)

) . (27)

Hence, the complex gradient of ∇C (v) is:

∇C (v) = 4J ?
b (v) × diag (b (v)) ×J t

a

(
|b (v) |2

)
×W × (m (v) − d) . (28)



Application to the multi-z propagation

Let us apply this formula (28) in the present context. From Eq. (1) and Eq. (3):

• a is directly ĉINp , with ĉ the optimal scaling factor computed via Eq. (19). It is a linear
operator and is consequently its own Jacobian matrix:

a = ĉINp ⇒ ∀x ∈ R
n,J t

a (x) = ĉINp . (29)

• b is the multi-z propagation, that is to say from Eq. (11) and Eq. (17):

b
(
v = {vd }d∈J1,NdK

)
= 1 +Up

di f
(u) +

Nd∑
d=1

e−ikzd hzd ∗
(
eivd − 1

)
, (30)

whose Hermitian Jacobian for the dth plane is, applied to a 2D matrix P of adequate size:

J ?
b (v)���d (P) = −ieikzd e−ivd .

(
hzd ∗ P

)
, (31)

where the complex exponential and the product . are applied element-wise.
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