CLUSTERING ALGORITHMS

Clustering algorithms are expected to act as partitioning algorithms: having an input set of n individuals, generate a partition of the set, optimal in some sense.

Many of these algorithms assume the prior knowledge of the number of classes !

(1) What number of classes should select the user ?

Hierarchical algorithms considers embedded partitions, from 1 to n classes (descending algorithms), or from n to 1 (ascending algorithms).

(2) Where to cut the resulting dendrogram ?

Many algorithms answer to (1) and (2) via the use of external parameters: these latter are critical values set by the programmer or/and by the user, and which are ***NOT*** part of the input data. Changing these parameters may induce dramatic changes on the resulting partition.

               
1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1

                 X ′ • X is the Burt table, used as input of the MCA (Multiple Correspondence Analysis) C = X • X ′
is the sum of the p partition matrices associated to the variables. (C/p is the mean of the partition matrices, but it is not itself a partition, in general) C ij is the number of times that the individuals i and j are classified together (number of agreements between the p partitions).

X =                  1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1                  C =                  3 1 2 0 3 0 3 2 3 1 3 2 1 1 1 1 2 1 2 2 3 0 2 0 2 3 2 0 1 0 3 0 3 0 0 0 3 1 2 0 3 0 3 2 3 0 1 0 3 0 3 0 0 0 3 1 2 0 3 0 3 2 3 2 2 3 0 2 0 2 3 2 3 1 2 0 3 0 3 2 3 1 3 2 1 1 1 1 2 1                 
For each couple of individuals i,j, the number of agreements C ij plus the number of disagreements is equal to p. Thus, for each couple i,j of individuals, S ij = [2 • C ij -p] is equal to the difference: [number of agreements between i and j] minus [number of disagreements between i and j].

S =                  3 -1 1 -3 3 -3 3 1 3 -1 -1 3 1 -1 -1 -1 -1 1 -1 3 1 1 3 -3 1 -3 1 3 1 1 -3 -1 -3 3 -3 3 -3 -3 -3 -1 3 -1 1 -3 3 -3 3 1 3 -1 -3 -1 -3 3 -3 3 -3 -3 -3 -1 3 -1 1 -3 3 -3 3 1 3 -1 1 1 3 -3 1 -3 1 3 1 1 3 -1 1 -3 3 -3 3 1 3 -1 -1 3 1 -1 -1 -1 -1 1 -1 3                 
Optimal partition: put together i and j when there is a majority of variables judging them together.

We look for the partition Y maximizing the number of agreements or, equivalently, we look for the partition Y maximizing the difference between the number of agreements and the the number of disagreements.

Intuitive solution: put "1" where S ij > 0 and put "0" where S ij < 0.

Alas, in general, fails to satisfy the transitivity rule:

(i 1 , i 2) together AND (i 2 , i 3) together, but (i 1 , i 3) NOT together ! CRITERIA OF MARCOTORCHINO (1981) Solve: M ax {Y } [i=n i=1 j=n j=1 Y ij S ij]
The above criteria is equivalent to minimize the Schur norm of the difference between the unknown partition Y and the mean partition

C/p p • M in Y -C/p 2 s = p • M in (Y ij -C ij /p) 2
And because Y 2 ij = Y ij , it is equivalent to find the following minimum:

M in Y ij (p -2C ij) = M in(- Y ij S ij) = M ax(Y ij S ij)
WEIGHTED VARIABLES [START_REF] Petitjean | Agrégation des similarités: une solution oubliée[END_REF] We associate to the p variables the weights w 1 , ..., w p , with W = w 1 + ... + w p .

The respective partition matrices are Y (1) , ..., Y (p) Each agreement associated to the variable k is counted +w k rather than +1, and each disagreement associated to the variable k is counted -w k rather than -1.

C = k=p k=1 w k Y (k) (mean partition matrix: C = C/W , although C is still not a partition matrix) S ij = k=p k=1 w k (2Y (k) ij -1) = 2C ij -W [The minimal Schur norm criteria is still satisfied]
Coherence: when several categorical variables have the same partition matrix, they can be replaced by a single variable with a weight equal to the sum of the weights of the original variables.

GENERALIZATION

The criteria of Marcotorchino is applicable to any array of signed dissimilarities, discarding how it is generated.

NUMERICAL ASPECTS

Solve:

M ax {Y } [i=n i=1 j=n j=1 Y ij • S ij]
Y and S are symmetric, and we do not care about the diagonal n(n -1)/2 unknowns AND n(n -1)(n -2)/2 transitivity constraints !

The solution Y * may be not unique.

The transitivity constraints are linear:

(Y ij + Y ij -Y ij ≤ 1) and (Y ij = 0 or Y ij = 1)
We are left with the maximization of a linear function under linear constraints: the problem can be solved by linear programming methods [START_REF] Short Bibliography Marcotorchino | Agrégation des similarités en classification automatique[END_REF].

Time consuming AND space consuming ! (and usually not devoted to the ENUMERATION of all solutions).

SOLUTION BY DYNAMIC PROGRAMMING

A specialized version of the boolean algorithm of Faure and Malgrange is shown to require a spacework of only three matrices of order n [START_REF] Petitjean | Agrégation des similarités: une solution oubliée[END_REF].

Time consuming but NOT space consuming ! Enumerating all solutions is in general only slightly more consuming that finding one.

Approximate solution (fast): perform an ascending hierarchical clustering as long as the dissimilarities are non-negative.

It is observed that the approximate solution is often optimal.

Open source (f77) and binaries: http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html Available under R: http://cran.cict.fr/ (click on packages, then on amap, then on amap.pdf)

EXAMPLE S =                  3 -1 1 -3 3 -3 3 1 3 -1 -1 3 1 -1 -1 -1 -1 1 -1 3 1 1 3 -3 1 -3 1 3 1 1 -3 -1 -3 3 -3 3 -3 -3 -3 -1 3 -1 1 -3 3 -3 3 1 3 -1 -3 -1 -3 3 -3 3 -3 -3 -3 -1 3 -1 1 -3 3 -3 3 1 3 -1 1 1 3 -3 1 -3 1 3 1 1 3 -1 1 -3 3 -3 3 1 3 -1 -1 3 1 -1 -1 -1 -1 1 -1 3                  Y * =                 
1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1

                
Only one optimal partition was found: {1, 3, 5, 7, 8, 9}, {2, 10}, {4, 6} Cost of the optimal partition: 35 (upper bound of the cost: 39)

The initial partition found by hierachical clustering was the optimal one. The branch and bound algorithm performed 131 forward moves and 131 backward moves (variables initially sorted according algebraically decreasing contributions to the cost)

CATEGORICAL (QUALITATIVE) VARIABLES vs. NUMERICAL (QUANTITATIVE) VARIABLES

The method of Marcotorchino has nice properties.

But, in the real world, we more frequently encounter numerical variables rather than categorical variables and non negative dissimilarities (e.g. distances) rather than signed dissimilarities.

Converting data is always possible, but introduces arbitrariness !

We need a method working directly with numerical variables, or, more generally, working with non-negative dissimilarities.

Furthermore, we would like to define mean points in clusters, even if we heive neither Euclidean distances nor coordinates.

NUMERICAL VARIABLES IN E p . NOTATIONS n individuals. x 1 , ..., x n such that g = i=n i=1 x i /n = 0 Cluster k (k = 1, ..., K) has n k individuals: x 1 (k), ..., x n k (k) with barycenter g k = i=n k i=1 x i (k)/n k X =   x ′ 1 . . . x ′ n   X k =   x ′ 1 (k) . . . x ′ n k (k)  
Contribution of cluster k to the total inertia matrix T :

T k = X ′ k X k (T = X ′ X = k=K k=1 T k) Inertia matrix of cluster k: W k = i=n k i=1 (x i (k) -g k)(x i (k) -g k) ′ Within classes inertia matrix: W = k=K k=1 W k
Contribution of cluster k to the between classes inertia matrix:

B k = n k g k g ′ k Between classes inertia matrix: B = k=K k=1 B k NUMERICAL VARIABLES IN E p : RESULTS T k = W k + B k T = W + B T r(T k) = T r(W k) + T r(B k) T r(T) = T r(W) + T r(B)
The traces are expressable from the squared Euclidean distances, and the third equality above is an instance of the Huyghens theorem.

T r(T k) =

i=n k i=1 d 2 (x i (k), g) T r(W k) = i=n k i=1 d 2 (x i (k), g k) T r(B k) = n k d 2 (g k , g)
Then, the following quantities are expressed only from the distances between individuals:

T r(W k) = [i 1 =n k i 1 =1 i 2 =n k i 2 =1 d 2 (x i 1 (k), x i 2 (k))]/2n k T r(W) = k=K k=1 T r(W k) T r(T) = [i 1 =n i 1 =1 i 2 =n i 2 =1 d 2 (x i 1 , x i 2)]/2n T r(B) = T r(T) -T r(W)
Advantage: neither need of coordinates nor need of mean points. Drawback: computations involve double summations.

CLUSTERING GAIN [START_REF] Jung | A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering[END_REF] The clustering gain is computable as follows:

CG(K) = T r(B) -T r(B)
where T r(B) = k=K k=1 d 2 (g k , g) is the between classes inertia defined by the non weighted clusters, i.e. as if each cluster of size n k (k = 1, ..., K), had a weight equal to 1 rather than to n k .

Thus:

CG(K) = k=K k=1 (n k -1)d 2 (g k , g) CG(K) ≥ 0 CG(1) = 0 CG(n) = 0
CG is a function of K which is ensured to reach a maximum.

The value of K for which this maximum is reached is the desired optimal number of classes.

Compare to Ward's method, based of the loss of inter clusters inertia: grouping clusters k 1 and k 2 always generates a decrease of B, equal to

d 2 (g k 1 , g k 2)[n k 1 n k 2 /(n k 1 +n k 2)]
so that the maximum of B is always reached for K = n.

Remark 1: The maximum of CG may be not unique.

Remark 2: Distances to mean points are required.

COMPUTING MEAN POINTS FROM DISTANCES

We calculate:

Z * = M in {y∈R p } Z, Z = i=n i=1 d 2 (y, x i) = i=n i=1 (x i -y) ′ (x i -y) grad(Z) = -2 i=n i=1 x i + 2 i=n i=1 y = 0 thus, y = g = i=n i=1
x i /n.

The hessian H = 2nI is positive definite, so that we rediscover that the minimum of the inertia is unique and is reached when y is the barycenter g of the set (can be generalized to continuous distributions of finite inertia: Huyghens theorem). Now we consider: Ẑ = M in {y∈{x 1 ,...,x n }} Z (in other words, we minimize over a subset of R p)

This minimum Ẑ is reached at least when y = x j , j ∈ {1, ..., n}, with Ẑ ≥ Z *

The point x j appears as the best approximation of the barycenter among the set {x 1 , ..., x n }. It may be not unique, and the equality occurs if and only if g falls in the set {x 1 , ..., x n }.

The error is d 2 (x j , g) = [where T r(T) is the inertia of the set (itself computable from the distances), and [T r(T)/n] is the trace of the variance matrix of the set.

 x j , x i) -T r(T)]/n and the relative error is d 2 (x j , g)/[T r(T)/n]

MODIFIED CLUSTERING GAIN [START_REF] Meslamani | Assessing the Geometric Diversity of Cytochrome P450 Ligand Conformers by Hierarchical Clustering with a Stop Criterion[END_REF] The original clustering gain was defined as

The modified clustering gain is defined as

where ĝk and ĝ are the respective best approximations of g k and g, computed for each cluster k and for the whole set of n points.

M CG(K) is computable from an array of distances.

We can compute it from an array of non-Euclidean distances, or from an array of non negative dissimilarities

CONCLUSIONS

No clustering method is universally efficient: it depends on the data, and data can be transformed arbitrarily. Thus, the optimal number of classes can be arbitrary, too.

Methods without external parameter are not proved to be more useful than methods with external parameters.

Methods without external parameter are just simpler to use: no need to check the stability of the result for the external parameters.

The removal of external parameters is an illusion: at least there is a << choice of method >> parameter.

The user must anyway check the robustness of his conclusions.