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Abstract

Given a set of points S ∈ R2, reconstruction is a process of
identifying the boundary edges that best approximates the set of
points. In this paper, we propose a unified algorithm for recon-
struction that works for both dot patterns as well as boundary
samples. The algorithm starts with computing the Delaunay
triangulation of the given point set and edges are iteratively re-
moved based on the structure of a pair of triangles. Further,
we also propose additional criteria for removing edges based on
characterizing a triangle and using degree constraint. Unlike
the existing algorithms, the proposed approach requires only a
single pass to capture both inner and outer boundaries irre-
spective of the number of objects/holes. Moreover, the same
criterion has been employed for both inner and outer bound-
ary detection. The experiments show that our approach works
well for different kinds of inputs. We have done extensive com-
parisons with state-of-the-art methods for various kinds of point
sets including varying the sampling density and distribution and
found to perform better or on par with them.

1 Introduction and related works

Given a set of points S lying on a plane, sampled from an
object, the reconstruction is a task of embodying the bound-
ary edges (inner and outer boundaries) that best approximates
its geometrical identity. In this paper, the point samples are
assumed to be derived from a smooth closed curve(s). When
the sample points are derived only from the boundaries of the
curve(s) (Figure 1(a)), termed as boundary samples, then the
reconstruction is generally called as curve reconstruction (Fig-
ure 1(b)). On the other hand, sample points, in addition to
boundaries, can be acquired from the interior to the curve(s)
(Figure 1(c)). This sampling is termed as dot pattern and
the corresponding reconstruction is called shape reconstruction
(Figure 1(d)). Devising a unified algorithm that works for both
types of input point sets again increases the level of hardness.

Figure 1: (a) Boundary sample (b) Reconstruction from bound-
ary sample (c) Dot pattern (d) Reconstruction from dot pat-
tern.

Reconstruction algorithms are taxonomised in different ways.
It can be based on Delaunay triangulation and non-Delaunay
triangulation or curve/shape/unified reconstruction. Some al-
gorithms are designed only for outer boundary detection while

Table 1: Strengths and weaknesses of different reconstruction
algorithms

Algorithm Unified Hole # Pa-
rameters

Multiple
Object

Unstructured

Hole

α-shape [4] Y Y 1 Y Y

Crust [1] N Y 0 Y Y

nn-crust [2] N Y 0 Y Y

χ-shape [3] Y N 1 N NA

simple-
shape [5]

Y N 3 N NA

deGoes et.
al [6]

N Y 1 Y Y

RGG [11] Y Y 0 N N

WDM-crust
[12]

N N 0 Y N

ec-shape [7] Y Y 0 N Y

HNN-crust
[8]

N Y 0 Y N

Crawl [10] N Y 0 Y Y

Peel [9] N Y 0 Y Y

Our Algo Y Y 0 Y Y

others are designed for both outer boundary as well as inner
boundary.

Table 1 summarizes the strengths and weaknesses of a few
of the reconstruction algorithms. Even though there are a lot
of works in the area of reconstruction, not all algorithms can
handle both types of input - dot patterns and boundary sam-
ples. Examples for unified algorithms are α-shape, RGG and
ec-shape. Though χ-shape and simple-shape can handle both
dot patterns and boundary samples, it can generate only a sim-
ple closed curve as output and cannot handle holes. Though
unified algorithms such as RGG, ec-shape can capture holes,
RGG can work only for restricted hole structures and ec-shape
uses different strategies to capture holes. Crawl and peel can
capture different shaped holes but can work only for boundary
samples.
α-shape can work for both types of input and independent

of the hole structure but requires a parameter α to be tuned.
Other approaches such as χ-shape, simple-shape are also para-
metric algorithms whereas RGG, ec-shape, crawl and peel are
non-parametric algorithms. It is quite a tedious task to tune
the parameter(s) to get the desired output. RGG, ec-shape,
and χ-shape cannot handle multiple objects.

In this paper, we propose a unified algorithm for the re-
construction of outer boundaries as well as inner boundaries
without any user intervention. The following are our major
contributions: (a) A unified approach for dot pattern and
boundary samples with and without holes. (b) The algorithm
uses the same strategy for capturing both hole boundary as
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Figure 2: (a) A point set. (b) DT of the point set. (c) marked shared edges of all CT (in cyan). (d) Skinny triangles (in red). (e)
marked edges of skinny triangles (in magenta). (f) Graph formed after removing marked edges. (g) Graph after the application of
degree constraint.

Figure 3: (a) Neighboring triangles 4abc & 4bdc with shared
edge bc. (b) Coordinated triangles 4abc & 4bdc with circum-
centers c1 & c2 lying on the same side of the shared edge bc.

well as outer boundary. (c) Our algorithm needs only a single
pass irrespective of the number of holes/objects.

2 Definitions

DEFINITION 1 Neighboring triangles: Two triangles are
said to be neighboring triangles if they share an edge (Figure
3(a)).

DEFINITION 2 Coordinated triangles: Neighboring trian-
gles are termed as coordinated triangles if their circumcenters
lie on the same side of the shared edge (Figure 3(b)).

DEFINITION 3 Skinny triangle: A skinny triangle is a thin
acute triangle whose base is much smaller than its height.

DEFINITION 4 Degree constraint: Only two shorter edges
are retained from a vertex (point) and all other edges are re-
moved from that vertex (point).

3 Algorithm

For a given point set (Figure 2(a)), the algorithm starts with
computing the DT of the given point set (Figure 2(b)).

3.1 Marking a shared edge in CT

For each triangle T ∈ DT, the algorithm checks for CT with
respect to T. If CT exist, the shared edge between those two
triangles is marked (cyan edges in (Figure 2(c)).

3.2 Marking edges from a skinny triangle

Using an angle of 9◦ for the smallest angle in skinny triangles
(shown in red in Figure 2(d)), their two long edges are marked.
Figure 2(e) shows all the marked edges so far, in cyan and
magenta.

3.3 Applying degree constraint

A graph G is formed from the set of unmarked edges from DT
(Figure 2(f)). Since the edges in DT are removed arbitrarily
based on CT and skinny triangles, there are possibilities of
the presence of non-manifold edges. In order to maintain the
output as manifold (for e.g., if there exists only outer boundary,

Algorithm 1 Complete Reconstruct(S)

Input: Input point set, S.
Output: Reconstructed Output R.
1: Construct Delaunay triangulation, DT (S).
2: for each triangle T do
3: Take all three neighboring triangles and check whether

they constitute coordinated triangles.
4: Mark the shared edges for all coordinated triangles.
5: Identify the skinny triangles having less than 10◦ and

mark the two longest edges.
6: end for
7: Create a graph G with all unmarked edges of DT (if all

three edges are unmarked, they are not considered).
8: Apply degree constraint on all vertices of G.
9: return G as CT-shape

then it should be topologically equivalent to a circle), we impose
a degree constraint (Definition 4) on each vertex. Figure 2(g)
shows the graph, which is the final reconstructed boundary
(in blue) after checking for degree constraint for the point set
shown in Figure 2(a).

The pseudo-code for the algorithm for reconstruction, given
a set of points S is delineated in Algorithm 1. The running
time complexity of the algorithm can be shown to be O(n log n)
where n is the number of points in S.

4 Results & Discussions

Our algorithm (Algorithm 1) is implemented in C++ with
CGAL (Version: 4.6) libraries and visualized in OpenGL and
tested in MacOS 10.12.3. The input point sets (dot patterns
and boundary samples) consist of points from simple objects,
objects with multiple holes, objects with multiple components,
objects with non-divergent concavities etc. The algorithm has
also been tested with different sampling densities and distribu-
tions. Figure 4 shows some of the results of our algorithm for
various dot patterns and boundary samples. The figure shows
that our algorithm can generate good results for both kinds of
inputs with divergent features.

4.1 Comparison with existing algorithms

Here we considered five algorithms (α-shape, χ-shape, simple-
shape, RGG, ec-shape with ours) for dot pattern and nine
algorithms (α-shape, χ-shape, simple-shape, RGG, ec-shape,
Crawl, HNN-crust, Peel, WDM-crust with ours) for boundary
samples for the sake of comparison. It may be noted that HNN-
crust, WDM-crust, Crawl and Peel do not work for dot patterns
and hence they have been included only for the comparison of
results for boundary samples as input. In all the comparison
results, we use circles to denote regions where boundaries are
not well-approximated.
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Figure 4: Results of our algorithm (CT-shape) for various features like concavity, multiple holes (deer has two holes), multiple
components etc. Input DP = Input dot pattern, Input BS = Input boundary sample, Output = Output of our algorithm.

Figure 5: Multiple objects (dot pattern): Results of (a) α-shape
(b) χ-shape (c) simple-shape (d) RGG (e) ec-shape (f) our
result (CT-shape). Some algorithms (as indicated in circles)
have resulted in single object even when multiple objects are
present.

4.1.1 Qualitative Comparison

Capturing multiple objects is a challenge for many algorithm
as they work only for single component only. Figures 5 and
6 show the comparison results for multiple objects. Figures
7 and 8 show the result of various algorithms for a point set
sampled from an object with multiple holes. Our algorithm has
captured all the holes reasonably well.

4.1.2 Quantitative Comparison

We made use of L2-error norm [3] to compare the results, which
is defined as (C and P are the ground truth and reconstructed
result respectively):

L2 =
area((C − P )

⋃
(P − C))

area(C)
(4.1)

Figure 9 shows the point density versus L2 error plots of
our experimentation on various point sets extracted from the
boundary of the country shapes (Paraguay and Spain) for both
dot patterns and boundary samples. From Figure 9, it is clear
that our algorithm works better or on par with various unified
reconstruction algorithms.

Figure 6: Multiple objects (boundary sample): Results of (a)
α-shape (b) χ-shape (c) simple-shape (d) RGG (e) ec-shape
(f) Crawl (g) HNN-crust (h) Peel (i) WDM-crust (j) our result
(CT-shape). A few of the algorithms (as indicated in circles)
have resulted in single object even when multiple objects are
present.

Figure 7: Object with holes (dot pattern): Results of (a) α-
shape (b) χ-shape (c) simple-shape (d) RGG (e) ec-shape (f)
our result (CT-shape). χ-shape and simple-shape capture only
outer boundaries. RGG works only if the holes are body-arm
structured. ec-shape overdigs the holes.

4.1.3 Varying point distributions

Figure 10 shows the comparison of our results with other unified
algorithms for various point distributions. The four instances
of point distributions we used for experimentation are: Dense
Boundary Dense Internal (DBDI), Dense Boundary Sparse In-
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Figure 8: Object with holes (boundary sample): Results of (a)
α-shape (b) χ-shape (c) simple-shape (d) RGG (e) ec-shape
(f) Crawl (g) HNN-crust (h) Peel (i) WDM-crust (j) our result
(CT-shape).

Figure 9: Exemplification of performance comparison on dif-
ferent point densities of different country shapes.

Figure 10: Results showing the performance of different algo-
rithms on various point distributions.

ternal (DBSI), Sparse Boundary Dense Internal (SBDI) and
Sparse Boundary Sparse Internal (SBSI). Our algorithm has
captured the details quite well except in the case of SPDI.

5 Conclusion

In this paper, we devised a unified reconstruction algorithm
and showed it works irrespective of the type of point set (dot
pattern or boundary sample). The algorithm is easy to im-
plement and proven to give good results under various point
densities and distributions. In contrast to other unified algo-
rithms, our algorithm needs only a single pass to detect the

boundaries (both inner and outer) irrespective of the number
of holes/objects. As a future work, we would like to extend the
algorithm to look into various other challenging tasks like han-
dling point sets with noise and outliers. We are also working on
the extension of the proposed algorithm to higher dimensions.
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