
HAL Id: hal-02125140
https://hal.science/hal-02125140v3

Preprint submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Pareto Front From Membership Queries
Alexey Bakhirkin, Nicolas Basset, Oded Maler, José Ignacio Requeno

To cite this version:
Alexey Bakhirkin, Nicolas Basset, Oded Maler, José Ignacio Requeno. Learning Pareto Front From
Membership Queries. 2019. �hal-02125140v3�

https://hal.science/hal-02125140v3
https://hal.archives-ouvertes.fr

Learning Pareto Fronts From Membership
Queries

Alexey Bakhirkin, Nicolas Basset, Oded Maler?, José-Ignacio Requeno Jarabo
{alexey.bakhirkin, bassetni, requenoj}@univ-grenoble-alpes.fr

VERIMAG, CNRS and Université Grenoble-Alpes, FRANCE

Abstract. We present a new method for inferring the Pareto front in
multi-criteria optimization problems. The approach is grounded on an
algorithm for learning the boundary between valid (X) and invalid (X)
configurations of a multi-dimensional space (X). The algorithm selects
sampling points for which it submits membership queries x ∈ X to an or-
acle. Based on the answers and relying on monotonicity, it constructs an
approximation of the boundary. The algorithm generalizes binary search
on the continuum from one-dimensional (and linearly-ordered) domains
to multi-dimensional (and partially-ordered) ones. The procedure ex-
plained in this paper has been applied for the parameter synthesis of
extended Signal Temporal Logic (STLe) expressions where the influence
of parameters is monotone. Our method has been implemented in a free
and publicly available Python library.

1 Introduction

Let X be a bounded and partially ordered set that we consider from now on to
be [0, 1]n. A subset X of X is upward closed in X if

∀x, x′ ∈ X (x ∈ X ∧ x′ ≥ x)→ x′ ∈ X.

Naturally, the complement of X, X = X \ X is downward closed, and we use
the term monotone bi-partition (or simply partition) for the pair M = (X,X).
We do not have an explicit representation of M and we want to approximate
it based on queries to a membership oracle which can answer for every x ∈ X
whether x ∈ X. Based on this information we construct an approximation of M
by a pair of sets, (Y , Y) being, respectively, a downward-closed subset of X and
an upward-closed subset of X, see Figure 1. This approximation, conservative
in both directions, says nothing about points residing in the gap between Y and
Y . This gap can be viewed as an over-approximation of bd(M), the boundary
between the two sets.

Before presenting the algorithmic solution that we offer to the problem, let
us discuss some motivations. To start with, the problem is interesting for its

? Oded Maler passed away at the beginning of September 2018. This work was initiated
by him [14] continued with and finished by the rest of us.

Y

Y

X

X

Fig. 1: A monotone partition and its approximation.

own sake as a neat multi-dimensional generalization of the problem of locating
a boundary point that splits an interval into two sub-intervals. This problem is
solved typically using binary (dichotomic) search, and indeed, the essence of our
approach is in embedding binary search in higher dimension.

One major motivation comes from the domain of multi-criteria optimization
problems where solutions are evaluated according to several criteria. The cost
of a solution can be viewed as a point in a multi-dimensional cost space X. The
optimal cost of such optimization problems is rarely a single point but rather a
set of incomparable points, also known as the Pareto front of the problem. It
consists of solutions that cannot be improved in one dimension without being
worsened in another. For a minimization problem, X corresponds to infeasible
costs and X represents the feasible costs. Here we recall that the set of feasible
cost is accessible only via a membership oracle and that we only assume upward-
closure of the set of feasible cost and not its convexity.

Another motivation comes from some classes of parametric identification
problems. Consider a parameterized family of predicates or constraints {ϕp}
where p is a vector of parameters ranging over some parameter space. Given an
element u from the domain of the predicates, we would like to know the range
of parameters p such that ϕp(u) holds. We say that a parameter p has a fixed
(positive or negative) polarity if increasing its value will have a monotone effect
on the set of elements that satisfy it. For example if a parameter p appears in
a parameterized predicate u ≤ p, then for any p′ > p and any u, ϕp(u) implies
ϕp′(u). The set of minimal elements u indicates the set of tightest parameters
that lead to satisfaction of ϕp(u), which is a valuable information about u. In
[1] we already explored the idea for the domain of real-valued signals u(t) and
temporal formulas such as ∃t < p1 u(t) < p2.

We now sum up the contributions of this article.

– We propose a new method for learning the monotone bi-partition of par-
tially ordered domain based on membership-queries. This can be equiva-
lently formulated as learning the Pareto front associated to a multi-criteria
optimisation problem where the set of feasible cost is only accessible from a
membership oracle.

2

– Our method is agnostic of the optimization problem considered; in particular
it makes no assumption on the convexity of the Pareto front.

– Our algorithm progressively discovers Pareto optimal points making the
boundary approximation (represented as a disjoint union of boxes) smaller
and smaller. In a nutshell we make use of classical binary search along the
diagonal of the boxes that partitionate the unknown regions.

– We give a lower bound on the volume of the unknown part removed from
the approximation after each discovery of a new Pareto optimal point, guar-
anteeing the convergence of our method.

We proposed in a work-in-progress report [14] a preliminary version of the
algorithm without the materials of Section 4–6. An implementation was made
in [16] and it was successfully used for learning valuations of parametric Signal
Temporal Logic (STL) [15] specifications with standard operators over time-
series data [18,17]. In this paper, we complete [14] with new contributions for
a) spaces with dimension higher than 2, and b) we prove the convergence of our
method. A new software tool [5] based on the current improvements of this paper
outperforms the capabilities of the previous implementation in [16]. Additionally,
we apply our method for the parameter identification of specification written in
the extended version of STL proposed in [3].

1.1 Related Work

Multi-criteria optimization techniques are commonly categorized in two families
[8,10]. The first one is associated to mathematical programming methods, which
scale a multi-dimensional problem into a one-dimensional utility function by
taking a weighted sum of the various costs. An optimal solution for the one-
dimensional problem is also a Pareto solution for the original problem. Every
invocation to the resolution method discovers a new Pareto optimal point, but
the result depends on the choice of the weighted coefficients. One of the most
popular algorithm in this family is the Chord Algorithm (see e.g. [7] and reference
therein). Methods based on weigthed sums work under the assumption that the
Pareto front is convex. Here we make no assumption on the form of the Pareto
front and we consider the very general framework where the set to infer is within
a black box accessed only by membership queries. In particular, there is no way
of solving directly a one-dimensional problem created from weighted sums of
costs.

The second family of methods is based on evolutionary algorithms. However,
these methods cannot guarantee the Pareto optimality of the set of solutions
generated: it is only known that none of the generated solutions dominates the
others. Consequently, a major issue in these heuristic techniques consists of find-
ing meaningful measures of quality for the sets of solutions they provide [19].

Our dichotomic searches are made on intervals that cross the Pareto front.
It is thus different from searches along interval between points already in the
Pareto front (see e.g. [12]). In [9], membership queries are used over interval of
the space aligned to the axis to find the Pareto front for a discrete version of the

3

problem. Here we consider continuous cost space and we treat all the dimensions
in a symetric way and simultaneously by searching along the diagonal. In [11],
a divide and conquer approach is used for a 2-dimensional problems. Similarly
to our approach, points are successively discovered in the Pareto front and the
unknown part is then treated recursively. However, the discovery of points was
done by minimising a weigted sum via linear programming, something which is
not possible when only a membership oracle is provided.

In [13] we developed a procedure for computing such an approximation (Y , Y)
of a monotone bi-partion (X,X) with a guarantee on the gap between Y and Y .
At the end of the algorithm each point of the border of one part is at distance
at most epsilon to the other part. The present paper presents an algorithm
that follows the same phylosophy in the sense that it also provides a way to
approximate Pareto fronts with quality metrics. Our algorithm has the additive
feature of finding a cloud of exact Pareto optimal points.

1.2 Paper Structure

Sections 2–3 introduces the basic notations and our approach for learning the
Pareto front in multi-dimensional spaces. In Section 4 we spot phenomena that
appears for dimension greater than 2, we enhance our method accordingly to
mitigate the curse of dimensionality. Section 5 analyzes the complexity of our
method. Finally, Section 6 continues in the same direction than [1] and applies
our method to the parameter synthesis of Signal Temporal Logic (STL) [15]
specifications with extended operators [3].

Several omitted results and proofs are given in a technical report [4] as well
as in the appendix of the present paper.

2 Preliminaries

2.1 Binary search in one dimension

Our major tool is the classical binary search over one-dimensional and totally-
ordered domains, where a partition of [0, 1] is of the form M = ([0, z), [z, 1]) for
some 0 < z < 1. The outcome of the search procedure is a pair of numbers y and y
such that y < z < y, which implies a partition approximationM ′ = ([0, y), [y, 1]).
The quality of M ′ is measured by the size of the gap y − y, which can be made
as small as needed by running more steps. Note that in one dimension, y − y
is both the volume of [y, y] and its diameter. We are going to apply binary
search to straight lines of arbitrary position and arbitrary positive orientation
inside multi-dimensional X, hence we formulate it in terms that will facilitate
its application in this context.

Definition 1 (Line Segments in High-Dimension). The line segment con-
necting two points x < x ∈ X = [0, 1]n is their convex hull

〈x, x〉 = {(1− λ)x+ λx : λ ∈ [0, 1]}.

The segment inherits a total order from [0, 1]: x ≤ x′ whenever λ ≤ λ′.

4

The input to the binary search procedure, written in Algorithm 1, is a line
segment ` and an oracle for a monotone partition M = (`, `) = (〈x, z〉, 〈z, x〉),
x < z < x. The output is a sub-segment 〈y, y〉 containing the boundary point z.
The procedure is parameterized by an error bound ε ≥ 0, with ε = 0 represent-
ing an ideal variant of the algorithm that runs indefinitely and finds the exact
boundary point. Although realizable only in the limit, it is sometimes convenient
to speak in terms of this variant. Fig. 2 illustrates several steps of the algorithm.

Algorithm 1 One dimensional binary search: search(〈x, x〉, ε)
1: Input: A line segment ` = 〈x, x〉, a monotone partition M = (`, `) accessible via

an oracle member() for membership in ` and an error bound ε ≥ 0.
2: Output: A line segment 〈y, y〉 containing bd(M) such that y − y ≤ ε.
3: 〈y, y〉 = 〈x, x〉
4: while y − y ≥ ε do
5: y = (y + y)/2
6: if member(y) then
7: 〈y, y〉 = 〈y, y〉 . left sub-interval
8: else
9: 〈y, y〉 = 〈y, y〉 . right sub-interval

10: end if
11: end while
12: return 〈y, y〉

zx x

y y

y

Fig. 2: Binary search and the successive reduction of the uncertainty interval.

5

3 Learning the Multi-dimensional Pareto Front

The following definitions are commonly used in multi-criteria optimization and
in partially-ordered sets in general.

Definition 2 (Domination and Incomparability). Let x = (x1, . . . , xn) and
x′ = (x′1, . . . , x

′
n) be two points. Then

1. x ≤ x′ if xi ≤ x′i for every i;
2. x < x′ if x ≤ x′ and xi < x′i for some i. In this case we say that x dominates

x′;
3. x||x′ if x 6≤ x′ and x′ 6≤ x, which means that xi < x′i and x′j < xj for some

i and j. In this case we say that x and x′ are incomparable.

Any two points x < x define a box bx, xe = {x : x ≤ x ≤ x} for which they
are, respectively, the minimal and maximal corners, as well as the endpoints of
the diagonal 〈x, x〉. Equivalently the box bx, xe is defined as the product of the
intervals

∏n
i=1[xi, xi]. Its volume is Vol(bx, xe) =

∏n
i=1(xi−xi). Two boxes can

intersect (we say also overlap), the intersection being itself a box. We do not
take care of the overlap of volume 0 and it will be often the case (even in the
ideal version of our algorithms) that the points in the frontier of a box can be
found in the frontier of several other boxes we consider.

The procedure for learning a monotone partition is written down in Algo-
rithm 2 and works as follows. It maintains at any moment the current approxi-
mation (Y , Y) of the partition as well as a list L of boxes whose union constitutes
an over-approximation of the boundary, that is bd(M) ⊆ ∪bx,xe∈Lbx, xe. For effi-
ciency reasons, L is maintained in a decreasing order of volume. We successively
take the largest box bx, xe from L, and find in it parts that we can move to Y
and Y . As the algorithm proceeds Y and Y augments and get closer to X and
X; and the total volume of the boundary approximation decreases until some
stopping criterion is met (e.g. when going below a threshold δ).

To treat the box bx, xe we rely on the observation that any line ` of a positive
slope inside a box bx, xe that admits a monotone partition M , intersects bd(M)
at most once. In particular, the diagonal ` = 〈x, x〉 of the box is guaranteed
to intersect bd(M) and such intersection is over-approximated by the segment
〈y, y〉 returned by the one-dimensional binary search algorithm applied on the
diagonal 〈x, x〉. In this case bx, ye is added to Y since its points dominate y and

the box by, xe is added to Y since its points are dominated by y. The remaining
part of bx, xe stays in the border approximation and is split into a union of boxes
I(x, x, y, y) described below (Def. 5). Fig. 3 illustrates the interaction between
the result of the one-dimensional search process on the diagonal of a box bx, xe
and the approximation of the higher-dimensional partition.

Definition 3 (Sub-intervals). The sub-interval of the interval [x, x] induced
by a ∈ {0, 1} and the interval [y, y] ⊆ [x, x] is

Ia(x, x, y, y) =

{
[x, y] if a = 0

[y, x] if a = 1

6

Algorithm 2 Approximating a monotone partition (and its boundary)

1: Input: A box X = b0,1e, a partition M = (X,X) accessed by a membership
oracle for X and an error bound δ.

2: Output: An approximation M ′ = (Y , Y) of M and an approximation L of the
boundary bd(M) such that |L| ≤ δ. All sets are represented by unions of boxes.

3: L = {X}; (Y , Y) = (∅, ∅) . initialization
4: repeat
5: pop first bx, xe ∈ L . take the largest box from the boundary approximation
6: 〈y, y〉 = search(〈x, x〉, ε) . run binary search on the diagonal

7: Y = Y ∪ {bx, ye} . add dominated sub-box
8: Y = Y ∪ {bx, ye} . add dominating sub-box
9: L = L ∪ I(x, x, y, y) . insert remainder of bx, xe to L

10: Vol(L) = Vol(X)− Vol(Y)− Vol(Y)
11: until Vol(L) ≤ δ

B01(x, x, y, y)

(b)

(a)

y

by, xe

bx, ye

B10(x, x, y, y)

B01(x, x, y, y)

y

y by, xe

bx, ye

B10(x, x, y, y)

Fig. 3: (a) The effect of finding the exact intersection of the diagonal with the
boundary; (b) The effect of finding an interval approximation of that intersection.

7

In the previous definition a is a boolean variable that evaluates to 1 (resp. 0)
when the upper (resp. lower) part of the interval is selected. The previous
definition extends to boxes (that is product of intervals) when a binary word
α = α1 · · ·αn ∈ {0, 1}n is provided:

Definition 4 (Sub-boxes). Let α ∈ {0, 1}n and 4 n-dimensional points x ≤
y ≤ y ≤ x. The sub-boxes of bx, xe induced by α and by, ye are

Bα(x, x, y, y) =

n∏
i=1

Iαi
(xi, xi, yi, yi)

We can now define I(x, x, y, y).

Definition 5 (Incomparable sub-boxes). The set I(x, x, y, y) of sub-boxes
of bx, xe incomparable to by, ye is

I(x, x, y, y) = {Bα(x, x, y, y) : α ∈ {0, 1}n \ {0n, 1n}}

Observe that the union of boxes in I(x, x, y, y) is equal to bx, xe \ (bx, ye ∪
by, xe), that is the part that remains in the boundary approximation when we
discover by, ye around a point of the boundary in bx, xe. Note that these boxes
overlap but the volume of the overlap is proportional to ε (because it is made
of boxes each one having a side with length smaller than ε). Hence this overlap
can be made arbitrarily small by decreasing the parameter ε. This is efficient as
the number of queries in a one-dimensional binary search is logarithmic in 1/ε.

Last but not least the stopping criterion is based on the volume Vol(L) of
the boundary approximation. Since L is a collection of boxes that can overlap, it
is easier to compute its volume as the total volume of the box X = [0, 1]n minus
the volume of both parts of the monotone partition approximation (Y , Y). Some
steps of the algorithm are illustrated in Fig. 4.

Fig. 4: Successive approximation of the partition boundary by running binary
search on diagonals of incomparable boxes.

8

4 Two Enhancements in Dimensions Higher than 2

The goal of introducing changes to the learning procedure in dimension higher
than 2 is to attack the curse of dimensionality. In order to mitigate this problem,
we propose two enhancements. First, we minimize the number of incomparable
sub-boxes that are generated when a new Pareto point is discovered (i.e., updated
definition of I ′(x, x, y, y) in Sect. 4.1). Second, we maximize the volume that is
removed from the unexplored region by propagating the dominance of every
Pareto point to the remaining boxes in the boundary approximation (Sect. 4.2).
We sum up the new version of the algorithm in Sect. 4.3.

4.1 Enhanced decomposing step

In this section we come back to the treatment of the remainder of the box bx, xe
when the two boxes above y and below y are removed. The remainder part was
covered by the union of boxes of I(x, x, y, y). In two dimensions, this set only
contains two boxes and every point of the box B01(x, x, y, y) is incomparable to
all the points of B10(x, x, y, y) except for the small overlapping part.

In higher dimension some boxes can be grouped together into bigger boxes. In
particular when two sub-boxes differ along only one dimension, they are adjacent :
their union is again a box. We introduce an extra symbol ? to encode that
we do not care of this dimension. Defs 3–4 must be consequently extended for
supporting the symbol ? so that I?(x, x, y, y) = [x, x] in one dimension or, in
other words, I?(x, x, y, y) = I0(x, x, y, y)∪I1(x, x, y, y). Similarly, Bβ(x, x, y, y) =∏n
i=1 Iβi

(xi, xi, yi, yi) with β ∈ {0, 1, ?}n in higher dimension. Examples of boxes
created by these expressions are given in Fig. 5.

Now we define a better decomposition of bx, xe \ (bx, ye∪by, xe) using words
in the alphabet {0, 1, ?} for encoding boxes formed as unions of adjacent boxes
of I(x, x, y, y). A partition of the index set A = {α | α ∈ {0, 1}n \ {0n, 1n}} is
a set A of non-empty subsets such that A =

⋃
A and for every two different

parts Ai, Aj ∈ A, Ai ∩Aj = ∅. A partition A of the index set A is called feasible
if for each part Ai ∈ A, the geometrical union of boxes of Ai is itself a box.
Such a box can be described by a word β ∈ {0, 1, ?}n, that is Bβ(x, x, y, y) =
∪α∈Ai

Bα(x, x, y, y). It is convenient to overload the notation and write β for
summarizing the part Ai. We note An for a partition of dimension n. For instance
A3 = {10?, ?10, 0 ? 1} is a feasible partition of dimension 3 that encodes the
boxes represented in Fig. 5. In the following proposition we use the notation
?An = {?β : β ∈ An}.

Proposition 1. Let n ≥ 3. There exists a feasible partition An of {0, 1}n \
{0n, 1n} with 2n− 3 parts defined recursively as follows:

A3 = {10?, ?10, 0 ? 1} and for n ≥ 3,An+1 = ?An ∪ {10n} ∪ {01n}.

As an illustration we give An for the dimension 4 and 5:

A4 = ?A3 ∪ {1000} ∪ {0111} = {?10?, ? ? 10, ?0 ? 1, 1000, 0111}.

9

(a) (b)

Fig. 5: A way of decomposing the remainder part into 2n− 3 = 3 boxes instead
of 2n − 2 = 6 in dimension n = 3. The red, yellow and green box correspond to
B10?(x, x, y, y), B?10(x, x, y, y) and B0?1(x, x, y, y) respectively.

A5 = {? ? 10?, ? ? ?10, ? ? 0 ? 1, ?1000, ?0111, 10000, 01111}.

When updating the boundary approximation in dimension n > 2, we add a
set of 2n−3 boxes instead of adding the set I(x, x, y, y) containing 2n−2 boxes:

I ′(x, x, y, y) =
⋃
β∈An

{Bβ(x, x, y, y)}. (1)

Example 1. Consider again Fig. 5. We run the ideal version of our algorithm and
after the first call to the binary search over the diagonal discover that the point
y = (0.5, 0.5, 0.5) is in the boundary. We remove the lower part b0, ye and the
upper part by,1e, we then decompose the remaining part into the three boxes
shown in Fig. 5a. The three boxes having the same volume, we arbitrarily treat
the red box first in the next example (Ex. 2 below).

4.2 Propagating dominance to boxes of the boundary approximation

In dimension higher than 2, it can be the case that when an approximated
point by, ye is found within a box bx, xe, the downward-closure of y intersects
other boxes of the boundary approximation (see Ex. 2). These parts must also
be removed from the boundary approximation to keep Y downward-closed. A
symmetric remark holds for the upward-closure of y.

Example 2 (Example 1 continued). When calling the binary search to the red
box, we discover that the point y′ = (0.9, 0.2, 0.9) (Fig.5b) is in the boundary.
We remove [0.5, 0.9]× [0, 0.2]× [0, 0.9] and [0.9, 1]× [0.2, 0.5]× [0.9, 1] from the
red box and partition the remainder of the red box. Though, there is a part

10

outside the red box that also should be removed, that is, the intersection of the
green box with the downward-closure of y′: [0, 0.5]× [0, 0.2]× [0.5, 0.9].

As we saw in the previous example, we need to intersect the downward-
closure of point y′ with other boxes. For this reason, the following proposition
will be useful.

Proposition 2. The downward-closure of a point y intersects a box bz, ze iff1

z > min(y, z) ≥ z. When this condition is met then

b0, ye ∩ bz, ze = bz,min(y, z)e = Bβ(z, z, y, y)

with βi = 0 if zi ≤ yi < zi and βi = ? otherwise.

When discovering an approximated point by, ye we check for every box bz, ze
of the boundary approximation if it intersects b0, ye. If this is the case we add
b0, ye∩ bz, ze to Y and replace in the boundary approximation bz, ze by a set of
boxes Idwc(z, z, y) whose union equals the difference bz, ze \ b0, ye.

The set Idwc(z, z, y) includes m small boxes, being m the number of co-
ordinates for which y

i
< zi. These boxes have an empty intersection with

Bβ(z, z, y, y) with β defined in the proposition above. To do so, every box in
Idwc(z, z, y) selects the complementary interval (i.e., βi = 1) for one coordi-
nate. The labeling of the boxes in Idwc(z, z, y) needs the definition of a function
γ(w, z, z, y) that creates words β′ ∈ {0, 1, ?}n from words w ∈ {0, 1, ?}m. Func-
tion γ(w, z, z, y) selects [γ(w, z, z, y)]i = wj if y

i
< zi and i is the jth coordinate

that satisfies this condition, and [γ(w, z, z, y)]i = ? if zi ≤ y
i
. Words w must

lead disjoint boxes, to do so we take them in the set {0j−11 ?m−j |1 ≤ j ≤ m}.

Definition 6. Given y such that b0, ye ∩ bz, ze 6= ∅ we define Idwc(z, z, y) by

Idwc(z, z, y) =

m⋃
j=1

{Bγ(0j−11?m−j ,z,z,y)(z, z, y, y)}

This gives m boxes where a less elaborate decomposition gives 2m boxes.

Example 3. Consider the point y = (0.2, 0.6, 0.2, 0.2) and the box bz, ze defined
by z = (0.0, 0.0, 0.0, 0.0) and z = (0.5, 0.5, 0.5, 0.5). The second coordinate is the
only one for which zi ≤ yi and hence dimension n = 4 with m = 3. Then

b0, ye ∩ bz, ze = B0?00(z, z, y, y) = [0.0, 0.2]× [0.0, 0.5]× [0.0, 0.2]× [0.0, 0.2]

and Idwc(z, z, y) = ∪α∈{1???,0?1?,0?01}{Bα(z, z, y, y)} with

B1???(z, z, y, y) = [0.2, 0.5]× [0.0, 0.5]× [0.0, 0.5]× [0.0, 0.5],

B0?1?(z, z, y, y) = [0.0, 0.2]× [0.0, 0.5]× [0.2, 0.5]× [0.0, 0.5],

B0?01(z, z, y, y) = [0.0, 0.2]× [0.0, 0.5]× [0.0, 0.2]× [0.2, 0.5].

The same kinds of reasoning can be done for the upward-closure of y and
Iupc(z, z, y) can be defined in a similar manner of Idwc(z, z, y).

1 The minimum is defined componentwise [min(y, z)]i = min(y
i
, zi) for every i.

11

Algorithm 3 Propagation of dominance.

1: Input: An approximation M ′ = (Y , Y) of M , an approximation L of the boundary
and a new discovered interval 〈y, y〉.

2: Output: Updated M ′ = (Y , Y) and L.

3: for bz, ze ∈ L do
4: if bz, ze ∩ by,1e 6= ∅ then . if intersects the upward-closure of y
5: add bz, ze ∩ by,1e to Y ; . add dominated sub-box
6: replace bz, ze by Iupc(z, z, y) in L; . update the boundary
7: end if
8: if bz, ze ∩ b0, ye 6= ∅ then . if intersects the downward-closure of y
9: add bz, ze ∩ b0, ye to Y ; . add dominating sub-box

10: replace bz, ze by Idwc(z, z, y) in L; . update the boundary
11: end if
12: end for

4.3 Combining ideas in an updated algorithm

Algorithm 2 must be updated in order to consider all the enhacements explained
in this section. In particular, the new version of the code should:

– Replace I(x, x, y, y) by I ′(x, x, y, y)) in line 9, and

– Add M ′, L = propagation(M ′, L, 〈y, y〉) before line 9 (i.e., call to Algo-
rithm 3).

First, the introduction of I ′(x, x, y, y)) mitigates the block explosion in the
boundary caused by spaces with high dimensions: it concatenates adjacent in-
comparable boxes and, therefore, reduces the growing pace of the boundary per
iteration. Second, Algorithm 3 shows how to propagate the dominance of a pair
〈y, y〉 to the rest of boxes in the boundary. The propagation of the dominance
avoids unnecessary calls to the oracle, which could potentially be the slower part
of the program. Nevertheless, this feature may introduce fragmentation of the
boundary boxes.

Finally, approximated points by, ye are usually separated by an error ε =
‖y − y‖ > 0, which causes the overlap of some incomparable boxes bz, ze in the
boundary (recall Fig. 3). The overlapping regions must be taken into account
when calling to Algorithm 3 in order to prevent the insertion of the same over-
lapping box by, ye several times in either Y or Y . This characteristic did not
happen in the initial version of Algorithm 2 and need not to be explicitly con-
sidered. For the sake of readability and concision, Algorithm 3 omits the code
that checks and prevents the insertion of redundant portions of boxes in Y (Y)
caused by overlapping. In any case, the accumulated deviation resulting from
this fact with respect to the total volume is negligible as long as ε is very small
(i.e., ε = 0 in an ideal case).

12

5 Computational Cost and Convergence

The following proposition gives theoretical upper-bounds on space and time
complexity of our algorithm to discover m points in the Pareto front and to
decrease the volume of the boundary approximation below δ. Here we consider
two variants of the algorithm depending on whether we enable the enhanced
spliting step or not. We denote by n the dimension of the problem and by
κn ∈ {2n− 4, 2n − 3} the number of boxes created during the partitioning step
depending on the case considered. The propagation of dominance (Section 4.2)
makes a precise study of the complexity difficult and is not considered here. We
let V0 denote the volume of the initial box and Vm the volume of the boundary
approximation after discovering m points.

Proposition 3. For each point discovered on the Pareto front (we call it a step),
our algorithm needs O(log(1/ε)) membership queries. After m steps of the algo-
rithm, the memory consumption is O(mκn). More precisely, there are m boxes
in Y , m boxes in Y , mκn + 1 boxes in the boundary approximation L, and
Vm ≤ m−1/(κn2

n−1). The volume of the boundary approximation decreases below
δ within (V0/δ)

κn2
n−1

steps.

A full proof of this proposition is given in the appendix. Here we give few words
on how to bound the volume. It relies on the fact that when discovering a point
in a box a proportion of at least 1/2n−1 of the box is removed, the worst case
being when the point is on the middle of the diagonal. At the ith step we remove
a proportion of at most 1/2n−1 of the box with largest volume, which is greater
than the average volume Vi/(iκn + 1) ≤ Vi/((i + 1)κn) (where iκn + 1 is the
number of box in the boundary). The sequence of volume (Vi)i≥0 thus satisfes
the recurrence formula Vi ≤ Vi−1(1 − 1/(2n−1iκn)) which gives after m steps:

Vm ≤ V0
∏m
i=1

(
1− 1

κn2n−1
1
i

)
. The rest of the proof is obtained using standard

mathematical inequalities involving the logarithmic and exponential functions.
We do not have a matching lower-bound for the complexity of our algorithm

nor for the problem under study. We think such a doubly-exponential complexity
is unavoidable for pathological cases.

The complexity of our procedure is illustrated by the following example. The
surface of a simplex (i.e., points (x1, . . . , xn) such that

∑n
i=1 xi = 1) splits the

geometrical space into two parts. Fig. 6a shows the border that is discovered by
our algorithm after running 10 steps in 2D. The green part corresponds to the
upper part (

∑n
i=1 xi ≥ 1), the red part is the lower part (

∑n
i=1 xi < 1), and

the blue part is the don’t know region. Increasing the dimension of the space
has a direct impact on the convergence, as shown in Fig. 6b. The range of the
geometrical spaces is [0, 1]n and dimension n ∈ [2, 5].

According to Fig. 6b, the convergence is penalized by higher dimensions and
slows down as the number of iteration steps increases. However, the method
is easily parallelizable. The propagation of dominance in Algorithm 3 partially
mitigates the dimensionality problem too, although it inherently involves more
operations per iteration and it may introduce fragmentation of the boundary

13

x1

x
2

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

steps

vo
lu

m
e

 c
on

ta
in

ed
 in

 th
e

bo
rd

er

2d

3d

3d_opt

4d

4d_opt

5d

5d_opt

(b)

Fig. 6: (a) Volume contained in the boundary after 10 steps and (b) variation
according to the simplex dimension. Opt. algorithm is not applicable to 2D.

boxes. In conclusion, the propagation of dominance is recommended when the
cost of asking a membership query to the oracle consumes a great amount of time,
and, therefore, reducing the number of membership queries becomes imperative.

6 Experiments

6.1 ParetoLib library

The procedure explained in this paper has been packaged in a free and publicly
available Python library [6,5]. ParetoLib separates the implementation of the
multi-dimensional search from the definition of the oracle, which makes the code
in the core of the library unique. The oracle is designed as a generic abstract
interface that is later on instantiated by the user for every specific optimization
problem. Our library currently provides several predefined oracles.

A set of oracles for interacting with Signal Temporal Logic (STL) [15] mon-
itors facilitates the application of our method for the synthesis of parameters in
STL specifications. Given a template of a parametrized STL formula, ParetoLib
identifies the set of valuations that (in)validate it over a signal. The coordinates
of points in the multi-dimensional space are treated by the oracle as particular
instances of the parameters in the STL expression. Next section illustrates the
usage of our approach for the parameter synthesis for extended STL specifica-
tions (see [3,2]).

6.2 Case studies

This section shows the parameter synthesis of extended STL specifications [3,2]
using the method developped in this paper. We analyze two parametric proper-
ties that exhibit a monotonic behaviour. These parametric STL properties are
evaluated over a decaying signal (Fig. 7a) with a damped oscillation of period

250. For t ∈ [0, 1000), xdecay is defined as xdecay(t) = 1
esin(250t+ 250)e−

1
250x.

14

Stabilization. We want to find the tightest parameters p1 and p2 such that within
p1 time units, the signal stabilizes around an unknown value within an interval of
height p2. Formally, the parametric STL formula φstab = F[0,p1]G(On[0,∞]Max x−
On[0,∞]Min x < p2) is adapted from [3] by turning constants into parameters.
The smaller p1 and p2 are, the earlier and tighter the stabilization is. There is a
trade-off between stabilizing earlier at the price of higher perturbation, or sta-
bilizing later and allowing less perturbation. The set of best possible trade-offs
(i.e. Pareto front) is computed by ParetoLib in Fig. 7b. The boundary repre-
sents the limit between feasible and unfeasible valuations (p1, p2). The blue dot
in Fig. 7b shows the stabilization after the first peak.

Spikes. A spike is defined with two parameters, the width p3 and the height p4.
Unformally, the thinner and taller a spike is the more spiky it is. Formally, the
parametric extended STL formula is φspike = |x−D0

p3x| ≤ ε∧ (On[0,p3]Max x−
x ≥ p4). Error ε appears due to discretization of signal x. We use p′4 = 0.5− p4
instead of p4 to have a problem of parameter minimization. Fig. 7c shows the
image produced by ParetoLib on the same signal as above. The slope captures
the valuations of the first oscillation, which yields the more restrictive spikes
(tallest height and narrowest width). The blue dot in Fig. 7c corresponds to
the parameter valuation of the second oscillation. It is not on the Pareto front
because a thinner and higher spike can be found inside the first ocillation of the
signal.

Computation time. For these examples, ParetoLib requires less than 2.4 seconds
for computing 500 steps of φstab, and less than 1 second for computing 200 steps
of φspike. Approximately, 45% of the cost corresponds to the execution time of
the oracle (i.e., calls to the STL monitor). Another 45% belongs to printing log
traces on the terminal, and the remaining 10% is the overhead introduced by
the searching algorithm. The experiments are run using a single core of a PC
with Intel Core i7-8650U CPU, 32GB RAM and Python 2.7.

7 Conclusions

This paper presents a novel algorithm for learning the boundary (i.e., Pareto
front) between feasible (X) and infeasible (X) configurations for multi-criteria
optimization problems in a cost space X. The algorithm is based on an external
oracle that answers membership queries x ∈ X. According to the answers and
relying on monotonicity, it discovers a set of Pareto points that partitions the
cost space into feasible and unfeasible subspaces. Our algorithm is based on the
generalization of a binary search for spaces of any dimension. The method con-
sists of dividing the multi-dimensional cost space into multiple smaller boxes and
executing a binary search over the diagonal of every box. The multi-dimensional
space is exhaustively explored until a quality criterion is met (e.g. the volume
of the unexplored region is smaller than a threshold).

Our method has been applied to the parametric identification of STL for-
mulas that exhibit monotonic behavior. The procedure explained in this paper

15

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

p1

p
2

p
4

p3

(a)

(b)

'

(c)

Fig. 7: Decaying signal (a) and Pareto front for φstab (b) and φspike (c).

has been implemented in a free and publicly available Python library. As future
work, we plan to apply our approach to various problems including parameter
identification of more temporal logics and other multi-criteria optimization prob-
lems. In particular, we will study the impact of statistical oracles that answer
quantitative membership queries with a confidence interval.

References

1. Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Parametric
identification of temporal properties. In International Conference on Runtime
Verification (RV), pages 147–160, 2011.

2. Alexey Bakhirkin. StlEval, STL Evaluator. https://gitlab.com/abakhirkin/

StlEval, 2019.
3. Alexey Bakhirkin and Nicolas Basset. Specification and efficient monitoring beyond

STL. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 11428 of LNCS, pages 79–97. Springer,
2019.

4. Alexey Bakhirkin, Nicolas Basset, Oded Maler, and José Ignacio Requeno. Learn-
ing Pareto Front and Application to Parameter Synthesis of STL. Technical report
available at https://hal.archives-@ouvertes.fr/hal-@02125140, 2019.

16

https://gitlab.com/abakhirkin/StlEval
https://gitlab.com/abakhirkin/StlEval
https://hal.archives-ouvertes.fr/hal-02125140

5. Alexey Bakhirkin, Nicolas Basset, Oded Maler, and José Ignacio Requeno. Pare-
tolib: A Python Library for Parameter Synthesis. In International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS), Amsterdam,
Netherlands, 2019. Springer. Tool paper submitted to 17th International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FORMATS).

6. Nicolas Basset, Oded Maler, and José-Ignacio Requeno Jarabo. ParetoLib li-
brary. https://gricad-@gitlab.univ-@grenoble-@alpes.fr/verimag/tempo/
multidimensional_search, 2018.

7. C. Daskalakis, I. Diakonikolas, and M. Yannakakis. How Good is the Chord Algo-
rithm? SIAM Journal on Computing, 45(3):811–858, 2016.

8. Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages
403–449. Springer, 2014.

9. Rüdiger Ehlers. Computing the complete pareto front. CoRR, abs/1512.05207,
2015.

10. Salvatore Greco, J Figueira, and M Ehrgott. Multiple criteria decision analysis.
Springer, 2016.

11. Lu He, Alan M Friedman, and Chris Bailey-Kellogg. A divide-and-conquer ap-
proach to determine the pareto frontier for optimization of protein engineering
experiments. Proteins: Structure, Function, and Bioinformatics, 80(3):790–806,
2012.

12. S. Koziel and A. Bekasiewicz. Pareto-ranking bisection algorithm for expedited
multiobjective optimization of antenna structures. IEEE Antennas and Wireless
Propagation Letters, 16:1488–1491, 2017.

13. Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximating
the Pareto front of multi-criteria optimization problems. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 69–83, 2010.

14. Oded Maler. Learning Monotone Partitions of Partially-Ordered Domains (Work
in Progress). working paper or preprint available at https://hal.archives-@
ouvertes.fr/hal-@01556243, July 2017.

15. Oded Maler and Dejan Ničković. Monitoring temporal properties of continuous sig-
nals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of
Timed Systems (FORMATS) and Formal Techniques in Real-Time and Fault-
Tolerant Systems, (FTRTFT), volume 3253 of LNCS, pages 152–166. Springer,
2004.

16. Marcell Vazquez-Chanlatte. Multidimensional thresholds. https://github.com/

mvcisback/multidim-@threshold, 2018.
17. Marcell Vazquez-Chanlatte, Jyotirmoy V. Deshmukh, Xiaoqing Jin, and Sanjit A.

Seshia. Logical clustering and learning for time-series data. In International Con-
ference on Computer Aided Verification (CAV), volume 10426 of LNCS, pages
305–325. Springer, 2017.

18. Marcell Vazquez-Chanlatte, Shromona Ghosh, Jyotirmoy V. Deshmukh, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Time-series learning using mono-
tonic logical properties. In International Conference on Runtime Verification (RV),
volume 11237 of LNCS, pages 389–405. Springer, 2018.

19. Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Vi-
viane Grunert Da Fonseca. Performance assessment of multiobjective optimiz-
ers: An analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

17

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://hal.archives-ouvertes.fr/hal-01556243
https://hal.archives-ouvertes.fr/hal-01556243
https://github.com/mvcisback/multidim-threshold
https://github.com/mvcisback/multidim-threshold

A Appendix

Proof of proposition 3. The statements on the number of boxes is quite
straightforward to prove: at each operations we remove 1 box and create κn + 1
boxes so there are κnm boxes after m steps (unless for m = 0 where there
is a single box). The results on the volume Vm and the upper bound on the
convergence speed are more involved. We first state and prove two lemmas.

Lemma 1. Given a box bx, xe and a point y discovered in the diagonal. The
volume of the removed part is minimal when y is at the center of the box, this
volume is (1/2)n−1Vol(bx, xe).

Proof. A point y on the diagonal is of the form λx + (1 − λ)x. First we notice
that Vol(bx, ye) = (1 − λ)nVol(bx, xe) and Volby, xe = λnVol(bx, xe). So the
volume of the removed part is (λn + (1− λ)n)Vol(bx, xe). So we want to find λ
such that the quantity λn + (1 − λ)n is minimal. Its derivative n(λn−1 − (1 −
λ)n−1)Vol(bx, xe) is negative for λ < 1/2, null for λ = 1/2 and positive for
λ > 1/2 which proves the minimality of the volume for λ = 1/2 with the value
(1/2)n−1Vol(bx, xe).

Lemma 2. Let Vm be the volume after m steps and V0 the initial volume of the

boundary, then Vm ≤ V0
∏m
i=1

(
1− 1

κn2n−1
1
i

)
≤ V0m−1/(κn2

n−1).

Proof. We prove the result by induction on m, the base case for m = 0 is trivial
satisfied using the usual convention that an empty product is 1. We assume that
the property holds at rank m, and we consider the box chosen at step m+1 whose
volume is denoted Vmax,m. This box is of maximal volume amongst the m box
that form the border approximation, so its volume is greater than the average
volume: Vmax,m ≥ Vm/(m ·κn + 1) ≥ Vm/((m+ 1) ·κn). Using the lemma above
we get that Vm+1 is obtained from Vm by removing at least (1/2)n−1Vmax,m to
the selected box, so Vm+1 ≤ Vm(1− (1/2)n−1)(1/((m+ 1) · κn))). After m steps

Vm/V0

m∏
i=1

(
1− 1

κn2n−1
1

i

)
≤ exp

(
− 1

κn2n−1

m∑
i=1

1

i

)
.

We now use the classical fact that the harmonic number
∑m
i=1

1
i is greater than

ln(m+ 1) so also greater than ln(m). The function t 7→ exp(−t) is decreasing so

exp

(
− 1

κn2n−1

m∑
i=2

1

i

)
≤ exp

(
− 1

κn2n−1
ln(m)

)
= m−1/(κn2

n−1).

Now we proceed to the end of Proof of Proposition 3.
The volume upper-bound V0m

−1/(κn2
n−1) is less than δ iff m ≥ (V0/δ)

κn2
n−1

.

18

	Learning Pareto Fronts From Membership Queries

