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We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic nonconnected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state n + , we prove that it invades the unstable state zero exponentially fast in time.

1 Introduction

Model and question

We focus on the following equation :

     ∂ t n(x, t) + (-∆) α n(x, t) = n(x, t)(1 -n(x, t)) for (x, t) ∈ Ω×]0, ∞[, n(x, t) = 0 for (x, t) ∈ Ω c × [0, ∞[, n(x, 0) = n 0 (x), ( 1 
)
where Ω is a periodic domain of R d that will be specified later on, n 0 a compactly supported initial data and (-∆) α the fractional Laplacian with α ∈]0, 1[ which is defined as follows :

∀(x, t) ∈ R d ×]0, +∞[, (-∆) α n(x, t) = C α P V R d n(x, t) -n(y, t)
|x -y| d+2α dy where

C α = 4 α Γ( d 2 + α) π d 2 |Γ(-α)| .
The main aim of this paper is to describe the propagation front associated to [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. We show that the stable state invades the unstable state with an exponential speed.

Equation ( 1) models the dynamic of a species subject to a non-local dispersion in a periodically hostile environment. The quantity n(x, t) stands for the density of the population at position x and time t. The fractional Laplacian describes the motion of individuals, it takes into account the possibility of "large jump" (move rapidly) of individuals from one point to another with a high rate, for instance because of human activities for animals or because of the wind for seeds. The term (1 -n(x, t)) represents the growth rate of the population at position x and time t. The originality of this model is the following,the reachable areas for the species are disconnected and periodic. Here, we assume that the regions where the species can develop itself are homogeneous.

Many works deal with the case of a standard diffusion (α = 1, see [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF] for a proof of the passage from the non-local to the local character of (-∆) α ) with homogenous or heterogeneous environment (see [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] Kolmogorov | A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem[END_REF], [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF] and [START_REF] Gärtner | The propagation of concentration waves in periodic and random media[END_REF]). Closer to this article, Guo and Hamel in [START_REF] Guo | Propagation and blocking in periodically hostile environments[END_REF] focus on a Fisher-KPP equation with periodically hostile regions and a standard diffusion. The authors prove that the stable state invades the unstable state in the connected component of the support of the initial data. In our work, thanks to the non-local character of the fractional Laplacian, contrary to what happens in [START_REF] Guo | Propagation and blocking in periodically hostile environments[END_REF], we show that there exists a unique non-trivial positive bounded stationary state, supported everywhere in the domain. Moreover, this steady state invades the unstable state 0 with an exponential speed.

Assumptions, notations and results

The domain Ω is a smooth non-connected periodic domain of R d i.e. Ω = k∈Z d Ω 0 + a k , with Ω 0 a smooth bounded domain of R d and a k ∈ R d .

(

) 2 
We assume that (Ω 0 + a i ) ∩ (Ω 0 + a j ) = ∅ if and only if i = j.

Moreover, if we denote e i the i th vector of the canonical basis of R d then we assume that for all k ∈ Z d there holds a k+e i -a k = a e i . Moreover, we assume that the principal eigenvalue λ 1 of the Dirichlet operator (-∆) α -Id in Ω 0 is negative i.e. λ 1 < 0. (H1)

We also introduce the eigenvalue problem associated to the whole domain Ω. It is well known (thanks to the Krein Rutman theorem) that the principal eigenvalue λ 0 of the Dirichlet operator (-∆) α -Id in Ω is simple in the algebraic and geometric sense and moreover, the associated principal eigenfunction φ 0 , solves i.e.

     ((-∆) α -Id) φ 0 = λ 0 φ 0 in Ω, φ 0 = 0
in Ω c , φ 0 has a constant sign that can be chosen positive.

(3)

The first result of this paper ensures the existence and the uniqueness of a positive bounded stationary state n + of (1):

i.e.

(-∆)

α n + = n + -n 2 + in Ω, n + = 0 in Ω c . (4) 
Theorem 1. Under the assumption (H1), there exists a unique positive and bounded stationary state n + to [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. Moreover, we have 0 ≤ n + ≤ 1 and n + is periodic.

The existence is due to the negativity of the principal eigenvalue of the Dirichlet operator (-∆) α -Id in Ω 0 which allows to construct by an iterative method a stationary state (see [START_REF] Smoller | Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wissenschaften[END_REF] for more details). As for the uniqueness, the main step is to prove that thanks to the non-local character of the fractional Laplacian, any positive bounded stationary state behaves like δ(x) α = dist(x, ∂Ω) α 1 Ω (x).

(

Then, a classical argument (see [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF] and [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF]) relying on the maximum principle and the Hopf lemma provides the result. We should underline that the uniqueness is clearly due to the non-local character of the operator (-∆) α , and it does not hold in the case of a standard diffusion term (α = 1). A direct consequence of the existence of a stationary solution is

Corollary 1. The principal eigenvalue λ 0 of the Dirichlet operator (-∆) α -Id in Ω is negative.

Once we have established a unique candidate to be the limit of n(x, t) as t tends to +∞, we prove the invasion phenomena. First, we prove that starting from

n 0 ∈ C ∞ 0 (Ω) ∩ C c (R d ) and n 0 ≡ 0 (H2)
the solution has algebraic tails at time t = 1. To prove it, we provide an estimate of the heat kernel at time t = 1 for a general multi-dimensional domain which satisfies the uniform interior and exterior ball condition: 

     ∂ t p(x, t) + (-∆) α p(x, t) = 0 for all (x, t) ∈ O×]0, +∞[, p(x, t) = 0 for all (x, t) ∈ O c × [0, +∞[, p(x, t = 0) = n 0 (x) ∈ C ∞ 0 (O, R + ) ∩ C 0 c (R d ), (6) 
then there exists c > 0 and C > 0 such that for all x ∈ O,

c × min(δ(x) α , 1) 1 + |x| d+2α ≤ p(x, t = 1) ≤ C × min(δ(x) α , 1) 1 + |x| d+2α . ( 7 
)
Once Theorem 2 is established, we are able to state the main result of the paper.

Theorem 3. Assume (H1) and (H2). Then for all µ > 0 there exists a time t µ > 0 such that:

(i) for all c < |λ 0 | d+2α and all (x, t) ∈ {|x| < e ct } ×]t µ , +∞[ |n(x, t) -n + (x)| ≤ µ. (ii) for all C > |λ 0 | d+2α and all (x, t) ∈ |x| > e Ct ×]t µ , +∞[ |n(x, t)| ≤ µ.
We detail the general strategy to prove Theorem 3 in the next section. Our last result concerns the level sets of the solution n. Theorem 4. Let ν > 0 and Ω ν := {x ∈ Ω | δ(x) > ν}. There exists a constant c ν which depends only on ν, n 0 , Ω such that for all µ ∈]0, c ν [, there exist t µ , C µ > 0 such that

{(x, t) ∈ Ω ν ×]t µ , +∞[ | n(x, t) = µ} ⊂ (x, t) ∈ Ω ν ×]t µ , +∞[ | C -1 µ e |λ 0 |t ≤ |x| d+2α ≤ C µ e |λ 0 |t .

Discussion on the main results

Theorem 2 is an application of general results about the fractional Dirichlet heat kernel estimates given for instance in [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF] or in [START_REF] Bogdan | Heat kernel estimates for the fractional laplacian with dirichlet conditions[END_REF]. Both of the two cited articles use a probabilistic approach. We propose in this work a deterministic proof of the lower bound of the fractional Dirichlet kernel estimates. Our proof is quite simple but the result is not as general as those presented in [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF] and [START_REF] Bogdan | Heat kernel estimates for the fractional laplacian with dirichlet conditions[END_REF]. In particular, it is only valid for finite time. It relies on a well adapted decomposition of the fractional Laplacian. We do not provide the proof of the upper bound of the fractional Dirichlet kernel estimates since there is no difficulties to obtain such bound.

Theorem 3 can be seen as a generalisation of the results of [START_REF] Coulon Chalmin | Fast propagation in reaction-diffusion equations with fractional diffusion[END_REF] or [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF]. Indeed, if we study a non-local Fisher KPP equation in the whole domain R d with a reaction term depending on a parameter such that the reaction term becomes more and more unfavorable in Ω c then we recover Theorem 3. This is fully in the spirit of [START_REF] Guo | Propagation and blocking in periodically hostile environments[END_REF]. In fact, if we study the equation:

∂ t n + (-∆) α n = µ δ (x)n -n 2 in R d ×]0, +∞[, n(x, t = 0) = n 0 (x), with µ δ (x) =            1 if x ∈ Ω, 1 -(δ + 1)dist(x, Ω) if 0 < dist(x, Ω) ≤ 1 δ , - 1 δ if 1 δ < dist(x, Ω).
Then, denoting by λ δ the principal eigenvalue of the operator ((-∆) α -µ δ ) we claim that

λ δ -→ δ→0 λ 0 . (8) 
It is then possible to obtain the result of Theorem 3 from such approximate problems in the spirit of [START_REF] Guo | Propagation and blocking in periodically hostile environments[END_REF]. Although we do not use such method, similar difficulties would arise to treat the problems with this approximation procedure. Our method can indeed be adapted to study those problems in a uniform way.

2 Strategy, comparison tools and outline of the paper

The general strategy

The general strategy to establish the results of Theorem 3 is the following:

A-Identify the unique candidate to be the limit. This is the content of Theorem 1. B-Starting from a compactly supported initial data, the solution n has algebraic tails immediatly after t = 0. This is the content of Theorem 2.

C-Establish a sub and a super-solution which bound the solution n from below and above. D-Use the sub-solution to "push" the solution n to the unique non-trivial stationary state n + in |x| < e 

v(x, t) = φ 0 (r(t)x) -1 n(r(t)x, t)
where the eigenfunction φ 0 is introduced in (3) and r(t) decreases exponentially fast. Next, the problem can be formally reduced to a transport equation leading to the fact that v is of the form φ 0 (x) 1+b(t)|x| d+2α . The idea is therefore to look for a sub-solution v and a supersolution v of the form

v(x, t) = aφ 0 (x) 1 + b(t)|x| d+2α and v(x, t) = aφ 0 (x) 1 + b(t)|x| d+2α
(where the positive constants a, a and the function b, b have to be adjusted).

The second approach is introduced in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF] by Méléard and Mirrahimi (in order to extend the Geometric optics approach of [START_REF] Freidlin | Functional integration and partial differential equations[END_REF] and [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF], put to work in the PDE framework in [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF]). The main idea is to perform the following scaling on equation (1)

(x, t) → |x| 1 ε x |x| , t ε , ε > 0 small. ( 9 
)
One of the interest of this scaling is to catch the effective behavior of the solution. Indeed, this scaling keeps invariant the set

B = (x, t) ∈ R × R + | (d + 2α) log |x| < |λ 0 |t
where λ 0 is defined by (3). In the region B, we expect that the solution n is close to the stationary state n + and in the region B c , we expect that the solution n is closed to 0. Then, we look for sub/super-solutions on the form

φ 0 (x) × G(x, t)
where G needs to be determined. Taking G with an algebraic tail gives that, once the scaling is performed, the fractional Laplacian of G vanishes as the parameter ε tends to 0. Indeed, the sub and super solutions are just perturbations of a simple ODE and are valid only for small ε.

We choose the second method for the two reasons. First, the scaling reveals two invariant regions (B and B c ) which catch the effective behavior of the solutions. The alternative approach does not account for these features as clearly. Secondly, this method gives very clear indications to construct sub-and super-solutions. It highlights the important terms in the equation to establish sub-and super-solutions. Once the scaling is performed, the fractional Laplacian terms in the computations vanish as the parameter ε tends to 0. This means that the only role of the fractional Laplacian in determining the invasion speed is at initial time where it determines the algebraic tails of the solution. This is indeed very different from the classical Fisher-KPP equation where the diffusion not only determines the exponential tails of the solution but it also modifies the invasion speed in positive times (see [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF]). This is why in the asymptotic study of the classical Fisher KPP equation, one obtains a Hamilton-Jacobi equation [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF] while in the fractional KPP equation the limit is a simple ordinary differential equation. Thus scaling the equation as in [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF] is not a mere artefact, it really helps in the understanding of the phenomenon. Moreover, we improve the precision of the sub and super-solutions compared with the ones obtained in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF]. Therefore, the exhibated sub and super-solutions and the ones that could be obtained with the alternative approach have the same level of precision.

The proof of D can be achieved with the rescaled solution n |x|

1 ε x |x| , t ε
using the method of perturbed test functions from the theory of viscosity solutions and homogenization (introduced by Evans in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] and [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF] and by Mirrahimi and Méléard in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF] for the fractional Laplacian). Since the proof is technical, long and not easy to grasp (the domain moves also with the parameter ε), we prefer to drop the scaling and to perform the inverse scaling on our sub and super solutions. Therefore, we provide a direct proof of D by adapting the proof of Theorem 1.6 in [START_REF] Coulon Chalmin | Fast propagation in reaction-diffusion equations with fractional diffusion[END_REF]. In this proof, the author proves thanks to a subsolution that there exists σ > 0 and t σ > 0 such that

σ < inf (x,t)∈ |x|<e (|λ 0 |-δ)t d+2α ×]tσ,+∞[ n(x, t).
This last claim is obviously false in our case since the solution vanishes on the boundary. This is the main new difficulty that we will encounter. We overcome it by establishing the same kind of estimates away from the boundary. Theorem 4 is the consequence of the precision of the sub and super-solutions established in step C. Note that such level sets can not be established with the sub and super-solutions involved in [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF] or [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF]. However, the new ingredients presented here to establish the sub and the super-solutions can be adapted to the framework of [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF] or [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF]. In the framework of [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF], we recover Theorem 1.1.5 of [START_REF] Coulon Chalmin | Fast propagation in reaction-diffusion equations with fractional diffusion[END_REF].

The comparison tools and some notations

All along the article, we will use many times the comparison principle. We recall here what we mean by comparison principle.

Theorem (The comparison principle). Let f be a smooth function, a ∈ [0, +∞[ and b ∈]0, +∞]. If n and n are such that ∀(x, t) ∈ Ω×]a, b[, ∂ t n + (-∆) α n ≤ f (n),
and

∂ t n + (-∆) α n ≥ f (n), ∀(x, t) ∈ Ω c ×]a, b[, n(x, t) ≤ n(x, t), and ∀x ∈ R d , n(x, t = a) ≤ n(x, t = a) then ∀(x, t) ∈ Ω×]a, b[, n(x, t) ≤ n(x, t).
In the same spirit, we recall the fractional Hopf Lemma stated in [START_REF] Greco | Hopf's lemma and constrained radial symmetry for the fractional Laplacian[END_REF].

Lemma (The fractional Hopf Lemma [START_REF] Greco | Hopf's lemma and constrained radial symmetry for the fractional Laplacian[END_REF]). 

lim inf x →z x∈O u(x) δ(x) α > 0.
All along the article, for any set U and any positive constant ν, we introduce the following new sets :

U ν = {x ∈ U| dist(x, ∂U) > ν} , U -ν = x ∈ R d | dist(x, U) < ν . (10) 
The constants denoted by c or C may change from one line to another when there is no confusion possible. Also, we drop the constant C α and the Cauchy principal value P.V. in front of the fractional Laplacian for better readability.

Outline of the paper

In section 3, we demonstrate Theorem 1. Next, section 4 is dedicated to the proof of Theorem 2. The first part of section 5 introduces the scaling and provides the sub and super-solutions. Finally, the second part of section 5 is devoted to the proof of Theorems 3 and 4.

3 Uniqueness of the stationary state n + First, we state a proposition which gives the shape of any non-trivial bounded sub and super-solution to (4) near the boundary. Then, we use this result to prove the uniqueness result. Since the proof of the existence is classical we do not provide it.

Proposition 1. (i) If u is a smooth positive bounded function such that u(x) = 0 for all x ∈ Ω c and (-∆) α u(x) ≤ u(x) -u(x) 2 for all x ∈ Ω, then there exists C > 0 such that for all x ∈ R d u(x) ≤ Cδ(x) α . (ii) If v is a smooth positive bounded function such that v(x) = 0 for all x ∈ Ω c , (-∆) α v(x) ≥ v(x) -v(x) 2 for all x ∈ Ω and v ≡ 0 then there exists c > 0 such that for all x ∈ R d cδ(x) α ≤ v(x).
Proof of Proposition 1. Proof of (i). Let u be a continuous positive bounded function such that u = 0 in Ω c and (-∆) α u ≤ u -u 2 in Ω. Let x be a point of the boundary. Let z x ∈ R d and r 1 > 0 be the elements provided by the uniform exterior ball condition such that

B(z x , r 1 ) ⊂ Ω c and x ∈ B(z x , r 1 ) ∩ ∂Ω.
We rescale and translate a barrier function (provided for instance in Annex B of [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF]). This barrier function φ satisfies the following properties:

           (-∆) α φ ≥ 1 in B(z x , 4r 1 )\B(z x , r 1 ), φ ≡ 0 in B(z x , r 1 ), 0 ≤ φ ≤ C(|z x -x| -r) α in B(z x , 4r 1 )\B(z x , r 1 ), max u ≤ φ ≤ C in R d \B(z x , 4r 1 ). ( 11 
)
We prove that u ≤ φ in R d . By construction we have u ≤ φ in (B(z x , 4r 1 )\B(z x , r 1 )) c . Assume by contradiction that there exists x 0 ∈ (B(z x , 4r 1 )\B(z x , r 1 )) ∩ Ω such that (φ -u)(x 0 ) < 0. Then, there exists

x 1 ∈ (B(z x , 4r 1 )\B(z x , r 1 )) ∩ Ω such that (φ -u)(x 1 ) = min x∈R d (φ -u)(x) < 0. Thus, we obtain (-∆) α (φ -u)(x 1 ) < 0 and (-∆) α (φ -u)(x 1 ) ≥ 1 -u(x 1 ) + u(x 1 ) 2 ≥ 0, a contradiction.
Proof of (ii). Let v be a continuous positive bounded function such that v = 0 in Ω c and (-∆) α v ≥ v -v 2 in Ω. An easy but important remark is the following: thanks to the non-local character of the fractional Laplacian, since v ≡ 0, we deduce that v > 0 in the whole domain Ω. Otherwise, the following contradiction holds true :

∃x ∈ Ω such that v(x) = 0 and (-∆) α v(x) -v(x) + v(x) 2 = - R d v(y) |x -y| d+2α dy < 0. Next, let k be any element of Z d . We introduce w k : (x, t) ∈ R d × [0, +∞[ → w k (x, t) ∈ R as the solution of      ∂ t w k + (-∆) α w k = w k -w 2 k in (Ω 0 + a k )×]0, +∞[, w k (x, t) = 0 in R d \(Ω 0 + a k ) × [0, +∞[ w k (x, 0) = v(x) in (Ω 0 + a k ), (12) 
where Ω 0 and a k are introduced in (2). Thanks to the remark above, and recalling (H1), we deduce thanks to Theorem 5.1 in [START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF] that w k (., t) -→ t→+∞ w stat (.) with w stat the solution of

(-∆) α w stat = w stat -w 2 stat , in (Ω 0 + a k ), w stat = 0 in R d \(Ω 0 + a k ). (13) 
Note that the above w stat does not depend on the choice of k, i.e. w k (•, t) converges as t tends to +∞ to the same w stat (up to a translation). Then, we conclude thanks to the comparison principle that

w stat (x) ≤ v(x), ∀x ∈ R d .
Since, (Ω 0 + a k ) is bounded, we apply the results of [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF] to find that there exists a constant c > 0 such that cδ(x

) α 1 (Ω 0 +a k ) (x) ≤ w stat (x) ≤ v(x).
The previous analysis holds for every k ∈ Z d . We conclude that

cδ(x) α ≤ v(x). ( 14 
)
Proof of Theorem 1. The argument relies on the fact that two steady solutions are comparable everywhere thanks to Proposition 1. This is in the spirit of [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF] and [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] in the context of standard diffusion. Let u and v be two bounded steady solutions of (4). By the maximum principle, we easily have that for all x ∈ R d , u(x) ≤ 1 and v(x) ≤ 1.

We will assume that v(x 0 ) ≤ u(x 0 ) where

x 0 ∈ Ω 0 . (15) 
Thanks to Proposition 1, we deduce the existence of two constants 0 < c ≤ C such that:

cδ(x) α ≤ u(x) ≤ Cδ(x) α and cδ(x) α ≤ v(x) ≤ Cδ(x) α .
Thus there exists a constant λ > 1 such that for all

x ∈ R d , u(x) ≤ λv(x). (16) 
We set

l 0 := inf λ ≥ 1| ∀x ∈ R d , u(x) ≤ λv(x) .
The point is to prove by contradiction that l 0 = 1. It implies that x 0 is a contact point, and will allow us to conclude thanks to the fractional maximum principle that u = v. We assume by contradiction that l 0 > 1. Next, we define :

w = inf x∈Ω (l 0 v -u)(x) δ(x) α ≥ 0. ( 17 
)
There are two cases to be considered. Case 1: w > 0. We show in this case that we can construct l 1 < 1 such that u(x) ≤ l 1 l 0 v(x) for all x ∈ R d : a contradiction. If w > 0, we claim that there exists µ ∈]0, 1[ and ν > 0 such that for all x ∈ Ω\Ω ν (we recall that Ω ν is defined by ( 10)),

w 2 ≤ (µl 0 v -u)(x) δ(x) α . (18) 
Indeed, if there does not exist such couple (µ, ν), we deduce that for all n ∈ N, there exists (

x n ) n∈N ∈ Ω, such that δ(x n ) ≤ 1 n and ((1 -1 n )l 0 v -u)(x n ) δ(x n ) α < w 2 .
Passing to the liminf we get the following contradiction :

0 < w ≤ w 2 .
And so, the existence of the couple (µ, ν) implies that

(µl 0 v -u)(x) ≥ 0, ∀x ∈ Ω\Ω ν . (19) 
Next, we claim that

∃ρ > 0 such that ∀x ∈ Ω ν , we have ρ ≤ (l 0 v -u)(x). (20) 
Indeed, if such ρ does not exist then there exists a sequence (

x n ) n∈N ∈ Ω such that δ(x n ) ≥ ν and (l 0 v -u)(x n ) -→ n→+∞ 0. Then we obtain (l 0 v -u)(x n ) δ(x n ) α ≤ (l 0 v -u)(x n ) ν α -→ n→+∞ 0
which is in contradiction with the hypothesis w > 0. The existence of such ρ implies that for all

x ∈ Ω ν (1 - ρ max l 0 v )l 0 v -u (x) ≥ 0. (21) 
Finally, if we define l 1 = max(µ, 1 -ρ max l 0 v+1 ) then we obtain the desired contradiction. Therefore this case cannot occur.

Case 2: w = 0. We consider (x n ) n∈N a minimizing sequence of w. There are 3 subcases : a subsequence of (x n ) n∈N converges to x 0 ∈ Ω, a subsequence of (x n ) n∈N converges to x b ∈ ∂Ω and any subsequence of (x n ) n∈N diverges.

Subcase a: There exists x 0 ∈ Ω, such that (l 0 v-u)(x 0 ) δ(x 0 ) α = 0. Since x 0 ∈ Ω we deduce that (l 0 v -u)(x 0 ) = 0. Hence, by the maximum principle, u = l 0 v. We deduce that l 0 v is a solution of (4) and we conclude that :

l 0 (v -v 2 ) = l 0 (-∆) α (v) = (-∆) α (l 0 v) = l 0 v -(l 0 v) 2 . ( 22 
)
This equation leads to l 0 = 1, a contradiction. 

(l 0 v-u)(x) δ(x) α = 0.
Here is a summary of what we know:

(i) l 0 v -u ≥ 0, (ii) (-∆) α (l 0 v -u) ≥ -l 0 (l 0 v -u), (iii) (l 0 v -u)(x b ) = 0.
According to the fractional Hopf Lemma, the previous assumptions leads to lim inf x→x b , x∈Ω

(l 0 v-u)(x) δ(x) α > 0.
However, we have assumed that lim inf

x→x b , x∈Ω (l 0 v-u)(x) δ(x) α = 0, a contradiction.
Subcase c: There exists a minimizing sequence (x n ) n∈N such that |x n | tends to the infinity. First, we set

x k = x k -a x k ,
where x ∈ Z d is such that x ∈ Ω 0 + a x . Since x k ∈ Ω 0 , we deduce that up to a subsequence x k converges to x ∞ ∈ Ω 0 . Then we define:

u k (x) = u(x + x k ) and v k (x) = v(x + x k ).
We also define the following set :

Ω ∞ = {x ∈ R | x + x ∞ ∈ Ω} .
By fractional elliptic regularity (see [START_REF] Ros-Oton | Regularity theory for general stable operators[END_REF]), we deduce that up to a subsequence (u n ) n∈N and (v n ) n∈N converges to u ∞ and v ∞ solutions that verifies

∀x ∈ Ω ∞ , (-∆) α u ∞ (x) = u ∞ (x) -u ∞ (x) 2 , (-∆) α v ∞ (x) = v ∞ (x) -v ∞ (x) 2 and ∀x ∈ Ω c ∞ , u ∞ (x) = v ∞ (x) = 0.
Remark that

l 0 v ∞ -u ∞ ≥ 0 and lim inf x→0 x∈Ω∞ (l 0 v ∞ -u ∞ )(x) dist(x, ∂Ω ∞ ) α = 0.
Hence, if x ∞ ∈ Ω 0 then 0 ∈ Ω ∞ and we fall in the subcase a). If x ∞ / ∈ Ω 0 then 0 ∈ ∂Ω ∞ and we fall in the subcase b). Both cases lead to a contradiction.

Thus, we conclude that l 0 = 1.

Remark.

Noticing that for all (x, k) ∈ Ω × Z d , we have

(-∆) α (n + (. + a k ))(x) = R n + (x + a k ) -n + (y + a k ) |x + a k -(y + a k )| d+2α dy = n + (x + a k ) -n + (x + a k ) 2 ,
we deduce by uniqueness of the solution of (4) that n + is periodic.

4 The fractional heat kernel and the preparation of the initial data

We first introduce some requirements in order to achieve the proof of the lower bound of Theorem 2. Once we have established Theorem 2, we apply it to the initial data.

Let u ∈ C ∞ (R d ×]0, +∞[), then we set for all (x, t) ∈ R d ×]0, +∞[ L α (u)(x, t) = B(0,ν) u(x, t) -u(y, t) |y| d+2α dy. (23) 
We also introduce φ ν as the principal positive eigenfunction of the operator L α associated to the principal eigenvalue µ ν i.e.

       L α φ ν = µ ν φ ν in B(0, ν) φ ν = 0 in B(0, ν) c , φ ν ≥ 0, φ ν ∞ = 1.
Next, we state two intermediate technical results.

Lemma 1. Let w be the solution of the equation

     ∂ t w + L α w = 1 in B(0, ν)×]0, +∞[ w(x, t) = 0 in B(0, ν) c × [0, +∞[, w(x, t = 0) = 0 in B(0, ν). (24) 
Then there exists a constant c ν > 0 such that

c ν × φ ν (x) ≤ w(x, t = 1). Proof. We define τ (t) = 1 µ ν (1 -e -µν t ) such that τ (t) + µ ν τ (t) = 1, τ (0) = 0.
Thanks to this choice of τ (t), the application w(x, t) := τ (t) × φ ν (x) is a sub-solution to [START_REF] Smoller | Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wissenschaften[END_REF]. Actually, we have

(∂ t + L α )(w) -1 = τ φ ν + µ ν τ φ ν -1 ≤ τ φ ν + µ ν τ φ ν -φ ν = φ ν (τ + µ ν τ -1) = 0.
Since w(t = 0) = 0 ≤ w(t = 0), we can conclude thanks to the comparison principle that for all (x, t) ∈ R d × [0, +∞[, we have w(x, t) ≤ w(x, t). Setting the time t = 1 in the last inequality leads to

w(x, 1) = 1 µ ν (1 -e -µν )φ ν (x) = c ν φ ν (x) ≤ w(x, 1).
Next, we establish a barrier function for L α in the spirit of the one introduced in [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF].

Lemma 2. There exists a function ψ such that

                     L α ψ ≤ 0 in B(0, ν)\B(0, ν 2 ), ψ = 0 in B(0, ν) c , ψ ≤ 1 in B(0, ν 2 ), c(ν -|x|) α ≤ ψ in B(0, ν), ψ is continuous in B(0, ν)\B(0, ν 2 
).

(25)

Proof. Choose C large enough such that the first point and the third point of (25) holds true with the following ψ:

ψ(x) := 1 C (ν 2 -|x| 2 ) α + 1 2 1 B(0, ν 4 ) (x) 1 B(0,ν) (x).
Indeed, defining f (x) := (ν 2 -|x| 2 ) α , we have for C large enough and x ∈ B(0, ν)\B(0, ν 2 )

L α ψ(x) ≤ L α f (x) C - 1 2 B(0, ν 4 ) 1 |x -y| d+2α dy ≤ sup B(0,ν)\B(0, ν 2 ) |L α f | C - m(B(0, ν 4 )) 2 × 4 ν d+2α < 0.
The other conditions follow.

Proof of Theorem 2. The aim is to prove that there exists a constant c > 0 such that ∀x ∈ O, we have c min(δ(x) α , 1)

1 + |x| d+2α ≤ p(x, 1). ( 26 
)
To achieve the proof, there will be 4 steps. First, up to a translation and possibily a scaling of n, we prove (26) in {|x| < 1 + 2ν} where ν = min( 1 4 , r 1 ) (with r 1 the radius provided by the uniform interior ball). Next, we introduce a suitable decomposition of the fractional Laplacian (involving L α ) to prove the existence of c 1 > 0 such that

       c 1 1 + |x| d+2α ≤ ∂ t p(x, t) + L α p(x, t) + λp(x, t) for all (x, t) ∈ (O\ {|x| > 1 + ν}) ×]0, 1], p(x, t) ≥ 0 for all (x, t) ∈ (O\ {|x| > 1 + ν}) c × [0, 1], p(x, t = 0) = n 0 (x) ∈ C ∞ 0 (O, R + ) ∩ C c (R d ) (27) 
where L α is defined by ( 23) and λ = R d \B(0,ν) 1 |y| d+2α dy. In a third step, we will show that

∃c 2 > 0 such that c 2 1 + |x| d+2α ≤ p(x, t = 1) for all x ∈ (O ν ∩ {|x| > 1 + 2ν}) . (28) 
Finally, we prove the same kind of result near the boundary :

∃c 3 > 0 such that c 3 δ(x) α 1 + |x| d+2α ≤ p(x, t = 1) for all x ∈ (O\O ν ∩ {|x| > 1 + 2ν}) . ( 29 
)
Step 1. First, note that thanks to a translation and possibly a scaling, we can suppose the following hypothesis:

∃σ > 0 such that σ < n 0 (x) for all x ∈ B(0, 2). (30)

Next, we claim that inf t∈(0,1) z∈B(0,1+2ν) p(z, t) > 0.

(31) Indeed, let φ 2 be the first positive eigenfunction of the Dirichlet fractional Laplacian in B(0, 2) and λ 2 the associated eigenvalue i.e.

     (-∆) α φ 2 = λ 2 φ 2 for x ∈ B(0, 2), φ 2 = 0 for x ∈ B(0, 2) c , φ 2 ∞ = 1. Then the function p(x, t) := σ × φ 2 (x) × e -λ 2 t
is a sub-solution to (6) (where σ is defined by ( 30)). According to the comparison principle, we have for all (x, t) ∈ B(0,

1 + 2ν) × [0, 1] 0 < min s∈ [0,1] y∈B(0,1+2ν) p(y, s) = σ × min B(0,1+2ν) φ 2 × e -|λ 2 | ≤ p(x, t) ≤ p(x, t).
We deduce that if c is small enough, then (26) holds true for all x ∈ B(0, 1 + 2ν).

Step 2. In this step we prove (27) which is a key element to prove (26) for x ∈ {|x| > 1 + 2ν}∩O .

Then, we focus on {|x| > 1 + ν}. We split the fractional Laplacian into 2 parts:

(-∆) α p(x, t) = R d \B(0,ν) p(x, t) -p(x + y, t) |y| d+2α dy + L α p(x, t) = I 1 (x, t) + L α p(x, t). (32) 
For I 1 , we obtain :

I 1 (x, t) = R d \B(0,ν) p(x, t) -p(x + y, t) |y| d+2α dy = λp(x, t) - R d \B(0,ν) p(x + y, t) |y| d+2α dy. Since |x| > 1 + ν, we have inf t∈(0,1) z∈B(0,1+ν) p(z, t) B(0,1) 1 |z -x| d+2α dz ≤ B(-x,1) p(x + y, t) |y| d+2α dy ≤ R d \B(0,ν) p(x + y, t) |y| d+2α dy. (33) 
Equation (33) ensures the existence of a positive constant c 1 > 0 such that we have for all (x, t) ∈

(O ∩ {|x| > 1 + ν}) × [0, 1[ c 1 1 + |x| d+2α ≤ R d \B(0,ν) p(x + y, t)
|y| d+2α dy.

It follows that

I 1 (x, t) ≤ λp(x, t) - c 1 1 + |x| d+2α . (34) 
Equations ( 32) and (34) lead to (27). Moreover, if we define v(x, t) = e λt × p(x, t), we find the following system:

       c 1 1 + |x| d+2α ≤ ∂ t v(x, t) + L α v(x, t) for (x, t) ∈ (O ∩ {|x| > 1 + ν}) ×]0, 1], v(x, t) ≥ 0 for (x, t) ∈ (O ∩ {|x| > 1 + ν}) c × [0, 1], v(x, t = 0) = n 0 (x) ∈ C ∞ 0 (O, R + ). (35) 
Step 3. By uniform continuity of x → 1 1+|x| d+2α in R d , we deduce the existence of c 1 > 0 such that for all x 0 ∈ (O ν ∩ {|x| > 1 + ν}) and all (x, t) ∈ (O ν ∩ {|x| > 1 + 2ν}) ×]0, 1] we have

c 1 1 + |x 0 | d+2α 1 B(0,ν) (x -x 0 ) ≤ c 1 1 + |x| d+2α ≤ ∂ t v(x, t) + L α v(x, t). (36) 
Inequality (36) gives that for all (x, t)

∈ (O ν ∩ {|x| > 1 + ν}) ×]0, 1] 1 B(0,ν) (x -x 0 ) ≤ ∂ t ( 1 + |x 0 | d+2α c 1 v(x, t)) + L α ( 1 + |x 0 | d+2α c 1 v(x, t)).
Then, according to the comparison principle and Lemma 1, we deduce that

∀x ∈ (O ν ∩ {|x| > 1 + ν}) , c ν φ ν (x -x 0 ) ≤ 1 + |x 0 | d+2α c 1 v(x, t = 1). ( 37 
)
If we evaluate (37) at x = x 0 , we obtain

c ν c 1 e -λ φ ν (0) 1 + |x 0 | d+2α ≤ p(x 0 , t = 1).
Defining c 2 = c ν c 1 e -λ φ ν (0) leads to (28).

Step 4. As in the proof of Proposition 1, we can show by contradiction that there exists a positive constant c 0 such that for all x ∈ R d ,

c 0 ψ(x) ≤ φ ν (x)
where ψ is defined in Lemma 2. Then we take x 1 ∈ (O\O ν ) ∩ {|x| > 1 + 2ν}. Since O satisfies the uniform interior ball condition, there exists x 0 ∈ ∂O ν such that x 1 ∈ B(x 0 , ν), B(x 0 , ν) ⊂ O ∩ {|x| > 1 + ν} and ν -|x 1 -x 0 | = δ(x 1 ). Thanks to (37) and the fourth point of Lemma 2, we deduce

c ν c 0 cνδ(x 1 ) α ≤ c ν c 0 ψ(x 1 -x 0 ) ≤ c ν φ ν (x 1 -x 0 ) ≤ (|x 0 | + 1) d+2α c 1 v(x 1 , t = 1).
We deduce that there exists c 3 > 0 such that (29) holds true.

Combining (28), ( 29) and (31) yields the conclusion of the Theorem.

We apply Theorem 2 to show that starting from n(x, 0)

∈ C ∞ 0 (Ω) ∩ C ∞ c (R)
, the solution of ( 1) n(•, t = 1) has algebraic tails. Proposition 2. There exists two constants c m and c M depending on n 0 such that for all x ∈ Ω, we have

c m δ(x) α 1 + |x| d+2α ≤ n(x, 1) ≤ c M δ(x) α 1 + |x| d+2α . ( 38 
)
Proof. Defining M := max(max n 0 , 1), the solution n belongs to the set [0, M ] (0 is a sub-solution and M is a super-solution).

We begin with the proof that cmδ(x) α 1+|x| d+2α ≤ n(x, 1). Let n be the solution of :

     ∂ t n(x, t) + (-∆) α n(x, t) = -M n(x, t) for all (x, t) ∈ Ω×]0, +∞[, n(x, t) = 0 for all (x, t) ∈ Ω c × [0, +∞[, n(x, 0) = n 0 (x) for all x ∈ R d , (39) 
Thanks to the comparison principle, we deduce that for all (x, t) ∈ R × [0, +∞[, we have n(x, t) ≤ n(x, t).

Moreover, if we define p(x, t) = e M t n(x, t), we find that p is solution of ( 6). Since Ω fullfies the uniform interior and exterior ball condition, we deduce thanks to Theorem 2 that there exists

c m > 0 such that c m δ(x) α 1 + |x| d+2α ≤ n(x, t = 1) ≤ n(x, t = 1). ( 40 
)
The proof works the same for the other bound.

5 The proof of Theorem 3

Rescaling and preparation

The aim of this subsection is to establish the following Theorem.

Theorem 5. We assume (H1) and (H2) then for all ν > 0, the following holds true 1. For all c < |λ 0 | d+2α , there exists a constant σ > 0 and a time t σ > 0 such that

∀(x, t) ∈ Ω ν ∩ |x| < e ct ×]t σ , +∞[ we have σ < n(x, t). ( 41 
)
2. For all C > |λ 0 | d+2α , there exists three constants C 1 , C 2 , κ > 0 such that we have for all

(x, t) ∈ |x| > e Ct ×]1, +∞[ n(x, t) ≤ C 1 1 + C 2 e κt . ( 42 
)
First we establish sub and super-solutions by performing the rescaling [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. Finally, we prove Theorem 5 by performing the inverse of this rescaling on the sub and super-solutions.

We rescale the solution of (1) as follows :

n ε (x, t) = n |x| 1 ε x |x| , t ε . ( 43 
)
Next, the equation becomes

     ε∂ t n ε + (-∆) α ε n ε = n ε (1 -n ε ) for (x, t) ∈ Ω ε ×]0, +∞[, n ε (x, t) = 0 for (x, t) ∈ Ω ε c ×]0, +∞[, n ε (x, 0) = n 0,ε (x) ∈ C ∞ 0 (Ω ε , R + ). (1 ε ) where (-∆) α ε n ε (x, t) = (-∆) α n |x| 1 ε x |x| , t ε and Ω ε = x ∈ R d | |x| 1 ε -1 x ∈ Ω . Next, we set g(x) := 1 1 + |x| d+2α .
We state the behavior of g under the fractional Laplacian in the spirit of [START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF]. Lemma 3. Let γ be a positive constant in ]0, α[ such that 2α -γ < 1. Let χ ∈ C α (R d ) be a periodic positive function. Then there exists a positive constant C, such that we have for all x ∈ R: (i) for all a > 0, |(-∆) α g(ax)| ≤ a 2α Cg(ax),

(ii) for all a ∈]0, 1],

| K(g(a.), χ)(x)| ≤ Ca 2α-γ 1 + (a|x|) d+2α = Ca 2α-γ g(a|x|), where K(u, v)(x) = R (u(x)-u(y))(v(x)-v(y)) |x-y| d+2α
dy is such that

(-∆) α (u × v) = (-∆) α (u) × v + u × (-∆) α (v) -K(u, v).
Since, the same kind of result can be found in the appendix A of [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF], we do not provide the proof of this lemma. Note that here, the lemma is stated with less regularity on χ such than in [START_REF] Léculier | A singular limit in a fractional reaction-diffusion equation with periodic coefficients[END_REF]. Nevertheless, there is no difficulty to adapt the proof.

Notation. As we have introduced

(-∆) α ε n ε (x, t) = (-∆) α n |x| 1 ε x |x| , t ε , we introduce K ε (u, v)(x, t) = K(u, v)(|x| 1 ε -1 , t ε ).
For any application h : R → R, we define

h ε : R d → R x → h(|x| 1 ε -1 x).
For any set U, we will denote

U ε = x ∈ R d | |x| 1 ε -1 x ∈ U . ( 44 
)
For reasons of brevity, we will always denote (U ν ) ε by U ε ν . In the following, we denote by c 0 and C 0 the positive constants provided by [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF] such that

c 0 δ(x) α ≤ φ 0 (x) ≤ C 0 δ(x) α . ( 45 
)
Proposition 3. We assume (H1) and (H2). If we set C m = min(

|λ 0 | 2(max φ 0 +1) , cm C 0 , 1) and C M = 2|λ 0 |+c M min(1,c 0 )
where c 0 , c m , C 0 and C M are introduced in (45) and (38) then there exists ε 0 > 0 such that for all ε < ε 0 , the following holds true.

1. For t ∈]0, 4 ε 2 [, if f m ε is defined as f m ε (x, t) = C m min(e -1 ε + εt 4 , 1) 1 + e -(|λ 0 |-ε 2 )t ε -1 ε |x| d+2α ε × (φ 0,ε (x) + ε), then it is a sub-solution of (1 ε ) in Ω ε ×]0, 4 ε 2 [. 2. For t ∈] 4 ε 2 , +∞[, if f m ε is defined as f m ε (x, t) = C m 1 + e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε × (φ 0,ε (x) + ε), then it is a sub-solution of (1 ε ) in Ω ε ×] 4 ε 2 , +∞[. 3. If f M ε is defined as f M ε (x, t) = C M × φ 0,ε (x) 1 + e -|λ 0 |t ε -ε arctan(t)-1 ε |x| d+2α ε , then it is a super-solution of (1 ε ) in Ω ε ×]0, +∞[. 4. For all (x, t) ∈ R d × [0, +∞[, f m ε (x, t) ≤ n ε (x, t + ε) + ε and n ε (x, t + ε) ≤ f M ε (x, t).
Remark.

1. In the establishment of the sub and the super solutions, the choice of arctan is not primordial. We only need a positive increasing and smooth function h which satisfies

e -t ε ≤ εh (t)
for all t > t 0 and ε small enough. In [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF], h(t) = t but it does not allow to recover the level set of the solution as precisely as in [START_REF] Coulon Chalmin | Fast propagation in reaction-diffusion equations with fractional diffusion[END_REF]. The choice of a bounded function h (such as arctan) allows to recover the same level of precision in the establishment of the level sets.

The study (and the definition) of f m

ε is split into two parts. For small time, the term e -1 ε in the denominator is necessary in order to control the term (-∆) α f m ε for small time. But, to use the comparison principle (and establish 4.), we have to check that the initial data are ordered in the right way. This is why, the term e -1 ε is needed in the numerator. However, this last term is an obstacle to establish the level sets result. Therefore, the trick is to "kill" this term for large time by replacing it by min(e εt 4 -1 ε , 1). This is why, we split the study of f m ε into two parts: when t is small (i.e. t < 4 ε 2 ) and when t is large (i.e. t > 4 ε 2 ). Proof. We begin by proving (1). Let (x, t) be in Ω ε ×]0, 4 ε 2 [. We define:

ψ ε (x, t) = C m 1 + e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε = C m g ε (e -t(|λ 0 |-ε 2 )-1 d+2α 
x) and a(t

) = e -1 ε + εt 4 thus f m ε (x, t) = a(t) × ψ ε (x, t) × (φ 0,ε (x) + ε).
First, we bound ε∂ t ψ ε from above:

ε∂ t ψ ε (x, t) = ε C m (|λ 0 |-ε 2 ) ε e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε (1 + e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε ) 2 = ψ ε (x, t) (|λ 0 | -ε 2 ) e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε 1 + e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε ≤ ψ ε (x, t)[|λ 0 | -ε 2 -ψ ε (x, t)(φ 0,ε (x) + ε)] ≤ ψ ε (x, t)[|λ 0 | -ε 2 -f ε (x, t)]. (46) 
The last inequalities hold because a(t) ≤ 1 and denoting by

D = e -t ε (|λ 0 |-ε 2 )-1 ε |x| d+2α ε
and using the definition of C m , we obtain for all ε < min( |λ 0 | 2 , 1)

|λ 0 | -ε 2 -ψ ε (φ 0,ε + ε) -|λ 0 | -ε 2 D 1 + D = |λ 0 | -ε 2 -C m (φ 0,ε + ε) 1 + D ≥ |λ 0 | -ε 2 -|λ 0 | 2 1 + D ≥ 0. Next, we compute (-∆) α ε f m ε (x, t) (-∆) α ε f m ε (x, t) = a(t)(φ 0,ε (x)+ε)(-∆) α ε ψ ε (x, t)+a(t)ψ ε (x, t)(-∆) α ε φ 0,ε (x)-a(t) K ε (ψ, (φ 0 +ε))(x, t).
Combining (46) and the above equality we find:

ε∂ t f m ε (x, t) + (-∆) α ε f m ε (x, t) -f m ε (x, t)(1 -f m ε (x, t)) ≤ f m ε (x, t)(|λ 0 | - 3ε 2 4 -f m ε (x, t)) + a(t)(φ 0,ε (x) + ε)(-∆) α ε ψ ε (x, t) + a(t)ψ ε (x, t)(-∆) α ε φ 0,ε (x) -a(t) K ε (ψ, φ 0 + ε)(x, t) -f m ε (x, t)(1 -f m ε (x, t)) = f m ε (x, t)(|λ 0 | - 3ε 2 4 ) + a(t)(φ 0,ε (x) + ε)(-∆) α ε ψ ε (x, t) + a(t)(λ 0 + 1)ψ ε (x, t)φ 0,ε (x) -f m ε (x, t) -a(t) K ε (ψ, φ 0 + ε)(x, t) = f m ε (x, t)(|λ 0 | - 3ε 2 4 ) + a(t)(φ 0,ε (x) + ε)(-∆) α ε ψ ε (x, t) + a(t)(λ 0 + 1)ψ ε (x, t)(φ 0,ε (x) + ε)(x, t) -a(t)ε(λ 0 + 1)ψ ε (x, t) -f m ε (x, t) -a(t) K ε (ψ, φ 0 + ε)(x, t) = - 3ε 2 4 f m ε (x, t) + a(t)(φ 0,ε (x) + ε)(-∆) α ε ψ ε (x, t) -a(t)ε(λ 0 + 1)ψ ε (x, t) -a(t) K ε (ψ, φ 0 + ε)(x, t).
(47) Thanks to Lemma 3, we obtain

|(-∆) α ε ψ ε (x, t)| = |C m (-∆) α ε (g ε (e -[t(|λ 0 |-ε 2 )+1] d+2α .))(x)| ≤ |C m e -2α[t(|λ 0 |-ε 2 )+1] ε(d+2α) (g ε )(e -[t(|λ 0 |-ε 2 )+1] d+2α 
x)|.

We deduce that there exists ε 1 > 0 such that for all ε < ε 1 :

|(-∆) α ε ψ ε (x, t)| ≤ ε 2 4 ψ ε (x, t). (48) 
Since (φ 0 + ε) is periodic, positive and C α according to [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF] (Proposition 1.1), we conclude from Lemma 3 that there exists γ ∈]0, α[ and a constant C such that

| K ε (ψ, φ 0 + ε)(x, t)| ≤ Ce -[t(|λ 0 |-ε 2 )+1](2α-γ) ε(d+2α) ψ ε (x, t).
We deduce the existence of ε 2 > 0 such that for all ε < ε 2 , we have

| K ε (ψ, φ 0 + ε)(x, t)| ≤ ε 3 4 ψ ε (x, t) = ε 2 min(φ 0,ε + ε) 4 ψ ε (x, t). (49) 
Noticing that (λ 0 + 1) > 0, inserting (48) and ( 49) into (47), we conclude that for all ε < ε 0 := min(ε 1 , ε 2 , |λ 0 | 2 , 1) and (x, t) ∈ Ω ε ×]0, 4 ε 2 [ we have:

ε∂ t f m ε (x, t) + (-∆) α ε f m ε (x, t) -f m ε (x, t) + f m ε (x, t) 2 ≤ - 3ε 2 4 f m ε (x, t) + a(t)(φ 0,ε + µ)(x)(-∆) α ψ ε (x, t) -a(t)ε(λ 0 + 1)ψ ε (x, t) -a(t) K ε (ψ, φ 0 + ε)(x, t) ≤ - 3ε 2 4 f m ε (x, t) + ε 2 4 f ε (x, t) + ε 2 4 f ε (x, t) ≤ - ε 2 4 f m ε (x, t) ≤ 0. Therefore, f m ε is a sub-solution of (1 ε ) for (x, t) ∈ Ω ε ×]0, 4 ε 2 [. It concludes the proof of (1).
We continue by proving (2). Let (x, t) be in Ω ε ×] 4 ε 2 , +∞[. We define:

ψ ε (x, t) = C m 1 + e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε = C m g ε (e - |λ 0 |t+ε 2 arctan(t-4 ε 2 )+3 d+2α x) thus f m ε (x, t) = ψ ε (x, t) × (φ 0,ε (x) + ε).
First, we bound ε∂ t ψ ε from above:

ε∂ t ψ ε (x, t) = ε C m (|λ 0 |- ε 2 1+(t-4 ε 2 ) 2 ) ε e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε (1 + e --|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε ) 2 = ψ ε (x, t) (|λ 0 | - ε 2 1 + (t -4 ε 2 ) 2 ) e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε 1 + e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε ≤ ψ ε (x, t)[|λ 0 | - ε 2 1 + (t -4 ε 2 ) 2 -ψ ε (x, t)(φ 0,ε (x) + ε)] ≤ ψ ε (x, t)[|λ 0 | - ε 2 1 + (t -4 ε 2 ) 2 -f ε (x, t)]. (50) 
Denoting by D = e

-|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε
and using the definition of C m , we obtain indeed for all ε < min( |λ 0 | 2 , 1)

|λ 0 | - ε 2 1 + (t -4 ε 2 ) 2 -ψ ε (φ 0,ε + ε) -|λ 0 | - ε 2 1 + (t -4 ε 2 ) 2 D 1 + D = |λ 0 | - ε 2 1+(t-4 ε 2 ) 2 -C m (φ 0,ε + ε) 1 + D ≥ |λ 0 | -ε 2 -|λ 0 | 2 1 + D ≥ 0. Next, we compute (-∆) α ε f m ε (x, t) (-∆) α ε f m ε (x, t) = (φ 0,ε + ε)(x)(-∆) α ε ψ ε (x, t) + ψ ε (x, t)(-∆) α ε φ 0,ε (x) -K ε (ψ, (φ 0 + ε))(x, t).
Combining (50) and the above equality we find, following similar computations as in (1),

ε∂ t f m ε (x, t) + (-∆) α ε f m ε (x, t) -f m ε (x, t)(1 -f m ε (x, t)) ≤ - ε 2 1 + (t -4 ε 2 ) 2 f m ε (x, t) + (φ 0,ε (x) + ε)(-∆) α ε ψ ε (x, t) -K ε (ψ, φ 0 + ε)(x, t). (51) 
Thanks to Lemma 3, we obtain

|(-∆) α ε ψ ε (x, t)| = |C m (-∆) α ε (g ε (e [-t|λ 0 |t+ε 2 arctan(t-4 ε 2 )+3] d+2α .))(x)| ≤ |C m e - 2α[-|λ 0 |t+ε 2 arctan(t-4 ε 2 )+3] ε(d+2α) (g ε )(e [-|λ 0 |t+ε 2 arctan(t-4 ε 2 )+3] d+2α x)|.
Noticing that since t ≥ 4 ε 2 , there exists ε 3 > 0 such that for all ε < ε 3

-|λ 0 |t + ε 2 arctan(t - 4 ε 2 ) + 3 ≤ -|λ 0 |t 2 - 2|λ 0 | ε 2 + ε 2 π 2 + 3 ≤ -|λ 0 |t 2 .
We deduce the existence of ε 4 < ε 3 such that for all ε < ε 4 :

|(-∆) α ε ψ ε (x, t)| ≤ e -α|λ 0 |t ε(d+2α) ψ ε (x, t) ≤ ε 2 3(1 + (t -4 ε 2 ) 2 ) ψ ε (x, t). (52) 
Following similar computations, we deduce the existence of ε 5 > 0 such that for all ε < ε 5 , we have

| K ε (ψ, φ 0 + ε)(x, t)| ≤ ε 3 3(1 + (t -4 ε 2 ) 2 ) ψ ε (x, t) = ε 2 min(φ 0,ε + ε) 3(1 + (t -4 ε 2 ) 2 ) ψ ε (x, t). (53) 
Inserting ( 52) and ( 53) into (51), we conclude that for all ε < ε 0 := min(ε 3 , ε 4 , ε 5 , |λ 0 | 2 , 1) and (x, t) ∈ Ω ε ×] 4 ε 2 , +∞[ we have:

ε∂ t f m ε (x, t) + (-∆) α ε f m ε (x, t) -f m ε (x, t) + f m ε (x, t) 2 ≤ - ε 2 (1 + (t -4 ε 2 ) 2 ) f m ε (x, t) + (φ 0,ε + µ)(x)(-∆) α ψ ε (x, t) -K ε (ψ, φ 0 + ε)(x, t) ≤ - ε 2 3(1 + (t -4 ε 2 ) 2 ) f m ε (x, t) ≤ 0. Therefore, f m ε is a sub-solution of (1 ε ) for (x, t) ∈ Ω ε ×] 4 ε 2 , +∞[.
The proof of (3) follows the same arguments as the proof of (2).

For the proof of (4), we have to check that the initial data are ordered in the right way. According to (38), (45) and the definition of C m , we have that for all x ∈ Ω ε ,

f m ε (x, 0) = C m (φ 0,ε (x) + ε) e 1 ε + |x| d+2α ε ≤ c m δ ε (x) α 1 + |x| d+2α ε + ε ≤ n ε (x, ε) + ε. Furthermore, ∀(x, t) ∈ (Ω ε ) c × [0, +∞[, we know that f m ε (x, t) ≤ ε ≤ n ε (x, t + ε) + ε. (54) 
Thus we conclude from the comparison principle that for all (x, t

) ∈ R d × [0, 4 ε 2 [, we have f m ε (x, t) ≤ n ε (x, t + ε) + ε. (55) 
Since, we have that for all x ∈ R d lim

t→ 4 ε 2 , t< 4 ε 2 f m ε (x, t) = lim t→ 4 ε 2 , t> 4 ε 2 f m ε (x, t)
and recalling that f m ε is also a subsolution in Ω ε ×] 4 ε 2 , +∞[ and the inequality (54), we deduce thanks to the comparison principle that for all (x, t

) ∈ R d × [0, +∞[ f m ε (x, t) ≤ n ε (x, t + ε) + ε. (56) 
The other inequality can be obtained following similar arguments.

A direct consequence of ( 56) is that if ε fulfills the assumption of Proposition 3 then

∀(x, t) ∈ R d ×] 4 ε 2 , +∞[ C m × φ 0,ε (x) 1 + e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε ≤ n ε (x, t + ε) + ε. (57) 
Next, we establish some consequences of Theorem 3 on the solution n without the scaling (9).

Proof of Theorem 5. First, we prove the first point by using the sub-solution f m ε . It is sufficient to prove it for ν < r 0 (where r 0 is the radius of the uniform interior ball condition satisfied by Ω 0 ). Proof of 1.

Set ν > 0, c < |λ 0 | d+2α and ε 0 > 0 provided by Proposition 3. we deduce that for

ε = min ε 0 , 4(|λ 0 |-(d+2α)c) π 2 +3 , Cmmin Ων φ 0 4 2
and for all (x, t)

∈ (Ω ε ν ∩ {|x| < e ct }) ×] 4 ε 2 , +∞[ we have C m φ 0 (|x| 1 ε -1 x) 1 + e -|λ 0 |t ε +ε arctan(t-4 ε 2 )+ 3 ε |x| d+2α ε ≤ n ε (x, t + ε) + ε which implies C m min Ων φ 0 1 + e t ε ((d+2α)c-|λ 0 |)+ε arctan(t-4 ε 2 )+ 3 ε ≤ n ε (x, t + ε) + ε.
If we perform the inverse scaling to (9), since ε <

4(|λ 0 |-(d+2α)c) π 2 +3
, it follows that for all t > 4

ε 3 t(c(d + 2α) -|λ 0 |) + ε arctan(εt - 4 ε 2 ) + 3 ε < 0.
We deduce that for all (x, t)

∈ (Ω ν ∩ {|x| < e ct }) ×] 4 ε 3 + 1, +∞[ C m min Ων φ 0 2 ≤ C m min Ων φ 0 1 + e t(c(d+2α)-|λ 0 |)+ε arctan(εt-4 ε 2 )+ 3 ε ≤ n(x, t + 1) + ε. If we define σ = Cm min Ων φ 0 4 
and t σ = 4 ε 3 + 1, we conclude that (41) holds true.

We prove the second point by using the super-solution f M ε . Proof of 2. Let C > |λ 0 | d+2α and we fix ε = ε 0 such that Proposition 3 holds true. It implies that

∀(x, t) ∈ R d ×]0, +∞[, n ε (x, t + ε) ≤ f M ε (x, t).
If we perform the inverse scaling to [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF], it follows that

n(x, t + 1) ≤ C M × max φ 0 1 + e -|λ 0 |t-ε arctan(εt)-1 ε |x| d+2α
.

Then for all (x, t) ∈ {|x| > Ct} ×]0, +∞[ we have

n(x, t + 1) ≤ C M × max φ 0 1 + e -επ 2 -1 ε e t[(d+2α)C-|λ 0 |] . Defining C 1 := 2C M max φ 0 , C 2 := e -επ 2 -1
ε and κ := (d+2α)C -|λ 0 | then the conclusions follows.

The final argument

Proof of Theorem 3. We will prove (i) by splitting the proof into two parts : the upper bound and the lower bound. We will not provide the proof of (ii) since it is a direct application of 2. of Theorem 5.

Proof of (i). Let µ be a positive constant. We want to prove that there exists a time t µ > 0 such that for any c < |λ 0 | d+2α we have for all (x, t)

∈ {|x| < e ct } ×]t µ , +∞[ |n(x, t) -n + (x)| ≤ µ.
First we establish that there exists a time t 1 > 0 such that

∀(x, t) ∈ Ω×]t 1 , +∞[, n(x, t) -n + (x) ≤ µ (58) 
Next, we prove the existence of a time t 2 > 0 such that

∀(x, t) ∈ Ω×]t 2 , +∞[, -µ ≤ n(x, t) -n + (x) (59) 
The difficult part will be to establish (59). This is why, we do not provide all the details of the proof of (58).

Proof that (58) holds true. Thanks to (38) and Proposition 1, we deduce the existence of a constant C ≥ 1 such that n(x, t = 1) ≤ Cn + (x).

Moreover, the solution n of

     ∂ t n + (-∆) α n = n -n in Ω×]1, +∞[, n(x, t) = 0 in Ω c × [1, +∞[, n(x, t = 1) = Cn + (x)
in Ω is a super solution of (1). According to the comparison principle we deduce that

∀(x, t) ∈ R × [1, +∞[, n(x, t) ≤ n(x, t). (60) 
One can easily observe that n is periodic, decreasing in time and converges uniformly to n + in the whole domain Ω as t → +∞. Thus there exists a times t 1 > 1 such that ∀(x, t) ∈ Ω×]t 1 , +∞[, n(x, t) -n + (x) ≤ µ.

The conclusion follows.

Proof that (59) holds true. The interior estimates. Thanks to Theorem 1, we know that n + ≤ 1 thus it is sufficient to prove the existence of t 2 > 0 such that

∀(x, t) ∈ |x| < e ct ∩ Ω ν 2 ×]t 2 , +∞[ 1 -µ ≤ n(x, t) n + (x)
where ν 2 = min(ν 1 , r 1 )

where ν 1 is provided by the previous step and r 1 by the uniform interior ball condition.

The idea is to approximate n + by the solution of (4) on a ball of radius M . Noticing that thanks to (H1), there exists M 0 > 0 such that for M > M 0 , there exists a unique bounded positive solution n M,+ of (-∆) α n M,+ = n M,+ -n 2

M,+

in Ω ∩ B(0, M ),

n M,+ = 0 in (Ω ∩ B(0, M )) c (61) 
We claim that

∃M 1 > M 0 , such that ∀M > M 1 , ∀x ∈ Ω 0,ν 2 , (1 -µ) 1 2 ≤ n M,+ (x) n + (x) . ( 62 
)
The proof of this claim is postponed to the end of this paragraph. Next, we approach n M,+ by the long time solution of the following equation: (

) 63 
where σ is provided by Theorem 5 and z ∈ Ω 0, ν 2 2 will be fixed later on. We claim that ∃t µ > 0, such that ∀z ∈ Ω 0, ν 2 2 , ∀(x, t) ∈ Ω 0,ν 2 ×]t µ , +∞[, (1 -µ)

1 2 ≤ n M,z (x, t) n M,+ (x) . ( 64 
)
It remains to prove the claims (62) and (64). The proof of (62) relies on the uniqueness result stated in Theorem [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF].

Proof of (62). The map (M ∈]M 0 , +∞[ → n M,+ ) is increasing as n M is a sub-solution to the equation for n M for M > M . It converges to a weak solution of (4). By fractional elliptic regularity, the limit is a strong solution of (4). We conclude thanks to the uniqueness of the solution of (4) stated in Theorem 1.

The proof of (64) relies on a compactness argument.

Proof of (64). For a fixed z ∈ Ω ν , the proof of convergence of n M,z to n M,+ is classical thanks to (H1). For each z ∈ Ω 0,ν , there exists t z > 0 such that

∀(x, t) ∈ R d ×]t z , +∞[, (1 -µ) 1 2 ≤
n M,z (x, t) n M,+ (x) .

We claim that sup z∈Ω 0,ν t z < +∞. This assertion is true by compactness of Ω 0,ν (otherwise there exists z ∈ Ω 0,ν such that t z = +∞ which is a contradiction).

The result on the level sets

In this section, we use the sub and super-solutions established in Section 5.1 to prove Theorem 4.

Proof. Let ν > 0 be such that Ω ν = ∅. We define , ε 0 , µ) where ε 0 is provided by Proposition 3. Next we define t µ = 4 ε 3 + 1. Let (x, t) ∈ Ω ν ×]t µ , +∞[ such that n(x, t) = µ. First, we prove that there exits c > 0 (independant of the choice of (x, t)) such that ce |λ 0 |t ≤ |x| d+2α . Next, we prove the existence of C > 0 (independant of the choice of (x, t)) such that |x| d+2α ≤ Ce |λ 0 |t . Defining C µ = max(C, c -1 ), the conclusion follows. Existence of c. Thanks to Proposition 3, after the inverse scaling of (9), we obtain C m (φ 0 (x) + ε)

1 + e -|λ 0 |(t-1)+ε arctan(ε(t-1)-4 1 + e -|λ 0 |(t-1)-ε arctan(ε(t-1))-1 ε |x| d+2α .

Definition 1 (

 1 The uniform interior and exterior ball condition). A set O ⊂ R d with d ≥ 1 satisfies the uniform interior and exterior ball condition if there exists r 1 > 0 such that ∀x ∈ ∂O, ∃y x ∈ O such that x ∈ ∂B(y x , r 1 ) and B(y x , r 1 ) ⊂ O, and ∀z ∈ O c , ∃y z ∈ O c such that z ∈ B(y z , r 1 ) and B(y z , r 1 ) ⊂ O c . Theorem 2. Let O be a smooth domain of R d with d ≥ 1 satisfying the uniform interior and excterior ball condition. If we define p as the solution of the following equation

  |λ 0 |t d+2α and use the super-solution to "crush" the solution n to 0 in |x| > e |λ 0 |t d+2α . The proof of C can be done with two different approaches. The first one is introduced in [6] by Cabré, Coulon and Roquejoffre. The idea is to consider the quantity

  Let O ⊂ R d be an open set satisfying the uniform interior and exterior ball condition at z ∈ ∂O and let c ∈ L ∞ (O). Consider a positive lower semi-continuous function u : R d → R satisfying (-∆) α u ≥ c(x)u point-wise in O. Then, either u vanishes identically in O, or there holds

Subcase b :

 b There exists x b ∈ ∂Ω, such that lim inf x→x b , x∈Ω

  We split this part of the proof into two subparts, what happens on the boundary and what happens in the interior. The boundary estimates. Since n is decreasing in time and thanks to (60), we deduce that for all (x, t)∈ Ω × [1, +∞[ |n(x, t) -n + (x)| ≤ n(x, t) + n + (x) ≤ n(x, t) + n + (x) ≤ (C + 1)n + (x).According to Proposition 1, we deduce that for all (x, t)∈ Ω × [1, +∞[ |n(x, t) -n + (x)| ≤ C(C + 1)δ(x) α .We conclude that for all (x, t)∈ Ω × [1, +∞[ such that δ(x) < µ C(C+1)1 α := ν 1 we have |n(x, t) -n + (x)| ≤ µ.

∂

  t n M,z + (-∆) α n M,z = n M,z -n 2 M,z in (Ω ∩ B(0, M )) ×]0, +∞[, n M,z (x, t) = 0 in (Ω ∩ B(0, M )) c ×]0, +∞[, n M,z (x, t = 0) = σ1 B(z, ν24 ) (x).

c ν = C m min y∈Ων φ 0

 0 (y) where the function C m is defined in Proposition 3. Let µ ∈]0, c ν [ and ε = min(

ε 2 )+ 3 ε 4 ε 2

 342 |x| d+2α ≤ n(x, t) + ε = µ + ε ⇒ C m min y∈Ων φ 0 (y) -µ + ε(C m -1) ≤ 2µe -|λ 0 |(t-1)+ε arctan(ε(t-1)-0 |t ≤ |x| d+2αIf we define c = (Cm min y∈Ων φ 0 (y)-µ)e -επ 2 -3 ε -|λ 0 | 4µ then the conclusion follows. Existence of C. Thanks to Proposition 3, after the inverse scaling of (9), we obtain µ = n(x, t) ≤ C M φ 0 (x)

Again, the proof of this claim is postponed to the end of this section. Next, we define

where t µ is defined by (64) and t σ by Theorem 5. Let (x, t) ∈ (Ω ν 2 ∩ {|x| < e ct }) ×]t µ , +∞[ and j ∈ Z d be such that x ∈ Ω 0 + a j . Since ν 2 < r 1 (the radius of the uniform interior ball condition), we deduce the existence of z x ∈ Ω 0, ν 2 2 such that

) and ∀y ∈ B(z x + a j , ν

) there holds y

Remarking that n(x,t) n + (x) = n(x,t) n + (x-a j ) , we are going to control each terms of the following decomposition:

where n M,zx is defined in (63). Control of I. Thanks to (41) and (66), it follows that

Recalling that n M,zx (x, 0) = σ1 B(zx, ν 2 4 ) (x), we conclude thanks to the comparison principle that

Since t > t σ , we conclude that

Control of II. Since t -t σ > t µ , we deduce thanks to (64) that

Control of III. Since x -a j ∈ Ω 0 , we deduce thanks to (62) that

Combining (68), ( 69) and (67), we conclude that for all (x, t)

This concludes the proof of Theorem 3.

It follows