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Abstract

Most human oncogenic viruses share several characteristics, such as being DNA viruses, having long
(co)evolutionary histories with their hosts and causing either latent or chronic infections. They can
reach high prevalences while causing relatively low case mortality, which makes them quite fit according
to virulence evolution theory. After analysing the life-histories of DNA oncoviruses, we use a math-
ematical modelling approach to investigate how the virus life cycle may generate selective pressures
favouring or acting against oncogenesis at the within-host or at the between-host level. In particular,
we focus on two oncoprotein activities, namely extending cell life expectancy and increasing cell pro-
liferation rate. These have immediate benefits (increasing viral population size) but can be associated
with fitness costs at the epidemiological level (increasing recovery rate or risk of cancer) thus creating
evolutionary trade-offs. We interpret the results of our nested model in light of biological features and
identify future perspectives for modelling oncovirus dynamics and evolution.

Cite as Murall CL, Alizon S (2019) Modelling the evolution of viral oncogenesis. Phil Trans R Soc
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Introduction

Understanding viral oncogenicity is traditionally
an endeavour of clinical microbiologists and relies
on analysing molecular pathways (for a review, see
e.g. [23]). Here, we adopt an ecological and evo-
lutionary perspective, which has been extensively
applied to study infection virulence over the years
[1] and has even re-emerged as a prism through
which to analyse cancer dynamics [22].

Few viruses are known to directly cause can-
cer in humans: Epstein-Barr Virus (EBV), Hep-
atitis B Virus (HBV), Kaposi’s sarcoma-associated
herpesvirus (KSHV), Merkel cell polyomavirus
(MCV), Human T-lymphotropic virus (HTLV-
1), certain genotypes of Human papillomaviruses
(HPVs) and three kinds of polyomaviruses, namely
BK virus, JC virus and Simian Virus (SV40). Fur-
ther details about the oncogenesis and epidemiol-
ogy of these viruses can be found in other articles in
this issue and in that of Chang et al. [5, 13]. Also,
the review by Mesri et al. [23] carefully compares
the various pathways of viral oncogenes and their

roles in triggering the hallmarks of cancer [15].

The evolutionary ecology perspective moves
us away from proximate questions of how viruses
cause cancer towards asking why do they cause
cancer and, more practically, under what condi-
tions? This approach requires stepping back and
looking across human oncoviruses and squinting
to look for patterns. Mathematics provides useful
tools for this sort of abstraction, especially because
stochastic processes [18] or population dynamics
feedbacks are difficult to anticipate [19].

In this article, we compare the life cycles of the
above mentioned human oncoviruses using varia-
tions of classical viral dynamics models [28, 29].
Since a virus that does not transmit from a host is
bound to disappear, we develop a ‘nested model’
[24] to consider between-host effects. The model
itself relies on a set of ordinary differential equa-
tions (ODEs), which we analyse using stochastic
simulations that allow for the random evolution of
cancer cell populations from infected cells, which
we refer to as cancer initiation event [3]. By vary-
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ing few assumptions and parameters, we can study
how oncogenic processes affect virus fitness at the
within-host and between-host levels and how these
effects depend on the virus life cycle.

Virulence and viral life cycles

In its most general definition, virulence is the de-
crease in host fitness due to the infection [31]. In
the following, we assume that virus-induced cancer
contributes to virulence, even though its effect on
reproductive success can be limited (host mortality
may occur late in life and effects on fertility may be
unaffected). Figure 1 shows the global prevalence
of 6 human oncoviruses as a function of their viru-
lence (the number of yearly worldwide cancer cases
divided by their global prevalence). We see that
HR-HPVs and HBV are clearly the most clinically
important of these viruses as they are responsible
for higher numbers of cancer cases. Furthermore,
these cancers can happen during host reproductive
ages. Meanwhile, EBV and MCV are the human
oncoviruses with the lowest virulence as they are
nearly ubiquitous yet are responsible for less than
half the number of cancer cases per year. We ex-
clude from our analysis other polyomaviruses and
non-HR HPVs given poor global estimates of viral
prevalence. Note that the upper right corner of this
graph is empty. In animal viruses, we know of at
least one example, Marek’s Disease Virus (MDV),
a virus from the Herpesviridae family that was
both prevalent and fairly virulent before vaccina-
tion [32]. This shows that large DNA oncoviruses
can reach high levels of virulence. The observation
that no human oncovirus with high carcinogenicity
reaches high prevalence reinforces our assumption
that cancer contributes to virulence and is selected
against in viral populations.

Human oncoviruses are not monophyletic
which implies that oncogenic traits evolved sep-
arately in a case of convergent evolution. Even
in the case of HPVs, the two types responsible
for the majority of cancers globally, HPV16 and
HPV18, belong to different HPV species and the
other genotypes in their species are significantly
less oncogenic [4, 35]. Oncoviruses can be classi-
fied based on their genetic make up and replication
modes. For instance, HPVs and polyomaviruses
belong to the small DNA viruses, whereas EBV
and KSHV belong to the large DNA viruses. In

Table 1 we summarise key features and traits of
these human oncoviruses, in order to illustrate how
we abstracted their life cycles into three distinct
groups. As seen in the table under ‘viral class’, we
chose to group HBV and HTLV-1 as ‘retro-like’
viruses because HBV is a DNA virus with retro-
virus features, while HTLV-1 is a true RNA retro-
virus.

Summarising the properties of human on-
coviruses highlights some common features (al-
though there are exceptions). On average, human
oncoviruses are mostly DNA viruses (HTLV be-
ing the exception) with a tropism for epithelium-
related cells and immune cells. Most of them
cause, or at least can cause, chronic infections.
Their genomes contain oncogenes that increase the
proliferation and survival rate of their host cells
(though they can have many more functions). The
highest degree of variation between these viruses
comes from their transmission routes (even though
they all involve close contact and bodily fluids) and
their life cycles (with or without a latent stage and
lytic or non-lytic). This is why our model focuses
on the importance of the latter.

All of these viruses can only persist in human
populations over the long-term through between-
host transmission. Therefore, unless there is ver-
tical transmission, the fittest virus strains are the
ones that maximise infection duration, while main-
taining the production of enough infectious viral
particles. This clearly leads to trade-offs. For in-
stance, mechanisms such as immune escape or im-
munosuppression that can decrease host recovery
rate are also associated with cancers [11]. Simi-
larly, increased production of virus particles can
simultaneously increase transmission rate and vir-
ulence, as observed in the case of HIV [12]. Finally,
it has also been argued that increased viral replica-
tion could lead to more rapid host recovery, e.g. in
the case of HPV [26]. Overall, the fittest virus
at the within-host level (i.e. the one that infects
the highest number of cells) is not necessarily the
one causing the highest number of secondary infec-
tions. To investigate this conflict between levels of
adaptation, we resort to mathematical modelling.

Capturing the dynamics of different on-
coviruses requires different models. However, in
order to identify the effect of life cycle properties
such as latency or budding on the fitness of an
infection, we need a basis for comparison. We,
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Figure 1: Global prevalence and virulence of oncovirus infections in humans. High-risk HPV
and HBV are less prevalent globally but cause more cancer cases per infection. In contrast EBV and
MCV are very prevalent but cause fewer cancer cases per infection. The x-axis is obtained by dividing the
estimated number of cancer cases worldwide by the global prevalence. Data originates from [21].

therefore, only vary the structure of the life cy-
cle itself and homogenise parameter values for our
three classes of viruses. This has a cost in terms
of biological realism (e.g. our ‘large DNA’ virus is
idealised and will not correspond exactly to EBV
or KHSV) but it allows us to better understand
the selective constraints acting on oncogene ac-
tivity and to see whether life cycle properties are
sufficient to recover known differences in infection
phenotypes such as duration or cancer risk.

Models

To abstract the various life cycles of these on-
coviruses, we start with a model that is generic
enough to represent any target cell population.
Figure 2A shows an uninfected cell population with
cells at rest (in phase G0 of their cycle), denoted
Gu, and those that are in the replication phases of
the cell cycle (namely G1, S, G2 and M), denoted
Ru. Each cell division event results in two daugh-
ter cells at rest at a rate 2δ. The cells at rest die
naturally at a rate µ and enter replication at a rate
σ.

Our infection models capture two main activi-
ties that viral oncoproteins share across human on-
coviruses and that affect the hallmarks of cancer
(Table 1 and [23]): extending cell life expectancy
(e.g. resisting cell death by preventing cell apopto-

sis) and increasing cell proliferation and sustaining
a proliferative program (e.g. inactivating the G1/S
checkpoint and other tumour suppressor check-
points and targeting RB1 and p53). These cor-
respond to parameters ε1 and ε2 respectively.

In the models with infections, new cell classes
appear such as cells infected with viral episomes
(G), virion-productive cells (P ), or budding cells
(GP ). The density of free virions is denoted V .
The flow diagrams in Figure 2 illustrate the math-
ematical models for each oncovirus group and the
equations can be found in the Supplementary In-
formation along with the R scripts used for the
simulations. In practice, we implemented stochas-
tic simulations of these systems of ODEs using
the τ -leap Gillespie algorithm [14]. The assump-
tions related to this implementation are further de-
scribed in the Supplementary Information and in
the Discussion. The simulations allow us to store
the number of divisions a cell has been through.
Therefore, G is the total size of all the populations
of cellsGD, whereD ∈ N is the number of divisions
the cell has gone through.

Although not shown in Figure 2, we introduce a
population of cytotoxic T-cells (CTLs), T, in each
of the models following many previous models [2].
Without these, virus populations would grow ex-
ponentially. Instead, we observe a wider range of
immunological scenarios. To avoid unrealistic pop-
ulation densities, we assume a carrying capacity
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Figure 2: Human oncovirus life cycles. (a) For uninfected cells, generic host cells (Gu) enter the
replication phases of the cell cycle (Ru) and produce two daughter cells. (b) In small DNA viruses, in-
fected cells that contain virus in episomal form (G) divide and produce either two similar daughter cells
or makes virus-producing cells (P) which can be lytic, i.e. kills the cells during viral production (e.g. poly-
omaviruses, such as MCV) or non-lytic, i.e. cells die at natural death rate (e.g. HPVs) and then releases
virions (V ). (c) For retro-like viruses, infected cells (Gp) produce new virus particles (V ) that bud out
from the cell’s membrane. (d) For large DNA viruses, infected cells mostly exist in latent phases with the
virus in episomal form (G) and virus producing infected cells (P ) are only made sporadically when a lytic
phase is activated, which happens at rate η. Oncogenes lengthen cell life (ε1) and increase cell divisions
(ε2).

for the total number of infected cells and the total
number of CTLs.

We also include a stochastic ‘catastrophic’
event, which corresponds to a cancer initiation
event. The rate at which this event occurs at time
t is given by ν

∑
DGDD

p, where ν is a normalising
constant parameter, D is the number of divisions
a cell from the population GD has been through,
and p is a parameter capturing the increase in can-
cer risk with the number of cell divisions. The
rationale behind this assumption is that the life-
time risk of cancer in a tissue correlates with the
number of stem cell divisions in the lifetime of this
tissue [34]. By default, we assume that p = 1 but

explore non-linear relationships in Supplementary
Results.

Finally, to model the between-host level, we
assume that infected hosts regularly interact with
other hosts. Upon contact, the virus is transmit-
ted with a probability that depends on the number
of free virions (V ) at that time. Based on epi-
demiological data from HPV [36], we assume the
probability of transmission saturates rapidly with
increasing virus load.

Within-host simulations are run until one of
the three possible outcomes of the model is
reached: the virus is cleared, a cancer initiation
event occurs, or the maximum time (set to 50
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years) is reached. All the parameter estimates and
initial conditions that are similar across all three
viral groups were kept constant to facilitate the
comparisons between life cycles. These are shown
in Supplementary Information and chosen to be
biologically realistic (see [27] for more details).

Results

Infection kinetics

Figure 3 illustrates typical time series for each of
the three infection models. Each plot shows three
stochastic realisations of the same model with the
same parameter values. The three panels show
three combinations of oncogene activity. In Fig-
ure 3a, the oncogenes have no action on the death
rate and on the replication rate of the infected cell
(ε1 = 0 and ε2 = 1). For two of the life cycles
(large-DNA and retro-like), we observe persistent
infections, whereas for the small-DNA life cycle the
infection is cleared. This makes sense given that
in the first two life cycles, the homoeostasis pa-
rameters of the uninfected cells are barely affected
by the infection (there is some increased cell death
due to the immune response but it is compensated
by rare reinfections by free virions). Notice also
that the stochasticity is strong in these dynamics.

In Figure 3b, we set ε1 = 0.5, while keeping
the other parameters unchanged. This increase
in oncogene activity perturbs homeostasis, with a
more rapid increase in the immune response (in or-
ange), such that all life cycles lead to clearance. Fi-
nally, in Figure 3c, oncogenes increase the infected
cell’s life-expectancy and replication rate (ε1 = 0.5
and ε2 = 3.5). This allows populations of infected
cells to avoid clearance and achieve long-term per-
sistence at high densities. As we will see below,
cancer initiation events are only observed in such
persistent infections.

Oncovirus fitness landscapes

We then explored 984 different combinations of
(ε1, ε2) and performed 25 stochastic simulations
per combination. Figure 4a shows the mean du-
ration of the infection. For large-DNA and retro-
like viruses, starting from the bottom left corner,
increasing oncogene activity, either by decreasing
the death rate of the infected cell (ε1) or increas-

ing its proliferation rate (ε2), decreases the dura-
tion of the infection. Increasing further oncogene
effect increases infection duration, with ε2 having
the largest effect. Finally infection duration de-
creases again for very large values of ε1 and ε2. For
small-DNA viruses, increasing oncogene action in-
creases infection duration right away. As for the
other life cycles, higher values of ε2 decrease infec-
tion duration.

Figure 4b shows the average time until a can-
cer initiation event for parameter sets where such
an event occurred. For a given parameter set, the
fraction of the 25 simulations that lead to cancer is
negatively correlated with the time until this event
occurs (Figure not shown). That cancer occurs
more rapidly for stronger activity of the oncogenes
coincides with the decrease in infection duration
reported above. We again see a difference between
the large-DNA and retro-like life cycles, for which
most of the parameter sets studied do not lead
to cancer (the white areas), and the small-DNA
viruses, where cancer occurs more often. ε2 has the
strongest effect on the occurrence of cancer initia-
tion events and their timing, but ε1 also matters,
especially for large-DNA and retro-like life cycles,
as indicated by the slope separating the white area
from the coloured one. Note that here we assumed
that the number of divisions an infected cell has
been through increases cancer risk linearly. If this
risk is independent of the number of divisions or,
conversely, if it increases more than linearly, we
observed a similar shape but the cancer initiation
event occurs more rapidly (Supplementary Figure
S2).

Finally, in Figure 4c we show the infection fit-
ness, that is the number of potential secondary
infections (see the Supplementary Information).
This measure combines infection duration and
virion production, which monotonically increases
with oncogene activity (Figure not shown). The
pattern strongly resembles that in Figure 4a, sug-
gesting that infection duration is the most impor-
tant component of the infection for virus transmis-
sion. Oncovirus fitness is maximised for interme-
diate values of ε2. The optimal value of ε1 depends
on the value of ε2, although to a lesser extent for
the small-DNA life cycle. Large-DNA and retro-
like viruses exhibit a local fitness peak in the area
with very limited action of the oncogenes but its
height is limited because few virions are produced
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Figure 3: Example within-host population dynamics with (a) no, (b) limited and (c) strong
action of the oncogenes. In a), ε1 = 0 and ε2 = 1, in b) ε1 = 0.5 and ε2 = 1 and in c) ε1 = 0.5
and ε2 = 3.5. Each line type corresponds to a stochastic run. Colours indicate infected cells at rest (G),
infected cells dividing (R), infected cells producing virions (P ), virions (V ), and cytotoxic T-cells (T ). For
clarity, time is shown in a log scale for persisting infections (in c). Other parameter values are default (see
Supplementary Information).

(see Figure 3a).

Maximising fitness

Most of the 984 parameter sets we explored lead
to infections that produce virions and last long
enough to be transmitted to other hosts. How-
ever, variations in infection fitness are such that
viruses bearing non-optimal traits are likely to be
rarely detected. In Figure 5, we analyse the prop-
erties of the ‘fittest’ viruses, that is the parameter
sets that lead to the highest between-host fitness
values in Figure 4c. In practice, for each life cy-
cle we selected the 25 parameters sets with the
highest fitness values and without any cancer ini-

tiation event. We then did the same for parameter
sets with a cancer initiation event. Our goal was
to compare oncovirus strategies that avoid cancer
to those that do not.

In Figure 5a, we see that for the fittest parame-
ter sets, infection fitness is higher when there is no
cancer (in black) compared to when cancer occurs
(in grey). However, these differences are small, es-
pecially for the large-DNA life cycle. Interestingly,
at the within-host level, the sets with cancer oc-
currence yield higher total virion production over
the course of the infection (Figure 5b). This il-
lustrates the importance of selection as a multi-
level process, where a strategy maximising fitness
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number of potential transmission events. We explored 984 combinations of (ε1, ε2) with 25 simulations per
combination. Other parameter values are default (see Supplementary Information).

at the within-host level may not be the fittest at
the between-host level.

Next, we focus on the oncogene activity asso-
ciated with these fittest parameter sets. As ex-
pected, in Figure 5c we find that the increase in
replication rate, ε2, is much lower for small-DNA
viruses. We also find that sets with cancer ex-
hibit on average higher values of ε2. For ε1, we
find no consistent differences in runs with or with-
out cancer (Figure not shown) but we find its

value to be slightly larger in retro-like life cycle
(Figure 5d). This could be due to its life cycle,
where the G stage is the one producing the virions,
thus, increasing the life-expectancy of the cell also
increases the time spent in the virion-producing
stage.

Intuitively, we might have expected a strong
effect of ε1 in the large-DNA virus life cycle be-
cause it can take years before a G cell becomes
a virion-producing cell (P ). This absence of ef-
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fect is a consequence of the assumption of the τ -
leap Gillespie algorithm, which is memory-less (the
time spent by a single cell in a G state does not
affect its probability to switch to a P state). In
the Supplementary Information, we use a classical
modelling technique [20, 6] to prevent P cells from
being produced too quickly ‘by chance’ (Supple-
mentary Figure S3). This leads to a decrease in
infection fitness, a strong increase in ε1, and a lim-
ited increase in ε2 in the fittest parameter sets for
the large-DNA life cycle.

Finally, for the fittest parameter sets with can-
cer, we show the fraction of simulations where can-

cer events occurred (Figure 5e) and the average
time at which it occurred (Figure 5f). The small-
DNA life cycle stands out with more cancers oc-
curring more rapidly. That large DNA viruses tend
to cause cancer later than the other two groups is
consistent with the biology (Table 1).

Discussion

Cancer is often presented as an evolutionary dead-
end. For the host, it clearly bears little adaptive
value. For oncoviruses, the problem is less straight-
forward. One obvious cost is that the host may
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die. Another direct cost is that infected cancer
cells frequently contain incomplete viral genomes
and tend to produce less or no virions. However,
oncogenes have pleiotropic effects (often long be-
fore cancer appears) and can be associated with
increased virus fitness (e.g. if they increase cell
replication rate, thereby increasing virus load, or
cell life expectancy).

In the end, the optimal level of viral oncoge-
nesis is likely to result from the balance between
selection at the within-host level for increased virus
load and at the between-host level for infection
duration. This conflict is particularly clear when
analysing the fittest virus strategies: the strategies
that can lead to cancer have higher virus produc-
tion than the ones where cancer never occurs, but
the latter are associated with more between-host
transmission. This is because infection duration
largely governs epidemiological fitness, which, in
our study, likely results from our assumption that
the probability of virus transmission per contact
is high (in the case of HPV it has been estimated
to be close to 90% [36]). With high infectivity
per contact, virus load matters less than the num-
ber and frequency of these contacts when it comes
to between-host fitness. However, infection dura-
tion may not be independent from virus load. For
instance, HR-HPV chronic infections that regress
tend to exhibit decreasing virus loads, whereas
those that persist have constant or increasing virus
loads [9].

In our modelling approach, we have voluntarily
restricted the range of scenarios to explore by as-
suming that viruses from the three life cycles have
the same parameter values. In spite of this con-
straint, we find differences between the life cycles
that are consistent with the biology. Perhaps the
most striking of these differences has to do with
the fitness landscape. Indeed, for the large-DNA
and retro-like life cycles, the virus can achieve
long-term persistence even with very limited ac-
tion of the oncogenes. For the small-DNA life cy-
cle this is not possible and we always have strong
selection for increased replication rate of infected
cells. We also find cancers to be more frequent in
small-DNA viruses but they appear later in large-
DNA viruses. Another interesting insight of our
model comes from the differential effect of extend-
ing cell life duration, in that it depends on the virus
life cycle. Indeed, for retro-like viruses spending

more time in the G stage can be adaptive because
this is the virion-producing stage. For large-DNA
viruses, the strong added value of decreasing the
death rate of the infected cell is only apparent if
we add memory into the Gillespie algorithm (Sup-
plementary Figures S3 and S4).

Many evolutionary biology models nest within-
host dynamics into an epidemiological framework
[24]. The most delicate step in these models is the
linking between within-host variables (e.g. virus
load, number of target cells, number of immune
cells) and epidemiological parameters (such as
virulence, transmission rate and recovery rate).
Transmission rate can usually be safely assumed
to be related to virus load, but predictions are
more difficult when it comes to virulence. Indeed,
in experiments this trait is measured using ad hoc
proxies (e.g. anaemia, decrease in body mass, case
fatality ratio, time to death) even though theory
predicts qualitative differences in virulence evolu-
tion depending on the measure used [8]. If vir-
ulence corresponds to cancer and if this event is
explicitly included into the within-host model, the
nesting becomes more intuitive and has a stronger
mechanistic basis than with other viruses.

There are several ways in which our model
could be extended. For simplicity, we stopped
our simulations after the cancer initiation event
event. However, our model allows us to follow
the fate of a single cell that has become carcino-
genic and there is now a wealth of mathematical
models to lean on [10, 3]. A possibility for fu-
ture work would be to include stochasticity in the
within-host spread of cancer clones. As discussed
elsewhere [16], the within-host environment at the
time of cancer emergence, especially the activation
state of the immune response, is likely to govern
the probability of fixation. Further, we have not
included interference of oncoproteins with the im-
mune response through immunosuppression or im-
mune evasion. These would be particularly inter-
esting because they would affect the age distribu-
tion of the population of infected cells (see Supple-
mentary Figure S1). Since the number of divisions
a cell has been through increases cancer risk [34],
this oncogene action would add a mechanistic link
to cancer occurrence. In general, our modelling of
the immune response is obviously a great simplifi-
cation of the reality. However, similar assumptions
are commonly used when modelling virus dynam-
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ics [37, 7, 33] and here it was especially impor-
tant to be able to compare the three virus life cy-
cles. Finally, another aspect we simplified has to
do with the structure of the host tissue. Indeed, for
viruses infecting tissues with 3D structures, such
as epithelia, this structure could directly impact
infection duration [27]. However, this would re-
quire virus-specific models since oncoviruses infect
different tissues.

Here, we aimed to begin a theoretically
grounded conversation about the evolution of vi-
ral oncogenesis. We, thus, end with various lines
of inquiry. For instance, we considered that vari-
ations in oncogenicity can, in part, be explained
by virus genetics. For DNA viruses, this could
be challenged given the large variation observed
between patients and the low viral evolutionary
rates. However, recent evidence shows that even
when considering only one genotype, HPV16, the
E7 gene exhibits less variability in samples from
pre-cancers/cancers compared to the controls [25].
Similarly, one could also question whether the
viruses we see are the fittest. Indeed, there could
be physical constraints preventing the virus from
reaching parts of the parameter space. In addition,
the coevolutionary dynamics between humans and
DNA oncoviruses could also be non-equilibrium
processes. In the case of HPV16, it has recently
been argued that the most virulent lineage known
currently (HPV16A) could originate from Nean-
derthals and therefore be less adapted to modern
populations [30]. Overall, understanding the evo-
lutionary constrains and conditions that explain
varying degrees of viral oncogenicity should be
studied more widely. Not only for academic inter-
est but also for gleaning new insights into how to
design evolution-proof intervention strategies [17].
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