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Comprehending the dynamical behaviour of quantum systems driven by time-varying Hamiltonians is particularly difficult. Systems with
as little as two energy levels are not yet fully understood. Since the inception of Magnus’ expansion in 1954, no fundamentally novel
mathematical method for solving the quantum equations of motion with a time-varying Hamiltonian has been devised. We report here of an
entirely different non-perturbative approach, termed path-sum, which is always guaranteed to converge, yields the exact analytical solution
in a finite number of steps for finite systems and is invariant under scale transformations. We solve for the dynamics of all two-level systems
as well as of many-body Hamiltonians with a particular emphasis on NMR applications (Bloch-Siegert effect and N -spin systems involving
the dipolar Hamiltonian and spin diffusion).

Time-varying Hamiltonian | Path-sum | Analytical and numerical methods | Bloch-Siegert effect | Nuclear Magnetic Resonance | N spins systems
and dipolar couplings

Quantum evolution operators: general context and Nu-
clear Magnetic Resonance background

The unitary evolution operator U(t′, t) describing the time
dynamics of quantum systems is defined as the unique solution
of Schrödinger’s equation with quantum Hamiltonian H, i.e.
(~ = 1)

− i H(t′) U(t′, t) = d

dt′ U(t′, t), [1]

and such that U(t′ = t, t) = Id is the identity matrix at
all times. Evidently, this operator plays a crucial role at
the heart of quantum mechanics, including for spin dynam-
ics in magnetic resonance (Nuclear Magnetic Resonance -
NMR, Electronic Paramagnetic Resonance - EPR, Dynamic
Nuclear Polarisation - DNP...) (1–3). When the quan-
tum Hamiltonian is time-independent, the evolution oper-
ator takes on the mathematically simple and compact form
U(t′, t) = exp[−i(t′ − t)H]. In the general case however, and
as is typically the case in NMR, the Hamiltonian may be
time-dependent and might furthermore not commute with
itself at various times, H(t)H(t′) − H(t′)H(t) 6= 0 for t′ 6= t. In
this situation, the evolution operator no longer has a simple
calculable form being rather formally given by the action of a
time-ordering operator on the exponential of the Hamiltonian,
an expression first expounded by Dyson (4) but which is little
more than a notation precluding immediate evaluations.

Whereas this problem has been discussed in details in the
NMR literature, calculations of the evolution operator remain
barely tractable for an in-depth description of spin dynamics.
At best, approximate expressions of U(t′, t) are obtained and
are only accurate for short times. The same conclusion holds
for the so called product representation of the Hamiltonian
involving its separation in two parts of equal importance (3).
A major breakthrough in the description and understanding
of solid state NMR was achieved by the development of Aver-
age Hamiltonian Theory (AHT) in the late 1960’s by Waugh,

Haeberlen and co-workers. AHT relies exclusively on the Mag-
nus expansion (ME) (5) of U(t′, t). Discovered in 1954, this
expansion is the last essentially new development in the math-
ematical theory of time-dependent Hamiltonians. ME was
the starting point for a new era in homonuclear decoupling
(6, 7) experiments and multiple-quantum spectroscopy (8).
The fundamental idea behind the Magnus expansion relies on
calculating a matrix whose ‘true’ exponential gives the evolu-
tion operator, a formulation which involves an infinite series
of time-dependent nested commutators of the Hamiltonian,
mathematically a continuous form of the celebrated Baker-
Campbell-Haussdorff formula (9). Nevertheless, higher order
terms of the series remain highly cumbersome to write down
explicitly so that practically, only low orders of the expansion
are useable. Most importantly, ME suffers from severe and
incurable problems of convergence as already mentioned by
Magnus himself (5) and Maricq in early contributions (10).
Quoting Mehring and Weberruss in (3): “The convergence
of this series is of concern and must be considered in special
cases” (!). The specific problem of convergence has been re-
investigated in-depth recently (11, 12) and saturated upper
bounds for the largest times reachable by ME before diver-
gence have been discovered which severely restrict its use to
short times (13). In the more specific case of periodically
time-dependent Hamiltonian, such as those encountered in
Magic Angle Spinning (MAS) experiments, it is well known
that ME suffers from a further two limitations, i.e. the stro-
boscopic detection of the NMR events, and the impossibility
to take into account more than one characteristic period. We
mention that in the case of periodic Hamiltonian, Secular
Average Theory (SAT) can be applied as well (3)). It implies
the separation of constants terms in the Hamiltonian avoiding
non-secular contributions in first/higher order terms of the
expansion. Using AHT, such terms may lead to erroneous
results (14). Ultimately, the SAT approach follows the general
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concept developed in ME, with U(t′, t) given by the ‘true’
exponential of an infinite series of operators.

In the case of periodic Hamiltonian, Floquet theory (FT)
holds (15) and implies that the evolution operator takes on
the form U(t, 0) = P(t) exp(Ft), with P(t) a periodic time-
dependent matrix and F a constant matrix, both of which are
determined perturbatively (11). This procedure was first used
by Shirley (16), whose fundamental contribution was to apply
Floquet theory to the case of linearly polarised excitations in
magnetic resonance and to give low orders analytical expres-
sions for the Bloch-Siegert effect (17). Shirley’s main progress
effectively transformed the finite time-dependent Hamiltonian
appearing in Schrödinger’s equation into an infinite but time-
independent one via FT. Because the resulting system is in-
finite, this approach to the evolution operator is inherently
perturbative.

In the early 1980’s, FT entered the NMR world with inno-
vative applications proposed by Maricq (10) and Vega (18).
Most importantly, the severe limitation of stroboscopic obser-
vation in AHT is avoided in FT. Nevertheless, a fundamental
problem remains in FT, namely the perturbative approach
of the Floquet Hamiltonian which is usually performed via
van Vleck transformation as an efficient method for block
diagonalisation (19).

An effective Floquet operator is consequently obtained for
subsequent NMR applications such as design and optimisation
of new pulse sequences. Floquet theory is versatile as multiple
distinct frequencies can be taken into account simultaneously:
multimodal Floquet approaches (20) are now encountered rou-
tinely in advanced solid state NMR techniques including RF
pulse schemes and macroscopic reorientation of the sample.
Among other numerous examples, Floquet theory was success-
fully applied to recoupling experiments under MAS , hetero-
and homonuclear recoupling and decoupling, cross polarisation
(based on the heteronuclear dipolar interaction), quadrupolar
nuclei (I > 1/2) and dynamics under MAS (19). Such experi-
ments correspond to state of the art developments in modern
solid state NMR.

Finally, we mention numerical methods: (i) Fer and Magnus-
Floquet hybrids proposed recently as potential expansions for
the evolution operator (21, 22), (ii) Zassenhaus and Suzuki-
Trotter propagator approximations (23–25) The expansions
presented above all suffer from various drawbacks including:
the divergence of the series at long time; the perturbative
nature of the numerical or theoretical approach; the non-
avoidable propagation of errors at long time; the failure to find
exact solutions even for small, one spin, 2 × 2 Hamiltonians.

In this contribution, the Path-Sum (PS) (26) method is
applied for the very first time to NMR Hamiltonians to deter-
mine the corresponding evolution operators U(t′, t). Path-sum
is firmly established on three fundamentally novel concepts,
insofar never applied within the NMR framework: (i) the
representation of U(t′, t) as the inverse of an operator with
respect to a newly introduced ∗-product; (ii) a mapping be-
tween this inverse, and sums of weighted walks on a graph;
and (iii) fundamental results on the algebraic structure of sets
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of walks which exactly transform any infinite sum of weighted
walks on any graph into a single branched continued fraction
of finite depth and breadth with finitely many terms. Taken
together, these three results imply that, for finite dimensional
Hamiltonians, any entry or block of entries of U(t′, t) has a
finite, exact, analytical expression in terms of ∗-products and
inverses of time-dependent functions (rather than matrices).
These inverses are themselves determined by unconditionally
convergent analytical series or can be found via numerical
tools pertaining to linear Volterra integral equations of the
second kind with separable kernels. Since every piece of the
evolution operator is obtained exactly after a finite number
of operations, the method is necessarily convergent. As a
corollary, path-sum yields a non-perturbative formulation of
U(t′, t), as will be illustrated below with the Bloch-Siegert
effect. Further properties of path-sums ensures its scalability
to multi-spin systems, for example allowing it to recover the
exact dynamics of an entire system from the separate, isolated,
evolutions of any chosen collection of its sub-systems.

We may put path-sum in a broader physical context by
quoting R. P. Feynman (27): “With application to quantum
mechanics, path integrals suffer most grievously from a serious
defect. They do not permit a discussion of spin operators or
other such operators in a simple and lucid way”. From our
point of view, path-sum precisely achieves what path-integrals
could not for spin systems and go further by performing formal
resummations on the infinitely many diagrams. Indeed, in
the Hamiltonian formalism of spin systems, the quantum
state space takes on the form of a discrete graph and its
walks, weighted by the energy functional, are the analogs
of the Feynman diagrams, all of which are re-summed via a
single finite continued fraction over a few prime walks. As
a corollary, each of the finitely many term of the path-sum
continued fraction represents a fundamental physical process
from which all possible processes stem via nestings (insertion
of a process into another). While these interpretations are
correct and appealing, path-sum’s validity is independent
from quantum theory and physics in general: it is rather a
fundamental property of graph walks valid for even the most
abstract systems of coupled linear differential equations with
non-constant coefficients. Overall, it appears that the present
work is the first fundamentally new approach to the problem
of simulating quantum dynamics induced by time-varying
Hamiltonians since Magnus’ 1954 seminal results.

This article is structured as follows. We first give a con-
cise presentation of the rigorous mathematical background
of (26) culminating in the path-sum formulation of quantum
dynamics. The fundamental scalability property of path-sum
is introduced as well. In a second part, we detail four ap-
plications in connection with general quantum theory and
then more specifically with NMR. The first one provides the
general solution of Schrödinger’s equation for any 2 × 2 time-
dependent Hamiltonian, a problem of central importance in
quantum computing. We demonstrate the use of the solution
on a test model, that of a circularly polarised RF excitation in
the laboratory frame. Indeed, the exact expression of U(t′, t)
is known thanks to a transformation into the rotating frame,
yet none of the existing general purpose methods such as
Magnus expansion or Floquet theory recovers it exactly. In
contrast, we show that path-sum arrives at the analytical
solution. Second, we solve the much more complex case of lin-
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Fig. 1. The path-sum continued fraction for the exact calculation of the entries of U(t′, t) is always of finite depth and breadth. (a) The illustrative example of a 3 × 3
time-dependent Hamiltonian H(t) which is involved for instance in the I = 1 spin dynamics. (b) The associated dynamical graph Gt = K3 with adjacency matrix H(t).
Circles correspond to self-loops (diagonal terms of H(t)). Directed edges correspond to off-diagonal terms. The associated weights corresponds to the entries of H(t).
(c) Evolution operator U(t′, t) as seen by path-sum. The mathematical objective here is the calculation of the GK3,ii(t′, t) terms, which involve ∗-inverses (green stars).
Path-sum then gives the off-diagonal entries of U(t′, t) (dashed diamond) from easy ∗-products involving GK3,ii(t′, t) and hij(t) terms, with no further ∗-inverses. For
example, U21 = 1 ∗ GK3\{1},22 ∗ h21 ∗ GK3,11 + 1 ∗ GK3\{1,3},22 ∗ h23 ∗ GK3\{1},33 ∗ h31 ∗ GK3,11. (d) Step by step evaluation of GK3,11(t′, t) (dashed
square) showing the finite character of the involved continued fraction. The sum is performed on the finite cycles of length 1, 2 and 3 respectively (the corresponding walks are
indicated in red—other edges are indicated in dashed grey lines). At each step of the continued fraction, a vertex is removed (see the left part of the Figure). (e) A pictorial
representation of "descending ladder principle" for the path-sum continued fraction. The calculation starts at the top of the ladder with each ∗-inverse leading to the step below
and ending in all (finite dimensional Hamiltonian) cases on the ground: the continued fraction is of finite depth.

early polarised RF excitation. It corresponds to the influence
of the counter-rotating component of the RF field and the
Bloch-Siegert effect. Path-sum further leads to exact and com-
pact representations of recently uncovered special solutions
involved in two levels quantum dynamics, namely confluent
Heun’s functions otherwise known in general relativity and
astrophysics (28), see SI. The two final examples are related
to many-body Hamiltonians, including N like-spins coupled
by the homonuclear dipolar coupling and spin diffusion under
MAS. In this later case, it is demonstrated that if the initial
density matrix ρ(0) is a pure state with a small number k � N
of up-spins, the evolution of ρ(t) can be made analytically,
even in the limit N → ∞. The effects of MAS frequency and
chemical shift offsets will be illustrated on an organometallic
molecule exhibiting 42 protons. We emphasize the fact that
all simulations presented below, including the animations, typ-
ically took a minute to be generated on a standard laptop.
More theoretical results related to spin chains are presented
in the SI.

Quantum evolution and walks on graphs

Quantum systems with exclusively discrete degrees of freedom
such as spin systems, obey a discrete analog to Feynman’s path
integrals. To illustrate this, define one history of a quantum
system as a temporal succession of orthogonal quantum states
h : |s1〉 7→ |s2〉 7→ |s3〉 · · · , each transition |si〉 7→ |si+1〉
happening at a specified time ti. Overall the history h acquires
a complex weight which is the product of the weights of all
the transitions in the history. The weight of an individual
transition |si〉 7→ |si+1〉 is dictated by the Hamiltonian as

〈si+1|H(ti)|si〉.
A natural representation of such discrete histories is as walks

on a graph. To see this, let Gt be the graph such that each
vertex vi corresponds to one member |si〉 of an orthonormal
basis for the entire state-space and give the directed edge
vi 7→ vj the time-dependent weight 〈sj |H(t)|si〉. In this picture,
a system history as defined earlier is a walk on Gt and H(t)
is the adjacency matrix of Gt. Because the Hamiltonian is
time-dependent, the graph itself is dynamical, see Fig 1(a,b)
for an example.

General solution. Now just as for Feynman’s path-integrals,
the exact evolution of the system is obtained from the su-
perposition of all its possible histories. Equivalently, every
element 〈sj |U(t)|si〉 of the evolution operator U(t) is given by
the sum over all walks from vi to vj on Gt, including all possi-
ble jumping times for each transition between vertices. While
individual walks are the discrete counterpart of Feynman di-
agrams, their algebraic structure is much better understood.
This permits exact resummations of infinite families of walks
to be performed at the formal level, yielding every 〈sj |U(t)|si〉
as a branched continued fraction that is finite in both depth
and breadth. In particular, because this fraction comprises
a finite number terms, it is unconditionally convergent when
calculated numerically. The same principles apply regardless
of whether the Hamiltonian depends on time or not, in the
former case however the theory relies on two-times functions
f(t′, t) that multiply via a convolution-like product

(
f ∗ g

)
(t′, t) :=

∫ t′

t

f(t′, τ)g(τ, t) dτ.
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Fig. 2. Bloch-Siegert dynamics. Transition probability P↑7→↓(t) as a function of time in (a) the weak, (b) mid and (c) strong coupling regimes. Shown here are the results
from second order Floquet theory (16) (solid green line and green points); and second (dotted red lines) and third orders (solid blue line) of the Neumann series for transition
amplitudeA↑7→↓ calculated analytically from the path-sum result. The Floquet result is not shown on figure (c) where it oscillates erratically and would make the plot unreadable.
The exact numerical solution (dashed black line) is indistinguishable from the fourth Neumann order for A↑7→↓. Parameters : two level system driven by the resonant ω0 = ω

Bloch-Siegert Hamiltonian of Eq. [8] (16, 17) starting in the |↑〉 state at t = 0, b/ω0 = 1/10 (left figure), b/ω0 = 3/2 (middle figure) and b/ω0 = 10 (right figure).

This means that for general time-dependent Hamiltonians the
continued fraction formulation for U(t) involves products and
inverses with respect to the ∗ multiplication. Such ∗-inverses
are solutions to linear Volterra equations of the second kind and
can be always expressed analytically by super-exponentially
convergent Neumann series.

While the rigorous mathematics underpinning these obser-
vations were laid out in (26, 29) within the more general frame-
work of systems of coupled linear differential equations with
non-constant coefficients, no concrete physical applications
were presented. In view of the paucity of mathematical meth-
ods to calculate quantum dynamics driven by time-dependent
Hamiltonians and the general lack of fundamental progress
on the theory since Magnus’ work in 1954 (5); it appears
essential to introduce path-sums to the physics community via
illustrative examples bearing on currently open problems. We
focus on NMR in the following.

Two-level time-dependent Hamiltonians

Two-level systems driven by time-dependent Hamiltonians con-
tinue to be a very active area of research (11, 30–33) owing to
their experimental relevance; their role as theoretical models;
and the need to master the internal dynamics of qubits un-
dergoing quantum gates (31, 34). The most general two-level
Hamiltonian is

H(t) =
(

h↑(t) h↑↓(t)
h↓↑(t) h↓(t)

)
. [2]

In this expression we only require that h↓↑(t), h↑↓(t), h↑(t)
and h↓(t) be bounded functions of time over the interval [t, t′]
of interest. So far, no analytical expression has been found
for the corresponding evolution operator U(t) defined as the
unique solution of Eq. [1] with the Hamiltonian of Eq. [2]. It
is known that particular choices for H(t) lead to evolution
operators that involve higher special functions, e.g. Heun’s
functions (30) see SI for more details. Thus the best possible
result for the general U(t) is that each of its entries be described
as solving a defining equation, and that an analytical mean of
generating this solution be presented. This is precisely what
path-sums achieve:

U(t′, t) = −i× [3](
i(1 ∗ G↑) 1 ∗ F↑ ∗ h↑↓ ∗ G↓

1 ∗ F↓ ∗ h↓↑ ∗ G↑ i(1 ∗ G↓)

)
,

where F↑ := (δ + h↑e−i(1∗h↑)) and similarly for F↓ with δ the
Dirac delta function. The two-times Green’s functions G↑ and
G↓ solve linear Volterra equations of the second kind, e.g. for
G↑ we have G↑ = δ + K↑ ∗ G↑, that is

G↑(t′, t) = δ(t′, t) +
∫ t′

t

K↑(t′, τ) G↑(τ, t) dτ, [4]

where K↑ = −ih↑ − h↑↓ ∗ F↓ ∗ h↓↑ is called the kernel of the
Volterra Eq. [4].

It is a general feature of path-sums that the kernel functions
appearing in the calculations are separable (also called degener-
ate), that is they can always be written as sums of products of
functions of a single time variable K(t′, t) =

∑q

i=1 Ai(t′)Bi(t).
This property holds true for general N -body Hamiltonians
and facilitates the analysis of the Volterra equations from
path-sums (35). Should a closed form expression for the so-
lution nonetheless be out of reach, the solution is at least
analytically available as a Neumann series; in the case Eq. [4]
it is G↑ = δ +

∑
n>0 K∗n

↑ . If every entry of the Hamiltonian
is a bounded function of time, this series representation con-
verges super-exponentially and uniformly (26). Alternatively,
Volterra equations can also be solved fully numerically (36).

An expression of U(t′, t) (Eq. [3]) where all ∗-products have
been explicited with integrals as well as the demonstration
that K(t′, t) is always separable is given in SI.

Test-model: failure of Magnus series and Floquet theory. As
a first example of application for the general analytical form
of Eq. [3] for the evolution operator, we take (13)

H(t) = 1
2ω0σz + β

(
σx cos ωt + σy sin ωt

)
, [5]

with σx,y,z the Pauli-matrices, and ω0, ω and β are real pa-
rameters. This Hamiltonian, which represents a two-level
atom subjected to a time-dependent circularly polarised radio-
frequency field, is an important test model (37). Indeed, by
transforming into a rotating frame the evolution operator is
found exactly. Back in the non-rotating frame it is

U(t) = exp
(
− 1

2 iωt σz

)
exp

(
−it

(1
2(ω0 − ω)σz + β σx

))
, [6]

neither Magnus series nor Floquet Theory can obtain this
result. Furthermore, Magnus series are rigorously known to
diverge here whenever t ≥ 2π/ω0 (13, 38).

At the opposite, the evolution operator of Eq. [3] not only
yields the exact analytical form of Eq. [6], but even when used
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numerically it is unconditionally convergent. Furthermore, the
transformation into the rotating frame is not necessary for the
exact application of path-sum. See SI for a full derivation of
Eq. [3] from Eq. [6]. Path-sum is thus the only general purpose
approach capable of solving this test model.

Beyond the Rotating Wave Approximation: Bloch-Siegert dy-
namics. The Bloch-Siegert Hamiltonian, here denoted HBS(t),
is possibly the simplest model to exhibit non-trivial physical
effects due to time-dependencies in the driving radio-frequency
fields. This Hamiltonian reads

HBS(t) =
(

ω0/2 2β cos(ωt)
2β cos(ωt) −ω0/2

)
. [7]

Although this is not required by the path-sum method, we pass
in the interaction picture to alleviate the notation, yielding

HBS(t) = 2β cos(ωt) cos(ω0t)σx + 2β cos(ωt) sin(ω0t)σy. [8]
In these expressions, the coupling parameter β is the am-
plitude of the radio-frequency field. Of particular interest
for qubit-driving experiments is the evolution of the transi-
tion probability P↑7→↓(t) := |A↑7→↓(t)|2 between the two levels
(34, 39). This quantity is usually found perturbatively using
Floquet theory (16) as Magnus series again suffer from di-
vergences (40). The result of Eq. [3] yields the probability
amplitude A↑7→↓(t) as the solution of the Volterra equation
A↑7→↓ = F + K ∗ A↑7→↓ where the function F and kernel K are
given in the SI. This equation has no closed form solution, that
is, its solution is an hitherto unknown higher transcendental
special function. We plot on Fig. (2) the transition probability
P↑7→↓(t) as calculated analytically from the second and third
orders of the Neumann series A↑7→↓ = F ∗ (δ +

∑
n>0 K∗n) in

the resonant case ω0 = ω. This situation was chosen because:
i) it is mathematically the most difficult to approach exactly
(see SI); and ii) it yields compact expressions more suitable for
a concise presentation. Higher order terms of the Neumann
series are readily and analytically available, enabling precise
evaluation of P↑7→↓(t) at any desired target time. The fact
that the same expression for P↑7→↓(t) is a good approximation
to the exact transition probability in all parameter regimes, i.e.
from β/ω0 � 1 to β/ω0 � 1 is a signature that the path-sum
approach is non-perturbative. At the opposite, Floquet theory,
which is inherently perturbative, only works for β/ω � 1 (16).
See SI for complete calculations related to the Bloch-Siegert
Hamiltonian.

N >2 -level Hamiltonians. The path-sum approach is by no
mean limited to two-level systems: e.g. solutions to all time-
dependent 3 × 3 and 4 × 4 Hamiltonians are readily available
and will be presented in a future work. As an example, the
construction of the finite path-sum continued fraction is de-
tailed in Fig. 1 for a complete 3 × 3 matrix. Note how the
number of steps in the exact solution is finite because of the
descending ladder principle. Generally, as long as the system
is finite, any entry of the evolution operator is given by a
finite number of ∗-inverses and we are only limited here by the
growth of the path-sum continued fraction, itself controlled
by the structure of the Hamiltonian.

For many body systems N � 1, a further problem appears,
namely the exponential growth in the size of the Hamiltonian.
While path-sum does not, in itself, solve the challenges posed
by this well-known scaling, it offers tools to manage it via its
scale invariance properties, to which we now turn.

Scale invariance

Principles. Path-sums stem from formal resummations of fam-
ilies of walks. This principle does not depend on what those
walks represent. In particular, it remains unchanged by the
nature of the evolving system. To exploit this observation, con-
sider a more general type of system histories made of temporal
successions of orthogonal vector spaces h̃ : V1 7→ V2 7→ · · · .
Physically such histories can describe an evolving subsystem,
such as a cluster of particles. Mathematically they correspond
to walks on a coarse-grained representation of the quantum
state space, a subgraph G̃t of Gt. To see this, take a complete
family of orthogonal spaces, i.e.

⊕
i=1 Vi = V , where V is

the entire quantum state space. To each Vi associate a ver-
tex vi and give the edge vi 7→ vj the time-dependent weight
PVj .H(t) .PVi . Here PVk is the projector onto Vk. Observe
then that these edge weights are generally non-Abelian. Yet,
because path-sums fundamentally retain the order and time of
the transitions in histories when performing resummations of
walks, this setup poses no further difficulty. It follows that the
submatrix PVj .U(t′, t) .PVi of the evolution operator is again
given as a matrix-valued branched continued fraction of finite
depth and breadth. While the shape of this fraction depends
on the particular choice of vector spaces, its existence and
convergence properties do not. If the vector spaces are chosen
so that the shape of the fraction itself is unchanged, and such
a choice is always possible, then the path-sum formulation
is truly invariant under scale changes in the quantum state
space.

An immediate consequence of scale-invariance is that there
is always a path-sum calculation rigorously relating the global
evolution of a system to that of any ensemble of its subsystems,
such as clusters of spins in a large molecule (see below). In this
scheme, we can evolve each subsystem separately from one-
another using any preferred method (Magnus, Floquet, path-
sum, Zassenhaus for short times etc.); only to then combine
these isolated evolutions exactly via a path-sum to generate
the true system evolution. In particular, if we partition the
system into exactly two subsystems, the above procedure
yields the time-dependent Dyson equation which forms the
starting point of nonequilibrium dynamical mean-field theory
(26, 41). Mathematically speaking, this situation corresponds
to summing matrix-valued walks on a graph G̃t with only two
vertices.

Another consequence of scale invariance is a fully rig-
orous justification of state-space reduction techniques for
time-dependent Hamiltonians (42). More precisely, the path-
sum representation of evolution operators shows that the
norm of any PVj .U(t′, t) .PVi decays exponentially or super-
exponentially with the distance between vi and vj on G̃t,
depending on whether G̃t has bounded degree or not (26).
While thorough exploitation of the scale-invariance property
is beyond the scope of this work, we demonstrate below how
it can be used to tackle many-body Hamiltonians, with an
emphasis on examples from NMR, i.e. spins coupled by the
homonuculear dipolar interaction and spin diffusion under
MAS.

Many-body Hamiltonians

Large molecule in NMR. We now turn to the general problem
of determining the temporal dynamics of spin diffusion as
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Fig. 3. Analytical spin-diffusion on a cationic tin oxo-cluster with N = 42 protons (shown in inset) submitted to the time-dependent high-field dipolar Hamiltonian under MAS
(rotor angular velocity ωr = 2π × 10kHz). The figure shows the time evolution of the probability |〈ψ(t)| ↑z,i〉|2 of finding a spin-up along z on proton i for three protons: a
hydroxyl proton H1 (solid red line), on which the excitation starts; a nearby hydroxyl proton H2 (dashed blue line); and a methyl proton H3 (dot-dashed black line).

effected by the time-dependent high-field dipolar Hamiltonian
for N homonuclear spins:

HII =
∑
i,j

1
2ωij(t)

(
3IizIjz − 2 Ii . Ij

)
, [9]

where the interaction amplitude ωij(t) is time-dependent due
to the MAS rotation, see SI for more details. We consider a
cationic tin oxo-cluster

[
(MeSn)12O14(OH)6

]2+ (43) exhibit-
ing N = 42 protons belonging to hydroxyl and methyl groups,
see Fig. 3. This structure is idealised and exhibits the main
characteristics of already synthesised clusters (distances, an-
gles, crystal packing). All atomic coordinates as well as se-
lected internuclear distances are given in SI. The methyl
groups are supposed fixed as is the case at low temperature. A
single orientation of the molecule towards the principal mag-
netic field B0 is considered, while the extension to a powder
could be easily obtained by using averaging procedures over the
crystallites (44) or an expression derived from a Fokker-Planck
equation (45).

Path-sum yields analytical expressions for the entries of the
evolution operator because the computational complexity of
the calculations can be made to be only linear in the system
size N depending on the initial state. We stress that this is
due primarily to the peculiar structure of the high-field dipolar
Hamiltonian, which allows for a particularly efficient usage
of the scale-invariance and graphical nature of path-sums.
In particular, we do not claim to have solved the general
many-body problem: there will be Hamiltonians for which
this procedure cannot circumvent the exponential explosion
of the state space.

In Fig. 3 and Animation 1 (supplementary material), ωr

is fixed at 2π × 10 kHz and the initial up-spin is located on
a hydroxyl proton, denoted H1. During the first 0.15ms time
period (or 1.5 rotor period), an oscillation is observed between
two close hydroxyl protons H1 and H2, followed by a partial
transfer to the closest methyl group (t & 0.15ms), in particular
proton H3. Inside the methyl entity, the frequency of exchange
is much faster as the three protons are subjected to much
stronger dipolar couplings. In Fig. 4(a,b) and Animations 2, 3,

4 and 5 for ωr = 20, 40, 60 and 120 kHz, the return-probability
to spin 1 is expressed as a function of ωr and can be described
analytically. These results provide an exact justification to
recently proposed approximations in the context of the 1H line
dependence under ultra-fast MAS (46). Finally in Fig. 4(c),
strong offsets (roughly 30 ppm at 1.5 GHz, currently the
highest magnetic field available for high resolution solid state
NMR purposes) were added to all protons Hi, except the two
hydroxyl protons H1,2 (see inset of Fig. 3 for identification). As
the chemical shift offset corresponds simply to Iz,i operators,
the solution of the spin diffusion problem remains analytical by
using path-sum. For strong offsets, spin diffusion is quenched.
All of these results are in perfect agreement with experimental
observations related to spin diffusion in NMR.

Methodology: setting up the path-sum.

Considerations on the initial state. The key is to choose the initial
density matrix ρ(0) to be a pure state with a small number k
of up- or down-spins. Indeed, since the high-field Hamiltonian
of Eq. [9] conserves this number at all times, the discrete
graph structure Gt encoding the quantum state space for path-
sum consists of exactly N disconnected components, of sizes(

N
k

)
∼ Nk when k � N . Hence, the computational cost of

finding the evolution operator using a path-sum here is O
(
Nk),

i.e. linear in N for a single initial up-spin. This procedure is
different from approximate state space truncations approaches
(23, 24, 47), since here the Hamiltonian rigorously enforces
the state-space partition. As a result, our calculations retain
quantum correlations of up to N spins. More general initial
density matrices ρ(0) may be approximated with polynomial
cost on expanding them over pure states with k � N . In
the sector of the quantum space with a single up-spin, the
difficulty is thus solely due to the time-dependent nature of the
Hamiltonian. The evolution operator is then strictly analytical
for static experiments and analytically soluble using path-sums
for MAS experiments. Physically, the time-dependent high-
field dipolar Hamiltonian of Eq. [9] implements a continuous
time quantum random walk of the spin on the molecule. This
interpretation remains true in the presence of more than one
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Fig. 4. Return probability for the spin excitation on the initial hydroxyl proton H1 as a function of ωR (one plot point every 20Hz): (a) after a fixed time of t = 0.05ms, a
situation exhibiting numerous peaks for small ωR values that are not all resolved on this picture; and (b) after two rotor periods t = 2 × (2π/ωR). (c) Probability of finding the
spin excitation on hydroxyl protons H1 (solid red line) or H2 (dashed blue line) as a function of time for ωR = 10kHz and with a very strong offset of roughly 30 ppm at 1.5 GHz
on all protons except H1 and H2. The total probability of being either on H1 or H2 (dotted black line) never goes below ' 0.94 over 3 rotor periods.

initial up-spin, with the caveat that further interactions happen
when quantum walkers meet. Preliminary observations related
to spin chains (see SI) suggest that the results obtained by
starting from a pure state initial density matrix give a very
good first approximation to more general initial mixed states,
as usually encountered in standard room temperature NMR.
This particular point will be studied in-depth in a separate
work.

Dynamics at the molecular scale. As stated above, the sector of
the quantum state space that needs to be considered for an
initial pure state with a single up-spin is of dimension N . This
observation reduces the problem of calculating the evolution
operator to (analytically) solving an N × N system of coupled
linear differential equations with non-constant coefficients.
Since, in principle, all pairs of spins interact directly, this
system is full. Consequently, if no further partition of the
Hamiltonian is used, the graph Gt on which path-sum is to
be implemented is the complete graph on N vertices, which
entails a huge (yet finite) number of terms in the path-sum
continued fraction. The vast majority of these give negligible
contributions to the overall dynamics however, because of the
scales of the interactions involved: one may therefore build up
the path-sum continued fraction by brute force, progressively
including longer cycles until convergence of the solution is
obtained.

An alternative, physically motivated approach appealing
once more to scale-invariance nonetheless appears preferable
as it yields further insights in the temporal dynamics. First,
remark that at least one further non-trivial partition of the
Hamiltonian is quite natural in the case of the cationic tin
oxo-cluster: that which puts together all spins belonging to
the same methyl or 3 hydroxyls groups. Mathematically, this
is equivalent to seeing the Hamiltonian as a 14 × 14 matrix
with matrix valued entries, each of size 3 × 3. Then there is a
path-sum continued fraction expressing any 3 × 3 block of the
the global evolution operator U(t′, t) in terms of the "small"
Hamiltonians of the corresponding proton groups.

At this point the path-sum continued fraction is already
quite manageable without further approximations, but we can
gain additional (analytical!) insights into the spin dynamics by
removing inter-group interactions weaker than a chosen cut-off
value IB,B′ /Λ, with IB,B′ the maximum inter-group interac-
tion. Here B indices mean "block". The value of Λ is itself
controlled by convergence of the overall solution. This proce-
dure sends some off-diagonals blocks of the Hamiltonian to 0,
giving G̃t a non-trivial topology which reveals the molecular
structure at the methyl and 3 hydroxyls scale, as experienced

by the spin excitation during diffusion. See Fig. (5) for an
illustrative example, with ωr = 2π × 60 kHz and Λ = 40.
The corresponding path-sum continued fraction takes on the
topology of the molecule, can be evaluated analytically, and
establishes mathematically the main pathways taken by the
spin excitation:

U(OH)3 = 1 ∗
(

Id∗ + iHH + HHM ∗ Σ1 ∗ HMH + HHM ∗ Σ2 ∗ HMH

+ HHM ∗ Σ4 ∗ HMH − i HHM ∗ Σ2 ∗ HMM ∗ Σ1 ∗ HMH

− i HHM ∗ Σ4 ∗ HMM ∗ Σ2 ∗ HMH

)∗−1
,

where the Σj are given by

Σ1 = 1
Id∗ + iHM + HMM ∗ Σ2 ∗ HMM

,

Σ2 = 1
Id∗ + iHM + HMM ∗ Σ3 ∗ HMM

,

Σ3 = 1
Id∗ + iHM + HMM ∗ Σ4 ∗ HMM

,

Σ4 = 1
Id∗ + iHM

,

illustrating once more the descending ladder principle evoked
in Fig. (1). Here, all inverses are ∗-inverses and U(OH)3 is
the 3 × 3 block of the global evolution operator giving the
probability amplitudes over a group of 3 hydroxyls. HM and
HH are the Hamiltonians of isolated methyl and of a group of
3 hydroxyls, respectively. Similarly, HMM is the interaction be-
tween neighbouring methyls and HMH = HHM the interaction
between a methyl and a group of 3 hydroxyls.

The perspicacious reader may notice that the shape taken
by the continued fraction for U(OH)3 is immediately related to
that of the graph G̃t (Fig. 5(b)), with each term of the fraction
being the weight of a fundamental cycle of the graph. This
close, transparent, association between the mathematical form
of the solution and the physical problem allows for physically
motivated and better controlled approximations. For example,
setting Σ3 to the identity in the above solution is immediately
understood to mean that one removes the possibly for the spin
to diffuse to the remote methyl groups Me5 and Me6 before
coming back to the initial group of 3 hydroxyls, an excellent
approximation (see Fig. 5(a), red points to be compared to
the red dashed line)!

Finally, we remark that our choice of partition is not math-
ematically necessary. For example, larger blocks may be em-
ployed equally well or one may form blocks with protons
scattered throughout the molecule. In principle, path-sum’s
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Fig. 5. Building the path-sum on the cationic tin oxo-cluster. (a) Probability of return of the spin excitation on a hydroxyl proton H1 as a function of time for ωr = 2π × 60
kHz over 3 rotor periods: (i) exact solution (solid black line, identical with Λ > 100), (ii) approximation with low interaction cut-off Λ = 40 (dashed red line) and (iii) further
approximation obtained upon setting Σ3 to the identity (red points). (b) Discrete structure G̃t of the quantum state space as seen by path-sum when Λ = 40 and corresponding
to the equations given in the text for U(OH)3 . Edges and self-loops correspond to inter-and intra-group interactions, respectively. The adjacency matrix of this graph is the
14 × 14 Hamiltonian with matrix valued entries evoked in the text. Thus, the shape of the graph is essentially that of the molecule at the methyl and group of 3 hydroxyls level.
It comprises two disconnected pathways for spin diffusion corresponding to the opposite sides of the cationic tin oxo-cluster which become connected for higher cut-off values
Λ > 42.

scale-invariance guarantees that any choice, if properly imple-
mented, leads to the same solution. In practice however there
is a trade-off between the size of the manipulated blocks and
the complexity of the path-sum continued fraction. We do not
know in general how to choose the best partition according to
this trade-off but it seems that physically motivated partitions
are a good starting point.

Conclusion

In this contribution, we have demonstrated an entirely novel
approach to the problem of finding compact and exact ex-
pressions for the evolution operators of quantum dynamical
systems driven by time-varying Hamiltonians. In fact, the
potential of application of path-sum exceeds Hermitian ma-
trices since it can be applied to any finite matrix∗ and even
extends to infinite ones under additional assumptions such as
translation invariance. As illustrated in Figure 1, path-sum cal-
culations always involve a descending ladder of progressively
simpler quantities yielding the exact solution after a finite
number of steps. This is in strong contrast with traditional
perturbation techniques (ME, FT), which invariably lead to
infinite series and an ascending ladder of increasingly intricate
quantities, such as Magnus series’ nested commutators. Most
importantly, the solutions provided by path-sums are always
analytically accessible, e.g. through Neumann series for the
∗-inverses. Mathematically, since these solutions can involve
special functions, no better form for them can in general be
expected. Path-sum may alternatively be implemented fully
numerically by exploiting the properties of the separable lin-
ear Volterra equations of the second kind, which the method
produces. This option has not been used in this contribution.

As a fundamental and illustrative example, we used path-
sum to solve the Bloch-Siegert problem—related to the ac-
tion of the counter-rotating component of the radio-frequency
field— at any order. We anticipate that further complex, and
currently unsolved problems, involving 3 × 3, 4 × 4, · · · , matri-
ces will be solved using path-sums as well. As a remarquable
example, the exact evolution of the macroscopic magnetisation

∗Technically, we need the matrix entries to be bounded functions of time over the time-interval of
interest in order to guarantee super-exponential convergence of the Neumann series for the ∗-
inverses (26)

M in a strong magnetic field B0 under the action of any B1(t)
radio-frequency field (a 3 × 3 problem) will be presented in a
separate contribution. Relaxation and decoherence processes
will be taken explicitly into account by extending path-sum
to the Liouvillian space.

We analytically studied the spin diffusion effected by the
homonuclear dipolar coupling Hamiltonian of NMR acting
on a large molecule, starting from a pure state initial density
matrix. In general, on many-body systems, we are facing two
kinds of "explosive" computational problems: (i) one, quantum
in nature, related to the exponential size of the quantum state
space; and (ii) one, graph theoretical in nature, related to the
time required to construct the path-sum continued fraction,
in particular if Gt is large and not sparse. Issue (ii) can be
managed with partitions and path-sum’s scale invariance and
will further be tackled in a near future with the implementa-
tion of a newly developed Lanczos path-sum method. Lanczos
path-sum relies on an exact transformation of the Hamiltonian
into a time-dependent tri-diagonal matrix. The first issue (i)
is fundamental to quantum mechanics and its management
inherently depends on the problem at hand. For the homonu-
clear dipolar coupling Hamiltonian, the problem is bypassed
upon choosing certain initial pure states. Moreover, the scale
invariance of path-sum appears to be of paramount impor-
tance here, as it allows to separately evolve chosen subsystems
only to then combine all such evolutions in a globally exact
way. In the case of translation-invariant spin-chains and more
general Bethe lattices driven by generic long-range Hamilto-
nians, we show in SI that this allows path-sum to provide
fully exact expression for the evolution operator, even in the
limit N → ∞, although exploiting these solutions remains a
formidable challenge. An entire new field of research is now
open for the NMR and wider physics communities.
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Supplementary Information

Two level systems: explicit expressions. We start by giving the fully
explicit form for the evolution operator of a general time-dependent
two-level system.

U(t′, t)↑↑ =
∫ t′

t

G↑(τ, t)dτ, U(t′, t)↓↓ =
∫ t′

t

G↓(τ, t)dτ,

U(t′, t)↓↑ = −i
∫ t′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2) − ih↓(τ0) e

−i
∫ τ0

τ2
h↓(τ3)dτ3

)
× h↓↑(τ2)G↑(τ1, t) dτ2 dτ1 dτ0.

U(t′, t)↑↓ = −i
∫ t′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2) − ih↑(τ0) e

−i
∫ τ0

τ2
h↑(τ3)dτ3

)
× h↑↓(τ2)G↓(τ1, t) dτ2 dτ1 dτ0.

The kernel of the linear Volterra integral equation [4] satisfied by
the Green’s functions G↑ is

K↑(t′, t) = −ih↑(t′) −
∫ t′

t

∫ t′

τ1

h↑↓(t′)× [10](
δ(τ2 − τ1) − ih↓(τ2) e

−i
∫ τ2

τ1
h↓(τ3)dτ3

)
h↓↑(τ1)dτ2dτ1

The kernel K↓ of the linear Volterra integral equation satisfied
by G↓ is obtained upon replacing up arrows by down arrows and
vice-versa in the equation above.

Path-sum kernels are separable. Path-sum formulates quantum evo-
lution operators as continued fractions, with inverses taken with
respect to the ∗-product. In this context, a ∗-inverse is the solution
of a linear Volterra equation of the second kind, whose kernel is
itself obtained from a path-sum continued fraction. Finding closed
forms for such inverses is difficult, in fact such a form do not exist
if the solution is a special function. Yet, ∗-inverses are always
given at all orders by an analytically calculable series, the Neumann
series

∑
n
f∗n = (1∗ − f)∗−1. Its convergence is guaranteed and

super-exponential, provided f is a bounded function of time over
the time interval of interest (26).

Ultimately, the path-sum construction terminates at some maxi-
mum depth where the kernel of the Volterra equation to be solved
is just a diagonal entry of the Hamiltonian −iH, say −ihjj(t). The
corresponding ∗-inverse reads(

1∗ + ihjj

)∗−1
(t′, t) = δ(t′ − t) − ihjj(t′)e−i

∫ t′

t
hjj (τ)dτ

,

= δ(t′ − t) − ihjj(t′)e−iHjj (t′) − ihjj(t′)eiHjj (t),

where Hjj(t) :=
∫
hjj(t)dt designates the primitive of hjj(t).

Observe that the ∗-inverse of −ihjj(t) is separable, being the sum
of products of functions of t′ and t. This is because hjj(t) itself
is separable: indeed the solution of a linear Volterra equation of
the second kind with separable kernel is necessarily separable (35).
As a consequence, it follows by induction that any depth in the
path-sum continued fraction all kernels are separable and so are all
entries of any quantum evolution operator U(t′, t).

Test model: path-sum solution. Let us start with determining the
diagonal entries of the evolution operator. According to the general
solution Eq. [3] and with the Hamiltonian of Eq. [5], U(t′, t)↑↑ and
U(t′, t)↓↓ are the integrals of G↑ and G↓ respectively, while these
satisfy the Volterra equations [4] with kernels

K↑(t′, t) =
ω0
2i

−
iβ2

ω − ω0/2
(
e−i(ω−ω0/2)(t′−t) − 1

)
,

K↓(t′, t) = −
ω0
2i

−
iβ2

ω + ω0/2
(
e−i(ω+ω0/2)(t′−t) − 1

)
,

both as per Eq. [10]. These Volterra equations are amenable to
standard techniques (48), yielding

U↑↑(t) = e− 1
2 iωt

(
cos(αt/2) +

i

α
(ω − ω0) sin(αt/2)

)
,

U↓↓(t) = e
1
2 it

(
∆+ ω0

2

) (
cos(αt/2) −

i

α

(
∆ −

ω0
2

)
sin(αt/2)

)
,

with α2 := 4β2 + (ω − ω0)2.
Alternatively, the generic form for the nth order of the Taylor

expansion in t for G↑ (and G↓) is easy to find by induction from its
Neumann series. This gives surprising but equivalent forms which
did not require any Volterra equation solving technique,

U↑↑(t) = 1 +
∞∑

n=0

(−it β2/∆)n+1

(n+ 1)!

n+1∑
k=0

(n+ 1
k

) (∆ω0
2β2 − 1

)k

×

2F1

(
−k,−k + n+ 1; −n− 1;

∆2

∆ω0
2 − β2

)
,

where ∆ := ω − ω0/2. The entries U↑↓ and U↓↑ then follow from
easy integrations as dictated by Eq. [3],

U↑↓(t) = −
2iβ
α
e

− 1
2 it

(
∆+ ω0

2

)
sin(αt/2),

U↓↑(t) = −
2iβ
α
e

1
2 it

(
∆+ ω0

2

)
sin(αt/2).

These results are identical to those obtained by the rotating frame
technique yielding Eq. [6].

To avoid any possible confusion that may arise from the above
example, we stress the fundamentally different natures of the
Neumann and Taylor series expansions of the solution. The former
is always provided by path-sum, is not perturbative, unconditionally
convergent and involves complicated functions of time even at
its first order; while the latter is purely an expansion in powers
of t and is thus limited to short times. It is provided here to il-
lustrate the various routes leading to the solution from the ∗-inverse.

Bloch-Siegert dynamics. The kernel K and function F for which the
transition amplitude A↑7→↓ satisfies A↑7→↓ = F +K ∗A↑7→↓ in the
Bloch-Siegert model are as follows

F (t′, t) = −2iβ e−iω0t cos(ωt),

K(t′, t) =
4β2

ω2 − ω2
0

cos(ωt′)
(
k(t)e−iω0(t′−t) − k(t′)

)
,

where k(t) = iω0 cos(ωt) + ω sin(ωt). In spite of the apparent
divergence in the resonant case ω → ω0, the kernel K is actually
well defined in this limit where it simplifies to

K(t′, t) = i
β2

ω0
e−iω0t′

cos(ω0t
′)

(
e2iω0t′

− e2iω0t + 2iω0(t′ − t)
)
.

The peculiar mathematical nature of the resonant limit ω → ω0 is
responsible for the apparence of the term 2iω0(t′ − t) proportional
to time in the kernel. In spite of this, the Neumann series for the
transition amplitude remains unconditionally convergent. Up to
order n = 0, 1, 2, this series reads

A
(0)
↑7→↓(t) = F (t, 0),

A
(1)
↑7→↓(t) = F (t, 0)

∫ t

0
(δ(τ) +K(τ, 0)dτ) ,

A
(2)
↑7→↓(t) = F (t, 0)

∫ t

0

(
δ(τ) +K(τ, 0)+

∫ τ

0
K(τ, τ ′)K(τ ′, 0)dτ ′

)
dτ.
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This yields involved but always analytically computable expressions
for P↑7→↓, e.g. in the resonant case ω = ω0,

P
(0)
↑7→↓(t) = 4β2 cos2(ω0t),

P
(1)
↑7→↓(t) =

2β2

ω2
0

cos2(ω0t)
(

2β4ω0t sin(2ω0t) − 2β4ω0t sin(4ω0t) − β4 cos(2ω0t) + β4

+ 4β2ω0t
3∆(t) sin(2ω0t) + 4β2ω2

0∆(t) − 2β2ω2
0∆(t) cos(2ω0t) + 4β2ω2

0

+ 2ω4
0∆(t)2

)
,

with ∆(t) := β2t2 − 2. We emphasise that it is only in the resonant
case that powers of t appear in the Neumann series due to the form
taken by the kernel K. The resulting divergence appearing in the
long time limit is easily overcome with higher orders, which are
always analytically calculable. The subsequent P (j)

↑7→↓ for j ≥ 2
are indeed readily available but too cumbersome to be reported here.

Further exact solutions and special functions. A particular model of
two-level system appearing in both light-matter interactions (49, 50)
and solid-state physics (51) is the Hamiltonian

HX(t) =
1
2

(f0 + f1 sinωt)σz +
ν

2
σx,

where f0 and f1 are real parameters controlling the amplitude of
the static and oscillating components of energy bias between the
two energy levels, ω is the oscillating frequency and ν the coupling
strength between the two levels. Xie et al. (30) have recently
shown that all entries of the corresponding evolution operator have
analytical expressions involving Heun (bi)confluent functions. Not
only does the evolution operator of Eq. [3] yields this exact result
through the Volterra equation [4] satisfied by these functions (52);
but the Volterra kernel is–to the best of our knowledge–the first
explicitly known integral kernel for Heun’s functions. Indeed, so
far, Heun kernels have only been known through a set of implicit
conditions.Neither Magnus series nor Floquet theory reach the
exact result, see instead (53) for a perturbative treatment.

Interaction terms in the high-field dipolar Hamiltonian. We consider
the time-dependent high-field dipolar Hamiltonian of Eq. [9], with
interaction terms under MAS

ωij(t) :=
µ0γ2~
4πr3

ij

×
1
2
ξij(t),

where rij is the distance between protons i and j and (1)

ξij(t) := 2
√

2 sin(ψij) cos(ψij) sin(φij + ωrt)

+ sin(ψij)2 cos(2φij + 2ωrt).

In this expression, ψij is the angle between ~ij and the z-axis and
φij is the angle between ~ij and the x-axis for a coordinate system
fixed to the sample. Finally, ωr is the angular velocity of the rotor.

Spin chains.

Generic Hamiltonian and arbitrary initial state. As a final example of
the use of path-sum and scale invariance in a many-body setting,
we consider a chain of N spins interacting via a generic long range
time-dependent Hamiltonian,

H(t) =
∑
i,j

{
Hi(t) +

1
2

Intij(t)
}
.

Here Hi(t) is a one-body Hamiltonian acting on spin i and Intij(t)
stands for the interactions between spins i and j. The initial density
matrix ρ(0) shall also remain unconstrained. In this setting the
exponential explosion of the quantum state space is unavoidable, yet
path-sum can find the true global evolution operator owing to the
self-similar nature of a 1D chain. The exploitation of the resulting
solution remains a challenge.

In order to give to the quantum state space a non-trivial topology,
we suppose that spin-spin interactions are inversely proportional
to some power of the distance rij from i to j, i.e. Intij(t) ∝ 1/rα

ij ,
α > 0. Let I be the maximum spin-spin interaction along the chain,
e.g. the interaction between neighbours, and suppose that we wish
to retain all direct spin-spin interactions larger than some cut-off
value I/(rΛ)α with Λ an integer parameter and r the distance
between neighbouring spins. This guarantees that all coherences
involving up to Λ spins are exactly retained while those involving
more than Λ spins are approximated to within ∼ 1/Λ of their true
amplitude. Setting all interactions weaker than the cut-off to 0
naturally partitions the systems into blocks of Λ spins, which only
interact with the neighbouring blocks. This procedure relates the
structure of the quantum state space with that of the 1D lattice.

To set up the path-sum process, define

HBk
:=

∑
i,j∈Bk

{
Hi(t) +

1
2

Intij

}
,

IntBk,Bk′ :=
∑

i∈Bk,j∈Bk′

1
2

Intij(t).

HBk
is the Hamiltonian of the isolated block Bk while IntBk,Bk′

denotes the interaction terms between neighbouring blocks Bk and
Bk′ . We can now build the global evolution operator, initialising
the path-sum continued fraction on the left-most block of the finite
chain. We have U(t) = 1 ∗ Σ1 with

Σ1 :=
(

Id∗ + iHB1 ⊗ Id\B1 [11]

+ (IntB1,B2 ⊗ Id\B1,B2 ) ∗ (IdB1 ⊗ Σ2) ∗ (IntB2,B1 ⊗ Id\B1,B2 )
)∗−1
,

where Id\B1 and Id\B1,B2 designate the identity on all blocks except
block B1 and blocks B1 and B2, respectively, while IdB1 is the
identity on block B1. Here, Σ1 is the depth-1 result of the path-
sum continued fraction while Σ2 satisfies the same equation but in
terms of Σ3. Since the system has N/Λ blocks, the above recursion
stops at depth N/Λ, at which point ΣN/Λ ≡ U̇B is the derivative
of the small 2Λ × 2Λ evolution operator of a single isolated block.
We emphasise the very peculiar nature of the construction: each
time one progresses in the continued fraction, the dimension of
the solution is multiplied by 2Λ, reaching 2N at depth N/Λ. This
formulation of the evolution operator looks like that for the partition
function of a 1D chain in classical physics (54), with the notable
exception that path-sum intrinsically builds up a 2N dimensional
object reflecting the quantum nature of the problem.

Because of the recursive form of the solution, infinite systems
which are truly invariant under block translation are even simpler
to solve since all Σi ≡ Σ are identical. Using this in the path-sum
solution yields a now non-linear matrix-valued Volterra equation
for Σ

Σ =
(

Id∗ + iHB ⊗ Id\B [12]

+ (IntB,B′ ⊗ Id\B,B′ ) ∗ (IdB ⊗ Σ) ∗ (IntB′,B ⊗ Id\B,B′ )
)∗−1

,

and 1 ∗ Σ is the evolution operator of a semi-infinite spin chain.
Remark that the above equation can only have an infinite dimen-
sional solution as shown by the apparent dimensional mismatch
between the left and right hand-sides. This is because we made no
approximations beyond the interaction cut-off and the solution is of
the same dimension as the quantum state space, as it should. The
infinite spin chain is finally obtained upon joining two semi-infinite
ones,

U = 1 ∗
(

Id∗ + iHB

+ IntB,B′ ∗ Σ ∗ IntB′,B + IntB,B′′ ∗ Σ ∗ IntB′′,B

)∗−1
,

with Σ defined through Eq. [12]. Note that we omitted the tensor
products with the identities for the sake of clarity. Exploiting such
solutions is a non-trivial task but existing techniques for state-space

Giscard et al. Journal | May 9, 2019 | vol. XXX | no. XX | 11



DRAFT

1

2

3 4
0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

t(ms)

Fig. 6. Small spin chain. Probability of finding a spin up along z on a chain of 10
spins driven by the static high-field dipolar Hamiltonian (ωr = 0) as calculated by
path-sum. Initially, the system is in a pure state with a single up-spin located on the
left-most spin, denoted 1. Inter-spin distance of 3Å in a linear configuration.

reduction could be used. In particular, path-sum continued fractions
such as Eq. [11] converge rapidly with increasing depth, see Fig (5)
for an illustration of this phenomenon. Hence, stopping the recursion
at depth d might yield excellent approximations. Physically, this is
equivalent to truncating the system d blocks away from the central
one under study.

The self-similar nature of the chain which allows for an exact
formulation of the solution using path-sum generalises to systems
that are Bethe lattices by blocks. These lattices, which vaguely re-
semble dendrimer molecules, are well known to approximate infinite
regular spin lattices Zd in classical statistical physics (54, 55). The

ideas expounded here encourage us to develop a systematic way of
mapping quantum Hamiltonians onto linear chains, irrespectively
of the real geometry of the underlying physical system. This is
achieved by a path-sum based Lanczos-like method for time- and
path-ordered exponentials, which requires some novel mathematical
notions and will thus be presented in a separate work. Of course this
approach does not in itself solve the issues related to the exponential
size of the quantum state space, which must be tackled via separate
approximations.

High-field dipolar Hamiltonian. The equations given above for the
generic spin chain apply to the high-field dipolar Hamiltonian acting
on a chain of protons. If we further assume the initial state to be
a pure state with a single up- or down-spins, we can focus on the
corresponding sector of the quantum state space which is of linear
dimension. This does not change the generic solution determined
above: rather it allows us to trim it from an exponentially large
evolution operator to only the relevant piece of it, of size N ×N .

We studied analytically a linear chain of 10 spins with no inter-
action cut-off (i.e. retaining all interactions) in order to compare
the evolution of the pure initial state with that of the mixed state
used in the literature ρ(0) = I1z/Tr(I2

1z). The results, shown in
Fig. (6), illustrate the close proximity of the evolutions of the pure
and mixed initial states (compare with Fig. 2 of (23)). This en-
courages further research on approximating mixed initial states
from superpositions of pure states with small number of up- or
down-spins when studying systems driven by the high-field dipolar
Hamiltonian.
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