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Propagation in a fractional reaction-diffusion equation in a

periodically hostile environment

Alexis Léculier∗, Sepideh Mirrahimi†and Jean-Michel Roquejoffre‡

October 18, 2019

Abstract

We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-
connected media with Dirichlet conditions outside the domain. After showing the existence
and uniqueness of a non-trivial bounded stationary state n+, we prove that it invades the
unstable state zero exponentially fast in time.
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Toulouse Cedex 9, France; E-mail: Alexis.Leculier@math.univ-toulouse.fr
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1 Introduction

1.1 Model and question

We focus on the following equation :






∂tn(x, t) + (−∆)αn(x, t) = n(x, t)(1− n(x, t)) for (x, t) ∈ Ω×]0,∞[,

n(x, t) = 0 for (x, t) ∈ Ωc × [0,∞[,

n(x, 0) = n0(x),

(1)

where Ω is a periodic domain of Rd that will be specified later on, n0 a compactly supported initial
data and (−∆)α the fractional Laplacian with α ∈]0, 1[ which is defined as follows :

∀(x, t) ∈ R
d×]0,+∞[, (−∆)αn(x, t) = Cα PV

∫

Rd

n(x, t)− n(y, t)

|x− y|d+2α
dy where Cα =

4αΓ(d
2
+ α)

π
d
2 |Γ(−α)|

.

The main aim of this paper is to describe the propagation front associated to (1). We show that
the stable state invades the unstable state with an exponential speed.

Equation (1) models the dynamic of a species subject to a non-local dispersion in a periodically
hostile environment. The quantity n(x, t) stands for the density of the population at position x
and time t. The fractional Laplacian describes the motion of individuals, it takes into account
the possibility of ”large jump” (move rapidly) of individuals from one point to another with a
high rate, for instance because of human activities for animals or because of the wind for seeds.
The term (1− n(x, t)) represents the growth rate of the population at position x and time t. The
originality of this model is the following, the reachable areas for the species are disconnected and
periodic. Here, we assume that the regions where the species can develop itself are homogeneous.

Many works deal with the case of a standard diffusion (α = 1, see [9] for a proof of the passage
from the non-local to the local character of (−∆)α) with homogenous or heterogeneous environment
(see [13], [19], [1] and [16]). Closer to this article, Guo and Hamel in [18] focus on a Fisher-KPP
equation with periodically hostile regions and a standard diffusion. The authors prove that the
stable state invades the unstable state in the connected component of the support of the initial
data. In our work, thanks to the non-local character of the fractional Laplacian, contrary to what
happens in [18], we show that there exists a unique non-trivial positive bounded stationary state,
supported everywhere in the domain. Moreover, this steady state invades the unstable state 0 with
an exponential speed.

1.2 Assumptions, notations and results

The domain Ω is a smooth non-connected periodic domain of Rd

i.e. Ω =
⋃

k∈Zd

Ω0 + ak, with Ω0 a smooth bounded domain of Rd and ak ∈ R
d. (2)
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We assume that
(Ω0 + ai) ∩ (Ω0 + aj) 6= ∅ if and only if i = j.

Moreover, if we denote ei the i
th vector of the canonical basis of Rd then we assume that for all

k ∈ Z
d there holds ak+ei − ak = aei . Moreover, we assume that the principal eigenvalue λ1 of the

Dirichlet operator (−∆)α − Id in Ω0 is negative

i.e. λ1 < 0. (H1)

We also introduce the eigenvalue problem associated to the whole domain Ω. It is well known
(thanks to the Krein Rutman theorem) that the principal eigenvalue λ0 of the Dirichlet operator
(−∆)α − Id in Ω is simple in the algebraic and geometric sense and moreover, the associated
principal eigenfunction φ0, solves

i.e.





((−∆)α − Id)φ0 = λ0φ0 in Ω,

φ0 = 0 in Ωc,

φ0 has a constant sign that can be chosen positive.

(3)

The first result of this paper ensures the existence and the uniqueness of a positive bounded
stationary state n+ of (1):

i.e.

{
(−∆)αn+ = n+ − n2

+ in Ω,

n+ = 0 in Ωc.
(4)

Theorem 1. Under the assumption (H1), there exists a unique positive and bounded stationary
state n+ to (1). Moreover, we have 0 ≤ n+ ≤ 1 and n+ is periodic.

The existence is due to the negativity of the principal eigenvalue of the Dirichlet operator
(−∆)α − Id in Ω0 which allows to construct by an iterative method a stationary state (see [24]
for more details). As for the uniqueness, the main step is to prove that thanks to the non-local
character of the fractional Laplacian, any positive bounded stationary state behaves like

δ(x)α = dist(x, ∂Ω)α1Ω(x). (5)

Then, a classical argument (see [2] and [3]) relying on the maximum principle and the Hopf lemma
provides the result. We should underline that the uniqueness is clearly due to the non-local
character of the operator (−∆)α, and it does not hold in the case of a standard diffusion term
(α = 1). A direct consequence of the existence of a stationary solution is

Corollary 1. The principal eigenvalue λ0 of the Dirichlet operator (−∆)α − Id in Ω is negative.

Once we have established a unique candidate to be the limit of n(x, t) as t tends to +∞, we
prove the invasion phenomena. First, we prove that starting from

n0 ∈ C∞
0 (Ω) ∩ Cc(R

d) and n0 6≡ 0 (H2)

the solution has algebraic tails at time t = 1. To prove it, we provide an estimate of the heat
kernel at time t = 1 for a general multi-dimensional domain which satisfies the uniform interior
and exterior ball condition:
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Definition 1 (The uniform interior and exterior ball condition). A set O ⊂ R
d with d ≥ 1 satisfies

the uniform interior and exterior ball condition if there exists r1 > 0 such that

∀x ∈ ∂O, ∃yx ∈ O such that x ∈ ∂B(yx, r1) and B(yx, r) ⊂ O,

and ∀z ∈ Oc, ∃yz ∈ Oc such that z ∈ B(yz, r1) and B(yz, r) ⊂ Oc.

Theorem 2. Let O be a smooth domain of Rd with d ≥ 1 satisfying the uniform interior and
excterior ball condition. If we define p as the solution of the following equation






∂tp(x, t) + (−∆)αp(x, t) = 0 for all (x, t) ∈ O×]0,+∞[,

p(x, t) = 0 for all (x, t) ∈ Oc × [0,+∞[,

p(x, t = 0) = n0(x) ∈ C∞
0 (O,R+) ∩ C0

c (R
d),

(6)

then there exists c > 0 and C > 0 such that for all x ∈ O,

c× δ(x)α

1 + |x|d+2α
≤ p(x, t = 1) ≤

C × δ(x)α

1 + |x|d+2α
. (7)

Once Theorem 2 is established, we are able to state the main result of the paper.

Theorem 3. Assume (H1) and (H2). Then for all µ > 0 there exists a time tµ > 0 such that:

(i) for all c < |λ0|
d+2α

and all (x, t) ∈ {|x| < ect}×]tµ,+∞[

|n(x, t)− n+(x)| ≤ µ.

(ii) for all C > |λ0|
d+2α

and all (x, t) ∈
{
|x| > eCt

}
×]tµ,+∞[

|n(x, t)| ≤ µ.

We detail the general strategy to prove Theorem 3 in the next section.

1.3 Discussion on the main results

Theorem 2 is an application of general results about the fractional Dirichlet heat kernel estimates
given for instance in [7] or in [5]. Both of the two cited articles use a probabilistic approach. We
propose in this work a deterministic proof of the lower bound of the fractional Dirichlet kernel
estimates. Our proof is quite simple but the result is not as general as those presented in [7] and
[5]. In particular, it is only valid for finite time. It relies on a well adapted decomposition of the
fractional Laplacian. We do not provide the proof of the upper bound of the fractional Dirichlet
kernel estimates since there is no difficulties to obtain such bound.

Theorem 3 can be seen as a generalisation of the results of [8] or [20]. Indeed, if we study
a non-local Fisher KPP equation in the whole domain R

d with a reaction term depending on a
parameter such that the reaction term becomes more and more unfavorable in Ωc then we recover
Theorem 3. This is fully in the spirit of [18]. In fact, if we study the equation:

{
∂tn+ (−∆)αn = µδ(x)n− n2 in R

d×]0,+∞[,

n(x, t = 0) = n0(x),
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with

µδ(x) =





1 if x ∈ Ω,

1− (δ + 1)dist(x,Ω) if 0 < dist(x,Ω) ≤
1

δ
,

−
1

δ
if
1

δ
< dist(x,Ω).

Then, denoting by λδ the principal eigenvalue of the operator ((−∆)α − µδ) we claim that

λδ −→
δ→0

λ0. (8)

It is then possible to obtain the result of Theorem 3 from such approximate problems in the spirit
of [18]. Although we do not use such method, similar difficulties would arise to treat the problems
with this approximation procedure. Our method can indeed be adapted to study those problems
in a uniform way.

2 Strategy, comparison tools and outline of the paper

2.1 The general strategy

The general strategy to establish the results of Theorem 3 is the following:

A- Identify the unique candidate to be the limit. This is the content of Theorem 1.
B- Starting from a compactly supported initial data, the solution n has algebraic tails imme-

diatly after t = 0. This is the content of Theorem 2.
C- Establish a sub and a super-solution which bound the solution n from below and above.
D- Use the sub-solution to ”push” the solution n to the unique non-trivial stationary state n+

in
{
|x| < e

|λ0|t
d+2α

}
and use the super-solution to ”crush” the solution n to 0 in

{
|x| > e

|λ0|t
d+2α

}
.

The proof of C can be done with two different approaches. The first one is introduced in [6] by
Cabré, Coulon and Roquejoffre. The idea is to consider the quantity

v(x, t) = φ0(r(t)x)
−1n(r(t)x, t)

where the eigenfunction φ0 is introduced in (3) and r(t) decreases exponentially fast. Next, the
problem can be formally reduced to a transport equation leading to the fact that v is of the form

φ0(x)
1+b(t)|x|d+2α . The idea is therefore to look for a sub-solution v and a supersolution v of the form

v(x, t) =
aφ0(x)

1 + b(t)|x|d+2α
and v(x, t) =

aφ0(x)

1 + b(t)|x|d+2α

(where the positive constants a, a and the function b, b have to be adjusted).
The second approach is introduced in [21] by Méléard and Mirrahimi (in order to extend the

singular perturbation approach of [14] and [15], put to work in the PDE frame work in [12]). The
main idea is to perform the following scaling on equation (1)

(x, t) 7→

(
|x|

1
ε
x

|x|
,
t

ε

)
. (9)
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The interest of this scaling is to catch the effective behavior of the solution. Indeed, this scaling
lets invariant the set

B =
{
(x, t) ∈ R× R

+ | (d+ 2α) log |x| < |λ0|t
}

where λ0 is defined by (3). Then, we look for sub/super-solutions on the form

φ0(x)×G(x, t)

where G needs to be determined. Taking G with an algebraic tail gives that, once the scaling is
performed, the fractional Laplacian of G vanishes as the parameter ε tends to 0. Therefore, the
sub and super solutions are just perturbations of a simple ODE.

We choose the second method because it explains the main role of the fractional Laplacian,
namely to provide algebraic tails. Once this tails are obtained in part B, the role of the fractional
Laplacian becomes negligible. This means that the only role of the fractional Laplacian in deter-
mining the invasion speed is at initial time where it determines the algebraic tails of the solution.
This is indeed very different from the classical Fisher-KPP equation where the diffusion not only
determines the exponential tails of the solution but it also modifies the invasion speed in positive
times (see [21]). This is why in the asymptotic study of the classical Fisher KPP equation, one
obtains a Hamilton-Jacobi equation [12] while in the fractional KPP equation the limit is a simple
ordinary differential equation.

The proof of D can be achieved with the rescaled solution n

(
|x|

1
ε
x

|x|
,
t

ε

)
using the method of

perturbed test functions from the theory of viscosity solutions and homogenization (introduced by
Evans in [10] and [11] and by Mirrahimi and Méléard in [21] for the fractional Laplacian). Since
the proof is technical, long and not easy to grasp (the domain moves also with the parameter ε),
we prefer to drop the scaling and to perform the inverse scaling on our sub and super solutions.
Therefore, we provide a direct proof of D by adapting the proof of Theorem 1.6 in [8]. In this
proof, the author proves thanks to a subsolution that there exists σ > 0 and tσ > 0 such that

σ < inf

(x,t)∈

{

|x|<e
(|λ0|−δ)t

d+2α

}

×]tσ ,+∞[

n(x, t).

This last claim is obviously false in our case since the solution vanishes on the boundary. This is
the main new difficulty that we will encounter. We overcome it by establishing the same kind of
estimates away from the boundary.

2.2 The comparison tools and some notations

All along the article, we will use many times the comparison principle. We recall here what we
mean by comparison principle.

Theorem (The comparison principle). Let f be a smooth function, a ∈ [0,+∞[ and b ∈]0,+∞].
If n and n are such that

∀(x, t) ∈ Ω×]a, b[, ∂tn+ (−∆)αn ≤ f(n), and ∂tn + (−∆)αn ≥ f(n),

∀(x, t) ∈ Ωc×]a, b[, n(x, t) ≤ n(x, t), and ∀x ∈ R
d, n(x, t = a) ≤ n(x, t = a)

then
∀(x, t) ∈ Ω×]a, b[, n(x, t) ≤ n(x, t).
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In the same spirit, we recall the fractional Hopf Lemma stated in [17].

Lemma (The fractional Hopf Lemma [17]). Let O ⊂ R
d be an open set satisfying the uniform

interior and exterior ball condition at z ∈ ∂O and let c ∈ L∞(O). Consider a positive lower
semi-continuous function u : Rd 7→ R satisfying (−∆)αu ≥ c(x)u point-wise in Ω. Then, either u
vanishes identically in Ω, or there holds

lim inf
x 7→z
x∈Ω

u(x)

δ(x)α
> 0.

All along the article, for any set U and any positive constant ν, we introduce the following new
sets :

Uν = {x ∈ U| dist(x, ∂U) > ν} , U−ν =
{
x ∈ R

d| dist(x,U) < ν
}
. (10)

The constants denoted by c or C may change from one line to another when there is no confusion
possible. Also, we drop the constant Cα and the Cauchy principal value P.V. in front of the
fractional Laplacian for better readability.

2.3 Outline of the paper

In section 3, we demonstrate Theorem 1. Next, section 4 is dedicated to the proof of Theorem 2.
The first part of section 5 introduces the scaling and provides the sub and super-solutions. Finally,
the second part of section 5 is devoted to the proof of Theorem 3.

3 Uniqueness of the stationary state n+

First, we state a proposition which gives the shape of any non-trivial bounded sub and super-
solution to (4) near the boundary. Then, we use this result to prove the uniqueness result. Since
the proof of the existence is classical we do not provide it.

Proposition 1. (i) If u is a smooth positive bounded function such that u(x) = 0 for all x ∈ Ωc

and (−∆)αu(x) ≤ u(x)− u(x)2 for all x ∈ Ω, then there exists C > 0 such that for all x ∈ R
d

u(x) ≤ Cδ(x)α.

(ii) If v is a smooth positive bounded function such that v(x) = 0 for all x ∈ Ωc, (−∆)αv(x) ≥
v(x)− v(x)2 for all x ∈ Ω and v 6≡ 0 then there exists c > 0 such that for all x ∈ R

d

cδ(x)α ≤ v(x).

Proof of Proposition 1. Proof of (i). Let u be a continuous positive bounded function such that
u = 0 in Ωc and (−∆)αu ≤ u− u2 in Ω. Let x be a point of the boundary. Let zx ∈ R

d and r1 > 0
be the elements provided by the uniform exterior ball condition such that

B(zx, r1) ⊂ Ωc and x ∈ B(zx, r1) ∩ ∂Ω.
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We rescale and translate a barrier function (provided for instance in Annex B of [23]). This barrier
function φ satisfies the following properties:






(−∆)αφ ≥ 1 in B(zx, 4r1)\B(zx, r1),

φ ≡ 0 in B(zx, r1),

0 ≤ φ ≤ C(|zx − x| − r)α in B(zx, 4r1)\B(zx, r1),

max u ≤ φ ≤ C in R
d\B(zx, 4r1).

(11)

We prove that u ≤ φ in R
d. By construction we have u ≤ φ in (B(zx, 4r1)\B(zx, r1))

c. Assume by
contradiction that there exists x0 ∈ (B(zx, 4r1)\B(zx, r1)) ∩ Ω such that (φ − u)(x0) < 0. Then,
there exists x1 ∈ (B(zx, 4r1)\B(zx, r1)) ∩ Ω such that (φ− u)(x1) = min

x∈Rd
(φ− u)(x) < 0. Thus, we

obtain

(−∆)α(φ− u)(x1) < 0 and (−∆)α(φ− u)(x1) ≥ 1− u(x1) + u(x1)
2 ≥ 0,

a contradiction.

Proof of (ii). Let v be a continuous positive bounded function such that v = 0 in Ωc and
(−∆)αv ≥ v − v2 in Ω. An easy but important remark is the following: thanks to the non-local
character of the fractional Laplacian, since v 6≡ 0, we deduce that v > 0 in the whole domain Ω.
Otherwise, the following contradiction holds true :

∃x ∈ Ω such that v(x) = 0 and (−∆)αv(x)− v(x) + v(x)2 = −

∫

Rd

v(y)

|x− y|d+2α
dy < 0.

Next, let k be any element of Zd. We introduce wk : (x, t) ∈ R
d × [0,+∞[7→ wk(x, t) ∈ R as

the solution of 



∂twk + (−∆)αwk = wk − w2
k in (Ω0 + ak)×]0,+∞[,

wk(x, t) = 0 in R
d\(Ω0 + ak)× [0,+∞[

wk(x, 0) = v(x) in (Ω0 + ak),

(12)

where Ω0 and ak are introduced in (2). Thanks to the remark above, and recalling (H1), we deduce
thanks to Theorem 5.1 in [4] that wk(., t) −→

t→+∞
wstat(.) with wstat the solution of

{
(−∆)αwstat = wstat − w2

stat, in (Ω0 + ak),

wstat = 0 in R
d\(Ω0 + ak).

(13)

Note that the above wstat does not depend on the choice of k, i.e. wk(·, t) converges as t tends to
+∞ to the same wstat (up to a translation). Then, we conclude thanks to the comparison principle
that

wstat(x) ≤ v(x), ∀x ∈ R
d.

Since, (Ω0 + ak) is bounded, we apply the results of [23] to find that there exists a constant c > 0
such that

cδ(x)α1(Ω0+ak)(x) ≤ wstat(x) ≤ v(x).

The previous analysis holds for every k ∈ Z
d. We conclude that

cδ(x)α ≤ v(x). (14)
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Proof of Theorem 1. The argument relies on the fact that two steady solutions are comparable
everywhere thanks to Proposition 1. This is in the spirit of [2] and [3] in the context of standard
diffusion. Let u and v be two bounded steady solutions of (4). By the maximum principle, we
easily have that for all x ∈ R

d,
u(x) ≤ 1 and v(x) ≤ 1.

We will assume that
v(x0) ≤ u(x0) where x0 ∈ Ω0. (15)

Thanks to Proposition 1, we deduce the existence of two constants 0 < c ≤ C such that:

cδ(x)α ≤ u(x) ≤ Cδ(x)α and cδ(x)α ≤ v(x) ≤ Cδ(x)α.

Thus there exists a constant λ > 1 such that for all x ∈ R
d,

u(x) ≤ λv(x). (16)

We set l0 := inf
{
λ ≥ 1| ∀x ∈ R

d, u(x) ≤ λv(x)
}
. The point is to prove by contradiction that

l0 = 1. It implies that x0 is a contact point, and will allow us to conclude thanks to the fractional
maximum principle that u = v.
We assume by contradiction that l0 > 1. Next, we define :

w̃ = inf
x∈Ω

(l0v − u)(x)

δ(x)α
≥ 0. (17)

There are two cases to be considered.
Case 1: w̃ > 0.

We show in this case that we can construct l1 < 1 such that u(x) ≤ l1l0v(x) for all x ∈ R
d : a

contradiction. If w̃ > 0, we claim that there exists µ ∈]0, 1[ and ν > 0 such that for all x ∈ Ω\Ων

(we recall that Ων is defined by (10)),

w̃

2
≤

(µl0v − u)(x)

δ(x)α
. (18)

Indeed, if there does not exist such couple (µ, ν), we deduce that for all n ∈ N, there exists
(xn)n∈N ∈ Ω, such that δ(xn) ≤

1
n
and

((1− 1
n
)l0v − u)(xn)

δ(xn)α
<
w̃

2
.

Passing to the liminf we get the following contradiction :

0 < w̃ ≤
w̃

2
.

And so, the existence of the couple (µ, ν) implies that

(µl0v − u)(x) ≥ 0, ∀x ∈ Ω\Ων . (19)

Next, we claim that

∃ρ > 0 such that ∀x ∈ Ων , we have ρ ≤ (l0v − u)(x). (20)
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Indeed, if such ρ does not exist then there exists a sequence (xn)n∈N ∈ Ω such that δ(xn) ≥ ν and
(l0v − u)(xn) −→

n→+∞
0. Then we obtain

(l0v − u)(xn)

δ(xn)α
≤

(l0v − u)(xn)

να
−→

n→+∞
0

which is in contradiction with the hypothesis w̃ > 0. The existence of such ρ implies that for all
x ∈ Ων (

(1−
ρ

max l0v
)l0v − u

)
(x) ≥ 0. (21)

Finally, if we define l1 = max(µ, 1− ρ

max l0v+1
) then we obtain the desired contradiction. Therefore

this case cannot occur.

Case 2: w̃ = 0.
We consider (xn)n∈N a minimizing sequence of w̃. There are 3 subcases : a subsequence of (xn)n∈N
converges to x0 ∈ Ω, a subsequence of (xn)n∈N converges to xb ∈ ∂Ω and any subsequence of
(xn)n∈N diverges.

Subcase a: There exists x0 ∈ Ω, such that (l0v−u)(x0)
δ(x0)α

= 0.

Since x0 ∈ Ω we deduce that (l0v − u)(x0) = 0. Hence, by the maximum principle, u = l0v. We
deduce that l0v is a solution of (4) and we conclude that :

l0(v − v2) = l0(−∆)α(v) = (−∆)α(l0v) = l0v − (l0v)
2. (22)

This equation leads to l0 = 1, a contradiction.

Subcase b: There exists xb ∈ ∂Ω, such that lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

= 0.

Here is a summary of what we know:

(i) l0v − u ≥ 0,

(ii) (−∆)α(l0v − u) ≥ −l0(l0v − u),

(iii) (l0v − u)(xb) = 0.

According to the fractional Hopf Lemma, the previous assumptions leads to lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

> 0.

However, we have assumed that lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

= 0, a contradiction.

Subcase c: There exists a minimizing sequence (xn)n∈N such that |xn| tends to the infinity.
First, we set

xk = xk − a⌊xk⌋,

where ⌊x⌋ ∈ Z
d is such that x ∈ Ω0 + a⌊x⌋. Since xk ∈ Ω0, we deduce that up to a subsequence xk

converges to x∞ ∈ Ω0. Then we define:

uk(x) = u(x+ xk) and vk(x) = v(x+ xk).
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We also define the following set :

Ω∞ = {x ∈ R | x+ x∞ ∈ Ω} .

By fractional elliptic regularity (see [22]), we deduce that up to a subsequence (un)n∈N and (vn)n∈N
converges to u∞ and v∞ solutions that verifies

∀x ∈ Ω∞, (−∆)αu∞(x) = u∞(x)− u∞(x)2, (−∆)αv∞(x) = v∞(x)− v∞(x)2

and ∀x ∈ Ωc
∞, u∞(x) = v∞(x) = 0.

Remark that

l0v∞ − u∞ ≥ 0 and lim inf
x→0
x∈Ω∞

(l0v∞ − u∞)(x)

dist(x, ∂Ω∞)α
= 0.

Hence, if x∞ ∈ Ω0 then 0 ∈ Ω∞ and we fall in the subcase a). If x∞ /∈ Ω0 then 0 ∈ ∂Ω∞ and we
fall in the subcase b). Both cases lead to a contradiction.

Thus, we conclude that l0 = 1.

Remark. Noticing that for all (x, k) ∈ Ω× Z
d, we have

(−∆)α(n+(. + ak))(x) =

∫

R

n+(x+ ak)− n+(y + ak)

|x+ ak − (y + ak)|d+2α
dy = n+(x+ ak)− n+(x+ ak)

2,

we deduce by uniqueness of the solution of (4) that n+ is periodic.

4 The fractional heat kernel and the preparation of the

initial data

We first introduce some requirements in order to achieve the proof of the lower bound of Theorem
2. Once we have established Theorem 2, we apply it to the initial data. Let u ∈ C∞(Rd×]0,+∞[),
then we set for all (x, t) ∈ R

d×]0,+∞[

Lα(u)(x, t) =

∫

B(0,ν)

u(x, t)− u(y, t)

|y|d+2α
dy. (23)

We also introduce φ̃ν as the principal positive eigenfunction of the operator Lα associated to the
principal eigenvalue µν

i.e.





Lαφ̃ν = µνφ̃ν in B(0, ν)

φ̃ν = 0 in B(0, ν)c,

φ̃ν ≥ 0, ‖φ̃ν‖∞ = 1.

Next, we state two intermediate technical results.

Lemma 1. Let w be the solution of the equation




∂tw + Lαw = 1 in B(0, ν)×]0,+∞[

w(x, t) = 0 in B(0, ν)c × [0,+∞[,

w(x, t = 0) = 0 in B(0, ν).

(24)

Then there exists a constant cν > 0 such that

cν × φ̃ν(x) ≤ w(x, t = 1).

11



Proof. We define τ(t) =
1

µν

(1− e−µν t) such that

{
τ ′(t) + µντ(t) = 1,

τ(0) = 0.

Thanks to this choice of τ(t), the application w(x, t) := τ(t) × φ̃ν(x) is a sub-solution to (24).
Actually, we have

(∂t + Lα)(w)− 1 = τ ′φ̃ν + µντφ̃ν − 1 ≤ τ ′φ̃ν + µντφ̃ν − φ̃ν = φ̃ν(τ
′ + µντ − 1) = 0.

Since w(t = 0) = 0 ≤ w(t = 0), we can conclude thanks to the comparison principle that for all
(x, t) ∈ R

d × [0,+∞[, we have w(x, t) ≤ w(x, t). Setting the time t = 1 in the last inequality leads
to

w(x, 1) =
1

µν

(1− e−µν )φν(x) = cνφν(x) ≤ w(x, 1).

Next, we establish a barrier function for Lα in the spirit of the one introduced in [23].

Lemma 2. There exists a function ψ such that






Lαψ ≤ 0 in B(0, ν)\B(0,
ν

2
),

ψ = 0 in B(0, ν)c,

ψ ≤ 1 in B(0,
ν

2
),

c(ν − |x|)α ≤ ψ in B(0, ν),

ψ is continuous in B(0, ν)\B(0,
ν

2
).

(25)

Proof. Choose C large enough such that the first point and the third point of (25) holds true with
the following ψ:

ψ(x) :=

(
1

C
(ν2 − |x|2)α +

1

2
1B(0, ν

4
)(x)

)
1B(0,ν)(x).

Indeed, defining f(x) := (ν2 − |x|2)α, we have for C large enough and x ∈ B(0, ν)\B(0, ν
2
)

Lαψ(x) ≤
Lαf(x)

C
−

1

2

∫

B(0, ν
4
)

1

|x− y|d+2α
dy ≤

sup
B(0,ν)\B(0, ν

2
)

|Lαf |

C
−
m(B(0, ν

4
))

2
×

(
4

ν

)d+2α

< 0.

The other conditions follow.

Proof of Theorem 2. The aim is to prove that there exists a constant c > 0 such that

∀x ∈ O, we have
cδ(x)α

1 + |x|d+2α
≤ p(x, 1). (26)

To achieve the proof, there will be 4 steps.
First, up to a translation and possibily a scaling of n, we prove (26) in {|x| < 1 + 2ν} where

12



ν = min(1
4
, r1) (with r1 the radius provided by the uniform interior ball). Next, we introduce a

suitable decomposition of the fractional Laplacian (involving Lα) to prove the existence of c1 > 0
such that





c1
1 + |x|d+2α

≤ ∂tp(x, t) + Lαp(x, t) + λp(x, t) for all (x, t) ∈ (O\ {|x| > 1 + ν})×]0, 1],

p(x, t) ≥ 0 for all (x, t) ∈ (O\ {|x| > 1 + ν})c × [0, 1],

p(x, t = 0) = n0(x) ∈ C∞
0 (O,R+) ∩ Cc(R

d)

(27)

where Lα is defined by (23) and λ =
∫
Rd\B(0,ν)

1
|y|d+2αdy. In a third step, we will show that

∃c2 > 0 such that
c2

1 + |x|d+2α
≤ p(x, t = 1) for all x ∈ (Ων ∩ {|x| > 1 + 2ν}) . (28)

Finally, we prove the same kind of result near the boundary :

∃c3 > 0 such that
c3δ(x)

α

1 + |x|d+2α
≤ p(x, t = 1) for all x ∈ (O\Oν ∩ {|x| > 1 + 2ν}) . (29)

Step 1. First, note that thanks to a translation and possibly a scaling, we can suppose the
following hypothesis:

∃σ > 0 such that σ < n0(x) for all x ∈ B(0, 2). (30)

Next, we claim that
inf

t∈(0,1)

z∈B(0,1+2ν)

p(z, t) > 0. (31)

Indeed, let φ2 be the first positive eigenfunction of the Dirichlet fractional Laplacian in B(0, 2)
and λ2 the associated eigenvalue

i.e.






(−∆)αφ2 = λ2φ2 for x ∈ B(0, 2),

φ2 = 0 for x ∈ B(0, 2)c,

‖φ2‖∞ = 1.

Then the function
p(x, t) := σ × φ2(x)× e−λ2t

is a sub-solution to (6) (where σ is defined by (30)). According to the comparison principle, we
have for all (x, t) ∈ B(0, 1 + 2ν)× [0, 1]

0 < min
s∈ [0,1]

y∈B(0,1+2ν)

p(y, s) = σ × min
B(0,1+2ν)

φ2 × e−|λ2| ≤ p(x, t) ≤ p(x, t).

We deduce that if c is small enough, then (26) holds true for all x ∈ B(0, 1 + 2ν).
Step 2. In this step we prove (27) which is a key element to prove (26) for x ∈ ({|x| > 1 + 2ν} ∩ Ω).
Then, we focus on {|x| > 1 + ν}. We split the fractional Laplacian into 2 parts:

(−∆)αp(x, t) =

∫

Rd\B(0,ν)

p(x, t)− p(x+ y, t)

|y|d+2α
dy + Lαp(x, t) = I1(x, t) + Lαp(x, t). (32)
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For I1, we obtain :

I1(x, t) =

∫

Rd\B(0,ν)

p(x, t)− p(x+ y, t)

|y|d+2α
dy = λp(x, t)−

∫

Rd\B(0,ν)

p(x+ y, t)

|y|d+2α
dy.

Since |x| > 1 + ν, we have

inf
t∈(0,1)

z∈B(0,1+ν)

p(z, t)

∫

B(0,1)

1

|z − x|d+2α
dz ≤

∫

B(−x,1)

p(x+ y, t)

|y|d+2α
dy ≤

∫

Rd\B(0,ν)

p(x+ y, t)

|y|d+2α
dy. (33)

Equation (33) ensures the existence of a positive constant c1 > 0 such that for all (x, t) ∈
(Ω ∩ {|x| > 1 + ν})× [0, 1[ we have

c1
1 + |x|d+2α

≤

∫

Rd\B(0,ν)

p(x+ y, t)

|y|d+2α
dy.

It follows that
I1(x, t) ≤ λp(x, t)−

c1
1 + |x|d+2α

. (34)

Equations (32) and (34) lead to (27). Moreover, if we define v(x, t) = eλt × p(x, t), we find the
following system:





c1
1 + |x|d+2α

≤ ∂tv(x, t) + Lαv(x, t) for (x, t) ∈ (Ω ∩ {|x| > 1 + ν})×]0, 1],

v(x, t) ≥ 0 for (x, t) ∈ (Ω ∩ {|x| > 1 + ν})c × [0, 1],

v(x, t = 0) = n0(x) ∈ C∞
0 (Ω,R+).

(35)

Step 3. By uniform continuity of
(
x 7→ 1

1+|x|d+2α

)
in R

d, we deduce the existence of c′1 > 0

such that for all x0 ∈ (Oν ∩ {|x| > 1 + ν}) and all (x, t) ∈ (Oν ∩ {|x| > 1 + 2ν})×]0, 1] we have

c′1
1 + |x0|d+2α

1B(0,ν)(x− x0) ≤
c1

1 + |x|d+2α
≤ ∂tv(x, t) + Lαv(x, t). (36)

Inequality (36) gives that for all (x, t) ∈ (Oν ∩ {|x| > 1 + ν})×]0, 1]

1B(0,ν)(x− x0) ≤ ∂t(
1 + |x0|

d+2α

c′1
v(x, t)) + Lα(

1 + |x0|
d+2α

c′1
v(x, t)).

Then, according to the comparison principle and Lemma 1, we deduce that

∀x ∈ (Oν ∩ {|x| > 1 + ν}) , cνφ̃ν(x− x0) ≤
1 + |x0|

d+2α

c′1
v(x, t = 1). (37)

If we evaluate (37) at x = x0, we obtain

cνc
′
1e

−λφ̃ν(0)

1 + |x0|d+2α
≤ p(x0, t = 1).

Defining c2 = cνc
′
1e

−λφ̃ν(0) leads to (28).
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Step 4. As in the proof of Proposition 1, we can show by contradiction that there exists a
positive constant c0 such that for all x ∈ R

d,

c0ψ(x) ≤ φ̃ν(x)

where ψ is defined in Lemma 2. Then we take x1 ∈ (O\Oν) ∩ {|x| > 1 + 2ν}. Since O satisfies
the uniform interior ball condition, there exists x0 ∈ ∂Oν such that x1 ∈ B(x0, ν), B(x0, ν) ⊂
O∩{|x| > 1 + ν} and ν − |x1 − x0| = δ(x1). Thanks to (37) and the fourth point of Lemma 2, we
deduce

cνc0cνδ(x1)
α ≤ cνc0ψ(x1 − x0) ≤ cνφν(x1 − x0) ≤

(|x0|+ 1)d+2α

c′1
v(x1, t = 1).

We deduce that there exists c3 > 0 such that (29) holds true.

Combining (28), (29) and (31) yields the conclusion of the Theorem.

We apply Theorem 2 to show that starting from n(x, 0) ∈ C∞
0 (Ω)∩C∞

c (R), the solution of (1)
n(·, t = 1) has algebraic tails.

Proposition 2. There exists two constants cm and cM depending on n0 such that for all x ∈ Ω,
we have

cmδ(x)
α

1 + |x|d+2α
≤ n(x, 1) ≤

cMδ(x)
α

1 + |x|d+2α
. (38)

Proof. Defining M := max(max n0, 1), the solution n belongs to the set [0,M ] (0 is a sub-solution
and M is a super-solution).

We begin with the proof that cmδ(x)α

1+|x|d+2α ≤ n(x, 1).
Let n be the solution of :





∂tn(x, t) + (−∆)αn(x, t) = −Mn(x, t) for all (x, t) ∈ Ω×]0,+∞[,

n(x, t) = 0 for all (x, t) ∈ Ωc × [0,+∞[,

n(x, 0) = n0(x) for all x ∈ R
d,

(39)

Thanks to the comparison principle, we deduce that for all (x, t) ∈ R× [0,+∞[, we have

n(x, t) ≤ n(x, t).

Moreover, if we define p(x, t) = eMtn(x, t), we find that p is solution of (6). Since Ω fullfies the
uniform interior and exterior ball condition, we deduce thanks to Theorem 2 that there exists
cm > 0 such that

cmδ(x)
α

1 + |x|d+2α
≤ n(x, t = 1) ≤ n(x, t = 1). (40)

The proof works the same for the other bound.

15



5 The proof of Theorem 3

5.1 Rescaling and preparation

The aim of this subsection is to establish the following Theorem.

Theorem 4. We assume (H1) and (H2) then for all ν > 0, the following holds true

1. For all c < |λ0|
d+2α

, there exists a constant σ > 0 and a time tσ > 0 such that

∀(x, t) ∈
(
Ων ×

{
|x| < ect

})
×]tσ,+∞[ we have σ < n(x, t). (41)

2. For all C > |λ0|
d+2α

, there exists two constants C, κ > 0 such that we have for all (x, t) ∈{
|x| > eCt

}
×]1,+∞[

n(x, t) ≤
C

1 + eκt
. (42)

First we establish sub and super-solutions by performing the rescaling (9). Finally, we prove
Theorem 4 by performing the inverse of this rescaling on the sub and super-solutions.

We rescale the solution of (1) as follows :

nε(x, t) = n

(
|x|

1
ε
x

|x|
,
t

ε

)
. (43)

Next, the equation becomes




ε∂tnε + (−∆)αε nε = nε(1− nε) for (x, t) ∈ Ωε×]0,+∞[,

nε(x, t) = 0 for (x, t) ∈ Ωεc×]0,+∞[,

nε(x, 0) = n0,ε(x) ∈ C∞
0 (Ωε,R+).

(1ε)

where (−∆)αε nε(x, t) = (−∆)αn
(
|x|

1
ε

x
|x|
, t
ε

)
and Ωε =

{
x ∈ R

d | |x|
1
ε
−1x ∈ Ω

}
.

Next, we set

g(x) :=
1

1 + |x|d+2α
.

We state the behavior of g under the fractional Laplacian in the spirit of [6].

Lemma 3. Let γ be a positive constant in ]0, α[ such that 2α−γ < 1. Let χ ∈ Cα(Rd) be a periodic
positive function. Then there exists a positive constant C, such that we have for all x ∈ R:
(i) for all a > 0,

|(−∆)αg(ax)| ≤ a2αCg(ax),

(ii) for all a ∈]0, 1],

|K̃(g(a.), χ)(x)| ≤
Ca2α−γ

1 + (a|x|)d+2α
= Ca2α−γg(a|x|),

where K̃(u, v)(x) =
∫
R

(u(x)−u(y))(v(x)−v(y))
|x−y|d+2α dy is such that

(−∆)α(u× v) = (−∆)α(u)× v + u× (−∆)α(v)− K̃(u, v).
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Since, the same kind of result can be found in the appendix A of [20], we do not provide the
proof of this lemma. Note that here, the lemma is stated with less regularity on χ such than in
[20]. Nevertheless, there is no difficulty to adapt the proof.

Notation. As we have introduced (−∆)αε nε(x, t) = (−∆)αn
(
|x|

1
ε

x
|x|
, t
ε

)
, we introduce

K̃ε(u, v)(x, t) = K̃(u, v)(|x|
1
ε
−1,

t

ε
).

For any application h : R 7→ R, we define

hε : R
d → R

x 7→ h(|x|
1
ε
−1x).

For any set U , we will denote

Uε =
{
x ∈ R

d| |x|
1
ε
−1x ∈ U

}
. (44)

For reasons of brevity, we will always denote (Uν)
ε by Uε

ν .

In the following, we denote by λν the principal eigenvalue of the Dirichlet operator (−∆)α− Id
in Ων and φν the associated eigenfunction which can be chosen positve. Then, the following
proposition hold true.

Proposition 3. The map (ν ∈]− r0, r0[7→ λν) is increasing and continuous.

We do not provide the proof since there is no difficulty: it relies on the Rayleigh quotient for
the monotonicity and on the uniqueness of the principal eigenvalue for the continuity. We deduce
thanks to (H1) and Proposition 3 that

∃r0 > 0, such that for all ν ∈]0, r0[, λν < 0. (45)

Next using the eigenfunctions φ±ν we establish the sub and super-solution to (1ε).

Proposition 4. We assume (H1) and (H2). Let ν be a positive constant such that ν < r0. If we

set Cm = min(min(|λν |,cmνα)
2(max φν+1)

, 1) and CM = 2|λ−ν |+cM
min
Ω

φ−ν
then there exists εν > 0 such that for all ε < εν,

the following holds true.

1. If fm
ε is defined as

fm
ε (x, t) =

Cmmin(e−
1
ε
+ εt

4 , 1)

1 + e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε

× (φν,ε(x) + ε),

then it is a sub-solution of (1ε) in Ωε
ν ×

(
]0, 4

ε2
[∪] 4

ε2
,+∞[

)
.

2. If fM
ε is defined as

fM
ε (x, t) =

CM × φ−ν,ε(x)

1 + e
−t
ε
(|λ−ν |+ε2)− 1

ε |x|
d+2α

ε

,

then it is a super-solution of (1ε) in Ωε×]0,+∞[.
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3. For all (x, t) ∈ R
d × [0,+∞[, fm

ε (x, t) ≤ nε(x, t+ ε) + ε and nε(x, t+ ε) ≤ fM
ε (x, t).

Proof. We begin by proving (1). We split the study into two parts : when t ∈]0, 4
ε2
[ and t ∈] 4

ε2
,+∞[.

Let (x, t) be in Ωε
ν×]0, 4

ε2
[. We define:

ψε(x, t) =
Cm

1 + e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε

= Cmgε(e
− t(|λν |−ε2)−1

d+2α x) and a(t) = e−
1
ε
+ εt

4

thus fm
ε (x, t) = a(t)× ψε(x, t)× (φν,ε(x) + ε).

First, we bound ε∂tψε from above:

ε∂tψε(x, t) = ε
Cm

(|λν |−ε2)
ε

e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε

(1 + e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε )2

= ψε(x, t)

[
(|λν | − ε2)

e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε

1 + e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε

]

≤ ψε(x, t)[|λν | − ε2 − ψε(x, t)(φν,ε(x) + ε)]

≤ ψε(x, t)[|λν | − ε2 − fε(x, t)].

(46)

The last inequalities hold because a(t) ≤ 1 and denoting by D = e−
t
ε
(|λν |−ε2)− 1

ε |x|
d+2α

ε and using

the definition of Cm, we obtain for all ε < min(
√

|λν |
2
, 1)

|λν | − ε2 − ψε(φν,ε + ε)−
(
|λν | − ε2

) D

1 +D
=

|λν | − ε2 − Cm(φν,ε + ε)

1 +D

≥
|λν | − ε2 − |λν |

2

1 +D

≥ 0.

Next, we compute (−∆)αε f
m
ε (x, t)

(−∆)αε f
m
ε (x, t) = a(t)(φν,ε+ε)(x)(−∆)αεψε(x, t)+a(t)ψε(x, t)(−∆)αε φν,ε(x)−a(t)K̃ε(ψ, (φν+ε))(x, t).

Combining (46) and the above equality we find:

ε∂tf
m
ε (x, t) + (−∆)αε f

m
ε (x, t)− fm

ε (x, t)(1− fm
ε (x, t))

≤ fm
ε (x, t)(|λν| −

3ε2

4
− fm

ε (x, t)) + a(t)(φν,ε(x) + ε)(−∆)αεψε(x, t) + a(t)ψε(x, t)(−∆)αε φν,ε(x)

− a(t)K̃ε(ψ, φν + ε)(x, t)− fm
ε (x, t)(1− fm

ε (x, t))

= fm
ε (x, t)(|λν | −

3ε2

4
) + a(t)(φν,ε(x) + ε)(−∆)αεψε(x, t) + a(t)(λν + 1)ψε(x, t)φν,ε(x)

− fm
ε (x, t)− a(t)K̃ε(ψ, φν + ε)(x, t)

= fm
ε (x, t)(|λν | −

3ε2

4
) + a(t)(φν,ε(x) + ε)(−∆)αεψε(x, t) + a(t)(λν + 1)ψε(x, t)(φν,ε(x) + ε)(x, t)

− a(t)ε(λν + 1)ψε(x, t)− fm
ε (x, t)− a(t)K̃ε(ψ, φν + ε)(x, t)

= −
3ε2

4
fm
ε (x, t) + a(t)(φν,ε(x) + ε)(−∆)αεψε(x, t)− a(t)ε(λν + 1)ψε(x, t)− a(t)K̃ε(ψ, φν + ε)(x, t).

(47)
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Thanks to Lemma 3, we obtain

|(−∆)αεψε(x, t)| = |Cm(−∆)αε (gε(e
−[t(|λν |−ε2)+1]

d+2α .))(x)|

≤ |Cme
−

2α[t(|λν |−ε2)+1]
ε(d+2α) (gε)(e

−[t(|λν |−ε2)+1]
d+2α x)|.

We deduce that there exists ε1 > 0 such that for all ε < ε1:

|(−∆)αεψε(x, t)| ≤
ε2

4
ψε(x, t). (48)

Since (φν + ε) is periodic, positive and Cα according to [23] (Proposition 1.1), we conclude from
Lemma 3 that there exists γ ∈]0, α[ and a constant C such that

|K̃ε(ψ, φν + ε)(x, t)| ≤ Ce−
[t(|λν |−ε2)+1](2α−γ)

ε(d+2α) ψε(x, t).

We deduce the existence of ε2 > 0 such that for all ε < ε2, we have

|K̃ε(ψ, φν + ε)(x, t)| ≤
ε3

4
ψε(x, t) =

ε2min(φν,ε + ε)

4
ψε(x, t). (49)

Noticing that (λν + 1) > 0, inserting (48) and (49) into (47), we conclude that for all ε < εν :=

min(ε1, ε2,
√

|λν |
2
, 1) and (x, t) ∈ Ωε

ν × [0,+∞[ we have:

ε∂tf
m
ε (x, t) + (−∆)αε f

m
ε (x, t)− fm

ε (x, t) + fm
ε (x, t)2

≤ −
3ε2

4
fm
ε (x, t) + a(t)(φν,ε + µ)(x)(−∆)αψε(x, t)− a(t)ε(λν + 1)ψε(x, t)− a(t)K̃ε(ψ, φν + ε)(x, t)

≤ −
3ε2

4
fm
ε (x, t) +

ε2

4
fε(x, t) +

ε2

4
fε(x, t)

≤ −
ε2

4
fm
ε (x, t)

≤ 0.

Therefore, fm
ε is a sub-solution of (1ε) for (x, t) ∈ Ωε

ν×]0, 4
ε2
[.

We conclude the proof of (1) with the same computations where we replace a(t) by 1. It turns
out that for all (x, t) ∈ Ωε

ν×] 4
ε2
,+∞[ we have

ε∂tf
m
ε (x, t) + (−∆)αε f

m
ε (x, t)− fm

ε (x, t) + fm
ε (x, t)2 ≤ −

ε2

2
fm
ε (x, t) < 0.

The proof of (2) follows the same arguments as the proof of (1).

For the proof of (3), we have to check that the initial data are ordered in the right way.
According to (38) and the definition of Cm, we have that for all x ∈ Ωε

ν ,

fm
ε (x, 0) =

Cm(φν,ε(x) + ε)

e
1
ε + |x|

d+2α
ε

≤
Cm(maxφν + ε)

1 + |x|
d+2α

ε

≤
cmν

α + ε

1 + |x|
d+2α

ε

≤
cmδ(x)

α

1 + |x|
d+2α

ε

+ ε ≤ nε(x, ε) + ε.
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Furthermore,

∀(x, t) ∈ (Ωε
ν)

c × [0,+∞[, we know that fm
ε (x, t) ≤ ε ≤ nε(x, t + ε) + ε. (50)

Thus we conclude from the comparison principle that for all (x, t) ∈ R
d × [0, 4

ε2
], we have

fm
ε (x, t) ≤ nε(x, t + ε) + ε. (51)

Since, we have that for all x ∈ R
d

fm
ε (x,

4

ε2
) ≤ nε(x,

4

ε2
+ ε) + ε

and recalling that fm
ε is also a subsolution in Ωε

ν×] 4
ε2
,+∞[ and the inequality (50), we deduce

thanks to the comparison principle that for all (x, t) ∈ R
d × [0,+∞[

fm
ε (x, t) ≤ nε(x, t + ε) + ε. (52)

The other inequality can be obtained following similar arguments.

A direct consequence of (52) is that if ε fulfills the assumption of Proposition 4 then

∀(x, t) ∈ R
d×]

4

ε2
,+∞[

Cm × φν,ε(x)

1 + e−
t
ε
(|λν |−ε2)|x|

d+2α
ε

≤ nε(x, t+ ε) + ε. (53)

Next, we establish some consequences of Theorem 4 on the solution n without the scaling (9).

Proof of Theorem 4. First, we prove the first point by using the sub-solution fm
ε . It is sufficient

to prove it for ν < r0 (where r0 is introduced in (45)).

Proof of 1. Set ν ∈]0, r0[ and c < |λ0|
d+2α

. According to Proposition 3, there exists two positive
constants ν0 < ν and ε0 > 0 such that, for all ε < ε0

(d+ 2α)c− |λ ν0
2
|+ ε2 < 0. (54)

Moreover by Proposition 4, for all ν ∈]0, r0[, there exists εν > 0 such that for all ε < εν and all

(x, t) ∈ R×] 4
ε2
,+∞[, (52) holds true. Therefore, for ε =

min



ε0,ε ν0
2
,

Cmmin
Ων0

φν0
2

4





2
we deduce thanks to

(53) that for all (x, t) ∈ (Ωε
ν ∩ {|x| < ect})×] 4

ε2
,+∞[ we have

Cmφ ν0
2
(|x|

1
ε
−1x)

1 + e
−t(|λν0

2
|−ε2)

ε |x|
d+2α

ε

≤ nε(x, t+ ε) + ε ⇒

Cm min
Ων0

φ ν0
2

1 + e
t
ε
(c−|λ ν0

2
|+ε2)

≤ nε(x, t+ ε) + ε.

If we perform the inverse scaling to (9), it follows thanks to (54) that for all (x, t) ∈ (Ων ∩ {|x| < ect})×] 4
ε3
+

1,+∞[
Cm min

Ων0

φ ν0
2

2
≤

Cm min
Ων0

φ ν0
2

1 + e
t(c−|λ ν0

2
|+ε2)

≤ n(x, t + 1) + ε.

If we define σ =
Cm min

Ων0

φ ν0
2

4
and tσ = 4

ε3
+ 1, we conclude that (41) holds true.
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We prove the second point by using the super-solution fM
ε .

Proof of 2. Let C > |λ0|
d+2α

. According to Proposition 3, we deduce the existence of ν, ε > 0 such
that

|λ0| < |λ−ν|+ ε2 < (d+ 2α)C and Proposition 4 holds true.

Proposition 4 implies that

∀(x, t) ∈ R
d×]0,+∞[, nε(x, t+ ε) ≤ fM

ε (x, t).

If we perform the scaling ((x, t) 7→ (|x|ε−1x, εt)), it follows that

n(x, t + 1) ≤
CM ×maxφ−ν

1 + e−t(|λ−ν |+ε2)− 1
ε |x|d+2α

.

Then for all (x, t) ∈ {|x| > Ct}×]0,+∞[ we have

n(x, t + 1) ≤
CM ×maxφ−ν

1 + et[(d+2α)C−(|λ−ν |+ε2)]− 1
ε

.

Defining C := 2CMe
1
ε maxφ−ν and κ := (d+2α)C− (|λ−ν |+ε

2) then the conclusions follows.

5.2 The final argument

Proof of Theorem 3. We will prove (i) by splitting the proof into two parts : the upper bound
and the lower bound. We will not provide the proof of (ii) since it is a direct application of 2. of
Theorem 4.

Proof of (i). Let µ be a positive constant. We want to prove that there exists a time tµ > 0

such that for any c < |λ0|
d+2α

we have for all (x, t) ∈ {|x| < ect}×]tµ,+∞[

|n(x, t)− n+(x)| ≤ µ.

First we establish that there exists a time t1 > 0 such that

∀(x, t) ∈ Ω×]t1,+∞[, n(x, t)− n+(x) ≤ µ (55)

Next, we prove the existence of a time t2 > 0 such that

∀(x, t) ∈ Ω×]t2,+∞[, −µ ≤ n(x, t)− n+(x) (56)

The difficult part will be to establish (56). This is why, we do not provide all the details of the
proof of (55).

Proof that (55) holds true. Thanks to (38) and Proposition 1, we deduce the existence of
a constant C ≥ 1 such that

n(x, t = 1) ≤ Cn+(x).

Moreover, the solution n of





∂tn+ (−∆)αn = n− n in Ω×]1,+∞[,

n(x, t) = 0 in Ωc × [1,+∞[,

n(x, t = 1) = Cn+(x) in Ω
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is a super solution of (1). According to the comparison principle we deduce that

∀(x, t) ∈ R× [1,+∞[, n(x, t) ≤ n(x, t). (57)

One can easily observe that n is periodic, decreasing in time and converges uniformly to n+ in the
whole domain Ω as t→ +∞. Thus there exists a times t1 > 1 such that

∀(x, t) ∈ Ω×]t1,+∞[, n(x, t)− n+(x) ≤ µ.

The conclusion follows.
Proof that (56) holds true. We split this part of the proof into two subparts, what happens

on the boundary and what happens in the interior.
The boundary estimates. Since n is decreasing in time and thanks to (57), we deduce that for all
(x, t) ∈ Ω× [1,+∞[

|n(x, t)− n+(x)| ≤ n(x, t) + n+(x) ≤ n(x, t) + n+(x) ≤ (C + 1)n+(x).

According to Proposition 1, we deduce that for all (x, t) ∈ Ω× [1,+∞[

|n(x, t)− n+(x)| ≤ C(C + 1)δ(x)α.

We conclude that for all (x, t) ∈ Ω× [1,+∞[ such that δ(x) <
(

µ

C(C+1)

) 1
α

:= ν1 we have

|n(x, t)− n+(x)| ≤ µ.

The interior estimates. Thanks to Theorem 1, we know that n+ ≤ 1 thus it is sufficient to
prove the existence of t2 > 0 such that

∀(x, t) ∈
({

|x| < ect
}
∩ Ων2

)
×]t2,+∞[ 1− µ ≤

n(x, t)

n+(x)
where ν2 = min(ν1, r0, r1)

where ν1 is provided by the previous step, r0 by (45) and r1 by the uniform interior ball condition.

The idea is to approximate n+ by the solution of (4) on a ball of radius M . Noticing that
thanks to (H1), there exists M0 > 0 such that forM > M0, there exists a unique bounded positive
solution nM,+ of {

(−∆)αnM,+ = nM,+ − n2
M,+ in Ω ∩B(0,M),

nM,+ = 0 in (Ω ∩B(0,M))c
(58)

We claim that

∃M1 > M0, such that ∀M > M1, ∀x ∈ Ω0,ν2 , (1− µ)
1
2 ≤

nM,+(x)

n+(x)
. (59)

The proof of this claim is postponed to the end of this paragraph. Next, we approach nM,+ by the
long time solution of the following equation:





∂tnM,z + (−∆)αnM,z = nM,z − n2
M,z in (Ω ∩B(0,M))×]0,+∞[,

nM,z(x, t) = 0 in (Ω ∩ B(0,M))c×]0,+∞[,

nM,z(x, t = 0) = σ1B(z,
ν2
4
)(x).

(60)
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where σ is provided by Theorem 4 and z ∈ Ω0,
ν2
2
will be fixed later on. We claim that

∃tµ > 0, such that ∀z ∈ Ω0,
ν2
2
, ∀(x, t) ∈ Ω0,ν2×]tµ,+∞[, (1− µ)

1
2 ≤

nM,z(x, t)

nM,+(x)
. (61)

Again, the proof of this claim is postponed to the end of this section. Next, we define

tµ = tµ + tσ (62)

where tµ is defined by (61) and tσ by Theorem 4. Let (x, t) be any couple of (Ων2 ∩ {|x| < ect})×]tµ,+∞[.
Let j ∈ Z

d be such that x ∈ Ω0 + aj . Since ν2 < r1 (the radius of the uniform interior ball condi-
tion), we deduce the existence of zx ∈ Ω0,

ν2
2
such that

x ∈ B(zx + aj ,
ν2
4
) and ∀y ∈ B(zx + aj,

ν2
4
) there holds y ∈ (Ω0 + aj) ν

4
∩
{
|y| < ect

}
. (63)

Remarking that n(x,t)
n+(x)

= n(x,t)
n+(x−aj)

, we are going to control each terms of the following decomposition:

n(x, t)

n+(x)
=

n(x, t)

nM,zx(x− aj , t− tσ)
×
nM,zx(x− aj , t− tσ)

nM,+(x− aj)
×
nM,+(x− aj)

n+(x− aj)
= I× II× III

where nM,zx is defined in (60).
Control of I.

Thanks to (41) and (63), it follows that

∀y ∈ B(zx + aj ,
ν

4
), σ ≤ n(y, tσ).

Recalling that nM,zx(x, 0) = σ1B(zx,
ν2
4
)(x), we conclude thanks to the comparison principle that

∀(y, s) ∈ R
d × [tσ,+∞[ we have nM,zx(y − aj , s− tσ) ≤ n(y, s).

Since t > tσ, we conclude that

1 ≤
n(x, t)

nM,zx(x− aj , t− tσ)
. (64)

Control of II.
Since t− tσ > tµ, we deduce thanks to (61) that

(1− µ)
1
2 ≤

nM,zx(x− aj , t− tσ)

nM,+(x− aj)
. (65)

Control of III.
Since x− aj ∈ Ω0, we deduce thanks to (59) that

(1− µ)
1
2 ≤

nM,+(x− aj)

n+(x− aj)
. (66)

Combining (65), (66) and (64), we conclude that for all (x, t) ∈ (Ων2 ∩ {|x| < ect})×]tµ,+∞[,
we obtain

1− µ ≤
n(x, t)

nM,zx(x− aj, t− tσ)
×
nM,zx(x− aj, t− tσ)

nM,+(x− aj)
×
nM,+(x− aj)

n+(x− aj)
=

n(x, t)

n+(x− aj)
=
n(x, t)

n+(x)
.

This concludes the proof of Theorem 3.
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It remains to prove the claims (59) and (61). The proof of (59) relies on the uniqueness result
stated in Theorem (1).

Proof of (59). The map (M ∈]M0,+∞[7→ nM,+) is increasing as nM is a sub-solution to the
equation for nM ′ for M ′ > M . It converges to a weak solution of (4). By fractional elliptic
regularity, the limit is a strong solution of (4). We conclude thanks to the uniqueness of the
solution of (4) stated in Theorem 1.

The proof of (61) relies on a compactness argument.

Proof of (61). For a fixed z ∈ Ων , the proof of convergence of nM,z to nM,+ is classical thanks to
(H1). For each z ∈ Ω0,ν , there exists tz > 0 such that

∀(x, t) ∈ R
d×]tz ,+∞[, (1− µ)

1
2 ≤

nM,z(x, t)

nM,+(x)
.

We claim that sup
z∈Ω0,ν

tz < +∞. This assertion is true by compactness of Ω0,ν (otherwise there exists

z ∈ Ω0,ν such that tz = +∞ which is a contradiction).
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