N

N
N

HAL

open science

Learning Pareto Front and Application to Parameter

Synthesis of STL
José Ignacio Requeno, Alexey Bakhirkin, Nicolas Basset, Oded Maler,

José-Ignacio Requeno

» To cite this version:

José Ignacio Requeno, Alexey Bakhirkin, Nicolas Basset, Oded Maler, José-Ignacio Requeno. Learning

Pareto Front and Application to Parameter Synthesis of STL. 2019. hal-02125140v1

HAL Id: hal-02125140
https://hal.science/hal-02125140v1

Preprint submitted on 10 May 2019 (v1), last revised 8 Jul 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02125140v1
https://hal.archives-ouvertes.fr

Learning Pareto Front and Application to
Parameter Synthesis of STL

Alexey Bakhirkin, Nicolas Basset, Oded Maler*, José-Ignacio Requeno Jarabo
{alexey.bakhirkin, bassetni, requenoj} @univ-grenoble-alpes.fr

VERIMAG, CNRS and Université Grenoble-Alpes, FRANCE

Abstract. We present a new method for inferring the Pareto front in
multi-criteria optimization problems. The approach is grounded on an
algorithm for learning the boundary between an upward-closed set X
and its downward-closed complement. The algorithm selects sampling
points for which it submits membership queries 2 € X to an oracle.
Based on the answers and relying on monotonicity, it constructs an ap-
proximation of the boundary. The algorithm generalizes binary search on
the continuum from one-dimensional (and linearly-ordered) domains to
multi-dimensional (and partially-ordered) ones. The procedure explained
in this paper has been applied for the parameter synthesis of (extended)
Signal Temporal Logic (STL) expressions where the influence of param-
eters is monotone. Our method has been implemented in a free and
publicly available Python library.

1 Introduction

In multi-criteria optimization problems, solutions are evaluated according to
several criteria and the cost of a solution can be viewed as a point in a multi-
dimensional cost space X. The optimal cost of such optimization problems is
rarely a single point but rather a set of incomparable points, also known as the
Pareto front of the problem. It consists of solutions that cannot be improved
in one dimension without being worsened in another. The Pareto front can be
viewed as the boundary of a monotone partition. For a minimization problem, X
corresponds to infeasible costs and X represents the feasible costs. The goal of
this paper is to discover the border between (X, X) by learning (Y, Y) (Fig. [1).

Some classes of parametric identification problems are solvable by mapping
them to multi-criteria optimisation problems; and benefit of the new strategy we
present here. Consider a parameterized family of predicates or constraints {p,}
where p is a vector of parameters ranging over some parameter space. Given an
element u from the domain of the predicates, we would like to know the range
of parameters p such that ¢,(u) holds. We say that a parameter p has a fixed
(positive or negative) polarity if increasing its value will have a monotone effect
on the set of elements that satisfy it. For example if a parameter p appears

* Oded Maler passed away at the beginning of September 2018. This work was initiated
by him [8] continued with and finished by the rest of us.

|

D

=
<

Fig.1: A monotone partition and its approximation.

in a parameterized predicate u < p, then for any p’ > p and any u, ¢,(u)
implies ¢, (u). When no parameter appears in two constraints in opposing sides
of an inequality, and after some pre-processing, the set of parameters that lead
to satisfaction is upward-closed. Its set of minimal elements indicates the set
of tightest parameters that lead to satisfaction of ¢,(u), which is a valuable
information about w. This set of minimal elements defines the Pareto front. In
[1] we already explored the idea for the domain of real-valued signals u(t) and
temporal formulas such as 3t < py u(t) < pa.

In this paper, we present an algorithm that follows the same phylosophy
than [7] and provides an alternative way to approximate Pareto fronts with
quality metrics. Our algorithm has the additive feature of finding a cloud of
exact Pareto points along the boundary (Section [4)) instead of under/over esti-
mations. A preliminary version of the procedure was proposed and implemented
in [8IT1] without the materials of Section It was successfully used for learn-
ing valuations of parametric Signal Temporal Logic (STL) [9] specifications over
time-series data [I3l12]. Experiments in Section apply the improvements of the
current work to the parameter synthesis of extended STL specifications [3].

2 Related Work

Multi-criteria optimization techniques are commonly categorized in two families
[5U6]. The first one is associated to mathematical programming methods, which
scale a multi-dimensional problem into a one-dimensional utility function by
taking a weighted sum of the various costs. An optimal solution for the one-
dimensional problem is also a Pareto solution for the original problem. Every
invocation to the resolution method discovers a new Pareto point, but the result
depends on the choice of the weighted coefficients.

The second family of methods is based on evolutionary algorithms, which
generate a set of solutions distributed along the entire Pareto front. However,
these methods cannot guarantee the Pareto optimality of the solutions: it is only
known that none of the generated solutions dominates the others. Consequently,

a major issue in these heuristic techniques consists of finding meaningful mea-
sures of quality for the sets of solutions they provide [I4].

In [7] we developed a procedure for computing such an approximation with a
explicit guarantee of getting Pareto optimal points in an epsilon-sized interval.
The procedure uses a variant of binary search that submits queries to a constraint
solver concerning the existence of solutions of a given cost x. The costs used in
the queries were selected in order to reduce the distance between the boundaries
of Y and Y (Fig. [1)) and improve approximation quality.

3 Preliminaries

3.1 Notation

Multi-objective problems can be formalised as a bipartition of a geometrical
space following the next notation. Let X be a bounded and partially ordered set
that we consider from now on to be [0, 1]". A subset X of X is upward-closed in
X if
Vz,2' € X (re X Ao’ >z2) =2’ € X.

Naturally, the complement of X, X = X — X is downward-closed, and we use the
term monotone bi-partition (or simply partition) for the pair M = (X, X). The
Pareto front of the pair M = (X, X) is the set bd(M) = min(X) = {x € M :
x is minimal in X }. We do not have an explicit representation of M and we want
to approximate it based on queries to a membership oracle which can answer for
every x € X whether x € X. Based on this information we construct an approx-
imation of M by a pair of sets, (Y,Y) being, respectively, a downward-closed
subset of X and an upward-closed subset of X (Fig. . This approximation,
conservative in both directions, says nothing about points residing in the gap
between Y and Y. This gap can be viewed as an over-approximation of bd(M),
the boundary between the two sets. There are two degenerate cases of monotone
partitions, (X, () and (0, X) that we ignore from now on, and thus assume that
0 € X and 1 € X, where r denotes (r,...,7). We adopt the conventions that
bd(M) belongs to X. Our approach is a neat high-dimensional generalization
of the problem of locating a boundary point that splits a straight line into two
intervals. This problem is solved typically using binary (dichotomic) search, and
indeed, the essence of our approach is in embedding binary search in higher
dimension.

3.2 Binary search in one dimension

Our major tool is the classical binary search over one-dimensional and totally-
ordered domains, where a partition of [0,1] is of the form M = ([0, z), [z, 1]) for
some 0 < z < 1. The outcome of the search procedure is a pair of numbers y and i
such that y < z < 7, which implies a partition approximation M’ = ([0,), [7, 1]).
The quality of M’ is measured by the size of the gap 7 — v, which can be made as
small as needed by running more steps. Note that in one dimension, 7 —y is both

the volume of [y,y] and its diameter. We are going to apply binary search to
straight lines of arbitrary position and arbitrary positive orientation inside high-
dimensional X, hence we formulate it in terms that will facilitate its application
in this context.

Definition 1 (Line Segments in High-Dimension). The line segment con-
necting two points x < T € X = [0,1]™ is their convex hull

(z,7) ={(1 =Nz + AT : X e€0,1]}.
The segment inherits a total order from [0,1]: x < =’ whenever A < X'.

The input to the binary search procedure, written in Algorithm [1} is a line
segment ¢ and an oracle for a monotone partition M = (£,¢) = ((z, 2), (2,7)),
z < z < T. The output is a sub-segment (y,7) containing the boundary point z.
The procedure is parameterized by an error bound € > 0, with € = 0 represent-
ing an ideal variant of the algorithm that runs indefinitely and finds the exact
boundary point. Although realizable only in the limit, it is sometimes convenient
to speak in terms of this variant. Fig. [2|illustrates several steps of the algorithm.

Algorithm 1 One dimensional binary search: search({z,), €)

1: Input: A line segment £ = (x,Z), a monotone partition M = (£,£) accessible via
an oracle member() for membership in ¢ and an error bound € > 0.

2: Qutput: A line segment (7, y) containing bd(M) such that 7 —y < e.
3 (y,y) = (z,7)

4: whiley —y > e do

5 y=(y+v)/2

6: if member(y) then
7
8

7 =y, > left sub-interval
: else B
9: .9 = (v, 9) > right sub-interval
10: end if

11: end while
12: return (y,7)

4 Learning the Multi-dimensional Pareto Front

The following definitions are commonly used in multi-criteria optimization and
in partially-ordered sets in general.

Definition 2 (Domination and Incomparability). Let x = (x1,...,z,) and

' = (af,...,x) be two points. Then

1.z <2 if x; <& for every i;

18

e
™0
[] H‘

il
[]

>

<
<

Fig. 2: Binary search and the successive reduction of the uncertainty interval.

2. x <o ife <a' and x; < x} for some i. In this case we say that x dominates
x';

3. z|la" if x £ 2" and 2’ £ x, which means that x; < z} and z; < x; for some
1 and j. In this case we say that x and x’ are incomparable.

Any two points z < T define a bozr |z,Z| = {z : & < x < T} for which they
are, respectively, the minimal and maximal corners, as well as the endpoints of
the diagonal (z,T). Equivalently the box |z,T] is defined as the product of the
intervals [}, [z;, Z;]. Its volume is Vol(|z,Z]) = [[\—,(Z; — z;). Two boxes can
intersect (we say also overlap), the intersection being itself a box. We do not
take care of the overlap of volume 0 and it will be often the case (even in the
ideal version of our algorithms) that the points in the frontier of a box can be
found in the frontier of several other boxes we consider.

The procedure for learning a monotone partition is written down in Algo-
rithm [2] and works as follows. It maintains at any moment the current approxi-
mation (Y, Y) of the partition as well as a list L of boxes whose union constitutes
an over-approximation of the boundary, that is bd(M) C U|, z1er |2, T]. For effi-
ciency reasons, L is maintained in a decreasing order of volume. We successively
take the largest box |z,Z| from L, and find in it parts that we can move to Y
and Y. As the algorithm proceeds Y and Y augments and get closer to X and
X; and the total volume of the boundary approximation decreases until some
stopping criterion is met (e.g. when going below a threshold §).

To treat the box |z,Z| we rely on the observation that any line ¢ of a positive
slope inside a box |z, T]| that admits a monotone partition M, intersects bd(M)
at most once. In particular, the diagonal £ = (z,T) of the box is guaranteed
to intersect bd(M) and such intersection is over-approximated by the segment
(y,7) returned by the one-dimensional binary search algorithm applied on the
diagonal (z,Z). In this case |z, y] is added to Y since its points dominate y and

Algorithm 2 Approximating a monotone partition (and its boundary)

1: Input: A box X = |0,1], a partition M = (X, X) accessed by a membership
oracle for X and an error bound .

2: Output: An approximation M’ = (Y,Y) of M and an approximation L of the
boundary bd(M) such that |L| < §. All sets are represented by unions of boxes.

3 L={X}; (Y,Y)=(0,0) > initialization
4: repeat

5: pop first |z,Z] € L > take the largest box from the boundary approximation
6: (y,) = search({z,T),€) > run binary search on the diagonal
7 Y =Yu{lz,7]} > add dominated sub-box
8: Y=YU{lz,y]} > add dominating sub-box
9: L=LUIZ,z,7,Y) > insert remainder of |z, Z] to L
10: Vol(L) = Vol(X) — Vol(Y) — Vol(Y)

11: until Vol(L) < ¢

the box |7, 7] is added to Y since its points are dominated by 7. The remaining
part of |z, Z] stays in the border approximation and is split into a union of boxes
I(Z,z,7,y) described below (Def. . Fig. |3| illustrates the interaction between
the result of the one-dimensional search process on the diagonal of a box |z, T]
and the approximation of the higher-dimensional partition.

Definition 3 (Sub-intervals). The sub-interval of the interval [z,Z] induced
by a € {0,1} and the interval [y,y] C [z, T] is

):{[m,y} ifa=0

I x7f7 77 .
o(2,7,y,7 7] ifa=1

In the previous definition a is a boolean variable that evaluates to 1 (resp. 0)
when the upper (resp. lower) part of the interval is selected. The previous
definition extends to boxes (that is product of intervals) when a binary word
a=oa1--a, € {0,1}" is provided:

Definition 4 (Sub-boxes). Let o € {0,1}" and 4 n-dimensional points x <
y <y <T. The sub-bozes of |x,T]| induced by o and |y,y]| are

n

Ba(gvayay) = HICH (gzvfhy?»yz)

i=1
We can now define I(Z, z,7,y).

Definition 5 (Incomparable sub-boxes). The set I(Z,z,9,y) of sub-bozes
of | @, z] incomparable to |y,y] is

I(Z,2,7,y) = {Ba(z,7,y,7) : « € {0,1}"\ {0",1"}}

Boi (2,3, y,y)

ly, z]
Y Bio(z, T, y,y

Bo1(z, 7, y,7)

(b)

Fig.3: (a) The effect of finding the exact intersection of the diagonal with the
boundary; (b) The effect of finding an interval approximation of that intersection.

Observe that the union of boxes in I(Z,z,7,y) is equal to |z,Z] \ (|z,y] U
|7,Z]), that is the part that remains in the boundary approximation when we
discover |y, 7] around a point of the boundary in |z, T]. Note that these boxes
overlap but the volume of the overlap is proportional to e (because it is made
of boxes each one having a side with length smaller than ¢). Hence this overlap
can be made arbitrarily small by decreasing the parameter e. This is efficient as
the number of queries in a one-dimensional binary search is logarithmic in 1/e.

Last but not least the stopping criterion is based on the volume Vol(L) of
the boundary approximation. Since L is a collection of boxes that can overlap, it
is easier to compute its volume as the total volume of the box X = [0, 1]" minus
the volume of both parts of the monotone partition approximation (Y,Y). Some
steps of the algorithm are illustrated in Fig.

5 Two Enhacements in Dimensions Higher than 2

The goal of introducing changes to the learning procedure in dimension higher
than 2 is twofold. First we decompose into fewer boxes the part that stays in the
boundary approximation (new incomparable set I'(Z, z,7,y), Sect. . Second
we avoid a pitfall we identify in Sect. by propagating the dominance to the
boxes in the boundary approximation every time a point of the Pareto front is
discovered. We sum up the new version of the algorithm in Sect.

Fig. 4: Successive approximation of the partition boundary by running binary
search on diagonals of incomparable boxes.

5.1 Enhanced decomposing step

In this section we come back to the treatment of the remainder of the box |z, T]
when the two boxes above i and below y are removed. This remainder part was
covered by the union of boxes of I(Z,z,7,y). In two dimensions, there are only
two boxes in this set and every point of the box Bo;(z,T,y,7) is incomparable
to all the points of Big(z, T, y,7) except for the small overlapping part.

In higher dimension some boxes can be grouped together into bigger boxes. In
particular when two sub-boxes differ along only one dimension, they are adjacent:
their union is again a box. We introduce an extra symbol x to encode that
we do not care of this dimension. Defs must be consequently extended for
supporting the symbol x so that I,(z,Z,y,7) = [z,7] in one dimension (or in
other words I.(z,7,y,%) = lo(z,7,y,7) U I1(2,7,y,7)), and Bg(z,T,y,7) =
T2, Is. (25, Tis y,, 9;) with 8 € {0,1,%}™ in higher dimension. Examples of boxes
created by these expressions are given in Fig.

Now we show how to use the encoding with words on the alphabet {0, 1,}
to define the decomposition of |z,Z] \ (|z,y] U |¥,Z]) using boxes formed as
unions of boxes of I(Z,z,7,y). A partition of the index set A = {a | a €
{0,137\ {0, 1"}} is a set A of non-empty subsets such that A = JA and for
every two different parts A;, A; € A, A; N Aj; = (. A partition A of the index
set A is called feasible if for each part A; € A, the geometrical union of boxes of
A; is itself a box. Such a box can be described by a word 8 € {0, 1,x}", that is
Bs(z,7,y,) = Uaea, Ba(z,T,y,7). It is convenient to overload the notation and
write § for summarizing the part A;. We note A” for a partition of dimension
n. For instance A3 = {10%,%10,0x 1} is a feasible partition of dimension 3 that

encodes the boxes represented in Fig. [5] In the following proposition we use the
notation A" = {x5: f € A"}.

Proposition 1. Let n > 3. There exists a feasible partition A™ of {0,1}™ \
{0™,1"} with 2n — 3 parts defined recursively as follows:

A® = {10%,%10,0 % 1} and for n > 3, A" = xA™ U {10"} U {01"}.

(b)

Fig.5: A way of decomposing the remainder part into 2n — 3 = 3 boxes instead
of 2 — 2 = 6 in dimension n = 3. The red, yellow and green box correspond to
BlO*(z, T) ga y)v B*lO(Qa f? ga y) and BO*I (Qa f? ga y) respectively.

As an illustration we give A™ for the dimension 4 and 5:
At = %A U {1000} U {0111} = {*10%, % * 10, %0 % 1,1000,0111}.

A% = {* * 10%, % * x10, % % 0 x 1,%1000,+x0111,10000,01111}.

When updating the boundary approximation in dimension n > 2, we add a
set of 2n — 3 boxes instead of adding the set I(Z,z,7,y) containing 2" —2 boxes:

r'@zy.y = |J {Bslz.7u0)} 1)

Example 1. Consider again Fig.[5l We run the ideal version of our algorithm and
after the first call to the binary search over the diagonal discover that the point
y = (0.5,0.5,0.5) is in the boundary. We remove the lower part |0,y]| and the
upper part |[y,1], we then decompose the remaining part into the three boxes
shown in Fig. [fa] The three boxes having the same volume, we arbitrarily treat
the red box first in the next example (Ex. [2[below).

5.2 Propagating dominance to boxes of the boundary approximation

In dimension higher than 2, it can be the case that when an approximated
point |y,7| is found within a box |z,Z|, the downward-closure of y intersects
other boxes of the boundary approximation (see Ex. . These parts must also
be removed from the boundary approximation to keep Y downward-closed. A
symmetric remark holds for the upward-closure of 7.

Ezample 2 (Example |1| continued). When calling the binary search to the red
box, we discover that the point y" = (0.9,0.2,0.9) (Fig is in the boundary.
We remove [0.5,0.9] x [0,0.2] x [0,0.9] and [0.9, 1] x [0.2,0.5] x [0.9, 1] from the
red box and partition the remainder of the red box. Though, there is a part
outside the red box that also should be removed, that is, the intersection of the
green box with the downward-closure of y': [0,0.5] x [0,0.2] x [0.5,0.9].

As we saw in the previous example, we need to intersect the downward-
closure of point 3’ with other boxes. For this reason, the following proposition
will be useful.

Proposition 2. The downward-closure of a point y intersects a box |z,7Z] yﬂ
Z > min(y,z) > z. When this condition is met then

LO,@ N |_§’ E-‘ = |_§’ min(yﬁﬂ = B/J’(é’ 37& y)
with 8; =0 if z; < Y, <7Zi and B; = % otherwise.

When discovering an approximated point |y, 7] we check for every box |z, 7]
of the boundary approximation if it intersects |0,y]. If this is the case we add
|0,4]N|z,Z] to Y and replace in the boundary approximation |z,%] by a set of
boxes Igue(2,%,y) whose union equals the difference |z,%] \ |0, y].

The set Ijue(2,%,y) includes m small boxes, being m the number of co-
ordinates for which g: < Z;. These boxes have an empty intersection with
Bgs(z,%,y,y) with 8 defined in the proposition above. To do so, every box in
Iywe(2,%,y) selects the complementary interval (i.e., f; = 1) for one coordi-
nate. The labeling of the boxes in Tawe(2,Z,y) needs the definition of a function
vy(w, z,%,7) that creates words 8 € {0,1,*}” from words w € {0,1,*}™. Func-
tion v(w, 2, 7, y) selects [y(w, 2,7, y)]; = w; if y, <Z; and i is the jth coordinate
that satisfies this condition, and [y(w,z,Z,y)]; = * if Z; < y,- Words w must
lead disjoint boxes, to do so we take them in the set {07711 x™~7 |1 < j < m}.

Definition 6. Given y such that [0,y] N |2,Z] # 0 we define Iwe(2,%,y) by

Idwc(§7 Z, E) = U {B'}/(OJ*1 1*m*j’g,E,g) (&7 Z, Y, E)}
j=1

This gives m boxes where a less elaborate decomposition gives 2™ boxes.

Ezample 3. Consider the point y = (0.2,0.6,0.2,0.2) and the box [z,Z] defined
by z = (0.0,0.0,0.0,0.0) and Z = (0.5,0.5,0.5,0.5) The second coordinate is the
only one for which z; < Y, and hence dimension n = 4 with m = 3. Then

10,41 N |2,7] = Bosoo(z, %y, y) = [0.0,0.2] x [0.0,0.5] x [0.0,0.2] x [0.0,0.2]

and Idwc(éa z, y) = Uae{l***,O*l*,O*Ol}{Ba(§7 Z,Y, g)} with
Brow(2,7.5,y) = [0.2,0.5] x [0.0,0.5] x [0.0,0.5] x [0.0,0.5],

! The minimum is defined componentwise [min(y,z)}; = min(y,, z;) for every i.

10

Bosix(2,%, 9, y) = [0.0,0.2] x [0.0,0.5] x [0.2,0.5] x [0.0,0.5],
Boxo1(2,%,y,y) = [0.0,0.2] x [0.0,0.5] x [0.0,0.2] x [0.2,0.5].

The same kinds of reasoning can be done for the upward-closure of § and
Tupe(2,%,7) can be defined in a similar manner of I4uc(2,Z, y).

5.3 Combining ideas in an updated algorithm

Algorithm [2] must be updated in order to consider all the enhacements explained
in this section. In particular, the new version of the code should:

,y) by I'(z,%,y,7)) in line |9, and

— Replace I(Z,z,7 7
= propagation(M’, L,(y,7)) before line |§| (i.e., call to Algo-

— Add M',L
rithm.

First, the introduction of I'(x, T, y,7)) mitigates the block explosion in the
boundary caused by search spaces with high dimensions: it concatenates adja-
cent incomparable boxes and, therefore, adds fewer boxes to the boundary per
iteration. Second, Algorithm [3|shows how to propagate the dominance of a pair
(y,7) to the rest of boxes in the boundary. The propagation of the dominance
avoids unnecessary calls to the oracle, which could potentially be the slower part
of the program. Nevertheless, this feature may introduce fragmentation of the
boundary boxes. Additionally, points y and 7 are usually separated by an er-
ror € > 0. Consequently, some incomparable boxes |z,Z] in the boundary may
overlap. The overlapping areas must be taken into account when moving boxes
directly from the frontier to a closure Y or Y, while this peculiarity did not
happen in the initial version of Algorithm [2] and need not to be explicitly con-
sidered. For the sake of readability and concision, Algorithm [3] omits the code
that checks and prevents the insertion of redundant portions of boxes in Y (V)
caused by overlapping. In any case, the accumulated deviation resulting from
this with respect to the total volume is negligible as long as € is very small (i.e.,
€ =0 in a ideal case).

6 Computational Cost and Convergence

First of all we show the termination of our algorithms and an upper-bound on
the number of steps it takes. The convergence of Algorithms is guaranteed
by the fact that the volume contained in the boundary decreases at each step
by a constant factor as proved in the next lemma.

Lemma 1. Given a boz |z,T| and a point y discovered in the diagonal. The
volume of the removed part is minimal when y is at the center of the box, this
volume is (1/2)""1Vol(|z,T]).

Proof. A point y on the diagonal is of the form Az + (1 — A)Z. First we notice
that Vol(|z,y]) = (1 — A\)"Vol(|z,Z]) and Vol|y,Z| = A\"Vol(|z,Z]). So the

11

Algorithm 3 Propagation of dominance.

1: Input: An approximation M’ = (Y,Y) of M, an approximation L of the boundary
and a new discovered interval (y, 7).

2: Output: Updated L and M’ = (Y,Y).
3: for |z,Z] € L do

4: if |2,Z] N |y, 1] # 0 then > if intersects the upward-closure of i
5: add |z,Z] N |y,1] to Y; > add dominated sub-box
6: replace |z,Z] by Lupe(2,%,7) in L; > update the boundary
T end if

8: if 2,21 N [0,y] # 0 then > if intersects the downward-closure of y
9: add |z,Z] N |0,y] to Y; > add dominating sub-box
10: replace |z,Z] by Liwe(2,%Z,y) in L; > update the boundary
11: endif B

12: end for

volume of the removed part is (A" + (1 — A)")Vol(|z,Z]) So we want to find A
such that the quantity A™ + (1 — \)" is minimal. Its derivated n(A\"~! — (1 —
A"~ HVol(|z,T]) is negative for A < 1/2, null for A = 1/2 and positive for
A > 1/2 which proves the minimality of the volume for A = 1/2 with the value
(1/2)" Vol (|2, 7).

Lemma 2. Let V,,, be the volume after m steps and Vy the initial volume of the
boundary, then V,, < Vo [[i~, (1 — +%> The number of boxes within the

Kn2m—1

boundary after m steps is m - Ky,.

Proof. We prove the result by induction on m, the base case for m = 0 is trivial
satisfied using the usual convention that an empty product is 1. We assume that
the property holds at rank m, and we consider the box chosen at step m + 1
whose volume is denoted Vj,44,m. This box is of maximal volume amongst the
m box that form the border approximation, so its volume is greater than the
average volume: V45 m > Vi /m - ky,. Using the lemma above we get that V;,, 41
is obtained from V,,, by removing at least (1/2)""'V,,0z.m to the selected box,
80 Vint1 < Vin — (1/2)" Winazm < V(1 — (1/2)"71(1/m - ky,)).

Proposition 3. Algorithm 7?7 terminates within O((Vo/é)’{"zn_l) steps.

Proof. After m steps

ki 1 1 1 "1
m < l1-—-) < r=veene - .
V /VO B E (ann_l t) B exp (K:nQn_l ; !)

This quantity is less than 6/Vj if
1 1
("%2"_1 Z Z) > In(Vo/9).
i=1

12

We use the fact that ;" + > Inm. So a sufficient condition is In(m) >
k2"~ 11n(Vp /) which holds as soon as m > (Vp/8)" 2" .

Our algorithm makes multiple calls to an external oracle which spend time
answering each queries. A first study of the computational complexity of our
algorithm is to count the number of queries made to the oracle. Each round of
the main loop of Algorithm ?7? or 77, a call to the one-dimensional binary search
along a diagonal is made, it makes O(log,(1/€)) queries to the oracle.

In the version with dominance propagation the worst-case computational
complexity is §(N?log, N) with N the number of boxes added to the boundary
but N is bigger here. Each time a point is added in the boundary at most
d x N + (2d — 3) boxes are added.

It is of O(Nlog, N) for the basic algorithm.

The computational cost of Algorithm [2]is determined by the sorting of boxes
in the boundary according to their volume (line ??), and the binary search of
the Pareto point on the diagonal (line ??). Efficient sorting functions have a
O(mlogm) computational cost with m the number of boxes in the border. The
binary search of a Pareto point in the diagonal of a box requires O(log,(1/€))
queries to the oracle. The rest of operations such as the addition of boxes to the
upper, lower or incomparable closures are constant-time because they correspond
to the concatenation of lists. Therefore, each iteration step of the main loop has
a maximal cost of either O(mlogm) + T,log (1/€)), with T, the complexity of
the oracle to answer a query.

The computational cost of Algorithm [3|is similar to the previous one. The
only difference is the addition of an internal loop (line |3) that propagates the
dominance to the remaining boxes in the border. It includes list operations and
tests of unitary cost, leading to an aggregated cost of O(m) which is dominated
by the cost O(mlogm) of the sorting function. The number of iteration steps of
the main loop is limited by the accuracy d and the speed of decreasing the volume
in the border. The convergence pace is considered in the following paragraphs.

Nevertheless, the convergence rate relies on several factors, whose most promi-
nent one is the geometrical dimension of the problem (i.e., number of parame-
ters). Let’s assume a boundary box of initial volume Vp and dimension n whose
Pareto point is discovered in the center of the box. It decomposes the original
box in up to 2™ sub-boxes of equal volume. This partition produces the minimal
amount of volume that will be removed from the current box and appended to
the upper and lower closures, i.e., 2V, /2™. After the first iteration, the volume
of the original box is reduced by Vi = V(1 — 2'~"), which can be generalized
by Vi = Vo(1 — 217")% at the i-th recursion step.

Each border box produces 2n — 3 smaller boxes in the boundary for n > 3.
Processing m boundary boxes approximatively involves reaching a depth ¢ =
log,,,_3m for m = (2n — 3)%. The volume in the boundary after m iterations is
bounded by Vol(L) < kV;y1 with 1 <k < 2n — 3 boxes of volume V1.

The complexity of our procedure is illustrated by the following artificial ex-
ample. The surface of a simplex (i.e., points (z1,...,2,) such that Y | z; = 1)
splits the geometrical space into two closures. Fig. [6a] shows the border that is

13

No need to sort the
list each time. Add
elements in a sorted
data structure (Bi-
nary research tree,
heap...) is logarith-
mic.

discovered by our algorithm after running 10 steps in 2D. The green part cor-
responds to the upper closure (>, ; > 1), the red part is the lower closure
(37, x; < 1), and the blue part is the don’t know region. Increasing the dimen-
sion of the space has a direct impact on the convergence, as shown in Fig. [6b}
The range of the geometrical spaces is [0,1]™ and dimension n € [2,5].

volume contained in the border

Fig.6: (a) Volume contained in the boundary after 10 steps and (b) variation
according to the simplex dimension. Opt. algorithm is not applicable to 2D.

According to Fig. [6b] the convergence is penalized by higher dimensions and
slows down as the number of iteration steps increases. However, the method
is easily parallelizable. The propagation of dominance in Algorithm [3] partially
mitigates the dimensionality problem too, although it inherently involves more
operations per iteration and it may introduce fragmentation of the boundary
boxes. In conclusion, the propagation of the dominance is recommended in ge-
ometrical spaces of high dimension; or when the cost of asking a membership
query to the oracle consumes a great amount of time, and, therefore, reducing
the number of membership queries becomes imperative.

7 Experiments

7.1 ParetoLib library

The procedure explained in this paper has been packaged in a free and publicly
available Python library [4]. Our library has designed the oracle as an abstract
interface that encapsulates the set of minimum operations that every oracle
should provide. Later on, the oracle can be specialized for multiple application
domains by simply implementing the abstract interface. Our library currently
supports a small number of specialized oracles for inferring the Pareto front. The
more prominent ones are OracleSTL, that defines the membership of a point
x to the upper or lower closures based on the success in evaluating a Signal

14

Temporal Logic (STL) [9] formula over a signal, and OracleSTLe, that works
similarly over extended STL specifications [3]. The STL formula is parametrized
with a set of variables corresponding to the coordinates of the point = (i.e., the
parameters of the STL formula are instantiated by). Every point z satisfying
the STL formula belongs to the upper part of the partition, while every point
x falsifying it will fall in the lower part. Internally, OracleSTL asks queries to
JAMT [10] and OracleSTLe asks queries to StlEval [2].

7.2 Case studies

In this section we present the feasibility of our approach and the capabilities of
our tool. To this end, we apply our procedure for discovering the Pareto front in
the context of parameter synthesis for extended STL specifications. We analyze
the following parametric STL formulas that are evaluated over a decaying signal.

= @stab = F0,p,1G(Ong ooMax 2 — Onpg oo)Min z < py), within p; time units,
signal z stabilizes and the amplitude will fall below 0.5 - ps.

— Gspike = |T — D21x| < e A (Ongp,Max x — & > py), signal = has a spike
of width p; and height at least py. Error € appears due to discretization of
signal x.

Signal Tgecqy (Fig. is a damped oscillation with period 250. For ¢t €
[0,1000), Zgecqy is defined as Zgecay(t) = %sin(%Ot + 250)6_2‘%01. Fig.
show the image produced by ParetoLib when analyzing the stabilization (@stap
and spikes (@spike) Of the signal. The boundary represents the limit between
feasible and unfeasible valuations (pi, p2), where p; and ps are parameters.
Note that py = 0.5—p), for Fig. [7c|in order to guarantee monotonicity. The slope
in Fig. [/ captures the valuations of the first spike, which is the more restrictive
one (tallest height and narrowest width). Blue dot in Fig. [7d| corresponds to the
parameter valuation of the second spike. Similarly, blue dot in Fig. [7D] shows the
stabilization after the first peak.

For these examples, ParetoLib requires less than 2.4 seconds for computing
500 steps of @stqp, and less than 1 second for computing 200 steps of ¢spike. The
experiments are run using a single core of a PC with Intel Core i7-8650U CPU,
32GB RAM and Python 2.7.

8 Conclusions

In this paper, we have presented a novel algorithm for learning the boundary
(i.e., Pareto front) between an upward-closed set X and its downward-closed
complement X for a multi-dimensional cost space X. The algorithm is based
on an external oracle that answers membership queries 2 € X. According to
the answers and relying on monotonicity, it discovers a set of Pareto points
that partitions the cost space into feasible and unfeasible configurations. To
this end, our algorithm divides the multi-dimensional cost space into multiple

15

0.3

-0.4

0 100 200 300 400 500 600 700 800 900 1000

150 o 150
pl p3

(b) ()

Fig. 7: Decaying signal (a) and Pareto front for ¢sqp (b) and @spike (c).

smaller boxes and executes a binary search over the diagonal of every box. The
multi-dimensional space is exhaustively explored until a stopping criterion is met
(e.g. the volume of the unexplored region is smaller than a threshold).

Our algorithm has a polynomial cost with respect to the number of boxes
in which the space is divided. The rate of convergence towards the Pareto front
depends on the number of boxes, the dimension of the space and the shape of the
boundary. At each iteration step of the main algorithm, at least a new Pareto
point in the boundary is discovered.

Finally, our method has been applied to the parametric identification of STL
formulas. The procedure explained in this paper has been implemented in a free
and publicly available Python library. As future work, we plan to apply our
tool to various problems including parameter identification of more temporal
logics and multicriteria optimisation. In particular, we will study the impact of
statistical oracles that answer membership queries with a confidence interval.

16

References

10.

11.

12.

13.

14.

. Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Parametric

identification of temporal properties. In International Conference on Runtime
Verification, pages 147-160, 2011.

Alexey Bakhirkin. StlEval, STL Evaluator. https://gitlab.com/abakhirkin/
StlEval, 2019.

Alexey Bakhirkin and Nicolas Basset. Specification and efficient monitoring beyond
stl. In Tom&s Vojnar and Lijun Zhang, editors, International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 79-97, Cham,
2019. Springer International Publishing.

Nicolas Basset, Oded Maler, and José-Ignacio Requeno Jarabo. ParetoLib li-
brary. https://gricad-Cgitlab.univ-Cgrenoble-Calpes.fr/verimag/tempo/
multidimensional_search, 2018.

Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages
403-449. Springer, 2014.

Salvatore Greco, J Figueira, and M Ehrgott. Multiple criteria decision analysis.
Springer, 2016.

Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximating
the Pareto front of multi-criteria optimization problems. In International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, pages
69-83, 2010.

Oded Maler. Learning Monotone Partitions of Partially-Ordered Domains (Work
in Progress). working paper or preprint available at https://hal.archives-C
ouvertes.fr/hal-[01556243, July 2017.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, pages 152—-166. Springer, 2004.

Dejan Nickovié, Olivier Lebeltel, Oded Maler, Thomas Ferrere, and Dogan Ulus.
Amt 2.0: Qualitative and quantitative trace analysis with extended signal temporal
logic. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 303-319. Springer, 2018.

Marcell Vazquez-Chanlatte. Multidimensional thresholds. https://github.com/
mvcisback/multidim-[threshold, 2018.

Marcell Vazquez-Chanlatte, Jyotirmoy V. Deshmukh, Xiaoqing Jin, and Sanjit A.
Seshia. Logical clustering and learning for time-series data. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I, pages 305-325, 2017.

Marcell Vazquez-Chanlatte, Shromona Ghosh, Jyotirmoy V. Deshmukh, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Time-series learning using mono-
tonic logical properties. In International Conference on Runtime Verification, pages
389-405, Limassol, Cyprus, November 2018.

Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Vi-
viane Grunert Da Fonseca. Performance assessment of multiobjective optimiz-
ers: An analysis and review. [EEE Transactions on evolutionary computation,
7(2):117-132, 2003.

17

https://gitlab.com/abakhirkin/StlEval
https://gitlab.com/abakhirkin/StlEval
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search
https://hal.archives-ouvertes.fr/hal-01556243
https://hal.archives-ouvertes.fr/hal-01556243
https://github.com/mvcisback/multidim-threshold
https://github.com/mvcisback/multidim-threshold

	Learning Pareto Front and Application to Parameter Synthesis of STL

