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SUMMARY

We present a new pseudo-spectral open-source code nicknamed pizza. It is dedicated to the
study of rapidly-rotating Boussinesq convection under the 2-D spherical quasi-geostrophic ap-
proximation, a physical hypothesis that is appropriate to model the turbulent convection that de-
velops in planetary interiors. The code uses a Fourier decomposition in the azimuthal direction
and supports both a Chebyshev collocation method and a sparse Chebyshev integration formu-
lation in the cylindrically-radial direction. It supports several temporal discretisation schemes
encompassing multi-step time steppers as well as diagonally-implicit Runge-Kutta schemes.
The code has been tested and validated by comparing weakly-nonlinear convection with the
eigenmodes from a linear solver. The comparison of the two radial discretisation schemes has
revealed the superiority of the Chebyshev integration method over the classical collocation
approach both in terms of memory requirements and operation counts. The good parallelisa-
tion efficiency enables the computation of large problem sizes with O(104 × 104) grid points
using several thousands of ranks. This allows the computation of numerical models in the tur-
bulent regime of quasi-geostrophic convection characterised by large Reynolds Re and yet
small Rossby numbers Ro. A preliminary result obtained for a strongly supercritical numerical
model with a small Ekman number of 10−9 and a Prandtl number of unity yields Re ≃ 105 and
Ro ≃ 10−4. pizza is hence an efficient tool to study spherical quasi-geostrophic convection
in a parameter regime inaccessible to current global 3-D spherical shell models.

Key words: Numerical modelling – Planetary interiors – Core.

1 INTRODUCTION

Convection under rapid rotation is ubiquitous in astrophysical bod-

ies. The liquid iron cores of terrestrial planets or the atmospheres of

the gas giants are selected examples where turbulent convection is

strongly influenced by rotational effects (e.g. Aurnou et al. 2015).

Such turbulent flows are characterised by very large Reynolds num-

bers Re > 108 and yet small Rossby numbers Ro < 10−5,

Ro being defined as the ratio between the rotation period and

the convective overturn time. This specific combination of Re ≫
1 and Ro ≪ 1 corresponds to the so-called turbulent quasi-

geostrophic regime of rotating convection (e.g. Julien et al. 2012;

Stellmach et al. 2014). This implies that, in absence of a magnetic

field, the pressure gradients balance the Coriolis force at leading or-

der. As a consequence, the convective flow shows a pronounced in-

variance along the axis of rotation. At onset of rotating convection

for instance, the flow pattern takes the form of quasi-geostrophic

elongated columnar structures that have a typical size of E1/3,

where E = ν/Ωd2 is the Ekman number with ν the kinematic

viscosity, Ω the rotation frequency and d the thickness of the con-

vective layer (e.g. Busse 1970; Dormy et al. 2004). Convection in

natural objects corresponds to extremely small Ekman numbers

with for instance E ≃ 10−15 in the Earth core or E ≃ 10−18

in the gas giants. The quasi-geostrophy of the convective flow is

expected to hold as long as the dynamics is dominated by rotation,

or in other words as long as the buoyancy force remains relatively

small compared to the Coriolis force (Gilman 1977; Julien et al.

2012; King et al. 2013; Cheng et al. 2015; Horn & Shishkina 2015;

Gastine et al. 2016).

Many laboratory experiments of rotating convection in spheri-

cal geometry have been carried out, either under micro-gravity con-

ditions (e.g. Hart et al. 1986; Egbers et al. 2003); or on the ground

using the centrifugal force as a surrogate of the radial distribution

of buoyancy (e.g. Busse & Carrigan 1974; Sumita & Olson 2003;

Shew & Lathrop 2005). Because of their limited size, those exper-

iments could only reach E ≃ 5 × 10−6, far from the geophysi-

cal/astrophysical regime. In complement to the laboratory experi-

ments, rotating convection in spherical geometry can also be stud-

ied by means of three-dimensional global numerical simulations.

Because of computational limitations, those numerical models are

currently limited to E & 10−7, Re . 104 and Ro & 10−3,

hardly scratching into the turbulent quasi-geostrophic (hereafter

QG) regime (Gastine et al. 2016; Schaeffer et al. 2017). Reaching
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lower Ekman numbers is hence mandatory to further explore this

regime with Re≫ 1 and Ro≪ 1.

A way to alleviate the computational constraints inherent in

global 3-D computations is to consider a spherical QG approxima-

tion of the convective flow (e.g. Busse & Or 1986; Cardin & Olson

1994; Plaut & Busse 2002; Aubert et al. 2003; Morin & Dormy

2004; Gillet & Jones 2006; Calkins et al. 2012; Teed et al. 2012;

Guervilly & Cardin 2017; More & Dumberry 2018) . The under-

lying assumption of the spherical QG approximation is that the

leading-order cylindrically-radial and azimuthal velocity compo-

nents are invariant along the axis of rotation z. Under this ap-

proximation, the variations of the axial vorticity along the rotation

axis are also neglected and an averaging of the continuity equa-

tion along the rotation axis implies a linear dependence of the ax-

ial velocity on z (Schaeffer & Cardin 2005a; Gillet & Jones 2006).

The spherical QG approximation hence restricts the computation

of the evolution of the convective velocity to two dimensions only.

This is a limitation compared to the 3-D QG convective models

developed by Calkins et al. (2013) which allow spatial modula-

tions of the convective features along the rotation axis. Because

of the radial distribution of the buoyancy forcing in spherical ge-

ometry, the temperature is not necessarily well-described by the

quasi-geostrophic approximation. Spherical QG models with either

a three-dimensional or a two-dimensional treatment of the tempera-

ture however yield very similar results (Guervilly & Cardin 2016).

Despite those approximations, the different implementations of the

2-D spherical QG models (e.g. Aubert et al. 2003; Gillet & Jones

2006; Calkins et al. 2012; Teed et al. 2012; Guervilly & Cardin

2017) have been found to compare favourably to 3-D direct nu-

merical simulations in spherical geometry (e.g. Aubert et al. 2003;

Schaeffer & Cardin 2005a; Plaut et al. 2008). This indicates that

such 2-D spherical QG models could be efficiently used to ex-

plore the turbulent QG regime of convection with E < 10−8

and Re & 105, a parameter regime currently inaccessible to 3-

D computations. Quasi-geostrophy is expected to hold as long as

the dynamics is dominated by rotation, or in other words as long

as the buoyancy force remains relatively small compared to the

Coriolis force (Gilman 1977; Julien et al. 2012; King et al. 2013;

Cheng et al. 2015; Horn & Shishkina 2015; Gastine et al. 2016).

The spatial discretisation strategy adopted in spherical QG

models usually relies on a hybrid scheme with a truncated Fourier

expansion in the azimuthal direction φ and second-order finite dif-

ferences in the cylindrically-radial direction s (e.g. Aubert et al.

2003; Calkins et al. 2012). Note that Brummell & Hart (1993) and

Teed et al. (2012) rather employed a spectral Chebyshev colloca-

tion technique in s but in the case of a cartesian QG model. The

vast majority of those numerical codes adopt a pseudo-spectral ap-

proach where the nonlinear terms are treated in the physical space

and time-advanced with an explicit AdamsBashforth time scheme,

while the linear terms are time-advanced in the Fourier space using

a CrankNicolson scheme. In contrast to 3-D models where several

codes with active on-going developments are freely accessible to

the community (see Matsui et al. 2016), there is a no open-source

code for spherical QG convection available to the community.

The purpose of this study is precisely to introduce a new open-

source pseudo-spectral spherical QG code, nicknamed pizza.

pizza is available at https://github.com/magic-sph/pizza

as a free software that can be used, modified, and redistributed un-

der the terms of the GNU GPL v3 license. The package also comes

with a suite of python classes to allow a full analysis of the out-

puts and diagnostics produced by the code during its execution.

The code, written in Fortran, uses a Fourier decomposition in φ

and either a Chebyshev collocation or a sparse Chebyshev inte-

gration method in s (e.g. Stellmach & Hansen 2008; Muite 2010;

Marti et al. 2016). It supports a broad variety of implicit-explicit

time schemes encompassing multi-step methods (e.g. Ascher et al.

1995) and implicit Runge-Kutta schemes (e.g. Ascher et al. 1997).

The parallelisation strategy relies on the Message Passing Interface

(MPI) library.

The paper is organised as follows. Section 2 presents the equa-

tions for spherical QG convection. Section 3 and 4 are dedicated

to the spatial and temporal discretisation schemes implemented in

pizza. The parallelisation strategy is described in section 5. The

code validation and several examples are discussed in section 6 be-

fore concluding in section 7.

2 A QUASI-GEOSTROPHIC MODEL OF CONVECTION

Because of the strong axial invariance of the flow under rapid ro-

tation, the QG models approximate 3-D convection in spherical

geometry by a 2-D fluid domain which corresponds to the equa-

torial plane of a spherical shell. Using the cylindrical coordinates

(s, φ, z), the QG fluid domain hence corresponds to an annulus of

inner radius si and outer radius so rotating against the z-axis with

an angular frequency Ω. In the following, we adopt a dimensionless

formulation of the spherical QG equations using the annulus gap

d = so − si as a reference length scale and the viscous diffusion

time d2/ν as the reference time scale. The temperature contrast

∆T between both boundaries defines the temperature scale. Grav-

ity is assumed to grow linearly with the cylindrical radius s and is

non-dimensionalised using its value at the external radius go.

The formulation of the QG model implemented in pizza

is based on the spherical QG approximation introduced by

Busse & Or (1986) and further expanded by Aubert et al. (2003)

and Gillet & Jones (2006) to include the effects of Ekman pumping.

Following Schaeffer & Cardin (2005a) and Gillet & Jones (2006)

the axial velocity uz is assumed to vary linearly with z. Under this

assumption, the Boussinesq continuity equation under the spherical

QG approximation yields

1

s

∂(sus)

∂s
+

1

s

∂uφ

∂φ
+ βus = 0 , (1)

where

β =
1

h

dh

ds
= −

s

h2
, (2)

and h = (s2o − s2)1/2 is half the height of the geostrophic

cylinder at the cylindrical radius s. We adopt a vorticity-

streamfunction formulation to fulfill the QG continuity equa-

tion (1). The cylindrically-radial and azimuthal velocity compo-

nents are hence expanded as follows

us =
1

s

∂ψ

∂φ
, uφ = uφ −

∂ψ

∂s
− βψ, (3)

where the streamfunctionψ accounts for the non-axisymmetric mo-

tions, while uφ corresponds to the axisymmetric zonal flow compo-

nent, the overbar denoting an azimuthal average. The axial vorticity

ω is then expressed by

ω =
1

s

∂(suφ)

∂s
− Lβψ, (4)

where the operator Lβ is defined by

Lβψ = ∆ψ +
1

s

∂(βsψ)

∂s
.

https://github.com/magic-sph/pizza
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In the above equation, ∆ is the Laplacian operator in cylindrical

coordinates. Under the QG approximation, the time evolution of

the axial vorticity becomes

∂ω

∂t
+∇ ·(uω) =

2

E
βus−

Ra

Pr

1

so

∂ϑ

∂φ
+F(E,u, ω)+∆ω , (5)

where ϑ denotes the temperature perturbation. The reader is re-

ferred to Gillet & Jones (2006) for a comprehensive derivation of

this equation. In the above equation, F(E,u, ω) corresponds to the

Ekman-pumping contribution (Schaeffer & Cardin 2005a) to non-

axisymmetric motions expressed by

F(E,u, ω) = −Υ

[
ω −

β

2
uφ + β

(
∂

∂φ
−

5so
2h

)
us

]
. (6)

where

Υ =
(so
E

)1/2 1

(s2o − s2)3/4
.

To ensure a correct force balance in the azimuthal direction, the

axial vorticity equation (5) is supplemented by an equation dedi-

cated to the axisymmetric motions (Plaut & Busse 2002). Taking a

φ-average of the azimuthal component of the Navier-Stokes equa-

tions yields

∂uφ

∂t
+ usω = −Υ uφ +∆uφ −

uφ

s2
, (7)

where the first term in the right-hand-side corresponds to

the Ekman-pumping contribution for the axisymmetric motions

(Aubert et al. 2003). The governing equations for the temperature

perturbation under the QG approximation is given by

∂ϑ

∂t
+∇ · (uϑ) + βusϑ+ us

dTc

ds
=

1

Pr
∆ϑ , (8)

where Tc is the conducting background state (Aubert et al. 2003;

Gillet & Jones 2006). In the case of a fixed-temperature contrast

between si and so, Tc is given by

Tc =
α

ln η
ln[(1− η)s],

dTc

ds
=

α

s ln η
,

where α is a constant coefficient that can be used to rescale the

temperature contrast to get a better agreement with the z-average

of the conducting temperature of a 3-D spherical shell (Aubert et al.

2003; Gillet & Jones 2006). In the case of fixed temperature bound-

ary conditions,

α =
η

1− η

{
1

(1− η2)1/2
arcsinh

[
(1− η2)1/2

η

]
− 1

}
.

The dimensionless equations (4-8) are governed by the Ekman

number E, the Rayleigh number Ra and the Prandtl number Pr
defined by

E =
ν

Ωd2
, Ra =

αT go∆Td
3

νκ
, Pr =

ν

κ
, (9)

where αT is the thermal expansion coefficient and κ is the thermal

diffusivity.

We assume in the following no-slip and fixed temperature at

both boundaries. This yields

us = uφ = ϑ = 0 at s = si, so . (10)

With the definition of the streamfunction (Eq. 3), this corresponds

to

ψ =
∂ψ

∂s
= ϑ = uφ = 0 at s = si, so . (11)

3 SPATIAL DISCRETISATION

The unknowns us, uφ, ω and ϑ are expanded in truncated Fourier

series in the azimuthal direction up to a maximum order Nm. For

each field f = [us, uφ, ω, ϑ], one has

f(s, φk, t) ≈
Nm∑

m=−Nm

fm(s, t) eimφk ,

where φk = 2π(k−1)/Nφ with k = 1, ..., Nφ definesNφ equally-

spaced discrete azimuthal grid points. Since all the physical quan-

tities are real, f∗
−m = fm, where the star denotes a complex conju-

gate. Complex to real Fast Fourier Transforms (FFTs) can hence be

employed to transform each quantity from a spectral representation

to a grid representation

f(s, φk, t) = 2

Nm∑′

m=0

ℜ
{
fm(s, t) eimφk

}
, (12)

where the prime on the summation indicates that the m = 0 coeffi-

cient needs to be multiplied by one half. The inverse transforms are

handled by real to complex FFTs defined by

fm(s, t) =
1

Nφ

Nφ∑

k=1

f(s, φk, t) e
−imφk . (13)

Using Nφ ≥ 3Nm prevents aliasing errors when treating the non-

linear terms (Orszag 1971; Boyd 2001). This implies to discard the

Fourier modes with Nm < m ≤ Nφ when doing the direct FFT

(12) and to pad with zeroes when computing the inverse transforms

(13).

In the radial direction, the Fourier coefficients fm are further

expanded in truncated Chebyshev series up to degree Nc − 1

fm(sk, t) = C

Nc−1∑′′

n=0

f̂mn(t)Tn(xk) , (14)

where the hat symbols are employed in the following to denote the

Chebyshev coefficients. The discrete Chebyshev transform from a

spectral representation to a grid representation is given by

f̂mn(t) = C

Nr∑′′

k=1

fm(sk, t)Tn(xk) . (15)

In the above equations C = [2/(Nr − 1)]1/2 is a normalisation

factor and the double primes on the summations now indicate that

both the first and the last indices are multiplied by one half. Tn(xk)
is the nth-order first-kind Chebyshev polynomial defined by

Tn(xk) = Tkn = cos[n arccos(xk)] = cos

[
πn(k − 1)

Nr − 1

]
,

where

xk = cos

[
π(k − 1)

Nr − 1

]
, k = 1, ..., Nr,

is the kth-point of a Gauss-Lobatto grid with Nr collocation grid

points. For an annulus of inner radius si and outer radius so, the

Gauss-Lobatto interval that ranges from −1 to 1 is remapped to the

interval [si, so] by the following affine mapping

sk =
so − si

2
xk +

so + si
2

, k = 1, ..., Nr .

The choice of using Gauss-Lobatto grid points also ensures that
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fast Discrete Cosine Transforms of first kind (DCTs) can be em-

ployed to compute the transforms between Chebyshev representa-

tion and radial grid space (14-15). pizza relies on the FFTW⋆ li-

brary (Frigo & Johnson 2005) for all the FFTs and DCTs. This en-

sure that each single spectral transform is computed in O(N lnN)
operations, where N = [Nr, Nm].

3.1 Spectral equations using Chebyshev collocation

Several approaches can be employed to approximate the solution

of a differential equation using Chebyshev polynomials. The most

straightforward choice when dealing with a set of non-constant par-

tial differential equations such as Eqs. (4-8) is to resort to a Cheby-

shev collocation method (e.g. Canuto et al. 2006). In this kind of

approach, the unknowns can be either the Chebyshev coefficients

f̂n or the values of the approximate solution at the collocation

points f(xk). Both collocation techniques yield dense matrices

with similar condition numbers (Peyret 2002). The first one has

been widely adopted by the astrophysical and geophysical commu-

nities after the seminal work by Glatzmaier (1984).

3.1.1 Semi-discrete formulation

Expanding ω, ψ and ϑ in Fourier and Chebyshev modes yield the

following set of coupled semi-discrete equations for the time evo-

lution of ω̂m and ψ̂m for the non-axisymmetric modes withm > 0

C

Nc−1∑′′

n=0

{[
d

dt
Tkn −AC

mkn

]
ω̂mn(t) + BC

mknψ̂mn(t)

}
=

−

[
Ra

Pr

im

so

]
ϑm(sk, t)−Nωm(sk, t)

C

Nc−1∑′′

n=0

{
Tkn ω̂mn(t) + CC

mknψ̂mn(t)
}
= 0 ,

(16)

where the collocation matrices are expressed by

AC
mkn =T ′′

kn +
1

sk
T ′
kn −

[
m2

s2k
+Υk

]
Tkn,

BC
mkn =

Υkβk
2

T ′
kn+

βk

[
βkΥk

2
+

im

sk

(
imΥk −

5soΥk

2hk
−

2

E

)]
Tkn,

CC
mkn =T ′′

kn +

[
βk +

1

sk

]
T ′
kn −

[
dβk
ds

+
βk
s

+
m2

s2k

]
Tkn ,

In the above equations, the superscripts C have been introduced to

differentiate the collocation matrices from the forthcoming sparse

formulation. For clarity, a given function f discretised at the collo-

cation point xk is expressed as fk = f(xk). T
′
kn and T ′′

kn are the

first and second derivative of the nth-order Chebyshev polynomial

at the collocation point xk. Nωm(sk, t) corresponds to the Fourier

transform (13) of the advection terms that enters Eq. (5)

Nωm(sk, t) =
1

Nφ

Nφ∑

j=1

[∇ · (uω)] e−imφj .

⋆ http://fftw.org/

where Nφ = 3Nm to ensure that the nonlinear terms are alias-free

in φ (Orszag 1971).

Instead of introducing the intermediate variable ω, we could

rather have substituted its definition (4) into Eq. (5) to derive a

single time-evolution equation that would depend on ψ only. This

would imply to solve an equation of the form

∂

∂t

(
∂2ψ

∂s2

)
+ · · · =

∂4ψ

∂s4
+ · · ·

Though appealing this strategy is however not viable since this

kind of time-dependent problem has been shown to be uncondi-

tionally unstable when using Chebyshev collocation discretisation

(Gottlieb & Orszag 1977; Hollerbach 2000).

We proceed the same way to discretise the equations for the

mean azimuthal flow uφ (7)

C

Nc−1∑′′

n=0

[
d

dt
Tkn − T ′′

kn −
1

sk
T ′
kn+

(
Υk +

1

s2k

)
Tkn

]
ûφ0n

(t) = −Nuφ
(sk, t),

(17)

where the nonlinear term is expressed by

Nuφ
(sk, t) =

E

2
Υkuφ0

ω0 + 2

Nm∑

1

ℜ{usmω
∗
m} .

The first term in the right hand side corresponds to the self-

interaction of the zonal wind (Aubert et al. 2003). Finally, the spa-

tial discretisation of the temperature equation (8) yields

C

Nc−1∑′′

n=0

[
d

dt
Tkn −

1

Pr

(
T ′′
kn +

1

sk
T ′
kn −

m2

s2k
Tkn

)]
ϑ̂mn(t) =

[
im

sk

dTc

ds

]
ψm(sk, t)−Nϑm(sk, t) ,

(18)

where Nϑm(sk, t) corresponds to the FFT of the nonlinear terms

that enter Eq. (8):

Nϑm(sk, t) =
1

Nφ

Nφ∑

j=1

[∇ · (uϑ) + βkusϑ] e
−imφj .

3.1.2 Boundary conditions

In the collocation method, equations (16), (17) and (18) are pre-

scribed for the Nr − 2 internal collocation grid points. The re-

maining boundary points s = si and s = so are used to impose

the boundary conditions (11). This implies that the singularity of β
and its derivatives at the outer boundary so is not necessarily an is-

sue when using the collocation method since boundary conditions

provide additional constraints there. When a given physical field

f = [ψ, ω, ϑ, uφ] is subject to Dirichlet boundary conditions at

both boundaries, the following conditions on the Chebyshev coef-

ficients f̂n should be fulfilled (e.g. Canuto et al. 2006, Eq. 3.3.19)

Nc−1∑′′

n=0

f̂nm = 0, s = so;

Nc−1∑′′

n=0

(−1)nf̂nm = 0, s = si , (19)

http://fftw.org/
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while for Neumann boundary conditions (e.g. Canuto et al. 2006,

Eq. 3.3.23)

Nc−1∑′′

n=0

n2f̂nm = 0, s = so;

Nc−1∑′′

n=0

(−1)n+1n2f̂nm = 0, s = si .

(20)

Independently of the subsequent details of the chosen implicit-

explicit time scheme employed to time advance the QG equa-

tions, Eq. (16) forms a complex-type dense matrix operator of size

(2Nr × 2Nr) for each Fourier mode m. Figure 1a shows the struc-

ture of the matrix that enters the left-hand-side of Eq. (16). The

top Nr rows corresponds to the time-dependent vorticity equation

(5), while the bottom Nr rows corresponds to the streamfunction

equation (4). The four mechanical boundary conditions (11) are

imposed on the first and last rows of the top-right and bottom-right

quadrants of this matrix.

From a numerical implementation standpoint, Chebyshev

polynomials at the collocation points Tkn and their first and second

derivatives T ′
kn and T ′′

kn form dense real matrices of dimensions

(Nr×Nr) that are precalculated and stored in the initialisation pro-

cedure of the code. In pizza, the discretised equations (16-18) sup-

plemented by the boundary conditions (19) or (20) are solved using

LAPACK†. The LU decomposition is handled by the routine dgetrf

or its complex-arithmetic counterpart zgetrf and require O(N3
r )

operations per Fourier mode m. This needs to be done at the ini-

tialisation stage of the code or at each iteration where a change in

the time-step size occurs (see § 4). During each time step, the rou-

tines dgetrs (or zgetrs) are employed for the matrix solve and

correspond to O(N2
r ) operations per Fourier mode m. The amount

of memory required to store the dense complex-type matrix that

enters the left-hand-side of Eq. (16) grows as 64N2
r for one sin-

gle azimuthal wavenumber m for a double-precision calculation.

This corresponds to 1 Gigabyte of memory per Fourier mode for

Nr = 4096 and hence makes the collocation approach extremely

costly when Nr & 103.

3.2 Spectral equations using a Chebyshev integration method

To circumvent the limitations inherent in the collocation ap-

proach, several efficient Chebyshev spectral methods have been

developed (e.g. Coutsias et al. 1996; Julien & Watson 2009;

Olver & Townsend 2013). They all involve the solve of sparse ma-

trices that are almost banded and can be inverted in O(pNr) op-

erations, p being the number of bands of the matrices. One ap-

proach, first introduced by Clenshaw (1957), consists of integrating

q times a set of qth-order ordinary differential equations (ODEs)

in Chebyshev space (see also Fox & Parker 1968; Phillips & A.

1990; Greengard 1991). First limited to ODEs with constant co-

efficients, this method has been further extended by Coutsias et al.

(1996) to ODEs with rational function coefficients. The compari-

son of several Chebyshev methods for fourth-order ODEs carried

out by Muite (2010) showed the advantages of such a Chebyshev

integration method both in terms of matrix condition number and

computational cost in the limit of large Nr . This technique has

been successfully applied to the problem of rotating convection in

both Cartesian (Stellmach & Hansen 2008) and spherical geometry

(Marti et al. 2016).

† http://www.netlib.org/lapack/
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Figure 1. Representation of the coefficients of the left-hand-side matrices

obtained for m = 4 for a setup with E = 10−3, Ra = 3 × 104 and

Pr = 1 and a CNAB2 time scheme with a fixed δt = 10−4. (a) corre-

sponds to the collocation method (Eq. 16). T corresponds to the matrix with

the coefficients Tkn = Tn(xk). (b) corresponds to the Chebyshev integra-

tion method with boundary conditions imposed as the first four tau lines

(Eq. 25). (c) corresponds to Chebyshev integration method with boundary

conditions enforced via a Galerkin formulation (Eq. 32). For the three pan-

els, the matrix coefficients have been normalised by their maxima such that

they share the same color axis. Zero entries are displayed in white.

3.2.1 Semi-discrete formulation

The Chebyshev integration methodology relies on the following in-

definite integral identity (e.g. Canuto et al. 2006, Eq. 2.4.23)
∫
Tn(x)dx =

1

2

[
Tn+1(x)

n+ 1
−
Tn−1(x)

n− 1

]
for n > 1, (21)

which in its discrete form corresponds to the following sparse op-

erator

Îkn = −
1

2k
δk+1,n +

1

2k
δk−1,n for k > 1,

where δ corresponds to the Kronecker symbol. Identities for multi-

ple integration can then be easily derived by recursive applications

of Eq. (21).

Because of the singularity of β, we first need to regularise the

set of equation (4-8) to make it suitable for a Chebyshev integration

method. We hence adopt the following different definition for the

streamfunction Ψ

us =
1

s

∂[ζ(s)Ψ ]

∂φ
; uφ = uφ −

∂[ζ(s)Ψ ]

∂s
− βζ(s)Ψ .

Using ζ(s) = h2 = s2o − s2 then yields

us =
h2

s

∂Ψ

∂φ
; uφ = uφ − h2 ∂Ψ

∂s
+ 3s Ψ . (22)

From these definitions, one derives the following expression for the

axial vorticity ω

ω =
1

s

∂(suφ)

∂s
−LIΨ , (23)

where the operator LI is given by

LIΨ = ∆
(
h2Ψ

)
−

1

s

∂

∂s

(
s2Ψ

)
.

The expansion of Ψ and ϑ in Fourier modes yields the follow-

ing equation for the time evolution of Ψ for the non-axisymmetric

http://www.netlib.org/lapack/
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Fourier modes

[(
∂

∂t
−∆

)
LI −

2

E
im

]
Ψm =

Ra

Pr

im

so
ϑm+Nωm−Fǫ(E,Ψm) .

In the above equation, the classical Ekman pumping term (Eq. 6)

has been replaced by the approximated form Fǫ defined by

Fǫ = Υǫ

[
LI +

s

2

∂

∂s
−

(
3s2

2h2
ǫ

+m2 +
5imso
2hǫ

)]
Ψm (24)

where hǫ = [(so + ǫ)2 − s2]1/2 corresponds to half the height of

a geostrophic cylinder that would intersect a sphere with a slightly

larger radius so + ǫ, with ǫ ≪ 1. Υǫ is defined accordingly by

Υǫ = s
1/2
o /E1/2/h

3/2
ǫ . This implies that Fǫ corresponds to the

exact Ekman pumping contribution that would occur in a spherical

QG set-up with an outer radius so + ǫ. In other words, the approxi-

mated Ekman pumping Fǫ tends to approach the exact contribution

F in the limit of vanishing ǫ. This approximation is required when

using a Chebyshev integration method to avoid the outer boundary

singularity of the exact Ekman pumping term and to get a good

spectral representation of this quantity once transformed to Cheby-

shev space. The error introduced by this approximation will be fur-

ther assessed in § 6.

In addition, the Ekman pumping term requires special care

since it comprises non-rational function coefficients. In contrast to

the collocation method where it can be treated implicitly without

any additional cost, this term shall hence be treated as yet another

non-linear term since its implicit treatment would yield a dense op-

erator with the Chebyshev integration method (Hiegemann 1997).

The equation for the time evolution of Ψ is regularised by a

multiplication by s4 and then integrated four times to yield

∫∫∫∫
s4
[(

∂

∂t
−∆

)
LI −

2

E
im

]
Ψm = αr3 + βr2 + γr + δ

+

∫∫∫∫
s4
[
Ra

Pr

im

so
ϑm +Nωm − Fǫ(E,Ψm)

]
,

(25)

where α, β, γ and δ are constant of integration that will not be re-

quired once this equation has been supplemented by boundary con-

ditions. At this stage, any single term that enters the above equation

can be written as the product xq∂pf/∂xp, where p and q are pos-

itive integers. Following Marti et al. (2016), this equation is then

integrated by parts until no differential operator remains, such that

each term has the following form

4∑

p=0

∫
· · ·

∫

︸ ︷︷ ︸
p×

(∑

q

xqf(x)

)
dxp .

After expanding f(x) in Chebyshev polynomials using Eq. (14),

the semi-discrete representation of Eq. (25) can be derived by mul-

tiple application of the recurrence relation (21). This yields

Nc−1∑′′

n=0

(
d

dt
AI

mkn − BI
mkn

)
Ψ̂mn(t) =

Nc−1∑′′

n=0

CI
kn

[
Ra

Pr

im

so
ϑ̂mn(t) + N̂ωmn − F̂ǫ n(E,Ψm)

]
,

(26)

for k > 4. AI
mkn, BI

mkn, and CI
kn are the discrete representations

of the following operators

AI
m =

∫∫∫∫
s4LI ; B

I
m =

∫∫∫∫
s4
(
∆LI +

2

E
im

)
;

CI =

∫∫∫∫
s4

The internal matrix elements are determined using the freely avail-

able python package developed by Marti et al. (2016)‡ that allows

the symbolic computation of those operators§. Excluding bound-

ary conditions, AI
m, BI

m and CI correspond to band matrices with

pu super-diagonals and pℓ sub-diagonals that have a bandwidth de-

fined by

q = pℓ + pu + 1 .

The bandwidth of AI
m, BI

m, and CI is 17, 13 and 17, respectively.

We proceed the same way to establish the equations for the

axisymmetric zonal flow component and for the temperature per-

turbation. Eq. (7) and Eq. (8) are multiplied by s2 and integrated

twice to yield

Nc−1∑′′

n=0

(
d

dt
DI

kn − EI
kn

)
ûφ0n(t) =

−

Nc−1∑′′

n=0

DI
kn

[
N̂uφmn + Υ̂ǫuφ0n

]
,

(27)

for the axisymmetric zonal flow component and

Nc−1∑′′

n=0

(
d

dt
DI

kn −
1

Pr
FI

kmn

)
ϑ̂mn(t) =

−

Nc−1∑′′

n=0

Dkn

[
im

̂(
h2

s

dTc

ds
Ψm

)

n

+ N̂ϑmn

]
,

(28)

for the temperature. Both equations are only valid for k > 2. DI
kn,

EI
kn and FI

mkn are the discrete representation of the following op-

erators

DI =

∫∫
s2; EI = s2 − 3

∫
s; FI

m =

∫∫
s2∆ .

The bandwidth of DI , EI and FI
m is 9, 5 and 5, respectively. In con-

trast to the semi-discrete equations obtained with the collocation

approach, the right-hand-sides of Eq. (26-28) now involve nonlin-

ear terms that are in Chebyshev space. To avoid aliasing errors, the

Chebyshev coefficients of nonlinear terms that have n > 2Nr/3
are hence set to zero (Orszag 1971).

3.2.2 Boundary conditions

At this stage, the system of equation (26-28) needs to be supple-

mented by boundary conditions. Given the definition of Ψ , the rigid

mechanical boundary conditions that require the cancellation of us

and uφ at both boundaries are already ensured by the three follow-

ing identities:

Ψ(s = si) =
∂Ψ

∂s
(s = si) = 0, Ψ(s = so) = 0 . (29)

‡ It can be downloaded as part of the supplementary materials of the study

by Marti et al. (2016) here.
§ https://www.sympy.org/

https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2016GC006438&file=ggge21074-sup-0002-2016GC006438-s02.zip
https://www.sympy.org/
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An extra boundary condition on Ψ is thus required. Following

Bardsley (2018), we make the ansatz

Ψ ∼ (s2o − s2)n when s→ so .

This yields the following expression for the viscous term

∆LIΨ =
1

s4
(s2o − s2)n−3

[
8n s8o (−2n3 + 3n2 + 5n− 6)

]
,

when s→ so. A finite solution requires either n > 3 or the cancel-

lation of the poynomial on n, which has four roots (−3/2, 0, 1, 2).
n = −3/2 is not allowed and n = 0 is redundant with the cancel-

lation of Ψ at s = so. Hence the first possible solution is n = 1
which yields

Ψ ∼ s2 − s2o when s→ so .

This corresponds to the following additional boundary condition

∂3Ψ

∂s3
= 0 for s = so . (30)

When using the Chebyshev integration method, the boundary

conditions can be either enforced via the tau-Lanczos method or by

setting up an adapted Galerkin basis function (Canuto et al. 2006;

Boyd 2001). In the tau-Lanczos formulation, the top rows of the

matrices are used to enforce the boundary conditions, which are ac-

tually identical to the ones used in the collocation method (Eqs. 19-

20). The fourth condition on Ψ given in Eq. (30) corresponds to the

following last tau line (see Julien & Watson 2009)

Nc−1∑′′

n=0

n2(n2 − 1)(n2 − 4) Ψ̂n = 0 . (31)

Figure 1b shows the structure of the matrix that enters the left-hand-

side of Eq. (26) when the boundary conditions are enforced using

a tau-Lanczos formulation. The two first rows of the matrix corre-

spond to the Dirichlet boundary conditions (Eqs. 19 and 29), the

third one to the above equation and the fourth one to the Neumann

boundary condition (Eqs. 20 and 29). Below those four full lines

the matrix has a banded structure with 8 sub- and super-diagonals.

This corresponds to a so-called bordered matrix wich can be in-

verted in O(17Nr) operations as long as the number of full rows is

small compared to the problem size (e.g. Boyd 2001). Appendix A

gives the details of the matrix inversion procedure as implemented

in pizza.

We proceed the same way for the boundary conditions on the

axisymmetric zonal flow and on the temperature. In those cases the

Dirichlet boundary conditions (19) are imposed as the two first tau

lines of the matrix, while the banded structure below is given by

(27) and (28), respectively.

Alternatively, the boundary conditions can be imposed by in-

troducing a suitable Galerkin basis. The underlying idea is to de-

fine basis functions that satisfy the boundary conditions such that

the solutions expressed on this set of functions will also directly

fulfill the boundary conditions. The Galerkin basis of functions φm

is usually defined as a linear combination of a small number nc of

Chebyshev polynomials

φn(x) =

nc−1∑

i=0

γn
i Tn+i(x) .

We first construct the Galerkin basis for the four boundary condi-

tions on Ψ (Eqs. 29 and 30). Following Julien & Watson (2009), the

tau conditions (19, 20, 31) are used to establish a related Galerkin

set. Appendix B gives the details of the calculation of the γn
i coef-

ficients for 0 ≤ i ≤ 4. Ψ is then decomposed on the Galerkin basis

as follows

Ψ(s) =

Nr−5∑

n=0

Ψ̃nφn(x) ,

where the tilda notation denotes the Galerkin coefficients. The

Galerkin coefficients Ψ̃ relate to the Chebyshev coefficients Ψ̂ via

Ψ̂ = SΨ Ψ̃ ,

where SΨ is the stencil matrix that contains the coefficients γi.
For the Galerkin basis employed for the equation on Ψ , SΨ is a

band matrix with four sub-diagonals. The Galerkin formulation of

Eq. (26) can be hence written in its matrix form as

P4

(
dAI

m

dt
− BI

m

)
SΨ Ψ̃m = P4C

I

[
Ra

Pr

im

so
ϑ̂m + N̂ωm − F̂ǫ

]
,

(32)

where P4 is an operator that removes the top four rows of the

matrices, which correspond to the number of boundary conditions

(Julien & Watson 2009). Figure 1c shows the structure of the ma-

trix that enters the left-hand-side of Eq. (32). Compared to the bor-

dered matrix obtained when using the tau method, the matrix has

now a pure banded structure with an increased bandwidth with 8

sub- and 12 super-diagonals. Those matrices could be solved using

standard band matrix solvers. In pizza, the LU decomposition is

handled by the LAPACK routine dgbtrf or its complex arithmetic

counterpart zgbtrf in O(q2Nr) operations per Fourier mode m.

dgbtrs (or zgbtrs) routines are then employed for the matrix

solve in O(q Nr) operations per Fourier mode m.

We proceed the same way for the zonal velocity and the

temperature equations by defining a Galerkin basis that ensures

Dirichlet boundary conditions at both boundaries. Several differ-

ent Galerkin basis sets that satisfy this type of boundary conditions

have been frequently used in the context of modelling rotating con-

vection (e.g. Pino et al. 2000; Stellmach & Hansen 2008). Follow-

ing Julien & Watson (2009), we decide here to adopt the following

set

φn(x) = Tn+2(x)− Tn(x), for n < Nr − 3 . (33)

In matrix form, the Galerkin formulations of equations (27) and

(28) yield

P2

(
dDI

dt
− EI

)
SD ũφ0

= − P2D
I
[
N̂uφm + Υ̂ǫuφ0

]
, (34)

for the axisymmetric zonal flow component and

P2

(
dDI

dt
−

FI
m

Pr

)
SD ϑ̃m = −P2D

I

[
im

̂(
h2

s

dTc

ds
Ψm

)
+ N̂ϑm

]
,

(35)

for the temperature, where SD is the stencil matrix (33) and P2 is

an operator that removes the top two rows.

We note that different type of boundary conditions, such as

stress-free and/or fixed flux thermal boundary conditions, would

necessitate the derivation of dedicated Galerkin bases following a

procedure similar to the one discussed in the appendix B.

Previous analysis by Julien & Watson (2009) showed that the

Galerkin approach usually yield matrices with a better condition

number than the bordered matrices obtained when using the tau-

Lanczos method. This is particularly critical when 2-D or 3-D

Chebyshev domains are considered but remains acceptable for 1-

D problem as considered here (see Table 1 in Julien & Watson
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2009). The Galerkin approach should hence be privileged as long

as homogeneous boundary conditions are enforced, while inhomo-

geneous boundary conditions for which a Galerkin description be-

comes cumbersome are easier to handle with a tau-Lanczos formu-

lation.

4 TEMPORAL DISCRETISATION

The equations discretised in space can be written as a general ordi-

nary differential equation in time where the right-hand-side is split

in two contributions

dy

dt
= E(y, t) + I(y, t), y(t0) = y0, (36)

where I(y, t) corresponds to the linear terms, while E(y, t) cor-

responds to the nonlinear advective terms. Temporal stability con-

straints coming from the linear terms that enter Eqs. (5-8) is usu-

ally more stringent that the one coming from the nonlinear terms.

Except for weakly nonlinear calculations, this precludes the usage

of purely explicit time schemes such as the popular fourth order

Runge-Kutta (e.g. Grooms & Julien 2011). Although they offer an

enhanced stability, purely implicit schemes are extremely costly

since they involve the coupling of all Fourier modes due to the im-

plicit treatment of the nonlinear terms. The potential gain in time

step size is hence cancelled by the numerical cost associated with

the solve of large matrices. In the following, we hence only con-

sider implicit-explicit schemes (hereafter IMEX) to solve Eq. (36)

and to produce the numerical approximation yn ≃ y(tn). We first

consider the general k-step IMEX linear multistep scheme

yn+1 =
k∑

j=1

ajyn+1−j + δt

(
k∑

j=1

bEj En+1−j +
k∑

j=0

bIj In+1−j

)
,

(37)

where En+1−j = E(yn+1−j , tn+1−j) and In+1−j =
I(yn+1−j , tn+1−j). The vectors a, bE and b

I correspond to the

weighting factors of the IMEX multistep scheme. For instance, the

commonly-used second-order scheme assembled from the combi-

nation of a Crank-Nicolson for the implicit terms and a second-

order Adams-Bashforth for the explicit terms (hereafter CNAB2)

corresponds to the following vectors a = (1, 0), bI = (1/2, 1/2)
and b

E = (3/2,−1/2) for a constant δt. In practice, Eq. (37) is

rearranged as follows

(I − bI0 δtI) yn+1 =

k∑

j=1

ajyn+1−j

+ δt

k∑

j=1

(
bEj En+1−j + bIj In+1−j

)
,

(38)

where I is the identity matrix. In addition to CNAB2, pizza

supports several semi-implicit backward differentiation schemes

of second, third and fourth order that are known to have good

stability properties (heareafter SBDF2, SBDF3 and SBDF4, see

Ascher et al. 1995; Garcia et al. 2010). The interested reader is re-

ferred to the work by Wang & Ruuth (2008) for the derivation of

the vectors a, bI and b
E when the time step size is variable. Ta-

ble 1 summarises the main properties of the multistep schemes im-

plemented in pizza.

Multistep schemes suffer from several possible limitations:

(i) when the order is larger than two, they are not self-starting

and hence require to be initiated with another lower-order start-

ing scheme; (ii) limitations of the time step size to maintain sta-

bility is more severe for higher-order schemes (e.g. Ascher et al.

1995; Carpenter et al. 2005). In contrast, the multi-stage Runge-

Kutta schemes are self-starting and frequently show a stability re-

gion that grows with the order of the scheme. To examine their

efficiency in the context of spherical QG convection, we have also

implemented in pizza several Additive Runge Kutta schemes. For

this type of IMEX, we restrict ourself to the so-called Diagonally

Implicit Runge Kutta schemes (hereafter DIRK) for which each

sub-stage can be solved sequentially. For such schemes, the equa-

tion (36) is time-advanced from tn to tn+1 by solving ν sub-stages

(
I − aIiiδt I

)
yi = yn + δt

i−1∑

j=1

(
aEi,jEj + aIi,jIj

)
, 1 ≤ i ≤ ν,

(39)

where yi is the intermediate solution at the stage i. Finally the eval-

uation of

yn+1 = yn + δt
ν∑

j=1

(
bEj Ej + bIj Ij

)
.

allows the determination of yn+1. A DIRK scheme with ν stages

can be represented in terms of the following so-called Butcher ta-

bles

c
I

A
I

b
I

=

cI1 aI11

cI2 aI21 aI22
..
.

..

.
..
.

. . .

cIν aIν1 aIν2 · · · aIνν

bI1 bI2 · · · bIν

,

for the implicit terms, and

c
E

A
E

b
E =

0 0
cE2 aE21 0
...

...
...

. . .

cEν aEν1 aEν2 · · · 0

bE1 bE2 · · · bEν

,

for the explicit terms, where zero values above the diagonal have

been omitted. In the following, we only consider the stiffly accu-

rate DIRK schemes for which the outcome of the last stage gives

the end-result, without needing any assembly stage (Ascher et al.

1997). This corresponds to bIj = aIνj and bEj = aEνj for 1 < j < ν.

In addition, to minimise the memory storage which is particularly

critical in the Chebyshev collocation approach, only the DIRK

schemes that involve one single matrix storage in the implicit

solve are retained, i.e. aIii is independent of i. The latter restriction

corresponds to the so-called SDIRK (Singly Diagonally Implicit

RungeKutta) schemes. In the following we discuss the convergence

and the stability properties of two second order –ARS222 from

Ascher et al. (1997) and LZ232 from Liu & Zou (2006)–; and two

third order SDIRK schemes –ARS443 from Ascher et al. (1997)

and BPR353 from Boscarino et al. (2013)–.

The nonlinear advection terms that enter Eqs. (4-7) are treated

explicitly, while the dissipation terms and the vortex streching

term in Eq. (5) are treated implicitly. As long as the fluid do-

main is entirely convecting, the buoyancy term that enters the vor-

ticity equation (5) can either be treated explicitly or implicitly

without a notable change of the stability properties of the IMEX
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Table 1. Time schemes implemented in pizza. The fifth (I) and the sixth columns (E) correspond to the number of implicit and explicit terms computed

for one time step, respectively. The seventh column (Storage) is the number of state vectors that need to be stored to time-advance one physical quantity. The

eighth column (Cost) corresponds to the elapsed wall time for one iteration normalised by the cost for one iteration of CNAB2. The last column contains the

maximum CFL α obtained for a case with E = 10−7, Ra = 2 × 1011 , Pr = 1 and ǫ = 10−3 which has been computed using the Chebyshev integration

and Galerkin methods with (Nr , Nc, Nm) = (1025, 682, 1280). The asterisks corresponds to the models which have been run with an explicit treatment of

the buoyancy term.

Name Family Reference Order I E Storage Cost α

SBDF4 Multi-step Wang & Ruuth (2008), Eq. (2.15) 4 1 1 8 1.01 0.19

SBDF3 Multi-step Peyret (2002), Eq. (4.83) 3 1 1 6 0.97 0.23

SBDF2 Multi-step Peyret (2002), Eq. (4.82) 2 1 1 4 0.96 0.21

CNAB2 Multi-step Glatzmaier (1984), Eq. (5b) 2 1 1 4 1 0.25

BPR353 SDIRK Boscarino et al. (2013), § 8.3 3 5 3 9 3.24 0.78∗

ARS443 SDIRK Ascher et al. (1997), § 2.8 3 4 3 9 3.66 0.71∗

ARS222 SDIRK Ascher et al. (1997), § 2.6 2 2 2 5 1.81 0.45∗

LZ232 SDIRK Liu & Zou (2006), § 6 2 2 2 6 1.86 0.42∗

(e.g. Stellmach & Hansen 2008). We can expect more significant

differences when some regions of the fluid are stably stratified.

An implicit treatment of the buoyancy term only implies that the

temperature equation (8) shall be first time-advanced to produce

ϑ(tn+1) before time-advancing the vorticity and streamfunction

(e.g. Glatzmaier 1984). The treatment of the Ekman pumping terms

depends on the spatial discretisation strategy: while this can be

treated implicitly without additional cost in the collocation method,

this term has to be treated explicitly when using the Chebyshev in-

tegration method.

For an illustrative purpose, we give here the time-stepping

equation for Ψ̂m when the Chebyshev integration method (Eq. 26)

is used in conjunction with an SDIRK time scheme (Eq. 39)

(
AI

m − aIiiδtB
I
m

)
Ψ̂m(ti) = AI

mΨ̂m(tn) + δt

i−1∑

j=1

aIi,j B
I
mΨ̂m(tj)

+δt

i−1∑

j=1

aEi,j C
I

[
Ra

Pr

im

so
ϑ̂m(tj) + N̂ωm(tj)− F̂ǫ(tj)

]
,

where the buoyancy term has been treated explicitly and 1 ≤ i ≤ ν.

This equation needs to be solved ν times per time step and the

outcome of the final stage produces the time-advanced quantity

Ψ̂m(tn+1) for the azimuthal wavenumber m. A summary of the

main properties of the SDIRK schemes implemented in pizza is

also given in Table 1.

Both families of time integrators (38) and (39) have a very

similar structure and can hence be implemented using a shared

framework, provided the programming language supports object-

oriented implementation (Vos et al. 2011). In pizza we rely on the

object-oriented features provided by the Fortran 2003 norm to im-

plement an abstract framework that allows easy switching between

different schemes while minimising the number of code lines.

The different time steppers have been validated by running

convergence tests. To do so, we consider a physical test problem

with E = 3 × 10−6, Ra = 107, Pr = 0.025 and initiate

the numerical experiment with a random temperature perturbation.

We then run the numerical model using an SBDF4 time stepper

until a statistically steady-state has been reached. This final state

serves as the starting conditions of a suite of numerical simula-

tions that use different fixed time step size δt between 10−9 and

3 × 10−6 over a fixed physical timespan t = 1.2 × 10−3. Fol-

lowing Grooms & Julien (2011), the error associated with the time

stepper is defined as the sum of the relative errors on ϑ, us and uφ,

where the relative error for one physical quantity f is expressed by

erel(f) =

[〈
(f − fref)

2
〉

〈f2
ref〉

]1/2
.

In the above equation, the angular brackets correspond to an inte-

gration over the annulus

〈f〉 =

∫ 2π

0

∫ so

si

f(s, φ) sdsdφ .

The fourth-order SBDF4 time stepper with the smallest time step

size δt = 10−9 has been used to define the reference solution fref.

Figure 2 shows the error as a function of δt for the time schemes

given in Table 1 for both the collocation method (left panel) and the

Chebyshev integration method with a Galerkin approach to enforce

the boundary conditions (right panel). All schemes converge with

their expected theoretical order until a plateau is reached around

3 × 10−9 for the Chebyshev collocation and 10−8 for the Cheby-

shev integration method. This can be attributed to the propagation

of rounding errors that occur in the spectral transforms and in the

calculation of the radial derivatives (Sánchez et al. 2004). In other

words, at this level of δt the error becomes dominated by the spatial

discretisation errors. For a given order, SDIRK schemes are found

to be more accurate than their multistep counterparts for the major-

ity of the cases.

This time scheme validation has been carried out with fixed

time step sizes on a physical test case that is close to the onset of

convection. To examine the efficiency of the different time schemes

to model quasi-geostrophic turbulent convection, we also perform

a stability analysis on a more turbulent setup. Indeed a precision

of a fraction of a percent is usually sufficient when considering pa-

rameter studies of turbulent rotating convection (e.g. Gastine et al.

2016). Hence, the determination of the largest time step size δt is of

practical interest to assess the efficiency of a given time scheme. To

do so, we consider a problem with E = 10−7, Ra = 2× 1011 and

Pr = 1, which is approximately 60 times supercritical. We first

time-advance the solution until the nonlinear saturation has been

reached using a CNAB2 time scheme. We then use the final state

of this computation as the starting conditions of several numerical

simulations that use different time schemes. Those simulations are

computed over 3× 10−4 viscous time, which roughly corresponds

to two turnover times. Since the advection terms are treated explic-

itly, the maximum eligible time step size must satisfy the following
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Figure 2. Relative error as a function of the time step size δt for several multistep and SDIRK time schemes when using Chebyshev collocation (left panel) and

Chebyshev integration method with boundary conditions enforced by a Galerkin approach (right panel). For comparison, the expected convergence orders have

been denoted by black lines. Those convergence analyses have been carried out at the saturated stage of a numerical setup with E = 3 × 10−6, Ra = 107

and Pr = 0.025. Spatial resolution corresponds to (Nr , Nc, Nm = 193, 193, 128) for the collocation method and (Nr , Nc, Nm = 193, 128, 128) for the

integration method. ǫ = 3× 10−3 has been assumed for the Chebyshev integration method.

Courant criterion

δt ≤ αmin

[(
max
s,φ

|us|

δs

)−1

,

(
max
s,φ

|uφ|

s δφ

)−1
]
, (40)

where δs correspond to the local spacing of the Gauss-Lobatto

grid and δφ = 2π/3Nm to the constant spacing in the azimuthal

direction. In the above equation, α corresponds to the Courant-

Friedrichs-Lewy number (hereafter CFL). To determine the CFL

number of each time scheme, we compute series of simulations

with different values of α and let the code runs with the max-

imum allowed δt that fulfills Eq. (40). This implies that δt will

change at each iteration and hence that the matrices will be rebuilt

at each time step. Since LU factorisation is very demanding when

using Chebyshev collocation (O(N3
r ) operations), we restrict the

stability analysis to the sparse Chebyshev integration method with

a Galerkin approach to enforce the boundary conditions. We use

the time evolution of the total enstrophy 〈ω2〉 as a diagnostic to

estimate the maximum CFL number α. Because of the clustering

of the Gauss-Lobatto grid points, the time step size limitation usu-

ally occurs in the vicinity of the boundaries. Since 〈ω2〉 reaches its

maximum value in the viscous boundary layers, any violation of

Eq. (40) yields spurious spikes in the time evolution of the total en-

strophy, well before the code actually crashes. For comparison, we

define a reference solution that has been run with an SBDF4 time

scheme with the smallest value of α = 0.05.

Figure 3a shows the time-averaged and the standard deviation

of 〈ω2〉 as a function of α for the time schemes given in Table 1.

The curves are comprised of two parts: one horizontal part where

the time-averaged total enstrophy remains in close agreement with

the reference case and the other featuring a rapid increase of both

the time-averaged and the standard deviation of 〈ω2〉. We hence

define the largest acceptable α for a given time scheme as the value

above which the time-averaged total enstrophy becomes more than

0.3% larger than the reference value. The rightmost column of Ta-

ble 1 documents the obtained values. All multi-step schemes ex-

hibit comparable CFL numbers with only a weak dependence on

the theoretical order of the scheme. This is in agreement with the

study by Carpenter et al. (2005) who report comparable time step

limitations for several SBDF schemes when the problem becomes

numerically stiff. In contrast, the SDIRK schemes allow signifi-

cantly larger CFL numbers with third-order schemes being more

stable than the second-order ones. We quantify the efficiency of a

time scheme by the ratio

σ =
α

cost
, (41)

where the cost corresponds to the average wall time of one iter-

ation without LU factorisation (see the before last column in Ta-

ble 1). Figure 3b shows a comparison of the relative efficiency of

the time schemes compared to CNAB2. Although the CFL num-

bers are larger for the SDIRK schemes, they actually have a sim-

ilar efficiency to multistep schemes due to their higher numeri-

cal cost. CNAB2 and ARS222 are found to be the most efficient

second-order schemes, while BPR353 and SBDF3 are the best

third-order schemes. The CFL numbers derived here are however

only indicative since the stability of the schemes is expected to

depend on the stiffness of the physical problem (e.g. Ascher et al.

1997; Carpenter et al. 2005). It is yet unclear whether the SDIRK

schemes considered here will be able to compete with the multi-

step methods in the limit of turbulent quasi-geostrophic convection.

Addressing this question would necessitate a systematic survey of

the limits of stability of the time schemes over a broad range of

Reynolds and Rossby numbers.

5 PARALLELISATION STRATEGY

The implementation of the algorithm presented before in pizza has

been designed to run efficiently on massively-parallel architectures.

We rely on a message-passing communication framework based on

the MPI (Message Passing Interface) standard. Several approaches

have been considered to efficiently parallelise spectral transforms

between physical and spectral space (e.g. Foster & Worley 1997).

Here we decide to resort to a transpose-based approach, such that

all the spectral transforms are applied to data that are local to each
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Figure 3. (a) Time-averaged total enstrophy 〈ω2〉 as a function of the CFL coefficient α for the time schemes given in Table 1. The error bars correspond

to one standard deviation and the horizontal dashed line corresponds to the time-averaged enstrophy of a numerical model computed with the SBDF4 time

scheme with α = 0.05. (b) Efficiency σ of the time schemes normalised by the efficiency of CNAB2. The vertical dotted line corresponds to a value of one.

This efficiency analysis has been carried out at the saturated stage of a numerical model with E = 10−7, Pr = 1,Ra = 2×1011 . This model was computed

using the Chebyshev integration and a Galerkin method with a spatial resolution of (Nr , Nc, Nm = 1025, 682, 1280) and ǫ = 10−3.
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Figure 4. Domain decompositions used in pizza. The left panel corre-

sponds to the MPI configuration where the radial levels are distributed

among ranks and allm’s are in processor, while the right panel corresponds

to the transposed configuration where the azimuthal wavenumbers are dis-

tributed and all radial level are in processor. The parallel transposition be-

tween those two representations is handled by mpi alltoallv collective

communications.

processor. Whenever needed global transpositions of the data ar-

rays are used to ensure that the dimension that needs to be trans-

formed becomes local.

In pizza the data is distributed in two different configura-

tions. In the first one, the radial level are distributed among MPI

ranks while all azimuthal wavenumbers are local to each processor.

This allows the computation of the 1D Fourier transforms (Eq. 12),

the nonlinear terms in the physical space and the backward in-

verse transforms (Eq. 13). At this stage the data are rearranged in

a second MPI configuration such that the wavenumbers m are dis-

tributed, while all radial levels are now in processor. Since each

processor can possibly have a different amount of data to be sent to

other processors, this parallel transposition is handled by the MPI

variant routine mpi alltoallv that offers dedicated arguments to

specify the amount of data to be sent and received from each part-

ner. This configuration is used to time-advance the solution either

via Chebyshev collocation (Eqs. 16-18) or via Chebyshev integra-

tion method (Eqs. 26-28). This implies the solve of linear problems

and possibly DCTs (Eq. 14) to transform the data from Chebyshev

to radial space. Figure 4 summarises the data distribution used in

pizza.

In the following, we examine the scalability performance of

pizza using the occigen cluster¶. This cluster consists of more

than 2000 computational nodes, each node being configured with

two Intel 12 cores E5-2690V3 series processor with a clock fre-

quency of 2.6 GHz. To build the executable, we make use of the

Intel compiler version 17.0, Intel MPI version 5.1.3, Intel MKL ver-

sion 17.0 for the linear solve and the matrix vector products and

FFTW version 3.3.5 for Fourier and Chebyshev transforms. We first

analyse the strong scaling performance of the code by running se-

quences of numerical simulations with several fixed problem size

and an increasing number of MPI ranks. The left panels in Figure 5

show the wall time per iteration as a function of the number of

cores for several problem sizes for both Chebyshev collocation and

Chebyshev integration methods. The resolution (Nr, Nm) range

from (97, 96) to (12289, 12288). Because of the dense complex-

type matrices of size (2Nr × 2Nr) involved in the time advance

of the coupled vorticity-streamfunction equation (16), we cannot

use the collocation method for the largest problem sizes since it

already requires more than 1 GB per rank when Nr = 1537 and

Nm = 1536 with 128 MPI ranks. For the spatial resolutions that

are sufficiently small to be computed on one single node, we ob-

serve an improved performance when the code is running on one

single processor (i.e. up to 12 cores) with the Chebyshev colloca-

tion. This is not observed in the sparse cases and hence might be

attributed to an internal speed-up of the dense matrix solver of the

Intel MKL library. Apart from this performance shift, both meth-

ods show a scalability performance that improves with the prob-

lem size. While the efficiency of the strong scalings are quickly de-

graded for Nranks > Nm/8 for small problem sizes, pizza shows

a very good scalability up to Nranks = Nm/2 for the largest prob-

lem sizes. The scalability performance of the collocation method is

usually better than the Chebyshev integration method for a given

¶ https://www.cines.fr/calcul/materiels/occigen

https://www.cines.fr/calcul/materiels/occigen
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Figure 5. Left panels: wall time per iteration as a function of the number of MPI ranks (strong scaling performance) for several spatial resolutions. Right

panels: wall time per iteration as a function of the local data volume per MPI task NrNm/Nranks (weal scaling performance). Panels (a) and (b) corresponds

to the models that use the Chebyshev collocation method, while panels (c) and (d) correspond to the models where the Chebyshev integration is were used

in conjunction with a Galerkin approach to enforce the boundary condition. In panels (a) and (c) the dotted black lines correspond to the ideal scalings. The

linear fits displayed in panels (b) and (d) have been computed from the cases with (Nr , Nm) = (1537, 1536). All the simulations have been computed using

the CNAB2 time scheme.

problem size. This has to do with the larger amount of computa-

tional work spent in solving the dense matrices, which compara-

tively reduces the fraction of the wall time that corresponds to the

MPI global transposes.

In complement to the strong scaling analyses, we also exam-

ine weak scaling performance tests. This consists of increasing the

number of MPI ranks and the problem size accordingly, such that

the amount of local data per rank stays constant. The spectral trans-

forms implemented in pizza require O(NrNm lnNm) operations

for the FFTs (Eq. 12) and O(NmNr lnNr) for the DCTs (Eq. 14).

The solve of the linear problems involved in the time advance of the

equations (4-8) grows like O(NmN
2
r ) for the collocation method

and only O(NmNr) for the Chebyshev integration method. With

the 1-D MPI domain decomposition discussed above, this implies

that an increase of the spatial resolution while keeping a fixed

amount of local data corresponds to an increase of the wall time

that should scale with O(Nr) for the collocation method and with

O(lnNr) for the Chebyshev integration method. The right panels

of Fig 5 show the wall time per iteration normalised by those the-

oretical predictions as a function of the data volume per rank ex-

pressed by NrNm/Nranks for both Chebyshev methods. Using the

simulations with a spatial resolution of (Nr, Nm) = (1537, 1536)
we compute the following best fits between the normalised execu-

tion time and the local data volume for each radial discretisation

scheme

tcoll.
run

Nr
= 2.2× 10−8

(
NrNm

Nranks

)0.98

,

tint.
run

lnNr
= 3.2× 10−7

(
NrNm

Nranks

)0.97

,

(42)

where the run time is expressed in seconds. For both methods,

the normalised wall time per iteration is nearly proportional to the

data volume per rank, indicating a good agreement with the ex-

pected theoretical scalings. We can make use of those scalings to

estimate the minimum theoretical execution time as a function of

the problem size. Based on the results of the strong scaling anal-

yses, we assume that pizza shows a good parallel efficiency up

to Nranks = Nm/2 when the collocation method is used and up

to Nranks = Nm/4 when a sparse Chebyshev formulation is em-

ployed. This yields

min(tcoll.
run ) = 4.4× 10−8N1.98

r ,

min(tint.
run) = 1.2× 10−6N0.97

r lnNr .
(43)

Figure 6 shows a comparison between the actual minimum wall

times for different spatial resolutions (see Fig. 5) and the above

scalings. A good agreement is found for the sparse Chebyshev for-
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Figure 6. Minimum wall time per iteration as a function of the problem size

NrNm. The lines correspond to the linear fits derived from the weak scal-

ing tests (see Fig. 5b and d) for both radial discretisation strategies assuming

Nranks = Nm/2 for the collocation method and Nranks = Nm/4 for the

Chebyshev integration method combined with a Galerkin enforcement of

boundary conditions. The symbols correspond to the minimum wall times

obtained in the strong scaling analyses (Fig. 5a and c).

mulation and for the collocation method withNrNm > 105. Since

the computational time of FFTs and DCTs still represents a sig-

nificant fraction of one time step for small problem sizes, this is

not surprising that the scaling given in Eq. (43) is only approached

for sufficiently large problem sizes when the collocation method is

employed.

Adopting a Chebyshev integration formulation for the radial

scheme provides a significant speed up over the collocation ap-

proach, with for instance a factor 10 gain when NrNm ≃ 107.

Furthermore, while the collocation method becomes intractable for

problem sizes with NrNm > 107 because of its intrinsic large

memory prerequisite, the sparse formulation can be employed for

spatial resolution larger than 104×104. Global synchronisation and

file lock contention can become an issue when reaching this range

of problem sizes. In pizza this is remedied by collective calls to

MPI-IO write operations to handle the outputting of checkpoints

and snapshots.

6 CODE VALIDATION AND EXAMPLES

6.1 Weakly-nonlinear convection

In absence of a documented benchmark of spherical QG convec-

tion, we test the numerical implementation by first looking at the

onset of convection. The underlying idea being to compare the re-

sults coming from a linear eigensolver with the results from pizza.

The comparison of the different radial discretisation strategies is of

particular interest to quantify the error introduced by the approxi-

mation of the Ekman pumping term involved in the sparse formu-

lation (Eq. 24). To determine the onset of spherical QG convec-

tion, we linearise the system of equation (4-8) and seek for normal

modes with

f(s, φ, t) = ℜ

(
∞∑

m=0

fm(s)eimφ+λt

)
,

where fm = (ψm, ϑm)T and λ = τ +iωd, τ being the growth rate

and ωd the angular frequency. Since there is no coupling between

the Fourier modes, we can seek for the solution fm of one individ-

ual azimuthal wavenumber. This forms the following generalised

Table 2. Onset of convection for E = 10−6, Pr = 0.025 and

ri/ro = 4/11 from Gillet et al. (2007) and obtained with the Linear

Solver Builder package. Note that the critical Rayleigh number Rac
from Gillet et al. (2007) have been normalised to match our definition.

Rac m ωd

Without Ekman pumping

LSB 1.3851 × 107 13 −1.3028 × 104

Gillet et al. (2007) 1.39× 107 13 −1.300× 104

With Ekman pumping

LSB 1.5231 × 107 14 −1.2705 × 104

Gillet et al. (2007) 1.53× 107 14 −1.268× 104

eigenvalue problem

λLβψm =
Ra

Pr

im

so
ϑm −

2

E

im

s
βψm − F(E,ψm) + ∆(Lβψm) ,

λϑm = ∆ϑm −
im

s

dTc

ds
ψm ,

(44)

that is supplemented by the boundary conditions (11). We solve

this generalised eigenvalue problem using the Linear Solver

Builder package (hereafter LSB) developed by Valdettaro et al.

(2007). The linear operators that enter Eq. (44) are discretised

on the Gauss-Lobatto grid using a Chebyshev collocation method

in real space (e.g. Canuto et al. 2006). The entire spectrum of

complex eigenvalues λ is first computed using the QZ algorithm

(Moler & Stewart 1973). One selected eigenvalue can then be used

as a guess to accurately determine the closest eigenpair using the

iterative Arnoldi-Chebyshev algorithm (e.g. Saad 1992). As indi-

cated in Table 2, the linear solver has been tested and validated

against published values of critical Rayleigh numbers for spheri-

cal QG convection with or without Ekman pumping (Gillet et al.

2007).

In the following we focus on weakly nonlinear QG convection

with E = 3 × 10−6 and Pr = 0.025 and a radius ratio ri/ro =
0.35, a physical set up that is quite similar to the one considered by

Gillet et al. (2007) for liquid Gallium. Figure 7 shows the critical

eigenmode (with τ ≃ 0) computed with LSB for these parame-

ters. The onset of convection takes the form of a thermal Rossby

wave that drifts in the retrograde direction with a critical azimuthal

wavenumber m = 12, a drifting frequency ωd = −9.42690× 103

and a critical Rayleigh numberRac = 9.55263×106 . The numeri-

cal convergence of this calculation has been assessed by computing

the Chebyshev spectra of the different eigenfunctions as illustrated

on Fig. 7c.

To validate the numerical implementation, the growth rate and

the drift frequency obtained with pizza are compared to the eigen-

values derived with LSB. This requires a finite growth rate τ , hence

we adopt in the following a marginally supercritical Rayleigh num-

ber Ra = 107 and compute the most critical eigenmodes for this

Ra both in absence and in presence of Ekman pumping. The cor-

responding eigenmodes (ψ, ϑ)T computed with LSB are then used

as starting conditions in pizza. A meaningful comparison neces-

sitates that the nonlinear calculation remains in the weakly non-

linear regime. We hence restrict the computation to a short time

interval of 10−2 viscous time, which roughly corresponds to 15

periods of the most unstable drifting thermal Rossby wave. To en-

sure that the numerical error is dominated by the spatial discretisa-

tion rather than by the temporal one, we employ the BPR353 time

scheme with a small time step size δt = 10−7 (see Fig. 2). Figure 8

shows a comparison of the time evolution of the temperature fluc-
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Figure 7. Eigenfunction of the first unstable mode for E = 3× 10−6 and Pr = 0.025. This mode has a critical Rayleigh number Rac = 9.55263× 106, a

drift frequency ωd = −9.42690 × 103 and an azimuthal wavenumber m = 12. (a) Temperature fluctuation ϑ in the equatorial plane. (b) Streamfunction ψ

in the equatorial plane. (c) Normalised Chebyshev spectra of the eigenfunction.

tuation ℜ(ϑm=12) at mid depth using the linear eigenmode calcu-

lated with LSB and using the different radial discretisation schemes

implemented in pizza. In absence of Ekman pumping (left pan-

els), the different radial schemes yield almost indiscernible time

evolution curves. The zoomed-in inset reveals a 6 significant digits

agreement between the eigenmode and the weakly nonlinear calcu-

lations. When the Ekman pumping contribution is included (right

panels), similar accuracy is recovered between the simulation com-

puted with the collocation method and the eigenmode. The two

nonlinear calculations that use the Chebyshev integration approach

show a more pronounced deviation due to the approximated Ekman

pumping term with ǫ = 3× 10−3.

To determine the growth rate and the drift frequency in the

nonlinear calculations, we fit the time evolution of ℜ(ϑm=12)
at mid depth with the function a0 cos(ωdt + φ0)e

τt using least

squares, the initial amplitude a0 and phase shift φ0 being deter-

mined by the starting conditions. Table 3 shows the obtained eigen-

pairs for the different radial schemes tested with several time inte-

grators and values of ǫ. Overall the best agreement with the eigen-

values are obtained when the third-order BPR353 time scheme

is employed. The superiority of the SDIRK scheme likely has to

do with the lack of self-starting capabilities of multistep schemes,

which hence require a lower-order starting time stepper to complete

the first iterations. This procedure introduces errors larger than the

theoretical order of the scheme that could account for the slightly

larger inaccuracy of those schemes. The approximation of the Ek-

man pumping contribution when the Chebyshev integration method

is used introduces an error that is more pronounced in the growth

rate than in the drift frequency. This is expected since dissipation

processes usually have a direct impact on the growth rate of an in-

stability. A decrease of ǫ goes along with a proportional drop of the

relative error on τ . This is however accompanied by an increase of

the number of radial grid points in order to maintain the spectral

convergence of the Ekman pumping term (24).

This comparison validates the implementation of all the lin-

ear terms that enter Eqs. (4-8) for the different radial discretisa-

tion schemes. The approximation of the Ekman pumping contribu-

tion yields relative error that grow with ǫ. The collocation method

should hence be privileged for small problem size. Because of its

fastest execution time, the sparse Chebyshev formulation is the rec-

ommended approach when dealing with larger problem sizes. A

large number of radial grid points indeed permits to accommodate

small values of ǫ < 10−3, for which the error associated with the

approximate Ekman pumping term becomes negligible.

6.2 Nonlinear convection

To pursue the code validation procedure, we now examine another

physical setup which is not in the weakly nonlinear regime any-

more with E = 10−7, Pr = 1 and Ra = 2 × 1011, roughly 60

times the critical Rayleigh number. This corresponds to the setup

that has been previously used to determine the Courant number of

the different time schemes in § 4. To compare the different radial

discretisation schemes, we first compute a simulation until a sta-

tistically steady-state has been reached. We then use this physical

solution as a starting condition of several numerical simulations

that use different radial discretisation schemes and two values of ǫ
with the BPR353 time scheme. Since this is now a turbulent con-

vection model, the time step size will change over time to satisfy

the Courant condition (Eq. 40). To avoid the costly reconstruction

of the matrices at each iteration, we adopt a time step size that is

three quarter of the maximum eligible time step. The simulations

are then computed over a timespan of roughly 0.03 viscous time,

which corresponds to more than 150 turnover times.

Figure 9a shows the time evolution of the total and the zonal

kinetic energy defined by

EK =
1

2

〈
u2
s + u2

φ

〉
= EZ+2π

Nm∑

m=1

∫ so

si

(
|um

s |2 + |um
φ |2
)
s ds ,

where the zonal contribution is expressed by

EZ =
1

2

〈
uφ

2
〉
= π

∫ s0

si

uφ
2sds .

The three numerical simulations feature a very similar time evo-

lution with roughly 50% of the energy content in the axisymmet-

ric azimuthal motions. They show a quasi-periodic behaviour with

quick energy increases followed by slower relaxations. This can be

attributed to the time evolution of the zonal jets that slowly drift

towards the inner boundary where they become unstable (Rotvig

2007). Panels b and c of Fig. 9 show the time-average radial profiles

andm spectra of the kinetic energy, respectively. A good agreement

is found between the three radial discretisation schemes. Typical of

2-D QG turbulence, an inverse energy cascade with a m−5/3 slope

takes place up to a typical lengthscale where the convective fea-

tures are sheared apart by the zonal jets (here m ≃ 20, see Rhines
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Figure 8. Real part of ϑm=12 at mid-depth sm = 0.5(si + so) as a function of time without Ekman pumping (left panel) and with Ekman pumping (right

panel) for a case with E = 3× 10−6, Ra = 107 and Pr = 0.025. Zoomed-in insets highlight the differences between the eigenmode and the three spatial

discretisation strategies implemented in pizza. The DNS have been time-advanced using the BPR353 time scheme with a fixed time step size δt = 10−7 to

ensure that the error of the time scheme is negligible (see Fig. 2). The simulations have been initiated with the most unstable m = 12 eigenmode calculated

with LSB. Both sparse Chebyshev formulations assume ǫ = 3× 10−3 for the cases with Ekman pumping.

Table 3. Growth rate and drift frequency for the m = 12 mode for E = 3× 10−6, Ra = 107 and Pr = 0.025 with and without Ekman pumping. The first

line has been computed with the linear solver LSB, while the others correspond to nonlinear calculations performed with pizza. All the simulations have been

computed with a fixed time step size δt = 10−7. The setups highlighted with an asterisk have been time-advanced with an explicit treatment of the buoyancy

term. The correct digits compared to the eigenmode are underlined for each solution.

Without Ekman pumping With Ekman pumping

t scheme (Nr , Nc, Nm) ǫ τ ωd τ ωd

Eigensolver LSB

- (192, 192, 1) - 6.149994 × 102 −9.536952 × 103 2.122883 × 102 −9.436506 × 103

Chebyshev collocation

CNAB2 (193,193,128) - 6.150091 × 102 −9.536951× 103 2.123007 × 102 −9.436506 × 103

BPR353 (193,193,128) - 6.149996× 102 −9.536953× 103 2.122892× 102 −9.436506 × 103

SBDF3 (193,193,128) - 6.150048 × 102 −9.536953× 103 2.122955× 102 −9.436506 × 103

SBDF4 (193,193,128) - 6.150092 × 102 −9.536952 × 103 2.123010 × 102 −9.436507× 103

Chebyshev integration + Galerkin

CNAB2 (193,128,128) 3× 10−3 6.150015 × 102 −9.536952 × 103 2.148132 × 102 −9.436744 × 103

CNAB2 (768,512,128) 10−4 6.150015 × 102 −9.536952 × 103 2.123818 × 102 −9.436512 × 103

BPR353* (193,128,128) 3× 10−3 6.149997× 102 −9.536953× 103 2.148114 × 102 −9.436745 × 103

SBDF3 (193,128,128) 3× 10−3 6.149997× 102 −9.536953× 103 2.148114 × 102 −9.436745 × 103

Chebyshev integration + tau-Lanczos

BPR353* (193,128,128) 3× 10−3 6.149998× 102 −9.536953× 103 2.148113 × 102 −9.436745 × 103

BPR353* (769,512,128) 10−4 6.149995× 102 −9.536953× 103 2.123799 × 102 −9.436513 × 103

BPR353* (3073,2048,128) 10−5 6.149996× 102 −9.536953× 103 2.122983× 102 −9.436507× 103

Table 4. Time-averaged diagnostics of three numerical simulations with E = 10−7, Ra = 2 × 1011 and Pr = 1. The simulations have been computed

with the BPR353 time scheme. The fourth column corresponds to the average time step size. The fifth and sixth column contain the time-average and the

standard deviation of the total and the zonal kinetic energy, respectively. The last column corresponds to the total number of core hours spent to compute the

time interval displayed in Fig. 9.

r scheme (Nr , Nc, Nm) ǫ δt EK ± σ(EK ) EZ ± σ(EZ ) Core hours

Collocation (641, 641, 1280) - 2.623× 10−8 1.448 × 108 ± 6.281× 106 8.075× 107 ± 4.855 × 106 1.8× 104

Integ.+Galerkin (1025, 682, 1280) 10−3 2.052× 10−8 1.448 × 108 ± 6.381× 106 8.038× 107 ± 4.884 × 106 3.7× 103

Integ.+tau (1025, 682, 1280) 10−3 2.095× 10−8 1.443 × 108 ± 6.439× 106 8.026× 107 ± 4.661× 106, 3.6× 103

Integ.+Galerkin (1025, 682, 1280) 10−4 2.100× 10−8 1.452 × 108 ± 5.754× 106 8.012× 107 ± 4.211 × 106 3.8× 103

Integ.+tau (1025, 682, 1280) 10−4 2.144× 10−8 1.450 × 108 ± 6.663× 106 8.070× 107 ± 5.231 × 106 3.6× 103
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Figure 9. (a) TotalEK and zonal EZ kinetic energy as a function of time for three numerical simulations with different radial discretisation schemes. (b) Time

and azimuthally averaged kinetic energy as a function of radius. (c) Time-averaged kinetic energy spectra as a function of the wavenumber m. The shaded

region correspond to one standard deviation of temporal fluctuations relative to the time averages. The simulations assume the following control parameters:

E = 10−7 , Ra = 2× 1011 and Pr = 1. The sparse cases have been computed with ǫ = 10−3.

1975). At smaller lengthscales the spectra transition to am−5 slope

frequently observed in Rossby waves turbulence (e.g. Rhines 1975;

Schaeffer & Cardin 2005b).

For a better quantification of the difference between the three

radial schemes, Tab. 4 contains the time-average and the standard

deviation of EK and EZ over the entire run time. Since dealiasing

is also required in the radial direction when using a sparse Cheby-

shev formulation, the two cases that have been computed with the

Chebyshev integration method have a larger number of radial grid

points to ensure a number of Chebyshev modes comparable to the

one used with the collocation method. Because of the change of the

grid spacing (Eq. 40), this implies a decrease in the average time-

step size. The time averages and standard deviation obtained for

the three schemes and the two values of ǫ are found to agree within

less than 1%. Given the unsteady nature of the solution, the dif-

ferences in time step size and the limited time span considered for

time averaging, it is not clear whether this difference can solely be

attributed to the parametrisation of the Ekman pumping contribu-

tion. Notwithstanding this possible source of error, this comparison

demonstrates that turbulent convection can be accurately modelled

by an efficient sparse Chebyshev formulation with an acceptable

error introduced by the Ekman pumping term approximation.

6.3 Turbulent QG convection

To check the ability of the spectral radial discretisation schemes

to model turbulent QG convection, we consider a third numerical

configuration withE = 10−9,Ra = 1.5×1014 and Pr = 1. This

corresponds to strongly supercritical convection (Ra > 100Rac)

at a very low Ekman number, a prerequisite to ensure that both large

Reynolds and small Rossby numbers are reached at the same time.

With the dimensionless units adopted in this study,

Re =

[
2EK

π(s2o − s2i )

]1/2
, Ro = ReE .

For these control parameters, convection develops in the so-called

turbulent QG regime (e.g. Julien et al. 2012) with Re ≃ 105 and

Ro ≃ 10−4. Numerical models that operate at these extreme pa-

rameters demand a large number of grid points –here (Nr, Nm) =
(6145, 6144)– which becomes intractable for the Chebyshev col-

location method. We hence only compute this model using the

Chebyshev integration method combined with a Galerkin approach

to enforce the boundary conditions. For this physical configura-

tion, a time integration of roughly ten convective overturns requires

about 105 core hours.

Figure 10 shows a snapshot of the vorticity with two zoomed-

in insets that emphasise the regions close the boundaries. The mix-

ing of the potential vorticity (ω + 2/E)/h by turbulent convec-

tive motions generates multiple zonal jets with alternated direc-

tions (e.g. Dritschel & McIntyre 2008). This gives rise to a spa-

tial separation of the vortical structures with alternated concen-

tric rings of cyclonic (ω > 0) and anticyclonic (ω < 0) vortic-

ity. The typical size of these zonal jets is usually well-predicted

by the Rhines scale defined by (Ro/|β|)1/2 (e.g. Rhines 1975;

Gastine et al. 2014; Verhoeven & Stellmach 2014; Heimpel et al.

2016; Guervilly & Cardin 2017). This lengthscale marks the sepa-

ration between Rossby waves at larger scales and turbulent motions

at smaller scales. Because of the increase of |β| with the cylindri-

cal radius s in spherical geometry, the zonal jets are getting thin-

ner outward. Close to the outer boundary, the dynamics becomes

dominated by tilted vortices elongated in the azimuthal direction,

a typical pattern of the propagation of thermal Rossby waves. Be-

cause of the steepening of β at large radii, the vortex stretching term

becomes the dominant source of vorticity there, such that the prop-

agation of thermal Rossby waves takes over the nonlinear advective

processes. This outer region is hence expected to shrink with an in-

crease of the convective forcing (e.g. Guervilly & Cardin 2017). At

the interface between jets, the vortical structures are sheared apart

into elongated filaments, indicating a direct cascade of enstrophy

towards smaller scales.

7 CONCLUSION

In this study, we have presented a new open-source code, nick-

named pizza, dedicated to the study of rapidly-rotating convec-

tion under the 2-D spherical quasi-geostrophic approximation (e.g.

Busse & Or 1986; Aubert et al. 2003; Gillet & Jones 2006). The

code is available at https://github.com/magic-sph/pizza as

a free software that can be used, modified, and redistributed un-

der the terms of the GNU GPL v3 license. The radial discretisa-

https://github.com/magic-sph/pizza
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Figure 10. Snapshot of the axial vorticity for a numerical simulation with E = 10−9, Ra = 1.5 × 1014 and Pr = 1. The Chebyshev integration

formulation with a Galerkin approach to enforce the boundary condition has been employed to compute this numerical model. We use a spatial resolution

(Nr , Nm) = (6145, 6144) and ǫ = 10−4 for the approximated Ekman pumping term. For a better visualisation, only one quarter of the solution is displayed.

tion relies on a decomposition in Fourier series in the azimuthal

direction and in Chebyshev polynomials in the radial direction.

For the latter, both a classical Chebyshev collocation method (e.g.

Glatzmaier 1984; Boyd 2001) and a sparse integration method (e.g.

Stellmach & Hansen 2008; Muite 2010; Marti et al. 2016) are sup-

ported. We adopt a pseudo-spectral approach where the nonlinear

advective terms are treated in the physical space and transformed

to the spectral space using fast discrete Fourier and Chebyshev

transforms. pizza supports several implicit-explicit time schemes

encompassing multi-step schemes as well as diagonally-implicit

Runge-Kutta schemes (e.g. Ascher et al. 1997) that have been val-

idated by convergence tests. The parallelisation strategy relies on

a message-passing communication framework based on the MPI

standard. The code has been tested and validated against onset of

quasi-geostrophic convection.

The comparison of the two radial discretisation schemes has

revealed the superiority of the Chebyshev integration method. In

contrast to the collocation technique that requires the storage and

the inversion of dense matrices, the integration method indeed

only involves sparse operators. As a consequence, the memory re-

quirements only grows with O(Nr) and the operation count with

O(Nr lnNr) as compared to O(N2
r ) when using a collocation ap-

proach. Multi-step and diagonally-implicit Runge-Kutta schemes

have shown comparable efficiency, defined in this study by the ra-

tio of the maximum CFL number over the numerical cost of one

iteration. Additional parameter studies with various Reynolds and

Rossby numbers are however required to assess the differences be-

tween both families of time integrators. We have found a good

parallel scaling up to roughly four radial grid points per MPI task.

This implies that large spatial resolution up to O(104 × 104) grid

points can be reached with a reasonable wall time if one uses

several thousands of MPI tasks. Such large grid resolutions al-

lows the study of turbulent quasi-geostrophic convection at low

Ekman numbers. Preliminary results for a numerical model with

E = 10−9, Ra = 1.5 × 1014 and Pr = 1 shows the forma-

tion of multiple zonal jets, when both the Reynolds number is large
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O(105) and the Rossby number is small O(10−4). This specific

combination of Re ≫ 1 and Ro ≪ 1 is a prerequisite to study the

turbulent quasi-geostrophic convection regime (Julien et al. 2012),

an important milestone to better understand the internal dynamics

of planetary interiors.

Future developments of the code include the implementation

of the time-evolution of chemical composition to study double-

diffusive convection under the spherical QG framework. On the

longer term, the QG flow and temperature computed in the equa-

torial plane of the spherical shell will be coupled to an induction

equation computed in the entire shell using classical 3-D pseudo-

spectral discretisation (e.g. Schaeffer & Cardin 2006).

ACKNOWLEDGMENTS

I want to thank Alexandre Fournier for his comments that helped to

improve the manuscript. Stephan Stellmach and Benjamin Miquel

are acknowledged for their fruitful advices about Galerkin bases

and Philippe Marti for his help with the symbolic python pack-

age used to assemble the sparse Chebyshev matrices. I also wish to

thank Michel Rieutord for sharing the Linear Solver Builder

eigensolver. Numerical computations have been carried out on the

S-CAPAD platform at IPGP and on the occigen cluster at GENCI-

CINES (Grant A0020410095). All the figures have been generated

using matplotlib (Hunter 2007). All the post-processing tools

that have been used to construct the different figures are part of

the source code of pizza and are hence freely accessible. This is

IPGP contribution 4015.

REFERENCES

Ascher, U. M., Ruuth, S. J., & Wetton, B. T. R., 1995. Implicit-explicit

methods for time-dependent partial differential equations, SIAM Journal

on Numerical Analysis, 32(3), 797–823.

Ascher, U. M., Ruuth, S. J., & Spiteri, R. J., 1997. Implicit-explicit Runge-

Kutta methods for time-dependent partial differential equations, Applied

Numerical Mathematics, 25, 151–167.

Aubert, J., Gillet, N., & Cardin, P., 2003. Quasigeostrophic models of con-

vection in rotating spherical shells, Geochemistry, Geophysics, Geosys-

tems, 4, 1052.

Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M.,

Nieves, D., Soderlund, K. M., & Stellmach, S., 2015. Rotating con-

vective turbulence in Earth and planetary cores, Physics of the Earth and

Planetary Interiors, 246, 52–71.

Bardsley, O. P., 2018. Could hydrodynamic Rossby waves explain the

westward drift?, Proc. R. Soc. A, 474(2213), 20180119.

Boscarino, S., Pareschi, L., & Russo, G., 2013. Implicit-explicit Runge–

Kutta schemes for hyperbolic systems and kinetic equations in the diffu-

sion limit, SIAM Journal on Scientific Computing, 35, A22–A51.

Boyd, J. P., 2001. Chebyshev and Fourier Spectral Methods, Second Re-

vised Edition. Dover books on mathematics (Mineola, NY: Dover Publi-

cations), ISBN 0486411834.

Brummell, N. H. & Hart, J. E., 1993. High Rayleigh number β-convection,

Geophysical & Astrophysical Fluid Dynamics, 68, 85–114.

Busse, F. H., 1970. Thermal instabilities in rapidly rotating systems., Jour-

nal of Fluid Mechanics, 44, 441–460.

Busse, F. H. & Carrigan, C. R., 1974. Convection induced by centrifugal

buoyancy, Journal of Fluid Mechanics, 62, 579–592.

Busse, F. H. & Or, A. C., 1986. Convection in a rotating cylindrical annu-

lus - Thermal Rossby waves, Journal of Fluid Mechanics, 166, 173–187.

Calkins, M. A., Aurnou, J. M., Eldredge, J. D., & Julien, K., 2012. The

influence of fluid properties on the morphology of core turbulence and

the geomagnetic field, Earth and Planetary Science Letters, 359, 55–60.

Calkins, M. A., Julien, K., & Marti, P., 2013. Three-dimensional quasi-

geostrophic convection in the rotating cylindrical annulus with steeply

sloping endwalls, Journal of Fluid Mechanics, 732, 214–244.

Canuto, C., Hussaini, M. Y., Quarteroni, A. M., & Zang, T. A., 2006.

Spectral methods. Fundamentals in Single Domains, Springer, Berlin,

Heidelberg.

Cardin, P. & Olson, P., 1994. Chaotic thermal convection in a rapidly

rotating spherical shell: consequences for flow in the outer core, Physics

of the Earth and Planetary Interiors, 82, 235–259.

Carpenter, M. H., Kennedy, C. A., Bijl, H., Viken, S. A., & Vatsa, V. N.,

2005. Fourth-order Runge-Kutta schemes for fluid mechanics applica-

tions, Journal of Scientific Computing, 25, 157–194.

Cheng, J. S., Stellmach, S., Ribeiro, A., Grannan, A., King, E. M., & Au-

rnou, J. M., 2015. Laboratory-numerical models of rapidly rotating con-

vection in planetary cores, Geophysical Journal International, 201, 1–

17.

Clenshaw, C. W., 1957. The numerical solution of linear differential equa-

tions in Chebyshev series, Mathematical Proceedings of the Cambridge

Philosophical Society, 53(1), 134149.

Coutsias, E., Hagstrom, T., & Torres, D., 1996. An efficient spectral

method for ordinary differential equations with rational function coef-

ficients, Mathematics of Computation of the American Mathematical So-

ciety, 65(214), 611–635.

Dormy, E., Soward, A. M., Jones, C. A., Jault, D., & Cardin, P., 2004. The

onset of thermal convection in rotating spherical shells, Journal of Fluid

Mechanics, 501, 43–70.

Dritschel, D. G. & McIntyre, M. E., 2008. Multiple jets as PV staircases:

the Phillips effect and the resilience of eddy-transport barriers, Journal

of the Atmospheric Sciences, 65, 855–874.

Egbers, C., Beyer, W., Bonhage, A., Hollerbach, R., & Beltrame, P., 2003.

The geoflow-experiment on ISS (part I): Experimental preparation and

design of laboratory testing hardware, Advances in Space Research, 32,

171–180.

Foster, I. T. & Worley, P. H., 1997. Parallel algorithms for the spectral

transform method, SIAM Journal on Scientific Computing, 18, 806–837.

Fox, L. & Parker, I. A., 1968. Chebyshev polynomials in numerical analy-

sis, Oxford mathematical handbooks, Oxford University Press, London.

Frigo, M. & Johnson, S. G., 2005. The design and implementation of

FFTW3, Proceedings of the IEEE, 93(2), 216–231.

Garcia, F., Net, M., Garcı́a-Archilla, B., & Sánchez, J., 2010. A com-

parison of high-order time integrators for thermal convection in rotating

spherical shells, Journal of Computational Physics, 229, 7997–8010.

Gastine, T., Heimpel, M., & Wicht, J., 2014. Zonal flow scaling in rapidly-

rotating compressible convection, Physics of the Earth and Planetary

Interiors, 232, 36–50.

Gastine, T., Wicht, J., & Aubert, J., 2016. Scaling regimes in spherical

shell rotating convection, Journal of Fluid Mechanics, 808, 690–732.

Gillet, N. & Jones, C. A., 2006. The quasi-geostrophic model for rapidly

rotating spherical convection outside the tangent cylinder, Journal of

Fluid Mechanics, 554, 343–369.

Gillet, N., Brito, D., Jault, D., & Nataf, H. C., 2007. Experimental and nu-

merical studies of convection in a rapidly rotating spherical shell, Journal

of Fluid Mechanics, 580, 83.

Gilman, P. A., 1977. Nonlinear Dynamics of Boussinesq Convection in a

Deep Rotating Spherical Shell. I., GAFD, 8, 93–135.

Glatzmaier, G. A., 1984. Numerical simulations of stellar convective dy-

namos. I - The model and method, Journal of Computational Physics,

55, 461–484.

Gottlieb, D. & Orszag, S. A., 1977. Numerical Analysis of Spectral Meth-

ods: Theory and Applications, CBMS-NSF Regional Conference Series

in Applied Mathematics, Society for Industrial and Applied Mathemat-

ics, ISBN 9780898710236.

Greengard, L., 1991. Spectral integration and two-point boundary value

problems, SIAM Journal on Numerical Analysis, 28, 1071–1080.

Grooms, I. & Julien, K., 2011. Linearly implicit methods for nonlinear

PDEs with linear dispersion and dissipation, Journal of Computational

Physics, 230, 3630–3650.

Guervilly, C. & Cardin, P., 2016. Subcritical convection of liquid metals



pizza: an open-source pseudo-spectral code for spherical quasi-geostrophic convection 19

in a rotating sphere using a quasi-geostrophic model, Journal of Fluid

Mechanics, 808, 61–89.

Guervilly, C. & Cardin, P., 2017. Multiple zonal jets and convective heat

transport barriers in a quasi-geostrophic model of planetary cores, Geo-

physical Journal International, 211, 455–471.

Hart, J. E., Glatzmaier, G. A., & Toomre, J., 1986. Space-laboratory and

numerical simulations of thermal convection in a rotating hemispherical

shell with radial gravity, Journal of Fluid Mechanics, 173, 519–544.

Heimpel, M., Gastine, T., & Wicht, J., 2016. Simulation of deep-seated

zonal jets and shallow vortices in gas giant atmospheres, Nature Geo-

science, 9, 19–23.

Hiegemann, M., 1997. Chebyshev matrix operator method for the solu-

tion of integrated forms of linear ordinary differential equations, Acta

mechanica, 122, 231–242.

Hollerbach, R., 2000. A spectral solution of the magneto-convection equa-

tions in spherical geometry, International Journal for Numerical Meth-

ods in Fluids, 32, 773–797.

Horn, S. & Shishkina, O., 2015. Toroidal and poloidal energy in rotating

Rayleigh-Bénard convection, Journal of Fluid Mechanics, 762, 232–255.

Hunter, J. D., 2007. Matplotlib: A 2D graphics environment, Computing

In Science & Engineering, 9(3), 90–95.

Julien, K. & Watson, M., 2009. Efficient multi-dimensional solution

of PDEs using Chebyshev spectral methods, Journal of Computational

Physics, 228, 1480–1503.

Julien, K., Knobloch, E., Rubio, A. M., & Vasil, G. M., 2012. Heat Trans-

port in Low-Rossby-Number Rayleigh-Bénard Convection, Physical Re-

view Letters, 109(25), 254503.

King, E. M., Stellmach, S., & Buffett, B., 2013. Scaling behaviour in

Rayleigh-Bénard convection with and without rotation, Journal of Fluid

Mechanics, 717, 449–471.

Liu, H. & Zou, J., 2006. Some new additive Runge–Kutta methods and

their applications, Journal of Computational and Applied Mathematics,

190, 74–98.

Marti, P., Calkins, M. A., & Julien, K., 2016. A computationally efficient

spectral method for modeling core dynamics, Geochemistry, Geophysics,

Geosystems, 17, 3031–3053.

Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B.,

Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J., Feather-

stone, N., Gastine, T., Glatzmaier, G. A., Gubbins, D., Guermond, J.-L.,

Hayashi, Y.-Y., Hollerbach, R., Hwang, L. J., Jackson, A., Jones, C. A.,

Jiang, W., Kellogg, L. H., Kuang, W., Landeau, M., Marti, P., Olson, P.,

Ribeiro, A., Sasaki, Y., Schaeffer, N., Simitev, R. D., Sheyko, A., Silva,

L., Stanley, S., Takahashi, F., Takehiro, S.-i., Wicht, J., & Willis, A. P.,

2016. Performance benchmarks for a next generation numerical dynamo

model, Geochemistry, Geophysics, Geosystems, 17, 1586–1607.

McFadden, G. B., Murray, B. T., & Boisvert, R. F., 1990. Elimination of

spurious eigenvalues in the Chebyshev Tau spectral method, Journal of

Computational Physics, 91, 228–239.

Moler, C. B. & Stewart, G. W., 1973. An Algorithm for Generalized Ma-

trix Eigenvalue Problems, SIAM Journal on Numerical Analysis, 10(2),

241–256.

More, C. & Dumberry, M., 2018. Convectively driven decadal zonal ac-

celerations in Earth’s fluid core, Geophysical Journal International, 213,

434–446.

Morin, V. & Dormy, E., 2004. Time dependent β-convection in rapidly

rotating spherical shells, Physics of Fluids, 16, 1603–1609.

Muite, B. K., 2010. A numerical comparison of Chebyshev methods for

solving fourth order semilinear initial boundary value problems, Journal

of Computational and Applied Mathematics, 234, 317–342.

Olver, S. & Townsend, A., 2013. A fast and well-conditioned spectral

method, SIAM Review, 55(3), 462–489.

Orszag, S. A., 1971. On the Elimination of Aliasing in Finite-Difference

Schemes by Filtering High-Wavenumber Components., Journal of At-

mospheric Sciences, 28, 1074–1074.

Peyret, R., 2002. Spectral Methods for Incompressible Viscous

Flow, Applied Mathematical Sciences 148, Springer New York, ISBN

9780387952215.

Phillips, T. N. & A., K., 1990. On the Coefficients of Integrated Expan-

sions of Ultraspherical Polynomials, SIAM Journal on Numerical Anal-

ysis, 27, 823–830.

Pino, D., Mercader, I., & Net, M., 2000. Thermal and inertial modes of

convection in a rapidly rotating annulus, Phys. Rev. E, 61, 1507–1517.

Plaut, E. & Busse, F. H., 2002. Low-Prandtl-number convection in a ro-

tating cylindrical annulus, Journal of Fluid Mechanics, 464, 345–363.

Plaut, E., Lebranchu, Y., Simitev, R., & Busse, F. H., 2008. Reynolds

stresses and mean fields generated by pure waves: applications to shear

flows and convection in a rotating shell, Journal of Fluid Mechanics,

602, 303–326.

Rhines, P. B., 1975. Waves and turbulence on a beta-plane, Journal of

Fluid Mechanics, 69, 417–443.

Rotvig, J., 2007. Multiple zonal jets and drifting: Thermal convection in

a rapidly rotating spherical shell compared to a quasigeostrophic model,

Phys. Rev. E, 76, 046306.

Saad, Y., 1992. Numerical methods for large eigenvalue problems, Manch-

ester University Press.

Sánchez, J., Net, M., Garcı́a-Archilla, B., & Simó, C., 2004. Newton-
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APPENDIX A: DIRECT SOLVE OF A BORDERED

MATRIX

Suppose one wants to solve the following linear problem which

involves a so-called bordered matrix A

Aψ = f,

where A comprises p full top rows and a banded structure under-

neath. The matrix problem is sub-divided as follows

(
A B
C D

)(
ψ1

ψ2

)
=

(
g
h

)
,

whereA is a full square matrix of size (p×p),B is a full matrix of

size (p× n− p), C is a sparse matrix of size (n− p× p) and D is

a band matrix of size (n− p) with a bandwidth q, q being the total

number of bands. One first solves the two following banded linear

problems

Dx = h , Dy = C .

The LU factorisation of the band matrix D requires O(q2 n) oper-

ations, while the solve requires O(q n) operations (e.g. Boyd 2001,

Appendix B2). We then assemble the Schur complement of the

banded block D

M = A−BD−1C = A−By ,

before solving the small dense problem of size (p, p)

Mψ1 = g −Bx .

This requires O(p3) operations for the LU factorisation and O(p2)
for the solve. This cost remains negligible as long as p≪ n, which

is the case for the linear problems considered in the Chebyshev

integration method. We finally evaluate

ψ2 = x− y ψ1 ,

to assemble the final solution given by ψ = (ψ1, ψ2)
T .

APPENDIX B: GALERKIN BASIS FOR

STREAMFUNCTION BOUNDARY CONDITIONS

In this section, we derive a Galerkin basis function for the following

combination of boundary conditions that is used in the Chebyshev

integration method for the streamfunction equation

Ψ =
∂Ψ

∂s
= 0, for s = si ,

and

Ψ =
∂3Ψ

∂s3
= 0, for s = so .

We start by defining the following ansatz for the Galerkin set

φn(x) =

4∑

i=0

γn
i Tn+i(x) .

Following McFadden et al. (1990) and Julien & Watson (2009) we

then make use of the tau boundary conditions (Eqs. 19,20 and 31)

to form the following system of equations

φn(1) =

4∑

i=0

γn
i = 0,

φn(−1) =
4∑

i=0

(−1)iγn
i = 0,

∂3φn

∂x3
(1) =

4∑

i=0

(n+ i)2[(n+ i)2 − 1][(n+ i)2 − 4]γn
i = 0,

∂φn

∂x
(−1) =

4∑

i=0

(−1)i+1(n+ i)2γn
i = 0,

Since there are only four equations for five unknowns, there is a

degree of freedom in the determination of the coefficients. We thus

choose in following

γn
0 = 1,

which yields the following identities for the other coefficients:

γn
1 =

8 (n+ 1)
(
n2 + 4n+ 5

)

2n4 + 20n3 + 78n2 + 140n+ 95
,

γn
2 = −

2 (n+ 2)
(
2n4 + 16n3 + 58n2 + 104n+ 75

)

(n+ 3) (2n4 + 20n3 + 78n2 + 140n + 95)
,

γn
3 = −

8 (n+ 1)
(
n2 + 4n+ 5

)

2n4 + 20n3 + 78n2 + 140n + 95
,

and

γn
4 =

(n+ 1)
(
2n4 + 12n3 + 30n2 + 36n+ 15

)

(n+ 3) (2n4 + 20n3 + 78n2 + 140n + 95)
.

This paper has been produced using the Blackwell Scientific Publications

GJI LATEX2e class file.
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