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Abstract The problem of jointly segmenting objects,
according to a set of labels (of cardinality L), from a
set of images (of cardinality K) to produce K indi-
vidual segmentations plus one joint segmentation, can
be cast as a Markov Random Field model. Coupling
terms in the considered energy function enforce the con-
sistency between the individual segmentations and the
joint segmentation. However, neither optimality on the
minimizer (at least for particular cases), nor the sen-
sitivity of the parameters, nor the robustness of this
approach against standard ones have been clearly dis-
cussed before. This paper focuses on the case where
L > 1, K > 1 and the segmentation problem is han-
dled using graph cuts. Noticeably, some properties of
the considered energy function are demonstrated, such
as global optimality when L = 2 and K > 1, the link
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with majority voting and the link with naive Bayes seg-
mentation. Experiments on synthetic and real images
depict superior segmentation performance and better
robustness against noisy observations.
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1 Introduction

Image segmentation is a fundamental and longstanding
task in computer vision. For more than 20 years, it has
been an active and competitive research topic, fueled by
constant advances in technology (in particular, comput-
ing power and memory storage), mathematical model-
ing, machine learning, numerical optimization (see [2]
and the references therein).

Considering several images at once for segmenta-
tion allows for an increase of the information while
rising new questions on its exploitation. Applications
of this problem include (but are not limited to) video
object-based segmentation [20], interactive image seg-
mentation [17,35], watermark removal [13] and 3D re-
construction [3].

This problem has been extensively tackled by a vari-
ety of approaches, depending on the adopted hypothe-
ses. All these approaches basically share the same idea,
namely taking advantage of the redundancy of informa-
tion provided by the multiple input images to achieve
better segmentation results. In the following, we briefly
review these approaches ordering them with respect to
their assumptions.

When no assumption is made neither on the local-
ization nor on the geometry of the objects present in
the imaged scene, cosegmentation [33] has been pro-
posed as a solution to the aforementioned problem.
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The authors show that jointly segmenting an image
pair with two labels can yield better results with re-
spect to segmenting them independently. Using graph
cuts (GC), they minimize an energy combining stan-
dard smoothness prior terms plus a term penalizing the
deviation of foreground histograms, hence forcing the
histogram statistics to be similar. The algorithm out-
puts two (non-necessarily coregistered) segmentations
but fails when objects are dissimilar. The limits of this
approach have been later pushed away using deep learn-
ing by considering more than two images and more than
two labels for segmenting objects with a large variabil-
ity in terms of scale, appearance, pose, viewpoint and
background [27].

When the coregistration is possible but not per-
formed, the problem consists in jointly segmenting and
registering images. Exploiting the variational framework
with active contours, [38] proposed to minimize itera-
tively an energy defined in order to both find a closed
curve of the objects to segment in each image and a
mapping relating the two curves. Thus, the outputs of
the algorithm consist of the two individual segmenta-
tions in their original geometry and the mapping relat-
ing them. We refer the reader to [26] for a more detailed
state-of-the-art on similar approaches.

This paper focuses on the situation where the input
images are either already coregistered (either from the
acquisition system or from some preprocessing steps)
or the geometric transforms between images is known.
The interest of such a problem is that we can rely on
a high level of redundancy of image data provided that
it is correctly modeled. Basic data fusion techniques to
solve this specific problem notably include (i) indepen-
dent segmentation of the input images and combination
of the resulting segmentations using more or less ad-hoc
rules either at pixel [18] or superpixel [19] level (usu-
ally called decision fusion) and (ii) segmentation of the
input images based on the product of their conditional
likelihoods, called Naive Bayes (NB). Because of the
independence assumption, these techniques miss taking
into account the relationships between images and they
lack of robustness against noise. To overcome these dif-
ficulties, some authors have proposed to segment jointly
the input images, modeling their interactions. Such ap-
proaches provide individual segmentations but not nec-
essarily a joint one. In our case, we aim at benefiting
of the image redundancy not only to reduce the errors
in individual segmentations but also (and mainly) to
derive a joint segmentation. Such an objective is based
on the assumption that most of the deviation between
images is due to complementarity or noise. In contrast
to the aforementioned cosegmentation methods, no ap-
pearance assumption is made neither on objects nor on

background, thus enabling us to use distinct segmen-
tation models for the input images. In the remaining
of this paper, we will refer to this problem by “Multi-
Layer Joint Segmentation” (MLJS). Table 1 summa-
rizes the identified existing strategies for jointly seg-
menting coregistered images. In what follows, we pro-
vide some insights about each strategy. In [21], the au-
thors introduce a multi-layer and multi-label Markov
Random Field (MRF) model combining texture and
color features for segmenting a single color image. The
MRF involves three layers: one layer per feature (cor-
responding to individual segmentations) and one layer
for their indirect combination (corresponding to joint
segmentation). This model includes standard spatial re-
lationships between pixels per individual segmentation
as well as relationships between pixels of individual seg-
mentations and the joint segmentation. The intra-layer
relationships ensure the regularity within each individ-
ual segmentation whereas the inter-layer ones penal-
ize any deviation between each individual segmentation
and the joint one. Nevertheless, the energy term enforc-
ing the consistency between individual segmentations is
not well defined for some pixel pairs. Furthermore, in
the original work, this MRF is suboptimally solved us-
ing Iterated Conditional Modes (ICM), while the same
MRF is optimally solved using graph cuts (GC) in [4]
but only for two labels and for a single image pair.

The idea of [21] has been included in a number of
subsequent papers [5,4,17,13]. In [17], the authors de-
rive binary segmentations from a pair of 3D medical
images using GC. A disagreement cost, inversely pro-
portional to the intensity difference between images,
is assigned when individual segmentations differ. Al-
though the underlying energy function is proved to be
globally minimized, the segmentation model requires a
user interaction and the approach is limited to a single
image pair.

In [13], a complex iterative energy minimization pro-
cedure that aims at removing the watermarks from a
given set of coregistered images, includes a two-label
joint segmentation. Joint watermark segmentation is
achieved using the Iteratively Reweighted-Least-Square
(IRLS) algorithm. Nevertheless, the approach is pre-
sented for only two labels and optimality guarantee
about the solution is not discussed.

Finally, a conditional mixed Markov model is used
in [5] for detecting the relevant changes in a coregis-
tered image pair. The underlying energy is iteratively
minimized using a Modified Metropolis Relaxation Al-
gorithm (MMRA) [22]. However, this algorithm can po-

1 Optimal for two labels and within a constant factor of the
global minimum beyond.
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Table 1 Comparison of existing strategies for jointly segmenting coregistered images.

[21] [4] [17] [13] [5] This paper
Number of images 2 2 2 ≥ 2 2 ≥ 2
Number of labels ≥ 2 2 2 2 2 ≥ 2
Minimization algorithm ICM GC GC IRLS MMRA GC
Optimality guarantees None Optimal Optimal None None Near-optimal 1

tentially converge slowly and no optimality guarantee
about the solution is given by the authors.

In addition to optimality properties (at least for par-
ticular cases), neither the sensitivity of the involved
parameters, nor the robustness against degraded ob-
servations, nor the link connecting MLJS to standard
approaches (such as NB) have been clearly discussed
before in [21,4,17,13,5].

In this study, as contributions, we show that MLJS
problem can be cast as a MRF model with coupling
terms enforcing the consistency between individual seg-
mentations and joint segmentation and we propose a
generic formulation so that the proposed energy func-
tion can be efficiently minimized using graph cuts. This
choice is motivated by their well-established theoreti-
cal background [23] as well as the existence of generic
and efficient minimization algorithms [8,9]. Notably, we
demonstrate that this function can be globally mini-
mized for two labels, whatever the number of images.
We also study the links connecting MLJS to standard
approaches. Finally, the benefit of such an approach is
shown both on simulated and real images using distinct
segmentation models.

The remaining of this paper is organized as follows.
In Section 2, the energy function handling more than
one label and more than one image is presented, partic-
ular cases are addressed, and graph-cut optimization is
specified. Numerical experiments depicting the superi-
ority of the approach in terms of segmentation accuracy
and robustness against noisy observations are provided
in Section 3. Presented results have been achieved for
two kinds of data: (i) simulated images and (ii) real hy-
perspectral data that are classically exploited for ma-
terial classification. Finally, the contributions of this
paper and future work are provided in Section 4.

2 MLJS framework

2.1 Problem formulation

As previously highlighted, the problem of jointly seg-
menting a set of images can be elegantly cast as a MRF
model. Coupling terms in the considered energy func-
tion allow us to enforce the consistency between indi-
vidual segmentations and joint segmentation. Examples

of the considered relationships involved in the MRF are
illustrated in Figure 1. Let us introduce some notations
before presenting the considered energy function.

For positive integers K > 1 and L > 1, we define
K = {1, . . . ,K} and L = {1, . . . , L} as the finite sets of
image indexes and labels, respectively. For convenience,
we enlarge the set K by defining the set K̃ = K ∪ {c},
where c denotes the index related to the joint segmenta-
tion. In the proposed modeling, different domains and
neighborhood systems are considered. Their definitions
are gathered in Table 2. Using these notations, in this
study we assume N a,b ∩ Ña,b = ∅.

We distinguish matching and nearby pixel pairs be-
cause they will be provided with different weight pa-
rameters in the minimized energy. For simplicity, all
these neighborhoods are assumed to be reciprocal, i.e.

∀(a, b) ∈ (K̃ × K̃),∀(p, q) ∈ (Pa × Pb),
(p, q) ∈ Na,b ⇔ (q, p) ∈ Nb,a,

and

∀k ∈ K,∀(p, q) ∈ Nk, (p, q) ∈ Nk ⇔ (q, p) ∈ Nk.

As soon as the above neighborhood systems can be
well-defined, the input images have not to be physi-
cally coregistered. Even more, some images with dif-
ferent resolutions could be considered, provided that
we are able to define these neighborhood systems. Ad-
ditionally, the above definition of neighborhoods with
nearby pixel pairs is general and can for instance link
spatially distant pixels [10]. However, the specific case
where grids satisfy some constraints defined just below
will allow for additional properties.

Definition 1 (Grid constraints)
The grid Pc is under-constrained if for all k ∈ K and
for all p ∈ Pk, there exists a unique r ∈ Pc such that
(p, r) ∈ N k,c.

When Pc is under-constrained, one pixel r ∈ Pc
might be connected to several pixels in Pk. Also, some
pixels of Pc might not be connected at all (thus the
name “under-constrained”).

Additionally to pixel domains and neighborhood sys-
tems, let us introduce segmentation field notations: uc ∈
LPc is the joint segmentation defined over domain Pc,
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Notation/definition Description
K = {1, . . . ,K} Finite set of image indexes
L = {1, . . . , L} Finite set of labels
K̃ = K ∪ {c} Extended finite set of image indexes

d > 0 Dimension of image domains
Pk ⊂ Zd Domain of the kth image or individual segmentation, ∀k ∈ K
Pc ⊂ Zd Domain of the joint segmentation

P̃ = ∪
k∈K̃Pk Union of all domains

Nk ⊆ (Pk × Pk) Neighborhood system composed of pixel pairs of the kth individual segmentation 2, ∀k ∈ K
Na,b ⊆ (Pa × Pb) Matching pixel pairs between the domains Pa and Pb, for any (a, b) ∈ (K̃ × K̃), s.t. a 6= b

Ña,b ⊆ (Pa × Pb) Nearby pixel pairs between the domains Pa and Pb, for any (a, b) ∈ (K̃ × K̃), s.t. a 6= b

Na,b = Na,b ∪ Ña,b Matching and nearby pixel pairs between the domains Pa and Pb, for any (a, b) ∈ (K̃ × K̃), s.t. a 6= b

Table 2 Summary of notations/definitions used in the paper.

and for every k ∈ K, uk ∈ LPk is the individual seg-
mentation of the kth image defined over domain Pk and
ukp denotes the label of the segmentation uk at pixel p.

Finally, we denote by (vk)k∈K the finite set of im-
ages where any image vk is defined over domain Pk.
Without loss of generality, we consider that all images
have the same number of channels (denoted by the pos-
itive integerM > 0). For every k ∈ K and every p ∈ Pk,
we denote by vkp ∈ RM the values taken by the image
vk at the pixel p.

2.2 Proposed energy function

Given images (vk)k∈K and neighborhood systems as de-
fined in the previous section, we propose to minimize
the following energy function with respect to (uk)k∈K̃ ∈
LP̃ :

E((uk)k∈K̃) =
∑
k∈K

(
Ek(uk) + Ek,c(uk, uc)

)
, (1)

where

Ek(uk) = αk
∑
p∈Pk

Ekp (u
k
p)+βk

∑
(p,q)∈Nk

Ekp,q(u
k
p, u

k
q ), (2)

is the energy related to the kth image, composed of data
fidelity terms and spatial regularization terms whose
relative weight is balanced by the weighting parame-
ters (αk)k∈K ∈ RK≥0 and (βk)k∈K ∈ RK≥0. Data fidelity
terms Ekp usually depend on (vk)k∈K and on the way
the classes are modeled. The regularization terms Ekp,q
typically enforce some prior on the shape and contrast
of the objects. Examples of these terms are provided in
Section 3 and derived from [7].

For any k ∈ K, the coupling terms

Ek,c(uk, uc) =γk

( ∑
(p,r)∈Nk,c

Ek,cp,r (u
k
p, u

c
r)

+
∑

(r,p)∈N c,k

Ec,kr,p (u
c
r, u

k
p)

)

+ ηk

( ∑
(p,r)∈Ñk,c

Ek,cp,r (u
k
p, u

c
r)

+
∑

(r,p)∈Ñc,k

Ec,kr,p (u
c
r, u

k
p)

)
,

(3)

penalize discrepancies between individual segmentation
uk and joint segmentation uc. The weighting parame-
ters (γk)k∈K ∈ RK≥0 and (ηk)k∈K ∈ RK≥0 balance the co-
herence between individual segmentation uk and joint
segmentation uc. In the case of a supervised approach,
all weighting parameters are tuned by the user. No-
tice that, according to this model, no coupling terms
linking individual segmentations (uk)k∈K are consid-
ered although previously defined neighborhood systems
allow us to involve such terms in Eq. (1): ∀(a, b) ∈
(K × K),Na,b = ∅, as illustrated in Figure 1. Indeed,
the most general formulation is at the expense of a
high computational complexity. On the other hand, in
the proposed formulation, the joint segmentation has a
central role and coupling terms Ek,c(uk, uc) not only
allow for a comparison between joint and individual
segmentations but also an indirect comparison between
individual segmentations.

Notice also that, in the same spirit of removing non-
essential relationships, no spatial relationships are con-
sidered between pixels of the joint segmentation uc since
spatial regularization in uc will be the natural conse-
quence of spatial regularization in individual segmen-
tations, that is controlled through Ekp,q.
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Individual segmentation u1 Individual segmentation u2

Individual segmentation u3 Individual segmentation u4

Joint segmentation uc

Fig. 1 Example of MRF structure in the MLJS framework for K = 4 images with spatial relationships in individual segmentations
(green) as well as matched (red) and nearby (blue) relationships between individual segmentations and joint segmentation.

The spatial regularization terms in Eq. (2) are de-
fined as

Ekp,q(u
k
p, u

k
q ) = wkp,q[u

k
p > ukq ],

∀k ∈ K,∀(p, q) ∈ Nk, (4)

where wkp,q ∈ R>0 are given coefficients that do not
depend on segmentations (uk)k∈K̃ and [.] denotes the
Iverson bracket, returning 1 if its argument is true and
0 otherwise. If we denote by Ωkl ⊆ Pk the set of pixels in
the segmentation uk labeled by l for any l ∈ L and any
k ∈ K, then Ekp,q is positive along the boundary of the
region Ωkl and null elsewhere. Notice that the above
definition in Eq. (4) is general and allows us to have
wkp,q 6= wkq,p. For the particular case where wkp,q = wkq,p,
for any k ∈ K and for any pixel pair (p, q) ∈ Nk, let us
remark that

Ekp,q(u
k
p, u

k
q ) + Ekq,p(u

k
q , u

k
p) = wkp,q([u

k
p > ukq ]

+ [ukq > ukp])

= wkp,q[u
k
p 6= ukq ],

(5)

Similarly, the coupling terms appearing in Eq. (3) can
be written ∀k ∈ K{
Ek,cp,r (u

k
p, u

c
r) = Φk,cp,r[u

k
p > ucr], ∀(p, r) ∈ Nk,c,

Ec,kr,p (u
c
r, u

k
p) = Φc,kr,p [u

c
r > ukp], ∀(r, p) ∈ Nc,k,

(6)

where Φk,cp,r ∈ R>0 are given coefficients that do not
depend on segmentations (uk)k∈K̃ . Like for Eq. (5), for

any k ∈ K and any pixel pair (p, r) ∈ Nk,c, when Φk,cp,r =
Φc,kr,p , one can sum Eq. (6) for opposite pixel pairs:

Ek,cp,r (u
k
p, u

c
r) + Ec,kr,p (u

c
r, u

k
p) = [ukp 6= ucr]Φ

k,c
p,r. (7)

Then, when Eq. (7) holds, Eq. (3) can be written:

Ek,c(uk, uc) = γk
∑

(p,r)∈Nk,c

[ukp 6= ucr]Φ
k,c
p,r

+ ηk
∑

(p,r)∈Ñk,c

[ukp 6= ucr]Φ
k,c
p,r.

(8)

When L = 2, we remind that an energy function is
said to be submodular if all its pairwise terms verify a
submodularity condition. For the spatial regularization
terms (see Eq. (4)), this condition writes:

Ekp,q(0, 0) + Ekp,q(1, 1) ≤ Ekp,q(1, 0) + Ekp,q(0, 1),

∀k ∈ K,∀(p, q) ∈ Nk. (9)

Moreover, when all coupling terms are submodular, the
energy E can be minimized exactly using graph cuts.

When L > 2, large scale problem cannot be mini-
mized exactly. However, when the pairwise terms of the
energy function, such as those defined in Eq. (4), satisfy


Ekp,q(l

′, l) + Ekp,q(l, l
′′) ≥ Ekp,q(l′, l′′), ∀l, l′, l′′ ∈ L,

Ekp,q(l, l
′) = 0⇔ l = l′, ∀l, l′ ∈ L,

Ekp,q(l, l
′) = Ekp,q(l

′, l) ≥ 0, ∀l, l′ ∈ L,
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(10)

it still remains possible to get an approximate mini-
mizer of the energy function Eq. (1) using the α-expansion
algorithm.

These numerical aspects and the details of the graph
construction are described in Section 2.5.

2.3 Particular cases related to classic approaches

There are three cases where the proposed approach
boils down to common segmentation strategies, namely:
independent segmentations, NB segmentation (see Sec-
tion 1) and majority decision [30].

The first case occurs when the weighting parameters
(γk)k∈K and (ηk)k∈K are both null. In that situation,
the coupling terms vanish and the value of E is inde-
pendent of the joint segmentation. Minimizing Eq. (1)
is thus equivalent to minimize Eq. (2) in uk, indepen-
dently for all k ∈ K.

The second case establishes a link between our ap-
proach and NB segmentation. NB segmentation is a
generic approach referring to the fact that the different
layers of a multi-layer data set used to estimate a joint
segmentation (and only it, i.e. no individual segmenta-
tions) are assumed independent conditionally to joint
segmentation. In accordance with the notations defined
in Section 2.2, it means that the functional to minimize
with respect to uc ∈ LPc can be written

Ẽ(uc) =
∑
r∈Pc

∑
k∈K

(
αkẼ

k
r (u

c
r)
)
+
∑

(r,s)∈Nc̃

Ecr,s(u
c
r, u

c
s), (11)

whereNc ⊆ (Pc×Pc) is a neighborhood system, Ẽkr (ucr)
only depends on vkp (observations at pixels p, with the
pixel pair (p, r) ∈ Nk,c, of layer k) and ucr. In the case
of the assumed weighted Potts model (see e.g.[7,31]),
Ẽcr,s(u

c
r, u

c
s) = xr,s[u

c
r 6= ucs] where xr,s ∈ R>0 are given

coefficients.
In the following, having formalized the idea of a

consensual solution (Definition 2), then Proposition 1
states the conditions under which our model boils down
to NB one.

Definition 2
A solution (uk)k∈K̃ of Eq. (1) is said consensual if it
verifies ∀r ∈ Pc, ∀k ∈ K

ukp = ucr, ∀p ∈ Pk s.t. (p, r) ∈ N k,c.

In order to state the proposition, we define the fol-
lowing quantities, for k ∈ K, (p, r) ∈ N k,c:

For all (l, l′) ∈ L2

Rkp,r(l, l
′) =

αkE
k
p (l) + βk

∑
q:(p,q)∈Nk

Ekp,q(l, l
′)

Φk,cp,r
,

mk = min
(p,r)∈Nk,c

(l,l′)∈L2

Rkp,r(l, l
′),

and

Mk = max
(p,r)∈Nk,c,

(l,l′)∈L2

(
Rkp,r(l, l

′)+
βk
∑
q:(p,q)∈Nk

Ekq,p(l
′, l)

Φk,cp,r

)
.

Proposition 1 (NB case)
For any set of images such that Pc is under-constrained
(see Definition 1), if we assume that for all k ∈ K,
∀(p, r) ∈ N k,c, Φk,cp,r = Φc,kr,p ∈ R>0, when{
ηk = 0

γk > Mk −mk
,

any minimizer of Eq. (1) is consensual (see Definition 2).
Additionally, for any consensual minimizer (uk)k∈K̃

of Eq. (1), the segmentation uc solves an NB segmen-
tation model, as defined in Eq. (11).

Proof. Since ηk = 0, ∀k ∈ K and Φk,cp,r = Φc,kr,p , ∀k ∈ K,
∀(p, r) ∈ N k,c, using Eq. (8), we can rewrite Eq. (1) as

E((uk)k∈K̃) =
∑
k∈K

Ek(uk) + ∑
(p,r)∈Nk,c

γkΦ
k,c
p,r[u

k
p 6= ucr]

 ,

and obtain

E((uk)k∈K̃) =
∑
k∈K

∑
p∈Pk

(
αkE

k
p (u

k
p)

+ βk
∑

q:(p,q)∈Nk

Ekp,q(u
k
p, u

k
q ) + γkΦ

k,c
p,r[u

k
p 6= ucr]

)
. (12)

Consider any minimizer (uk)k∈K̃ of Eq. (12). We now
assume that (uk)k∈K̃ is not consensual and will show
that this hypothesis leads to an impossible statement.
In order to do so, we consider (ũk)k∈K̃ the segmenta-
tions defined 3, for ∀k ∈ K, ∀r ∈ Pr, by

ũkp = ucr, ∀p ∈ Pk s.t. (p, r) ∈ N k,c,

and

ũcr = ucr, ∀r ∈ Pc.

We easily establish that ũ is consensual. In order to
establish that E is smaller at ũ than at u we distinguish
three configurations contributing to Eq. (12):

3 Notice that the definition of ũkp is correct because Pc is under-
constrained.
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– Terms of the first kind: When k ∈ K and p ∈ Pk are
such that ukp 6= ũkp.

– Terms of the second kind: When k ∈ K and p ∈ Pk
are such that ukp = ũkp = ucr but there exists q such
that (q, p) ∈ Nk and ukq 6= ũkq .

– Terms of the third kind: When k ∈ K and p ∈ Pk
are such that ukp = ũkp = ucr and for all q such that
(q, p) ∈ Nk, ukq = ũkq .

These configurations cover all the possible situations.
Notice that the first configuration appears at least once,
since u is not consensual.

– Assume k ∈ K and p ∈ Pk are such that ukp 6= ũkp.
Since, the grid Pc is under-constrained, there is a
unique r ∈ Pc such that (p, r) ∈ Nk,c and we have

ukp 6= ũkp = ũcr = ucr.

As a consequence, using the definition of Mk and
since [ũkp 6= ũcr] = 0,

αkE
k
p (ũ

k
p) + βk

∑
q:(p,q)∈Nk

Ekp,q(ũ
k
p, ũ

k
q )

+ γkΦ
k,c
p,r[ũ

k
p 6= ũcr]

+ βk
∑

q:(q,p)∈Nk
uk
q=ũk

q

Ekq,p(ũ
k
q , ũ

k
p) ≤MkΦ

k,c
p,r,

(13)

where the last term in the sum on the left of the in-
equality is here to take into account that, when com-
puting E((ũk)k∈K̃), a term Ekq,p(ũ

k
q , ũ

k
p) is present

when adding the pixel q, and q might be of the sec-
ond kind. Because of the assumption on γk, we have

MkΦ
k,c
p,r < mkΦ

k,c
p,r + γkΦ

k,c
p,r

≤ αkE
k
p (u

k
p) + βk

∑
q:(p,q)∈Nk

Ekp,q(u
k
p, u

k
q )

+γkΦ
k,c
p,r[u

k
p 6= ucr].

– Assume k ∈ K and p ∈ Pk are such that ukp =

ũkp = ucr but there exists q such that (q, p) ∈ Nk and
ukq 6= ũkq . In that case, every term βkE

k
p,q(ũ

k
p, ũ

k
q ) is

compensated by the last term in sum in the left of
the inequality Eq. (13), in the corresponding term of
the first kind 4. The terms βkEkp,q(ukp, ukq ) are non-
negative and can be added on the right of the in-
equality. The other terms are identical for ũ and u.

– Assume k ∈ K and p ∈ Pk are such that ukp = ũkp =

ucr and for all q such that (q, p) ∈ Nk, ukq = ũkq . All
terms are identical for u and ũ.

4 In Eq. (13), the name of the index are inverted and the term
has the form βkE

k
q,p(ũ

k
q , ũ

k
p).

We finally obtain, by summing over all the k, p

E((ũk)k∈K̃) < E((uk)k∈K̃),

that is in contradiction with the assumption that u is a
minimizer of Eq. (12). Therefore, the assumption that
(uk)k∈K̃ is not consensual is not valid. In order to prove
the second statement, we consider a consensual mini-
mizer (uk)k∈K̃ of

E((uk)k∈K̃) =
∑
k∈K

(
αk
∑
p∈Pk

Ekp (u
k
p)

+ βk
∑

(p,q)∈Nk

Ekp,q(u
k
p, u

k
q )

)
.

Since the solution is consensual and grids are under-
constrained, ∀p ∈ Pk, there exists a unique r such that
(p, r) ∈ Nk,c, ukp = ucr. As a consequence, ukp in the sum
on p ∈ Pk can be replaced by ucr in a sum on r ∈ Pc
and we have∑
k∈K

αk
∑
p∈Pk

Ekp (u
k
p) =

∑
r∈Pc

∑
k∈K

αk
∑

p:(r,p)∈Nc,k

Ekp (u
c
r).

The latter term has the right format, once we let

Ẽkr (l) =
∑

p:(r,p)∈Nc,k

Ekp (l), ∀l ∈ L.

Similarly, we have∑
k∈K

βk
∑

(p,q)∈Nk

Ekp,q(u
k
p, u

k
q )

=
∑

(r,s)∈Nc

∑
k∈K

βk
∑

(p,q)∈Nk
(p,r)∈Nk,c
(q,s)∈Nk,c

Ekp,q(u
c
r, u

c
s),

where we have defined

Nc = {(r, s) ∈ P2
c | there exists k ∈ K and (p, q) ∈ Nk

such that (p, r) ∈ Nk,c and (q, s) ∈ Nk,c}.

Again, the binary term has the right format once we let

Ẽcr,s(l, l
′) =

∑
k∈K

βk
∑

(p,q)∈Nk
(p,r)∈Nk,c
(q,s)∈Nk,c

Ekp,q(l, l
′), ∀l, l′ ∈ L.

ut

The third case establishes a link between our ap-
proach and majority decision. In order to state it, we
define for all k ∈ K and all r ∈ Pc

fkr (l, u
k) = ]{p ∈ Pk | (r, p) ∈ Nk,c, ukp = l}
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which counts the neighbors of r having the label l in the
individual segmentation uk (] denotes the cardinality of
a set) and

fr(l, (u
k)k∈K) =

∑
k∈K

fkr (l, u
k)

which counts the neighbors of r having the label l among
all individual segmentations (uk)k∈K. We also remind
that the majority decision is defined for all r ∈ Pc by

argmax
l∈L

fr(l, (û
k)k∈K).

Proposition 2 (Majority decision case)
For any set of images associated to neighborhood sys-
tems (Nk)k∈K and (Nk,j)(k,j)∈(K̃×K̃), let us assume that{
Φk,cp,r = Φc,kr,p = C ∈ R>0 ,∀k ∈ K,∀(p, r) ∈ Nk,c
γk = ηk = C ′ ∈ R>0 ,∀k ∈ K.

Then, any minimizer (ûk)k∈K̃ of Eq. (1) verifies

ûcr ∈ argmax
l∈L

fr(l, (û
k)k∈K), ∀r ∈ Pc.

Proof. Since Φk,cp,r = Φc,kr,p = C ∈ R>0, ∀k ∈ K, ∀(p, r) ∈
Nk,c and γk = ηk = C ′ ∈ R>0, ∀k ∈ K and us-
ing Eq. (8), Eq. (1) can be written

E((uk)k∈K̃) =
∑
k∈K

(
Ek(uk) + C ′

∑
(p,r)∈Nk,c

[ukp 6= ucr]C

+ C ′
∑

(p,r)∈Ñk,c

[ukp 6= ucr]C

)

=
∑
k∈K

Ek(uk)

+ CC ′
∑
k∈K

∑
(p,r)∈Nk,c

[ukp 6= ucr].

(14)

Since CC ′ > 0, for any minimizer (ûk)k∈K and any
r ∈ Pc, ûcr minimizes in Eq. (14) (with respect to l ∈ L)

er(l) =
∑
k∈K

∑
(p,r)∈Nk,c

[ûkp 6= l] =
∑
k∈K

∑
l′∈L
l′ 6=l

fkr (l
′, ûk),

= Cr − fr(l′, (ûk)k∈K),

where

Cr = ∪k∈K {p ∈ Pk |(p, r) ∈ Nk,c } , (15)

Cr = ]Cr =
∑
k∈K

∑
l∈L

fr(l, (û
k)k∈K),

counts all the neighbors of r. Therefore, ûcr maximizes
fr. ut

For any pixel r ∈ Pc, the majority decision is taken
among the pixels Cr (see Eq. (15)). Then, it may occur
that the number ]Cr of pixels involved in the major-
ity rule is larger than K. Finally notice that, to be a
majority label, a label l ∈ L shall satisfy (see Propo-
sition 2): fr(l, (uk)k∈K) ≥ ]Cr

2 if only two labels are
actually present in Cr or ≥ max{ ]CrL , 1} if labels are
uniformly distributed in Cr.

In this section, we have established some links with
classic approaches. Beyond the illustration of the be-
havior of the proposed energy function (in some border-
line cases), it allows us to test the use of some heuris-
tics. Specifically, when L > 2, we use the α−expansion
heuristic to compute an approximate minimizer of Eq. (1)
(see Section 2.5). The experiments of Section 3 per-
formed in this third particular case allowed us to check
that, in practice, each pixel of the resulting joint seg-
mentation obtained by α−expansion algorithm was ac-
tually assigned to a majority label (as predicted by
Proposition 2).

2.4 Strategy for defining weighting coefficients

In previous section, we consider cases at the margin
with particular values assigned to weighting parameters
γk, ηk and coefficients Φk,cp,r. In this section, we consider
standard cases of the energy function Eq. (1) and we
discuss about the coefficients wkp,q and Φk,cp,r.

Classically, wkp,q coefficients help to better align the
boundary of a segmentation onto boundaries of the
objects of interest. Let us consider a pair of spatially
neighboring pixels (p, q) ∈ Nk, for some k ∈ K, where
labels ukp and ukq are expected to be different. When
image intensities at p and q are dissimilar, wkp,q co-
efficients typically assign a small penalty. Conversely,
when image intensities are similar, the cost for hav-
ing ukp different from ukq is large. Examples of such co-
efficients include gradient magnitude, Laplacian zero-
crossing, etc [29].

In the same spirit, Φk,cp,r coefficients aim to enforce
coherence of all segmentations, for pixels that are in dif-
ferent images but at the matched locations (N links)
or at a nearby locations (Ñ links). In our case, the
coupling between individual segmentations is only done
indirectly through the joint segmentation. Thus, Φk,cp,r
coefficients cannot be defined from the same dissimilar-
ity measurements as the ones used for wkp,q coefficients
since no observations are associated to the joint seg-
mentation uc.

Let us first consider the simplest case where the
number of images K = 2, N a,b 6= ∅ and Ña,b = ∅. For
any triplet of matching pixels (r, p, q) ∈ (Pc×P1×P2),
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(r, p) ∈ N c,1, (r, q) ∈ N c,2, it seems reasonable that,
when image intensities/features are similar in pixels p
and q, u1p, u2q and ucr are expected to be equal and thus
we will choose a large penalty when it is not the case.
Conversely, the observation of dissimilar image inten-
sities/features (in p and q) can explain a difference in
individual segmentation labels u1p and u2q, which cannot
thus both be consistent with the joint segmentation ucr.
Thus, Φ1,c

p,r and Φ2,c
q,r positive coefficients can be driven

by v1p and v2q similarity.
In a more general way, i.e. for K ≥ 2, we propose

to define Φk,cp,r coefficients based on the (dis)similarity
of the observation in image vk at pixel p with respect
to observations in other images (vj)j∈(K\{k}), restricted
to pixels q matched to pixel r (q ∈ Pj , (r, q) ∈ N c,j).

Let us define ϕk,j,cp,q,r ∈ R>0 a coefficient that mea-
sures the similarity between observations in pixels p ∈
Pk and q ∈ Pj where p and q are indirectly linked
through r ∈ Pc. To define Φk,cp,r, the simplest strategy is
to sum ϕk,j,cp,q,r coefficients over all pixels q with respect
to r neighborhood relationships:{
∀k ∈ K,∀(p, r) ∈ Nk,c, Φk,cp,r =

∑
j∈K,j 6=k

(r,q)∈Nc,j

ϕk,j,cp,q,r,

∀k ∈ K,∀(p, r) /∈ Nk,c, Φk,cp,r = 0.

Notice that the latter expression allows us to have ϕk,j,cp,q,r 6=
ϕj,k,cq,p,r. The averaging strategy (of ϕk,j,cp,q,r coefficients) is
the one retained for the experiments presented in Sec-
tion 3. However, we underline that other combination
rules of coefficients ϕk,j,cp,q,r could be chosen accordingly
to the application.

2.5 Energy minimization

Graph cuts are a combinatorial optimization problem
of graph theory and refer to minimum-cut (or, by du-
ality, maximum-flow). Introduced in the 80’s as a new
energy minimization tool for binary image denoising,
it has received more attention a decade later thanks
to better computational resources, the incoming of a
fast maximum-flow algorithm [8] and key theoretical
results [23].

Noticeably, the latter paper shows that the pair-
wise terms of an energy function need to be submodu-
lar to be minimized exactly. The same condition is also
sufficient to minimize this function using graph cuts.
The interest of such an approach is that a minimum-
cut can be computed rapidly using a fast algorithm [8],
with a near-linear empirical complexity of the number
of nodes. When L = 2 and the submodularity con-
dition Eq. (9) holds for any pairwise term involved
in Eq. (1), the graph cut algorithm provides an exact
minimizer of Eq. (1).

Let us first consider the case where L = 2 and then
the case where L > 2. For doing so, let us consider a
directed and capacitated graph G = (V, E) with a set of
nodes defined as

V = P̃ ∪ {s, t},

where s and t are particular nodes usually named the
source and the sink respectively, and a set of edges de-
fined as

E = (∪k∈K({s} × Pk) ∪ (Pk × {t})
∪ Nk ∪ Nk,c ∪ Nc,k) ⊂ (V × V).

Edges connected to s or t are usually named t-links
while edges in Nk, Nk,c and Nc,k, for every k ∈ K, are
named n-links. For any edge (p, q) ∈ E , we assign to it
a non-negative capacity as follows

c(s, p) = αkE
k
p (1), ∀k ∈ K, ∀p ∈ Pk,

c(p, t) = αkE
k
p (0), ∀k ∈ K, ∀p ∈ Pk,

c(p, q) = βkw
k
p,q, ∀k ∈ K, ∀(p, q) ∈ Nk,

c(p, r) = γkΦ
k,c
p,r, ∀k ∈ K, ∀(p, r) ∈ N k,c,

c(r, p) = γkΦ
c,k
r,p , ∀k ∈ K, ∀(r, p) ∈ N c,k,

c(p, r) = ηkΦ
k,c
p,r, ∀k ∈ K, ∀(p, r) ∈ Ñk,c,

c(r, p) = ηkΦ
c,k
r,p , ∀k ∈ K, ∀(r, p) ∈ Ñc,k.

(16)

Let us remind that an s-t cut C of the graph G is a
partition of the set of nodes V into two disjoint sets S
and T , such that s ∈ S and t ∈ T . The value of any s-t
cut C is given by

valG(C) =
∑

(p,q)∈(S×T )

c(p, q).

For an s-t cut C, we also define

xkp(C) =
{
0 if p ∈ T
1 if p ∈ S , ∀p ∈ Pk, ∀k ∈ K̃.

From the latter expression, one can remark that, for
every k ∈ K̃, there is a one-to-one correspondence be-
tween the set of s-t cuts and the elements of {0, 1}Pk .
For every k ∈ K and every p ∈ Pk, the t-links involving
p contribute to valG(C) with

xkp(C)Ekp (0) + (1− xkp(C))Ekp (1). (17)

Furthermore, for every k ∈ K and any n-link (p, q) ∈
Nk, we have

(p, q) ∈ (S × T ) if and only if [xkp(C) > xkq (C)] = 1.

(18)

Similarly, for every k ∈ K̃ and any n-link (p, r) ∈ Nk,c,
we have{
(p, r) ∈ (S × T ) if and only if [xkp(C) > xcr(C)] = 1,

(r, p) ∈ (S × T ) if and only if [xcr(C) > xkp(C)] = 1.
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(19)

Given the capacities of the graph G in Eq. (16) and
by summing Eq. (17), Eq. (18) and Eq. (19), it now
becomes straightforward to check that, for any s-t cut
C in the graph G, we have

valG(C) =
∑
k∈K

(
αk
∑
p∈Pk

xkp(C)Ekp (0) + (1− xkp(C))Ekp (1)

+ βk
∑

(p,q)∈Nk

wkp,q[x
k
p(C) > xkq (C)]

+ γk
∑

(p,r)∈Nk,c

Φk,cp,r[x
k
p(C) > xcr(C)] + Φc,kr,p [x

c
r(C) > xkp(C)]

+ ηk
∑

(p,r)∈Ñk,c

Φk,cp,r[x
k
p(C) > xcr(C)] + Φc,kr,p [x

c
r(C) > xkp(C)]

)

=
∑
k∈K

( ∑
p∈Pk

αkE
k
p (x

k
p(C)) +

∑
(p,q)∈Nk

βkE
k
p,q(x

k
p(C), xkq (C))

+ γk

(∑
(p,r)∈Nk,c

Ek,cp,r (x
k
p(C), xcr(C)) +

∑
(r,p)∈N c,k

Ec,kr,p (x
c
r(C), xkp(C))

)

+ ηk

(∑
(p,r)∈Ñk,c

Ek,cp,r (x
k
p(C), xcr(C)) +

∑
(r,p)∈Ñc,k

Ec,kr,p (x
c
r(C), xkp(C))

))

= E((xk(C))k∈K̃).

Thus, if C∗ is a s-t minimum-cut in the graph G, then
(xk(C∗))k∈K̃ minimizes Eq. (1). When L > 2, as all pair-
wise terms satisfy the axioms of a metric in the labels
space L (see Eq. (10)), a minimizer within a constant
factor of the global one can thus be efficiently computed
using graph cuts as well [9].

Although the memory usage only scales linearly with
the number of images K, situations where the graph G
do not fit in memory can be encountered (especially
when K and/or the size of images (vk)k∈K become
large). Since segmentations remain weakly connected
between each other, dual decomposition can be used to
overcome this problem [36]. Optimality on the solution
is still guaranteed for L = 2 and a local minimum is
guaranteed within the same known factor as previously
for L > 2.

3 Experimental results

The purpose of this section is to illustrate the perfor-
mance of the MLJS framework against the NB approach
on 2D (hence d = 2) simulated data (with L = 2) and
real data (with L > 2). More particularly, two variants
of the proposed approach are considered, differing by
the considered neighborhood systems for the coupling

terms. For the first variant (denoted by MLJS-M), only
matched pixel pairs between segmentations (uk)k∈K are
considered (weighting parameters (ηk)k∈K are null, or
∀k ∈ K, Ñk,c = ∅). For the second variant (denoted
by MLJS-N), neighborhood systems (Nk,c)k∈K include
matched pairs as well as 8-nearest pixel pairs between
the joint segmentation uc and the individual segmenta-
tions (uk)k∈K (weighting parameters (γk)k∈K, (ηk)k∈K
are positive). 8-nearest pixel pairs are used for mod-
eling spatial relationships in individual segmentations
(uk)k∈K. For any k ∈ K and any pixel pair (p, q) ∈ Nk,
coefficients wkp,q will be equal for opposite pixel pairs
for simplicity, i.e. wkp,q = wkq,p.

The performance of any segmentation strategy pro-
ducing a segmentation SG : Pc → L, is evaluated with
respect to an available ground truth GT : Pc → L using
two common metrics, i.e. accuracy (in %)

ACC(SG,GT ) =
100

]Pc

∑
p∈Pc

[SG(p) = GT (p)],

and F-measure (in %)

FM(SG,GT ) =

100
∑
l∈L̃

(
2
∑
p∈Pc

[SG(p) = l]× [GT (p) = l]∑
p∈Pc

[SG(p) = l] + [GT (p) = l]

)
,

where L̃ denotes the set of available labels in the ground
truth GT . The larger the two above metrics are, the
better the considered segmentation strategy is.

For each segmentation strategy, multiple values of
the weighting parameters involved in the energy func-
tion Eq. (1) are explored using an exhaustive grid search
strategy. The values of the weighting parameters max-
imizing either ACC or FM are then retained. Never-
theless, for being tractable in a reasonable amount of
time, these parameters are constrained as follows (when
available): βk = β ∈ R≥0 and γk = ηk = γ ∈ R≥0,
∀k ∈ K. Hence, the number of weighting parameters is
drastically reduced but this simplification remains rea-
sonable with regards to the input data considered in
the subsequent sections 5.

3.1 Toy example

3.1.1 Simulated data

The set (vk)k∈K is composed of 8 coregistered images of
two types. The first type consists of replicated images

5 Notice that this paper focuses on the supervised approach.
Estimation of hyperparameters will be the subject of a forthcom-
ing paper.
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from a 64 × 64 low-contrasted simulated image com-
posed of homogeneous areas and thin structures. The
second type consists of distinct realizations of white
Gaussian noise of standard deviation σ ∈]0, 1], added
to the simulated image. The ratio of degraded images
with respect to the number of images K is controlled by
a parameter denoted by ρ ∈ [0, 1]. Also, the intensities
of all images lie in the unit interval [0, 1]. The simulated
image as well as degraded versions of it are depicted in
Figure 2.

3.1.2 Modeling

To minimize the energy Eq. (1) presented in Section 2,
we first need to instantiate appropriately the data terms
and the regularization terms (see Eq. (6) and Eq. (4)).
Given the input images, using a Chan-Vese segmen-
tation model [11] where image intensities are assumed
to be Gaussian-distributed in any region, is consistent
with our simulations. For every k ∈ K and every l ∈ L,
the data term of this model measures the discrepancy
of region Ωkl with

Ekp (u
k
p) =

1

2σ2
‖vkp − µk,uk

p
‖22,

where µk,l ∈ RM denotes mean intensity of region Ωkl ,
while the spatial regularization terms measure the length
of the boundary of Ωkl with

Ekp,q(u
k
p, u

k
q ) =

1

‖ν � (p− q)‖2
H(ukp − ukq ),

where ν ∈ R2
>0 denotes the image resolution and �

denotes the Hadamard product between two elements
of R2. By identification with the proposed model, given
the parameter ν, we thus have wkp,q =

1
‖ν�(p−q)‖2 . More-

over, for any triplet (p, q, r) ∈ (Pk×Pj ×Pc) such that
(p, r) ∈ Nk,c and (q, r) ∈ Nj,c and (p, q) is a match-
ing pixel pair, the coefficients involved in Eq. (6) are
defined as

ϕk,j,cp,q,r =
1

1 + ‖ν � (p− r)‖2
exp

(
−
‖vkp − vjq‖22

2σ2
k,j

)
, (20)

where σk,j ∈ R>0 denotes the standard deviation of the
difference of intensities of the images vk and vj . In the
latter equation, notice that the denominator remains
positive when the pixels p and r share the same spatial
location.

3.1.3 Numerical experiments

Given a noise level σ and a ratio of degraded images
ρ, each segmentation strategy is run with weighting
parameters taking values in the following ranges: β ∈

{2−13, 2−12, . . . , 20} and γ ∈ {2.5−13, 2.5−12, . . . , 2.50}.
This process is repeated 10 times with different noise re-
alizations. Performance metrics are then averaged over
these runs.

The results are presented in Figure 3, 4 and 5.

Quantitative results are only provided in terms of
ACC since they are very well correlated with FM. Note
that in Figure 3(a), since the achieved mean accuracy
of MLJS-M and MLJS-N is the same, the solid green
line and solid red line overlap. According to Figure 3,
when the noise level σ remains small with respect to
the image dynamic (i.e. up to σ ' 0.1), whatever the
ratio of degraded images ρ, all segmentation strategies
perform equally with an ACC of about 100%. Notice
that MLJS-N perform slightly worse in such situation
on thin structures since they are more impacted by the
spatial regularization. As the noise level σ increases, the
performance of all segmentation strategies diminishes in
a way that is even more pronounced when the ratio of
degraded images ρ becomes large. However, the perfor-
mance of MLJS-M and MLJS-N decreases less rapidly
than NB. In these experiments, whatever the propor-
tion of degraded images and whatever the noise level,
MLJS-M outperforms NB (see Section 2.3). Using the
proposed approach, the objects are well recovered while
less than half of the images are degraded. In such a case,
unlike NB, MLJS-M and MLJS-N can indeed still rely
on non-degraded images to produce the desired segmen-
tation. Furthermore, MLJS-N appears to be more ro-
bust than MLJS-M. When all images are degraded, all
segmentation strategies however perform equally. The
aforementioned observations are confirmed by the seg-
mentation results depicted in Figure 4. In this figure,
for σ = 0.5, false positives (cyan) and false negatives
(magenta) of resulting segmentations with respect to
ground truth are superimposed to the simulated image
for a moderate (ρ = 1/3) and strong (ρ = 2/3) propor-
tion of degraded images.

Finally, Figure 5 depicts the sensitivity of the weight-
ing parameters β and γ of all segmentation strategies
for ρ = 0.5. One can observe that the size of the in-
tervals of the weighting parameters β and γ offering
good segmentation performance shrinks as the noise
level increases. Nevertheless, the location of the max-
ima of ACC remains stable. As expected, the segmen-
tation performance diminishes for extreme values of the
weighting parameters.
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Fig. 2 Simulated image (left) degraded by an additive white Gaussian noise of standard deviation σ = 0.05 (middle) and σ = 0.5
(right).

(a) (b)

Fig. 3 Mean ACC against ratio of degraded images ρ ∈ [0, 1] (a) and amount of noise σ ∈ [0, 1] (b). Red solid line is occluded by
green solid line since the two curves overlap.

NB MLJS-M MLJS-N

ρ = 1/3

ACC=88.96%, FM=88.21% ACC=100%, FM=100% ACC=98.27%, FM=98.18%

ρ = 2/3

ACC=83.99%, FM=85.18% ACC=92.38%, FM=91.97% ACC=97.19%, FM=97.04%

Fig. 4 False positives (cyan) and false negatives (magenta) with respect to ground truth superimposed to the simulated image for
σ = 0.5. Mean ACC and FM are provided below each image.
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σ = 0.25

σ = 0.5

NB MLJS-M MLJS-N

Fig. 5 Sensitivity of weighting parameters β and γ on a toy example for ρ = 0.5.

3.2 Materials classification

3.2.1 Context

The purpose of this section is to illustrate the perfor-
mance of the MLJS framework on real data, i.e. for
identifying the material of different objects. This prob-
lem is challenging for two reasons: (i) we cannot rely on
the shape, the location and the orientation of the ob-
jects since they are independent of object material; (ii)
we can neither rely on the appearance since, in some
cases, objects made of different materials may be very
close in terms of appearance.

Nowadays, like for many problems in computer vi-
sion, learning-based approaches, such as Deep Neural
Networks (DNN) overcome classical approaches. The
performance of deep networks type methods comes from
huge databases used to train them. In the case of color
images, a known example is the database acquired by
Google to operate their TensorFlow network [1], the
image database ImageNet [14] or more specifically, the
recent plastic waste image database [6]. However, even
if results are promising, in case of material classifica-
tion, DNN are faced to an intrinsic limitation, namely
the low discriminating power of color. Even more, when
during the learning step, for a given material a color is
not represented but it appears during the operational
step (e.g., a new color for water plastic bottle for a spe-
cial event), the classifier will fail.

Hyperspectral imaging in the near infra red field
brings a suitable solution for this problem since it can
provide relevant information about the chemical com-
ponents of materials. Using DNN on hyperspectral data

does not yet appear as an efficient solution nowadays
for at least two reasons. Firstly, hyperspectral data are
not so common than visible data, especially when we
take into account the sensor dependency; then, even if
in the field of remote sensing, some free hyperspectral
databases have appeared, in the field of materials, only
very small databases exist, each one being related to a
specific sensor. Secondly, in such a few-shot learning,
the huge size of the input data jeopardizes the training
efficiency.

Recently, material type recognition was cast as a
multiclass classification problem in an evidential uni-
fied framework. The multiclass problem is first decom-
posed in binary subproblems (dichotomizers, e.g. bi-
nary Support Vector Machines) and then partial out-
puts combined together [25]. One-versus-all (OVA) and
one-versus-one are particular cases of such a strategy
also known as ECOC (Error Correcting Output Codes)
e.g. [15,24]. However, such approaches are blind and
do not benefit of the spatial neighborhood information
which may provide a very useful prior as in most image
processing problems. Thus, we aim to take advantage
of such information using the proposed approach.

3.2.2 Data

The Headwall hyperspectral sensor used for our tests
acquires images where every pixel stores the spectrum
sampled on exactly 275 wavelengths between 900nm
and 2500nm. Now, raw measurements in these spec-
trums are usually not considered as they are directly.
Classical preprocessing involves spectrum filtering and
derivation at different orders, e.g. based on the Savitsky-
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Golay filter [34,37]. This filter fits a low degree polyno-
mial on data within a sliding window with a fixed size. It
allows us to smooth the data and to compute the deriva-
tives from the fitted polynomials. Then, because of both
some processing time considerations and data redun-
dancy control, dimensionality reduction is applied, for
instance using a Principal Component Analysis (PCA),
e.g. [12].

Specifically, in addition to the performance assess-
ment of the proposed approach, we are interested by
evaluating if the whole spectrum is useful or if the in-
formation contained in the half spectrum is sufficient.
Indeed, acquiring information far from the visible field
is increasingly expensive. Establishing if fewer wave-
lengths are sufficient could lead to the use of cheaper
sensors. For doing so, we split the spectrum into two
parts: from 900nm to 1700nm (denoted by fh) and from
1700nm to 2500nm (denoted by sh). This split roughly
corresponds to classical sensor ranges and allows us to
obtain two equal parts of the spectrum. Then, Savitsky-
Golay’s filter having been applied to each half spectrum
part, a PCA is applied to each output (derivative) of
Savitsky-Golay’s filter, with an adaptive number of kept
components preserving 99% of the information, namely
between 3 to about 20 in our experiments. In the follow-
ing, the input data resulting of PCA are denoted Ds

k,
where the subscript k ∈ {0, 1, 2} denotes the deriva-
tion order and the superscript s ∈ {fh, sh} denotes the
considered spectrum part. The absence of superscript
means that the whole spectrum is used.

In this study, we consider L = 9 classes of materi-
als, namely 7 different kinds of polymer (corresponding
to different plastics present in packaging: water, milk,
shampoo, plastic film, etc.) and 2 fibrous classes (paper
and cardboard). From hyperspectral images, we extract
a data subset, specifically used for SVM training. From
1000 samples per class using Gaussian kernels, it allows
for the estimation of each dichotomizer parameters, de-
termined by 5 fold cross validation and grid search. In
this work, we focus on the OVA strategy because of its
linear cost (versus the number of classes) while provid-
ing good performance when correctly trained [32]. For
L labels, L dichotomizers are trained to distinguish any
class against the other ones (hence the strategy name).
In our case, we thus trained K × L dichotomizers so
that for a given k ∈ K, for every pixel p ∈ Pk, the di-
chotomizer trained to distinguish class l in (vk)k∈K data
provides as raw output a score (denoted by skp(l) ∈ R)
that may be converted into a soft output with possible
probabilistic interpretation. Among the different ways
to estimate likelihoods with this strategy, the most in-
tuitive one is to map the score skp(l) to the unit interval

Table 3 Boards (left) and classes (right) in hyperspectral coseg-
mentation.

Board Image size Classes
1 141× 96 2, 8, 9
2 141× 96 2, 8, 9
3 141× 96 4, 5, 9
4 141× 96 4, 5, 9
5 141× 96 1, 3, 7, 9
6 141× 96 1, 3, 6, 7, 9
7 203× 96 4, 5, 8, 9

Class Material
1 Paper
2 Cardboard
3 Elastomers
4 Polyethylene Terephthalate
5 Opaque Polyethylene Terephthalate
6 Polythene
7 Polypropylene
8 Polystyrene
9 Conveyor belt

with (see [28])

vkp(l) =
gθkl (s

k
p(l))∑

m∈L gθkm(skp(m))
∈]0, 1[, (21)

where vkp(l) denotes the lth component of aM -dimensional
vector storing the normalized class-likelihood or mapped
scores, the denominator is a normalization factor and
gθij is the sigmoid function defined by

gθij (x) =
1

1 + exp
(
(x, 1)T θij

) ∈]0, 1[,
where θij ∈ (R<0×R) are regression coefficients for the
ith image and the jth label. Regression coefficients θij
are estimated on calibration sets. Each calibration set
includes 200 samples: 100 labelled j according GT and
100 labelled “not j”. The estimation of regression coef-
ficients is performed by minimizing the resulting likeli-
hood function with respect to θij (that is a convex func-
tion), using the BFGS algorithm [16]. In Eq. (21), we
intentionally use the notation vkp since normalized like-
lihood images are precisely our input images for MLJS.

The set of samples used for the experiments pre-
sented in next sections have been collected in the Ve-
olia laboratories using a starter-kit hyperspectral sen-
sor configured for lab experiments with halogen lamps
and a 30cm large linear stage. They consist of 7 spec-
imen boards with small material samples with an hor-
izontal and a vertical resolution of 1.25 and 1.6 pix-
els, respectively. Hence, the image resolution is set as
ν = (1.25, 1.6)T . The 7th board of this dataset presents
real objects stacked on top of each others to provide
more realistic conditions. Characteristics of the boards
are summarized in Table 3.
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3.2.3 Modeling

To minimize the energy Eq. (1) presented in Section 2,
we need to instantiate the data terms and the regular-
ization terms (see Eq. (3) and Eq. (4)). For every k ∈ K
and every pixel p ∈ Pk, we propose to define the data
terms as

Ekp (u
k
p) = − log

(
vkp(u

k
p)
)
,

= log
(
1 + exp

(
(skp(u

k
p), 1)

T θkuk
p

))
.

For every k ∈ K and any pixel pair (p, q) ∈ Nk, we
propose to define the spatial regularization terms with

Ekp,q(u
k
p, u

k
q ) =

1

‖ν � (p− q)‖2

× exp

(
−
‖vkp − vkq ‖22

2σ2
k

)
H(ukp − ukq ),

where we remind that ν ∈ R2
>0 denotes the image reso-

lution of any image and � denotes the Hadamard prod-
uct between two vectors of R2. Taking into account the
score vector distance in the weighting coefficient (in ad-
dition to the spatial distance already used in Chan-Vese
model) allows us to detect automatically object bound-
aries and not to penalize a solution with different labels
assigned to neighboring pixels in such situation.

Finally, the coefficients involved in coupling terms
are the same as those defined by Eq. (20) (see Sec-
tion 3.1.2).

3.2.4 Numerical experiments

The two variants of the proposed approach are com-
pared to NB as well as to independent segmentations
of coregistered images (obtained by canceling coupling
terms with β = 0). Different datasets derived from the
spectrum are investigated: the first half of the spec-
trum, the second half of the spectrum, the concatena-
tion of split spectrums and the non-split spectrum. The
robustness of the considered segmentation approaches
is also studied when mapped scores are degraded with
an impulsive noise. In this case, the metrics ACC and
FM are averaged over 3 noise realizations.

For NB, the weighting parameter β takes values
in the following range: {1.5−16, 1.5−15, . . . , 1.517}. For
MLJS-M, the same interval is used for both the weight-
ing parameters β and γ. For MLJS-N, the range of val-
ues of these two parameters need to be slightly adapted
by using {1.6−23, 1.6−22, . . . , 1.610}.

The results of the experiments are presented in Fig-
ure 6, 7, 8, 9 and Table 5. For each split spectrum, ACC
and FM measurements are compared between the con-
sidered segmentation approaches in the Table 5. For 5

images out of 7, MLJS outperforms other approaches.
Both the mean and the overall ACC and FM are also
in favor of MLJS. Best results (with respect to ACC )
for boards 5 and 7 are shown in Figure 8 for NB, MLJS-
M, MLJS-N and best independent segmentation (here
Dsh

1 ). Although MLJS offers a slightly lower perfor-
mance for the board 7 compared to Dsh

1 for one of the
two segmentation metrics, it clearly outperforms NB
for this complex board. In both boards, MLJS-M and
MLJS-N perform equally well.

In Figure 6, mean ACC is provided with respect to
noise level for different spectrum data either half spec-
trum or whole spectrum considered at once or split.
Consistently with other works (see [25]), it can be ob-
served that the derivatives of order 1 provides best
results, compared to those of order 0 and 2, and re-
mains very competitive against NB. All segmentation
approaches perform equally in the absence of noise,
whatever which part(s) of the spectrum is handled.
However, MLJS-M and MLJS-N appear to be more ro-
bust against noise when the spectrum is split.

A rather interesting point is the difference of be-
havior between non-split spectrum (Figure 6(c)) and
split spectrum (Figure 6(d)). Indeed, conversely to half
spectrum cases, the whole information is considered in
both cases but processed differently. It points out that
increasing artificially the number of images K in the
proposed approach allows for an increase of the data
redundancy and thus better filtering of noise.

Best achieved results (with respect to ACC ) for
boards 2 and 7 are shown in Figure 9 for NB, MLJS-
M, MLJS-N and best independent segmentation (here
Dsh

1 ). These results definitely confirm that MLJS-M,
and especially MLJS-N, are more robust against noise
than NB.

Additionally, the segmentation performance (in terms
of ACC ) of the weighting parameters β and γ is pro-
vided with and without noise for NB, MLJS-M and
MLJS-N in Figure 7. As the noise density increases,
it can be noticed that the weighting parameters remain
stable.

3.3 Computational aspects

The running time of our approach is affected by the
max-flow/min-cut algorithm and increases with the num-
ber of labels L, the number of images K, the density of
neighborhood systems (Nk)k∈K and (Nk,j)(k,j)∈(K̃×K̃)
as well as the amount of regularization (controlled by
the weighting parameters (βk)k∈K, (γk)k∈K and (ηk)k∈K).
We remind that the theoretical complexity of the max-
flow/min-cut algorithm [8] used isO(mn2valG(C∗)), where
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MLJS-M MLJS-N
Non-split spectrum (K = 3) 2.55± 0.55 6.56± 2.73
Split spectrum (K = 6) 6.86± 1.48 18.91± 3.66

Table 4 Comparison of running times (in secs) between MLJS-
M and MLJS-N for L = 9 using non-degraded non-split spectrum
and split spectrum. The couple of values of the weighting param-
eters (βk)k∈K and (γk)k∈K maximizing overall ACC is selected
(see Table 5).

n and m denote respectively the number of nodes and
edges in the graph G and valG(C∗) denotes the value of
the min-cut C∗. In the proposed approach, n = ]Pc ×
(K +1) (assuming a constant number of pixels ]Pc per
image) and m = ]Pc ×K(a + b + 2) with a and b two
constant values. Specifically, for each node (pixel in a
given image), a denotes its number of n-links (spatial
neighbors) while b denotes the number of links towards
the consensus image (e.g. in Figure 1, a = 4 and b = 5).

In addition to this worst case theoretical complexity
evaluation, we conduct an empirical study. In Table 4,
we provide running times from of a under-optimized
implementation of our approach. Our experiments were
run under MATLAB 6 on an Intel i7-6900K CPU @

3.20GHz with 16 cores and 64GB of RAM.
These times (in secs) are compared between MLJS-

M and MLJS-N using non-degraded non-split spectrum
(K = 3 images) and a split spectrum (K = 6 images)
still for L = 9 (see Section 3.2.2). These measurements
are averaged over 10 runs and the couple of values of the
weighting parameters (βk)k∈K and (γk)k∈K maximizing
overall ACC is retained (see Table 5). For both MLJS-
M and MLJS-N, as the number of images doubles (from
K = 3 toK = 6 in Table 5), the observed running times
are multiplied by a factor between 2 and 3. For a fixed
number of images K, as the number of considered rela-
tionships surrounding consensus segmentation uc grows
from MLJS-M to MLJS-N (from b = 1 to b = 9), the
observed running time is again multiplied by a factor
between 2 and 3.

4 Conclusion and future work

In this paper, we have considered the problem of jointly
segmenting objects of interest from a set of images.
Our contributions are the following. Firstly, we pro-
pose a rather generic model (called MLJS) so that both
it generalizes previous models proposed for 2 labels
and/or two images, and it allows us to recover par-
ticular cases rather intuitive and simple. In particular,
we demonstrate the links connecting MLJS to standard

6 The implementation used for the α-expansion algorithm is
publicly available at https://github.com/akanazawa/MRF/tree/
master/utils/gco-v3.0/matlab.

approaches (such as NB, majority decision and indepen-
dent segmentations). To illustrate the genericity of the
approach, we instantiate the energy function of MLJS
into two different ways in the our experiments. Sec-
ondly, we demonstrate that this energy function can be
globally minimized for two labels, whatever the num-
ber of images, and we experiment that graph-cut ap-
proach also allows for efficient minimization in the case
of more than two labels. Thirdly, we conduct experi-
ments to study the sensitivity of the results versus the
MLJS parameters, and the robustness against degraded
observations. The benefit of our approach has then been
demonstrated both on simulated and real images using
distinct segmentation models.

For future work, we plan to extend our approach
in two directions. Firstly, we will consider Bayesian
estimation techniques in order to jointly estimate the
model parameters (class features and hyperparameters)
in addition to the segmentations (individual and joint
ones). Secondly, we will consider the case where coregis-
tration is possible but unknown. We aim at estimating
the mappings between images during the energy min-
imization since geometric consistency is a requirement
to segmentation regularization.
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Fig. 8 Best achieved results without noise (w.r.t. ACC ) for board 5 (upper half) and board 7 (lower half). Segmentations are shown
in first and second rows, respectively. Error images w.r.t. ground truth are shown in second and fourth, respectively. Results of leftmost
column are the best ones obtained among independent segmentations.
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Fig. 9 Best achieved results (w.r.t. ACC ) with mapped scores degraded by 20% of impulsive noise for board 2 (upper half) and
board 7 (lower half). Segmentations are shown in first and second rows, respectively. Error images w.r.t. ground truth are shown in
second and fourth, respectively. Results of leftmost column are the best ones obtained among independent segmentations.



Multi-Layer Joint Segmentation Using MRF and Graph Cuts 21

30. E. Morvant, A. Habrard, and S. Ayache. Majority vote of
diverse classifiers for late fusion. In International Workshop
on Structural Syntactic, and Statistical Pattern Recognition
(IWSSSPR), pages 153–162, 2014.

31. R. B. Potts. Some generalized order-disorder transforma-
tions. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 48(1):106–109, 1952.

32. R. Rifkin and A. Klautau. In defense of one-vs-all classifi-
cation. Journal of Machine Learning Research, 5(Jan):101–
141, 2004.

33. C. Rother, T. Minka, A. Blake, and V. Kolmogorov.
Cosegmentation of image pairs by histogram matching-
incorporating a global constraint into MRFs. In Proceedings
of Conference on Computer Vision and Pattern Recognition
(CVPR), pages 993–1000, 2006.

34. A. Savitzky and M.J.E. Golay. Smoothing and differentiation
of data by simplified least squares procedures. Analytical
Chemistry, 36(8):1627–1639, 1964.

35. A. Shen, H. Wang, W. Xi, X. Deng, J. Chen, and Y. Zhang.
Multi-phase simultaneous segmentation of tumor in lung 4D-
CT data with context information. PLoS One, 12(6), 2016.

36. P. Strandmark and F. Kahl. Parallel and distributed graph
cuts by dual decomposition. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2085–2092,
2010.

37. C. Vaiphasa. Consideration of smoothing techniques for hy-
perspectral remote sensing. ISPRS Journal of Photogram-
metry and Remote Sensing, 60(2):91–99, 2006.

38. A. Yezzi, L. Zollei, and T. Kapur. A variational framework for
joint segmentation and registration. In Proceedings of IEEE
Workshop on Mathematical Methods in Biomedical Image
Analysis (MMBIA), pages 44–51, 2001.


	Introduction
	MLJS framework
	Experimental results
	Conclusion and future work

