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On Fractional Cut Covers

José NETO and Walid BEN-AMEUR

Samovar, CNRS, Telecom SudParis

9 rue Charles Fourier, 91011 Evry, France

jose.neto@telecom-sudparis.eu;walid.benameur@telecom-sudparis.eu

Abstract. Given an undirected graph, a minimum cut cover is a collection of cuts covering the

whole set of edges and having minimum cardinality. This paper is dedicated to the fractional version

of this problem where a fractional weight is computed for each cut such that, for each edge, the sum

of the weights of all cuts containing it is no less than 1, while the sum of all weights is minimized. The

fractional cover is computed for different graph classes among which the weakly bipartite graphs.

Efficient algorithms are described to compute lower and upper bounds with worst-case performance

guarantees. A general randomized approach is also presented giving new insights into Goemans and

Williamson’s algorithm for the maximum cut problem. Some numerical experiments are included

to assess the quality of bounds.

Keywords: graph cuts, covering, approximation, randomized algorithm

1 Introduction

Let G denote an undirected simple graph with node set V and a non-empty edge set E. Given a

node subset S ⊆ V , the cut defined by S, denoted by δ(S), is the set of all edges of E with exactly

one endpoint in S: δ(S) = {uv ∈ E : u ∈ S and v ∈ V \S}. A cut cover is a collection of cuts whose

union is E. Let C denote the set of all cuts in G. Given a cut C ∈ C, let χC ∈ {0, 1}E denote its

incidence vector: (χC)e = 1 if and only if e ∈ C, for all e ∈ E. The all-ones vector indexed on the

edge set is denoted by 1E. The complete graph with order n is denoted by Kn. We also use Z+

(resp. R+) to denote the set of non-negative integer (resp. real) numbers.
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The problem which consists in determining the minimum cardinality of a cut cover can be formulated

as the following integer linear program.

(CC)



Z∗CC(G) = min
∑
c∈C λC

s.t. ∑
C∈C λCχ

C ≥ 1E,

λ ∈ ZC+.

Problem (CC) has applications in the testing for possible defects of printed circuit boards (PCB’s)

[15,28]. There the objective is to minimize the number of tests to be performed on a PCB in order

to check it does not contain a short circuit. The situation can be modeled by means of an undirected

simple graph G where each node corresponds to a connecting point of the PCB and each edge to

one component of the PCB. A cut in G can then be interpreted as the testing of all the components

of the PCB that are represented by the edges this cut contains.

Problem (CC) is generally NP-hard, as it is now well-known that Z∗CC(G) = dlog2 χ(G)e for any

graph G [21,22,28,30,33], where χ(G) stands for the chromatic number of G.

In this paper, we focus our attention on the fractional cut cover problem which corresponds to the

linear relaxation of (CC), denoted by (FC).

(FC)



Z∗FC(G) = min
∑
C∈C λC

s.t. ∑
C∈C λCχ

C ≥ 1E,

λ ∈ RC+.

Problem (FC) was introduced by Samal in [37,38,39]. His main results will be reviewed in the next

section.

In what follows, we may simply write Z∗FC instead of Z∗FC(G) when G is clear from the context. Since

(FC) corresponds to the linear relaxation of (CC), we have the upper bound: Z∗FC ≤ dlog2 χ(G)e.

This inequality is sharp since it holds at equality, for instance, for bipartite graphs (in which case

Z∗FC = dlog2 χ(G)e = 1). Introducing the variable θ = 1∑
C∈C λC

in formulation (FC), we can easily

see that the latter is equivalent to the following linear program

(P1)



Z∗P1(G) = max θ

s.t. ∑
C∈C λCχ

C ≥ θ1E,∑
C∈C λC ≤ 1,

λ ∈ RC+, θ ∈ R,
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in particular, Z∗FC(G) = 1
Z∗
P1

(G)
. Here, we may interpret the variable λC as a weight assigned to the

cut C ∈ C. Define the weight of an edge e ∈ E as the sum of the weights of the cuts containing it:∑
C∈C : e∈C λC . Then, problem (P1) consists in determining non-negative weights to be assigned to

all cuts such that the weights sum up to 1, and the minimum edge weight taken over all edges is

maximized.

Let us mention a potential application of (P1) for frequency assignment. Assume that there are only

two frequencies to be assigned to the nodes of a wireless communication network. Let G = (V,E)

denote an undirected graph whose node set corresponds to the nodes of the network and there is

an edge uv ∈ E if and only if the assignment of the same frequency to the nodes u and v causes

interferences. Note that determining a frequency assignment which minimizes the total number of

interferences reduces to finding a maximum cardinality cut in G. Indeed, given a cut δ(S) with

S ⊆ V , the corresponding assignment consists in setting the same frequency to all the nodes in S

and the other available frequency to all the other nodes. Assume now that during one unit of time,

we have the possibility of changing the frequency assignments. We wish to determine a sequence of

assignments together with the duration of each (this is called a frequency hopping pattern in GSM

networks), so as to maximize the minimum amount of time - taken over all edges e ∈ E - that both

endpoints of e are assigned with different frequencies. The portion of time of the assignment that

is allocated to the cut C ∈ C is represented by the variable λC . Also, given the objective sense:

“maximize”, in any optimal solution of (P1), the value of θ gives the minimum portion of time -

taken over all edges e ∈ E - that there are no interferences between both endpoints of e.

Contents of the paper

Section 2 is dedicated to the presentation of the main known results related to the fractional cut

cover problem. In Section 3, we exhibit new bounds on Z∗FC stemming from polynomial-time solvable

approximations of (FC): one of them rests upon a cutting plane algorithm for solving (DC) using

an approximate separation algorithm (Subsection 3.1), while another relies on an approximation of

the cut polytope (Subsection 3.2). Polynomial-time randomized algorithms providing upper bounds

on Z∗FC and giving a new insight into Goemans and Willamson’s algorithm [16] for the maximum

cut problem are presented in Section 4. Computational experiments are reported in Section 5, before

we conclude in Section 6.

2 Related work and some straightforward extensions

To the present authors’ knowledge, investigations explicitly dedicated to the study of the value

Z∗FC seem to appear mainly in Samal’s works [37,38,39] where the interest for this graph parameter
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stems from investigations on graph homomorphisms; in particular, it could be used to prove the

nonexistence of some graph homomorphisms. A graph homomorphism f from a graph G = (V,E)

to a graph H = (VH , EH), written f : G→ H, is a function from V to VH that maps endpoints of

each edge in G to endpoints of an edge in H.

Samal [39] initially defined a n/k-cover as an n-tuple of cuts such that each edge belongs to at least

k of them. He introduced the parameter x(G) = inf{n
k

: a n/k-cover of G exists}, mentioning that

it coincides with Z∗FC as introduced before.

Let Qn/k = (VQ, EQ) denote the graph having {0, 1}n for set of vertices, and where xy forms an edge

if and only if the Hamming distance between x and y is larger than or equal to k. Samal observed

[39] that a graph has a n/k-cover if and only if it is homomorphic to Qn/k. Indeed, starting from a

n/k-cover (X1, ..., Xn) where Xi = δ(Wi), one can build a homomorphism f = (f1, ..., fn) : V → VQ

by setting fi(v) = 1 if v ∈ Wi and fi(v) = 0 otherwise. Since each edge uv ∈ E belongs to at least

k cuts, the Hamming distance between f(u) and f(v) will be larger than or equal to k implying

that Qn/k contains an edge f(u)f(v). The other direction can be proved in a very similar way by

building cuts starting from a homomorphism f = (f1, ..., fn). Engström et al. [10] proved the next

result which was conjectured earlier by Samal in [38].

Proposition 1. [10] Let k, n be integers such that k ≤ n < 2k. Then,

x(Qn/k) =

n/k if k is even, and

(n+ 1)/(k + 1) otherwise.

A straightforward lower bound related to the maximum cardinality of a cut is recalled in the

next proposition. It can be derived by summing up the inequalities of the formulation (FC) and

considering an optimal solution of it.

Proposition 2. [39] The following inequality holds: Z∗FC ≥ |E|
mc(G)

, where mc(G) denotes the max-

imum cardinality of a cut in G. If G is edge-transitive, then equality holds.

The odd girth of G, denoted by g is the length (≥ 3) of the smallest odd cycle in the graph. In case

the graph G is bipartite, its odd girth is defined to be infinity. The following lower bound is easy

to compute [32].

Proposition 3. [39] Let G be a nonbipartite graph with odd girth g. Then, Z∗FC ≥ g
g−1

. If G is an

odd cycle, then Z∗FC = g
g−1

= |E|
|E|−1

.

The case of complete graphs is easy to handle. An optimal solution of (FC) is obtained by consid-

ering the same weight λC for all cuts δ(X) with |X| = n/2 (resp. |X| = (n− 1)/2) when n is even

(resp. odd) and λC = 0 otherwise.
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Proposition 4. [39] Z∗FC(Kn) = 2
(

1− 1
n+(n mod 2)

)
.

Combining the propositions above and the fact that Z∗FC is monotone non-decreasing with respect

to edge inclusion, leads to the following corollary.

Corollary 1. [39] Let G = (V,E) denote an undirected simple graph with |V | = n, |E| ≥ 1. Then,

the following inequalities hold: 1 ≤ |E|
mc(G)

≤ Z∗FC ≤ 2
(

1− 1
n+(n mod 2)

)
< 2.

Other bounds on Z∗FC following from the work by Samal involve the chromatic number and the

vector chromatic number [24]. The latter is the quantity χv = 1− 1
ρ

where ρ denotes the minimum

value such that there exists a mapping f : V → RV satisfying the conditions ‖f(v)‖ = 1, for all

v ∈ V , and (f(u))T f(v) ≤ ρ, for all uv ∈ E, where the notation T stands for the transpose. Note

that the vector chromatic number satisfies χv ≥ 1 and an approximation of χv can be computed

efficiently using semidefinite programming (SDP) [24].

Proposition 5. [39] The following inequalities hold:

2
(

1− 1
χv

)
≤ Z∗FC ≤ 2

(
1− 2

πχv

)
, and

Z∗FC ≤ 2− 1⌈
χ(G)

2

⌉ .
The last inequality involves the standard chromatic number. Note that if G is neither an odd-cycle

nor a complete graph, then χ(G) ≤ ∆ by Brook’s theorem, where ∆ denotes the maximum degree

in G. Consequently, Z∗FC ≤ 2− 1

d∆2 e
. This bound dominates the upper bound presented in Corollary

1.

Let G(n, p) denote a random graph generated according to the Erdös-Rényi model [5,11]. For such

graphs, Samal [39] proved the following.

Proposition 6. [39] 2
2−Z∗

FC
(G(n,p))

= Θ(
√
pn) a.a.s.

McGuinness proved [31] that for any simple graph G = (V,E) having k components and cogirth

(i.e. the minimum cardinality of any nontrivial cut) g∗ ≥ 3, there is a family of at most |E|−|V |+k

cocycles (i.e. minimal cuts) which cover the edges of G at least twice. This implies the next result

that is useful only if |E| − |V | ≤ 2.

Proposition 7. For any simple connected graph G = (V,E) with cogirth at least three, we have

Z∗FC ≤ |E|−|V |+1
2

.

Let us consider the dual program (DC) of (FC) that we mention hereafter for reference later.

(DC)



Z∗DC = max
∑
e∈E ue

s.t. ∑
e∈C ue ≤ 1,∀C ∈ C,

u ∈ RE+.
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It corresponds to the determination of nonnegative weights to be assigned to the edges such that

the sum of the weights taken over all edges is maximized, and each cut has weight at most 1. Note

that from linear programming (strong) duality we have Z∗DC = Z∗FC . Another special feature of

Z∗FC is its connection with the fractional chromatic number. Let S denote the set of all the stable

sets in G. Given a stable set S ∈ S, let χS ∈ {0, 1}V denote the incidence vector of S. The fractional

chromatic number of the graph G, denoted by χf (G), is the optimal objective value of the linear

program

(CHROM)



min
∑
S∈S µS

s.t. ∑
S∈S µSχ

S ≥ 1V,

µ ∈ RS+.
Given the relation Z∗FC ≤ Z∗CC = dlog2 χ(G)e mentioned above, we may naturally wonder whether

there are connections between Z∗FC and χf (G). A preliminary result is the following relation which

was proved in [39] using graph homomorphisms. We provide an alternative proof based on linear

programming and duality.

Proposition 8. [39] The following inequality holds: Z∗FC ≤ 1
2
χf (G).

Proof. The dual linear program of (CHROM) may be formulated as follows.

(DCHROM )



max
∑
v∈V yv

s.t. ∑
v∈S yv ≤ 1, ∀S ∈ S,

y ∈ RV+ .

Let u∗ ∈ RE+ denote an optimal solution of (DC). Then, we define a solution y for the linear

program (DCHROM ) as follows: yv :=
∑
e∈δ(v) u

∗
e . Note that for any stable set S ∈ S we have that∑

v∈S yv =
∑
e∈δ(S) u

∗
e ≤ 1, and thus y is a feasible solution for DCHROM . Its objective value is a

lower bound for χf (G) and is equal to
∑
v∈V yv =

∑
v∈V

∑
e∈δ(v) u

∗
e = 2Z∗FC . The result follows.

ut

We terminate this section mentioning an upper bound on Z∗FC based on Fajtlowicz’result [12] that,

for any graphG with maximum clique size ω and maximum degree∆, the inequality χf (G) ≤ ω+∆+1
2

holds. Proposition 8 leads to another upper bound on Z∗FC that is of potential interest for graphs

such that ω +∆ ≤ 6 (in view of Corollary 1). In particular, it is tight if G is a matching.

Corollary 2. For any graph G with maximum clique size ω and maximum degree ∆ the following

inequality holds:

Z∗FC ≤
ω +∆+ 1

4
.
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3 Bounds on Z∗
FC based on polynomial-time solvable

approximations of (FC)

A SDP-based approximation algorithm has been proposed in [39] for the so called cubical chromatic

number defined by χq = 2
2−Z∗

FC
. It relies on relations between χq and the vector chromatic number

χv (see Proposition 5), and it uses the results by Karger et al. [24] for approximating χv in polyno-

mial time. The approximation ratio resulting from this approach is π
2

. This algorithm can be used to

get a 2(1−1/π) approximation of Z∗FC . Indeed, using an approximation 2

2−ZFC
of the cubical num-

ber χq that is satisfying 2

2−ZFC
≤ π

2
χq = π

2
2

2−Z∗
FC

= π
2−Z∗

FC
, we get that ZFC ≤ (2− 4

π
) + 2

π
Z∗FC .

Combining this with 1 ≤ Z∗FC , we deduce that ZFC ≤ (2− 2
π

)Z∗FC . A different approach leading to a

better approximation is presented below. We will also provide a lower bound related to a relaxation

of the cut polytope.

3.1 Approximation based on an approximate separation to solve (DC)

Since our approximation is using the celebrated algorithm of Goemans and Willamson [16] to solve

the maximum cut problem, we recall the main ingredients of this algorithm. Given an undirected

graph G = (V,E) and edge weights (we)e∈E with we ∈ R, for all e ∈ E, the maximum cut problem

consists in finding a cut of G such that the sum of the weights of the edges it contains is maximized.

This is a notorious NP-hard problem (see, e.g., the survey [4] and the references therein). However,

it can be approximated with the algorithm of [16] using semidefinite programming. The semidefinite

relaxation below is solved, where wij = 0 if ij /∈ E and wij = we for e = ij otherwise, and the

matrix Y is a |V | × |V | matrix that is required to be symmetric and positive semidefinite, which is

denoted by Y � 0.

(SDPGW )



max 1
4

∑
i∈V,j∈V wij(1− Yij)

s.t.

Yii = 1, ∀i ∈ V,

Y � 0, Y ∈ RV×V .

An optimal solution Y ∗ of (SDPGW ) is a Gram matrix related to a set of |V | vectors (σi)i∈V

belonging to RV (i.e. Y ∗ij = (σi)
T
σj). Then, a randomly generated hyperplane in RV containing

the origin separates the set of vectors (σi)i∈V in two subsets, depending on their position with

respect to the hyperplane. This naturally induces a cut. Under the assumption that all the edge

weights are non-negative, Goemans and Willamson [16] show that the expectation of the weight

of the cut produced in this way is less than or equal to α times the optimal weight, where α =

7



min0≤θ≤π
2
π

θ
1−cos θ

> 0.87856. A deterministic version of their algorithm is proposed by Mahajan

and Ramesh [29].

Proposition 9. A value Z satisfying Z∗FC − ε ≤ Z ≤ ( 1
α

+ ε)Z∗FC can be computed in polynomial

time, for any ε > 0.

Proof. The proof we give is inspired by [7,13,23] where an approximate separation algorithm is used

within the framework of the ellipsoid algorithm.

From Corollary 1, we have: 1 ≤ Z∗FC = Z∗DC ≤ 2. We now apply binary search in the interval [1, 2]

to determine an approximation of Z∗DC with precision ε.

Given a value τ ∈ [1, 2], the following linear program is solved with a cutting plane algorithm.

(Dτ )



max
∑
e∈E ue

s.t. ∑
e∈E ue ≥ τ,∑
e∈C ue ≤ 1, ∀C ∈ C,

u ∈ RE+.

The formulation (Dτ ) is obtained from (DC) by adding a constraint enforcing a lower bound on

the optimal objective value. The cutting plane algorithm to solve (Dτ ) proceeds as follows.

– Step 1. A first relaxation of (Dτ ) is built. Let Ĉ ⊆ C denote a set of at most |E| different cuts

and covering all the edges, that is, for each e ∈ E, there exists some cut C ∈ Ĉ, such that e ∈ C.

The relaxation (RDτ ) of (Dτ ) is initialized with

(RDτ )



max
∑
e∈E ue

s.t. ∑
e∈E ue ≥ τ,∑
e∈C ue ≤ 1, ∀C ∈ Ĉ,

u ∈ RE+.

– Step 2. The current relaxation (RDτ ) is solved by the ellipsoid algorithm. Then, an approximate

separation algorithm is used to determine if some inequality of the form “
∑
e∈C ue ≤ 1” is

violated by the solution found, for some C ∈ C.

– Step 3. In case a violated inequality is found, the set Ĉ is updated by adding this inequality to

the current relaxation (RDτ ) and Step 2 is repeated. Otherwise the algorithm stops.

Let us now describe the approximate separation algorithm that is used. Given an optimal solution

u∗ of the current relaxation (RDτ ) of (Dτ ) with objective value ZD(τ), we solve the SDP relaxation

8



of the maximum cut problem with edge cost function u∗ [16]. Using the fact that all the entries

of u∗ are non-negative, for any ε′ > 0, it is possible to compute in polynomial time (in the input

size and log( 1
ε′ )) [16,29] a cut with objective value Zcut, greater than or equal to α(Z∗sdp(u

∗)− ε′),

where Z∗sdp(u
∗) denotes the optimal objective value of the SDP relaxation (SDPGW ) with the edge

costs u∗. In what follows, we take ε′ = ε. In case the cut found has an objective value strictly larger

than 1, the corresponding inequality in the formulation of (DC) is added to the current relaxation

(RDτ ). Otherwise (i.e. the cut found has weight at most 1), we stop.

So, for some given value τ , with the separation algorithm described before, the ellipsoid algorithm

stops either when infeasibility is detected (i.e. Dτ has no feasible solution) or because no violated

constraint is found by the approximate separation algorithm. At each iteration, τ belongs to an

interval [lb, ub] (initially we have lb = 1 and ub = 2). This interval is updated by binary search in

a standard way. If infeasibility is detected for the current value of τ , then we set ub = τ and we

take τ = lb+ub
2

. On the other hand, if no violated constraint is detected, then we set lb = τ and we

update τ in the same way as before. The binary search stops when ub− lb falls below ε.

Let τ denote the largest value of τ for which the ellipsoid algorithm stopped because no violated

inequality has been found. Then, given the precision of the binary search, we know that Z∗DC ≤ τ+ε

since by taking τ = τ+ε, we get an unfeasible problem Dτ . In addition, let u denote the approximate

solution obtained when approximately solving Dτ as mentioned before. The maximum weight of

any cut with respect to the edge costs (ue)e∈E is upper bounded by 1
α

+ ε. This implies α
1+αε

u is

feasible for (DC), and thus Z∗DC ≥ α
1+αε

τ .

By taking Z = τ we get that Z∗FC − ε ≤ Z ≤ ( 1
α

+ ε)Z∗FC .

To finish the proof, let us prove that the whole algorithm is polynomial-time. Since the number

of iterations of the binary search is O(ln(1/ε)), we only have to show that (Dτ ) can be solved in

polynomial time. If a strong separation algorithm (see [18] for an accurate definition) were used,

then the results by Grötschel et al. [18, Chapter 6] show that for solving (Dτ ) the number of calls

to such a separation algorithm would be polynomial. In our case, since the procedure we described

above corresponds to the application of such a method with a premature stop, the number of calls

to the approximate separation algorithm is polynomial. This implies that the number of inequalities

added to (RDτ ) is polynomially bounded. Consequently, each relaxation (RDτ ) can be solved in

polynomial time, and since the separation takes polynomial time, it follows that the whole procedure

to (approximately) solve Dτ is polynomial-time. ut

The cutting-plane approach used in this section clearly implies that if the graph G belongs to a

class of graphs for which the maximum cut problem can be solved in polynomial time, then by
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equivalence of separation and optimization, Z∗DC can also be computed in polynomial time. Several

such classes are known (see, e.g., [4,9]).

3.2 Approximations by modifying the feasible region of (DC)

Given a polytope Q, let ext(Q) denote the set of its extreme points. Consider the linear program,

denoted (DΛ), whose formulation follows and where Λ stands for a polytope contained in RE .

(DΛ)



Z∗D(Λ) = max
∑
e∈E ue

s.t. ∑
e∈E αeue ≤ 1, ∀α ∈ ext(Λ),

u ∈ RE+.

Taking for Λ the cut polytope of the graph G: CUT (G), we get formulation (DC). Furthermore,

it is well-known that CUT (G) ⊆ MET (G), where MET (G) ⊆ RE denotes the metric polytope of

the graph G = (V,E) [1,2], that is defined by the following set of constraints:
∑
e∈F xe −

∑
e∈C\F xe ≤ |F | − 1, ∀ cycle C,F ⊆ C, |F | odd,

0 ≤ xe ≤ 1, ∀e ∈ E.

Recall that, for a graph G that is not contractible to K5, we have CUT (G) = MET (G) [2]. Since

optimizing a linear function over MET (G) can be done in polynomial time (due to the equivalence

of optimization and separation [18], and the fact that there exists a polynomial time separation

oracle for MET (G) [2]), it follows that for a graph not contractible to K5, Z∗FC = Z∗D(MET (G))

can be computed in polynomial time. For graphs not satisfying this restriction, we have the next

general result.

Proposition 10. Let G denote an undirected graph. Then, we have

Z∗D(MET (G)) ≤ Z∗FC = Z∗DC , (1)

and the quantity Z∗D(MET (G)) can be computed in polynomial time.

The next proposition states that the value of Z∗D(MET (G)) is related to the odd girth.

Proposition 11. Let G = (V,E) denote a nonbipartite undirected graph with odd girth ḡ. Then

Z∗D(MET (G)) = ḡ
ḡ−1

.

Proof. Let C be a cycle of length ḡ and define a vector u with ue = 1
ḡ−1

for e ∈ C and ue = 0

otherwise. Then, for any vector α ∈MET (G), we have
∑
e∈C αe ≤ |C|−1, implying that uTα ≤ 1.

Hence u is feasible for
(
DMET (G)

)
and thus Z∗D(MET (G)) ≥

∑
e∈E ue = ḡ

ḡ−1
.

10



On the other hand, consider the vector α defined by αe = ḡ−1
ḡ

for all e ∈ E. Let us show that

α ∈MET (G). We clearly have 0 ≤ αe ≤ 1 for all e ∈ E. For any cycle C′ and any subset of edges

F ⊆ C′ of odd cardinality, we have∑
e∈F

αe −
∑

e∈C′\F

αe =
ḡ − 1

ḡ
(|F | − |C′ \ F |).

If F = C′, then we see that ḡ−1
ḡ
|C′| ≤ |C′| − 1, since |C′| ≥ ḡ. Otherwise, F is a proper subset of

C′ and we have
ḡ − 1

ḡ
(|F | − |C′ \ F |) ≤ ḡ − 1

ḡ
(|F | − 1) ≤ |F | − 1.

Hence, for any feasible u ∈ DMET (G), we have uTα ≤ 1 leading to the reverse inequality
∑
e∈E ue ≤

ḡ
ḡ−1

. ut

We already observed that for graphs not contractible to K5, Z∗FC can be computed in polynomial

time. From Proposition 11, we get the exact value of Z∗FC for this kind of graphs: Z∗FC = ḡ
ḡ−1

. In

fact, as will be shown below, the result holds for the more general class of weakly bipartite graphs

defined in [19]. It is shown in [14] that each graph not contractible to K5 is weakly bipartite. Weakly

bipartite graphs have been characterized by Guenin in [20] proving a conjecture of Seymour [40].

Proposition 12. Let G denote a weakly bipartite graph with odd girth ḡ < +∞. Then, Z∗FC = ḡ
ḡ−1

.

Proof. Consider the polytope ODD(G) given by constraints
∑
e∈C xe ≤ |C| − 1, ∀ cycle C, |C| odd,

0 ≤ xe ≤ 1,∀e ∈ E.

This polytope clearly contains MET (G), leading to Z∗D(ODD(G)) ≤ Z∗D(MET (G)). Moreover,

the vector u introduced in the proof of Proposition 11 is also feasible for DODD(G) implying

that Z∗D(ODD(G)) ≥ ḡ
ḡ−1

. Combining the two inequalities we deduce that Z∗D(ODD(G)) =

Z∗D(MET (G)) = ḡ
ḡ−1

. Let us now consider the polytope PB(G) defined as the convex hull of the

incidence vectors of all bipartite subgraphs of G
(
PB(G) = Conv

{
χF , F ⊂ E, (V, F ) is bipartite

})
.

Observe that CUT (G) ⊂ PB(G), and when edge weights are non-negative, a maximum weight bi-

partite subgraph is obtained by computing a maximum weight cut. Thus, imposing that uTα ≤ 1

for any α ∈ CUT (G) is equivalent to the same requirement for any α ∈ PB(G). This leads to

Z∗FC = Z∗D(CUT (G)) = Z∗D(PB(G)). Finally, since weakly bipartite graphs are those for which

PB(G) = ODD(G), we have Z∗D(ODD(G)) = Z∗D(PB(G)), leading to Z∗FC = ḡ
ḡ−1

.

Note that by combining Propositions 11 and 10, we deduce that Z∗FC ≥ ḡ
ḡ−1

if ḡ < +∞, which is

already known from Proposition 3. Observe also that the odd cycle case mentioned in Proposition

3 is a special case of Proposition 12.

11



Other lower bounds of better quality might be obtained using a better relaxation of PB(G) (see

[3]).

4 Randomized algorithms

4.1 General framework

Given an undirected simple graph G = (V,E), let E denote some abstract set of elements (particular

definitions will be given and investigated later). For each i ∈ V , let σi ∈ RE denote a vector of

real values indexed on E . For each e ∈ E , let ue denote a normally-distributed random variable

ue ∼ N(0, 1). The random variables (ue)e∈E are supposed to be independent. We then define, for

each i ∈ V , the random variable

Yi =
∑
e∈E

σieue.

Assuming the vectors
(
σi
)
i∈V are given, the proposed randomized scheme generates a cut δ(S)

induced by the sign of the random variables Yi, i ∈ V . An edge ij will then appear in a cut with a

probability Pr(YiYj ≤ 0), where Pr(.) denotes the probability of an event.

This randomized scheme will be used to provide good feasible solutions of problem (P1). For each

cut C ∈ C in G, define λC as the probability that the randomized algorithm outputs the cut C.

Then, the probability for any edge ij ∈ E to belong to the cut output by the algorithm is given by∑
C∈C : ij∈C λC . This namely implies that

(
λ, θ = min

ij∈E

∑
C∈C : ij∈C

λC

)
is a feasible solution for (P1)

leading to a lower bound for Z∗P1 and thus an upper bound for Z∗FC for the case when θ 6= 0.

Let us show that the probability for an edge to belong to a cut can be computed exactly. Our

randomized scheme is intimately related to the rounding technique of Goemans and Williamson

[16]. As already said in Section 3.1, after solving (SDPGW ) and obtaining unit vectors (σi)i∈V , a

random hyperplane is generated and used to partition V . Let u be the normal vector corresponding

to this hyperplane. u is then a random vector belonging to the hypersphere. A basic geometric fact

observed by Goemans and Williamson is that the probability to have i and j in the cut is given

by Pr(uTσi.uTσj ≤ 0) = 1
π

arccos
(
(σi)Tσj

)
. This is also related to earlier work of Grothendieck

(see, e.g., [25]). One way to generate a random uniformly distributed vector u on the hypersphere

is to generate each component ui according to a normal distribution N(0, 1), then normalize it

[34]. Since we are only interested in the sign of the terms uTσi, the normalization step of u can

be skipped. Observe that uTσi is nothing but the random variable Yi. As presented now, our

randomized scheme can consequently be seen as another way of expressing the rounding technique

12



of [16]. This immediately leads to the following expression of the probability for an edge to be in

the random cut. We are using here the standard notation ‖.‖ to denote the Euclidean norm of a

vector.

Lemma 1. The probability for an edge ij to belong to a cut produced by the randomized scheme is

given by Pr(YiYj ≤ 0) = 1
π

arccos
(

(σi)T σj

‖σi‖‖σj‖

)
.

Let us consider the parameter θ̂(σ) representing the smallest probability for an edge to appear in a

cut:

θ̂(σ) = min
ij∈E

1

π
arccos

(
(σi)Tσj

‖σi‖‖σj‖

)
.

Using Lemma 1 and the discussion above, one can build a feasible solution to (P1) by taking λC

equal to the probability to obtain the cut C (by the randomized scheme), and setting θ to θ̂(σ). We

thus obtain the following bounds.

Proposition 13. Z∗P1 ≥ θ̂(σ) and thus Z∗FC ≤ 1

θ̂(σ)
when θ̂(σ) 6= 0.

The rest of this section will be devoted to proposing several choices for the vectors σi leading to

tractable uppers bounds.

4.2 Tripartition based method

Let us consider the case where each element e ∈ E corresponds to a partition of V into three

sets: (V 0
e , V

1
e , V

2
e ). Some node subsets defining the partition may be empty. For each e ∈ E , let

(σe,1, σe,2) ∈ R2 and define the vectors (σi)i∈V as follows:

σie =


σe,1 if i ∈ V 1

e ,

σe,2 if i ∈ V 2
e ,

0 otherwise.

(2)

By Lemma 1, the probability Pr(YiYj ≤ 0) that an edge ij ∈ E belongs to the cut output by the

algorithm is given by

1

π
arccos


∑

e∈E : (i,j)∈(V 1
e ×V

2
e )∪(V 2

e ×V
1
e )

σe,1σe,2 +
∑

e∈E : (i,j)∈(V 1
e ×V

1
e )

(σe,1)2 +
∑

e∈E : (i,j)∈(V 2
e ×V

2
e )

(σe,2)2

√ ∑
e∈E : i∈V 1

e

(σe,1)2 +
∑

e∈E : i∈V 2
e

(σe,2)2
√ ∑
e∈E : j∈V 1

e

(σe,1)2 +
∑

e∈E : j∈V 2
e

(σe,2)2

 .

A relaxation of the problem which consists in determining vectors (σi)i∈V as defined above and

maximizing the minimum probability Pr(YiYj < 0) among all ij ∈ E is given by the following SOCP
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(Second Order Cone Programming) formulation, where we introduced the variables z1,1
e , z2,2

e , z1,2
e

representing the quantities (σe,1)2, (σe,2)2 and σe,1σe,2, respectively.

(SOCP )



min γ

s.t. ∑
e∈E : (i,j)∈(V 1

e ×V
2
e )∪(V 2

e ×V
1
e )

z1,2
e +

∑
e∈E : (i,j)∈(V 1

e ×V
1
e )

z1,1
e +

∑
e∈E : (i,j)∈(V 2

e ×V
2
e )

z2,2
e ≤ γ, ∀ij ∈ E,

∑
e∈E : i∈V 1

e

z1,1
e +

∑
e∈E : i∈V 2

e

z2,2
e = 1, ∀i ∈ V,

(z1,2
e )2 ≤ z1,1

e z2,2
e ,∀e ∈ E ,

γ ∈ R, (z1,1
e , z2,2

e ) ∈ R2
+, z

1,2
e ∈ R, ∀e ∈ E .

Notice that constraints (z1,2
e )2 ≤ z1,1

e z2,2
e are hyperbolic constraints that can be expressed through

SOCP constraints. Since we are minimizing γ, we do not lose optimality by assuming that z1,2
e =

−
√
z1,1
e .z2,2

e . One can then take σe,1 =
√
z1,1
e , σe,2 = −

√
z2,2
e and z1,2

e = −
√
z1,1
e z2,2

e = σe,1σe,2.

Using Proposition 13, we get the following upper bound.

Proposition 14. Let γ∗ be the optimal objective value of (SOCP ). Then Z∗FC ≤ π
arccos(γ∗) .

On a case when E is defined by a set of cuts

Consider now the more particular case when each element e ∈ E is associated with a cut of G: it

is of the form (V 0
e , V

1
e , V

2
e ) = (∅, Se, V \ Se) for some node subset Se ⊆ V . For our purposes, we

shall assume ∪e∈Eδ(Se) = E. Consider, in addition, the following restriction set on the coefficients

(σe,1, σe,2), for each e ∈ E : σe,1 = −σe,2. Then, introducing for each e ∈ E a variable λe representing

the quantity |σe,1|2 = |σe,2|2, the former SOCP formulation reduces to the following LP.

(P2)



min γ

s.t.

−
∑

e∈E : ij∈δ(Se)

λe +
∑

e∈E : ij∈E\δ(Se)

λe ≤ γ, ∀ij ∈ E,∑
e∈E

λe = 1,

γ ∈ R, λ ∈ RE+.
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Using the equation of the formulation (P2) and rewriting the first inequality, we obtain that the

last optimization problem is equivalent to the following one.

(P3)



max θ
(
= 1−γ

2

)
s.t. ∑

e∈E : ij∈δ(Se)

λe ≥ θ,∀ij ∈ E,∑
e∈E λe = 1,

θ ∈ R, λ ∈ RE+.

Let γ∗ denote the optimal objective value of (P2). Let (λ∗, θ∗) denote an optimal solution of (P3),

and consider the following parameterization for the coefficients (σe,1, σe,2)e∈E : σe,1 =
√
λ∗e = −σe,2,

for all e ∈ E . From the assumption that ∪e∈Eδ(Se) = E, we get that θ∗ > 0 and arccos(γ∗) > 0.

Using Proposition 13, we deduce that Z∗FC ≤ π
arccos(γ∗) . Observe that (P3) is a restriction of (P1),

implying that Z∗FC ≤ 1
θ∗ = 2

1−γ∗ . One can compare the two upper bounds by studying the function

γ → π(1−γ)
2 arccos(γ)

. It is easy to see that the upper bound 2
1−γ∗ is lower than π

arccos(γ∗) when γ∗ < 0

(i.e., θ∗ > 1
2
) while the situation is reversed if γ∗ > 0.

Moreover, observe that if all the cuts are considered in E , then (P3) is nothing else than (P1). We

consequently have θ∗ = Z∗P1 = 1
Z∗
FC

. In this case, the ratio
π

arccos(1−2θ∗)
Z∗
FC

is equal to πθ∗

arccos(1−2θ∗) .

This ratio is upper bounded by 1
α

, where α is recalled in Section 3.1. In other words, we can achieve

the same approximation ratio as the one obtained in Section 3.1 by considering this randomized

procedure. Observe however that this result is only of theoretical interest since to get this ratio we

had to include all the cuts in E .

On a case when E is defined by the set of edges

Let us now consider the case when there is a bijection between the sets E and E: each element e ∈ E

is associated with some edge ij ∈ E and is of the form (V 0
e , V

1
e , V

2
e ) with V 0

e = V \ {i, j}, V 1
e = {i}

and V 2
e = {j}. We will make an abuse of notation by writing that E = E and identifying an edge

ij ∈ E with the element e ∈ E mapped to ij. Using the notation introduced at the beginning of the
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section, formulation (SOCP ) specialized to this case becomes:

(SOCPedge)



min γ

s.t.

z1,2
e ≤ γ, ∀e ∈ E,∑
e∈δ(i) : i∈V 1

e

z1,1
e +

∑
e∈δ(i) : i∈V 2

e

z2,2
e = 1, ∀i ∈ V,

(z1,2
e )2 ≤ z1,1

e z2,2
e ,∀e ∈ E ,

γ ∈ R, (z1,1
e , z2,2

e ) ∈ R2
+, z

1,2
e ∈ R, ∀e ∈ E .

Observe that for e = ij we have z1,1
e = (σe,1)2 = (σie)

2, z2,2
e = (σe,2)2 = (σje)

2 and z1,2
e = σe,1σe,2 =

σieσ
j
e. Solving the SOCP problem above is then equivalent to solve to the following problem:

(Pedge)



min γ

s.t.

σieσ
j
e ≤ γ, ∀e = ij ∈ E,∑

e∈δ(i)
(σie)

2 = 1, ∀i ∈ V,

γ ∈ R, σi ∈ RE ,∀i ∈ V.

Let γ̃ denote the optimal objective value of (SOCPedge) (or (Pedge)). From Proposition 13, we

obtain the upper bound described below.

Proposition 15.

Z∗FC ≤
π

arccos(γ̃)
. (3)

Also note that a feasible solution of (Pedge) can be obtained by setting (σie)
2 = 1

di
for each e ∈ δ(i)

and γ̂ = −min
ij∈E

1√
didj

where di denotes the degree of node i. This leads to the following upper

bound on Z∗FC .

Corollary 3. Let γ̂ = −min
ij∈E

1√
didj

, then

Z∗FC ≤
π

arccos(γ̂)
. (4)

Though it may be naturally expected that the bound of Corollary 3 is of poorer quality than the

one of Proposition 15, the former has the advantage of not requiring solving any SOCP. In addition,

it has the nice feature of corresponding to an optimal solution of (Pedge) for the case when the

graph G = (V,E) is regular, as we show next.

Proposition 16. If the graph G = (V,E) is regular, then γ̃ = γ̂.
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Proof. From the constraints of (Pedge), we should have γ ≥ σieσ
j
e for each edge ij = e. This leads

to −2γ ≤ (σie)
2 + (σje)

2. Summing up the latter inequalities over all ij ∈ E and using the equations

of (Pedge) leads to −2|E|γ ≤ |V |. Thus − |V |
2|E| is a lower bound on the optimal objective value of

(Pedge). Since the graph is here regular, this lower bound coincides with the objective value of the

feasible solution defined by (σie)
2 = 1

di
and γ̂ = −minij∈E

1√
didj

, we deduce that γ̃ = γ̂. ut

4.3 Another approximation algorithm

We already mentioned bounds on Z∗FC (see Proposition 5) which directly follow from Samal’s work

[39] and that can be computed efficiently using SDP. In this subsection, we study a variant of the

general scheme from Section 4.1 providing a better upper bound and leading to a 1
α

-approximation

algorithm, still using SDP.

Consider the following parameterization for the general scheme (Section 4.1): E = V . Each vector

σi belongs to RV .

We know from Proposition 13 that Z∗FC ≤ 1

θ̂(σ)
= max

ij∈E
π

arccos

(
(σi)T σj

‖σi‖‖σj‖

) .

Looking for the best bound of this form reduces to determining normalized vectors (σi)i∈V in RV

minimizing the quantity maxij∈E

(
π

arccos
(
(σi)T σj

)
)

. Since the function x 7→ arccos(x) is strictly

decreasing on [−1, 1], the latter comes down to finding normalized vectors minimizing the quantity

maxij∈E
((
σi
)T
σj
)

. Such vectors can be obtained by solving the following semidefinite program

which coincides with the one introduced by Karger et al. [24] to compute the vector chromatic

number χv. (Remember that χv = 1− 1
Z∗
SDP1

was already mentioned before Proposition 5.)

(SDP1)



Z∗SDP1 = min t

s.t.

Xij ≤ t,∀ij ∈ E,

Xii = 1, ∀i ∈ V,

X < 0, X ∈ RV×V .

A feasible solution of (SDP1) with t = −1
k−1

corresponds to Karger et al.’s vector k-coloring [24].

From our discussion above the next result follows.

Proposition 17. The following inequality holds.

Z∗FC ≤
π

arccos(Z∗SDP1)
.

Corollary 4. A 1
α

+ ε factor approximation of Z∗FC can be computed in polynomial time, for any

ε > 0.
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Proof. The lower bound on Z∗FC from Proposition 5 (due to Samal [39]) and the upper bound from

Proposition 17 lead to

2

1− Z∗SDP1

≤ Z∗FC ≤
π

arccos(Z∗SDP1)
.

Then, the result follows from the definition of α and the fact that a feasible solution of (SDP1)

with objective value at most Z∗SDP1 + ε can be computed in polynomial time in n and log( 1
ε
) [17]

for any ε > 0. Observe that we use here the fact π
arccos(Z∗

SDP1
)
/ 2

1−Z∗
SDP1

≤ maxx∈[−1,1]
π(1−x)

2 arccos(x)
=

1

min0≤θ≤π
2
π

θ
1−cos θ

= 1
α

.

For sake of completeness, we give here a proof of the lower bound. Given an optimal solution

((λC)C∈C , θ) of (P1), consider the matrix X =
∑
C∈C λCIC

TIC , where IC is the vector of size

|V | induced by the cut C (i.e. the component IC related to vertex v is either 1 or −1 depending

on which side of the partition induced by C contains the vertex v). The matrix X is obviously

positive semidefinite with all the diagonal terms equal to 1. For each edge ij ∈ E, we have Xij =∑
C∈C:ij /∈C λC −

∑
C∈C:ij∈C λC = 1− 2

∑
C∈C:ij∈C λC . Since

∑
C∈C:ij∈C λC ≥ θ, we get that Xij ≤

1−2θ for each edge ij. Moreover X is a feasible solution of (SDP1). This leads to Z∗SDP1 ≤ 1−2θ =

1− 2
Z∗
FC

showing the validity of the lower bound. ut

Remark 1. To illustrate the improvement the upper bound of Proposition 17 represents over the one

from Proposition 5, we represent in Figure 1 the functions f1 : x→ π
arccos(x)

, f2 : x→ 2
(

1− 2x
π(x−1)

)
and the ratio f2(x)

f1(x)
for x ∈ [−1, 0].

Fig. 1. A comparison of the upper bounds on Z∗FC from Propositions 5 and 17

(a) f1 (thick line) and f2 (dashed line) on

the interval [-1,0]

(b) The ratio f2/f1 on the interval [-1,0]
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5 Computational experiments

In this section we report computational experiments to compare different bounds on Z∗FC and to

illustrate their respective quality for different graph families.

5.1 Graph instances

The graphs used in our computational experiments fall into one of the following cases, where n and

k denote positive integer values; d, p stand for real values in [0, 1].

– Cn: cycle with order n.

– Kn: complete graph with order n.

– P (n, d): planar graph randomly generated, with density parameter d ∈ [0, 1] (so that the number

of edges is about 3(|V |−2)d. Recall that the maximum number of edges of a planar graph with

order greater than 2 is 3(|V | − 2)).

– G(n, p): random graph (Erdös-Rényi model [11]) with edge probability p.

– Pet: Petersen graph.

– Mk: Mycielski graph with parameter k (see hereafter).

– Zk: Zykov graph with parameter k (see hereafter).

Used graphs of the type P (n, d) and G(n, p) have been generated using rudy [36].

Mycielski graphs Consider the following graph transformation introduced by Mycielski [35].

Given a graph G = (V,E) with V = {v1, ..., vn}, let M(G) denote the graph with vertex set

VM = V ∪ {z1, . . . , zn, w} and edge set EM = E ∪E′ ∪E′′, with E′ = {ziw : i ∈ {1, 2, . . . , n}}, and

E′′ = {vizj : vivj ∈ E}.

We have χ(M(G)) = χ(G)+1. LetM1 denote the graph K2, and defineMk+1 = M(Mk), for each

integer k ≥ 2. So we have χ(Mk) = k + 1. Regarding the fractional chromatic number, Larsen et

al. [27] proved the following equation holds.

χf (Mk) = χf (Mk−1) +
1

χf (Mk−1)
. (5)

The gaps χ(Mk)−dχf (Mk)e and χf (Mk)−ω(Mk) become arbitrarily large as k increases, where

for a given graph G, ω(G) denotes the maximum cardinality of a clique in G. In fact, even the ratios

χ(Mk)
χf (Mk)

and
χf (Mk)

ω(Mk)
approach infinity as k increases.
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Zykov graphs The Zykov product Z(G1, G2, . . . , Gn) of simple graphs G1, G2, . . ., Gn is formed

by taking the disjoint union of all the graphs Gi = (Vi, Ei) and, for each possible choice of

(x1, x2, . . . , xn) ∈ V1 × V2 × . . . × Vn, adding a new vertex adjacent to each node in the set

{x1, x2, . . . , xn}. Zykov graphs are the graphs (Zi)
+∞
i=1 , where Z1 is the graph with a single vertex

and Zn+1 = Z(Z1, Z2, . . . , Zn) (see [41, p.215], [42]). Charbit and Sereni [8] proved that equation

(5) also holds for Zykov graphs.

5.2 Computational results

Hereafter, we describe the notation used for the evaluated lower (LB0, . . . , LB3) and upper (UB0, . . . , UB5)

bounds on Z∗FC , and give some implementation details.

– LB0 = g
g−1

(see Proposition 3).

– LB1 = |E|
m̃c(G)

where m̃c(G) denotes the optimal objective value of the SDP relaxation of the

maximum cut problem given by Goemans and Williamson [16] recalled in Section 3.1. The fact

that this quantity is a lower bound for Z∗FC is a corollary of Proposition 2.

– LB2 = 2
(

1− 1
χv

)
(see Proposition 5). The vector chromatic number χv is obtained solving a

semidefinite program [24].

– LB3 = α π
arccos(Z∗

SDP1
)

(see proof of Corollary 4).

– UB0 = 2− 1/
⌈
∆+1

2

⌉
if the graph G is a complete graph or an odd cycle and UB0 = 2− 1/

⌈
∆
2

⌉
otherwise, where ∆ denotes the maximum degree in G. This bound follows from Proposition 5

and Brooks’ theorem.

– UB1: value obtained by solving (DC) using an approximate separation algorithm (Section 3.1).

More precisely, for each call, our separation procedure generates 100 cuts: they result from the

application of Goemans and Williamson’s algorithm [16] (using 100 random vectors, each one

leading to one cut). For each cut generated, we apply a local improvement heuristic: it basically

consists in checking whether changing the position of one node in the partition improves the

objective value of the resulting cut, and this is iterated as long as improvements are obtained.

Finally, we use the cut with maximum weight among all the ones obtained in this manner to

determine whether an inequality will be added to the current relaxation. Note that we are not

using the ellipsoid algorithm in our implementation (only CPLEX is used to solve the linear

programs).

– UB2 = 2
(

1− 2
πχv

)
(see Proposition 5).

– UB3 = 1
α
LB3 = π

arccos(Z∗
SDP1

)
(see Proposition 17).
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– UB4 =
χf (G)

2
(see Proposition 8). The value χf (G) is obtained solving (DCHROM ) by constraint

generation and using an exact separation procedure. Here the separation reduces to an integer

linear program that is solved by CPLEX.

– UB5: two bounds are reported in this field of the table. The value on the left corresponds to the

bound given by Proposition 15. The value on the right corresponds to the bound of Corollary

3.

Computations have been performed using a processor Intel Core i7-2640M CPU @ 2.80GHz x 4,

7.7 Gio RAM. All linear programs have been solved using the CPLEX solver. The semidefinite

programs were solved by CSDP [6]. The CPU time in seconds is mentioned in brackets. They are

omitted for some bounds when they are negligible for all the evaluated instances (this is notably

the case for LB0, UB0 and the second bound reported in UB5) or when the bound is of poor

quality (such as the first bound reported in UB5). A computation time of ‘0.00’ for some instances

means less than 5 ms. As the time required to compute the bounds LB2, LB3, UB2 and UB3 is

almost the same, it is only mentioned once: in the field LB2. The time limit has been set to one

hour (3600s). An asterisk is reported for the case when computation times exceed this limit. For

the case of bounds which could not be computed within this time limit and which are obtained by

applying a constraint generation algorithm, i.e. UB1 and UB4, the reported value corresponds to

the optimal objective of the last relaxation solved. For the bounds relying on the resolution of a

single semidefinite program (LB1, LB2, LB3, UB2, UB3, UB5) we let the solver terminate the

optimization process even in the cases when the time limit was exceeded.

On random graphs the best lower bounds have been obtained with LB2. Regarding computation

times, LB1 is also interesting for the largest instances among the random graphs (Table 2). LB0

tends to dominate the other lower bounds on particularly structured graphs (such as Petersen,

Mycielski and Zykov graphs; also recall that, by Proposition 12, LB0 coincides with Z∗FC for odd

cycles and planar graphs).

With respect to the upper bounds, UB1 gives the best results whenever it could be computed within

the time limits. Otherwise UB3 appears also to be interesting in terms of computation times and

quality of the bound.

6 Conclusion

Several approaches have been proposed to get many lower and upper bounds for the fractional

cut cover problem. Numerical experiments allowed us to evaluate the quality of these bounds and

their cost in terms of computing time. We first proposed a polynomial-time 1/α approximation
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algorithm based on a cutting-plane algorithm where an approximate separation oracle is used.

Then, approximating the cut polytope by the metric polytope we obtained some lower bounds that

are tight for some graph classes such as those not contractible to K5. Another relaxation based

on odd cycle inequalities implied that the bound is also tight for the more general class of weakly

bipartite graphs.

A general framework based on the generation of a set of independent normally distributed random

variables (one variable ue for each e ∈ E) and the construction, for each vertex i, of a random variable

Yi linearly depending on the variables (ue)e∈E was presented. We showed that upper bounds can

be obtained by solving an SOCP when the set E corresponds to tripartitions of V . When the

tripartitions are induced by the set of edges, we get simpler bounds. The case where tripartitions

are induced by cuts leads to upper bounds that are within a ratio of 1/α from optimum.

If alternately to tripartitions, we consider E = V and we solve an appropriate SDP instead of an

SOCP, we obtain another polynomial-time 1/α approximation algorithm. As a consequence, we got

new insights into the random hyperplane procedure of Goemans and Williamson’s algorithm for the

maximum cut problem.

To conclude, let us mention some of the numerous questions deserving investigation. We assumed in

the presented framework that the variables ue are normally distributed. One might consider other

distributions for which the analysis can be conducted and the obtained optimization problems still

remain easy to solve. Another natural extension that can be considered is the fractional multi-cut

cover problem.
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