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Propagation in a fractional reaction-diffusion equation in a
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Abstract

We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-
connected 1-dimensional media with Dirichlet conditions outside the domain. After demon-
strating the existence and uniqueness of a non-trivial bounded stationary state n+, we prove
that the stable state n+ invades the unstable state 0 with a speed which is exponential in
time.
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1 Introduction

1.1 Model and question

We focus on the following equation :





∂tn+ (−∆)αn = n− n2, for (x, t) ∈ ∪
k∈Z

]2kA, (2k + 1)A[×]0,∞[,

n = 0, for (x, t) ∈ ∪
k∈Z

[(2k + 1)A, (2k + 2)A]× [0,∞[,

n(x, 0) = n0(x),

(1)

with A a constant and (−∆)α the fractional Laplacian with α ∈]0, 1[ which is defined as follows :

(−∆)αn(x, t) = Cα PV

∫

R

n(x, t)− n(y, t)

|x− y|1+2α
dy where Cα =

4αΓ(1
2
+ α)

π
α
2 |Γ(−α)|

.

The main aim of this paper is to describe the propagation front associated to (1). We show that
the stable state invades the unstable state with an exponential speed.

1.2 Motivation

Equation (1) models the growth and the invasion of a species subject to a non-local dispersion in
a periodically hostile environment. The function n stands for the density of the population. The
fractional Laplacian describes the motions of individuals, it takes into account the possibility of
”jump” (move rapidly) of individuals from one point to another, for instance because of human
activities for animals or because of the wind for seeds. The logistic term n − n2 represents the
growth rate of the population. The originality of this model is the following, we forbid our species to
invade some periodic patches and thus the reachable areas are disconnected. Here, we assume that
the regions where the species can develop itself are homogeneous. Thanks to the non-local diffusion
(which models the ”jumps”), the species will invade all the ”good” patches and the solution will
converge to a non-null stable stationary state with a speed which growths exponentially fast.

Many works deal with the case of a standard diffusion (α = 1) with homogenous or hetero-
geneous environment (see [13], [18], [1] and [15]). More close to this article, Guo and Hamel in
[17] treat a Fisher-KPP equation with periodically hostile regions and a standard diffusion. The
authors prove that the stable state will invade the unstable state in the connected component
of the initial data. In our work, thanks to the non-local character of the fractional Laplacian,
contrary to what happens in [17], we show that there exists a unique non-trivial positive bounded
stationary state. Moreover this stationary state invades the unstable state 0 everywhere and not
only on the connected component of the initial data.

1.3 Assumptions and results

Concerning the domain

Ω :=
⋃

k∈Z

]2kA, (2k + 1)A[

the constant A is such that for any A > A0, the principale eigenvalue λA of the Dirichlet operator
(−∆)α− Id in ]0, A[ is negative (the existence of such A0 is provided by [3]). In other words, there
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exists a map φA positive such that





((−∆)α − Id)φA(x) = λAφA(x) for x ∈]0, A[,

φA(x) = 0 for x ∈]0, A[c,

φA ≥ 0, λA < 0.

(H1)

It is well known that the principal eigenvalue λ0 of the Dirichlet operator (−∆)α − Id in Ω is
simple in the algebraic and geometric sense and moreover, the associated principal eigenfunction
has a sign

i.e.






((−∆)α − Id)φ0(x) = λ0φ0(x) for x ∈ Ω,

φ0(x) = 0 for x ∈ Ωc,

φ0 ≥ 0.

(2)

It is a direct application of the Krein-Rutman Theorem.
The first result of this paper is the following which ensures the existence and the uniqueness of

a positive bounded stationary state of (1):

{
(−∆)αn+(x) = n+(x)− n+(x)

2 for x ∈ Ω,

n+(x) = 0 for x ∈ Ωc.
(3)

Theorem 1. Under the assumption (H1), there exists a unique positive and bounded stationary
state n+ to (1). Moreover, we have 0 ≤ n+ ≤ 1 and n+ is 2A-periodic.

The existence is due to the negativity of the principal eigenvalue of the Dirichlet operator
(−∆)α− Id in ]0, A[ which allows to construct by an iterative method a stationary state. To prove
the uniqueness, we first prove that thanks to the non-local character of the fractional Laplacian,
all the bounded stationary states behave like

δ(x)α = dist(x, ∂Ω)α1Ω(x). (4)

Hence, thanks to the maximum principle and the fractional Hopf Lemma (stated in [16] for in-
stance), we get the result. We should underline that the uniqueness is clearly due to the non-local
operator (−∆)α, and it does not hold in the case of a standard diffusion term (α = 1). A direct
consequence of the existence of a stationary solution of (1) is that λ0 is strictly negative:

Corollary 1. The principal eigenvalue of the Dirichlet operator (−∆)α − Id in Ω is negative.

To deal with (1), we first have to show that the solution at time t = 1 has algebraic tails in the
interior of Ω:

c× δ(x)α

1 + |x|1+2α
≤ n(x, t = 1) ≤

C

1 + |x|1+2α
. (5)

The proof of (5) is an application of general results about the fractional Dirichlet heat kernel
estimates given for instance in [8] or in [4]. Both of the two cited articles use a probabilistic
approach. We propose in this work a deterministic proof of the lower bound of the fractional
Dirichlet kernel estimates. Our proof is quite simple but the result is not as general than those
presented in [8] and [4] because we work in finite time and with smooth domains. We do not
provide the proof of the upper bound of the fractional Dirichlet kernel estimates since there is no
difficulties to obtain such bound. The result is the following:
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Theorem 2. Let Ω be a smooth domain of Rd with d ≥ 1. If we define p as the solution of the
following equation





∂tp+ (−∆)αp = 0 for all (x, t) ∈ Ω×]0,+∞[,

p(x, t) = 0 for all (x, t) ∈ Ωc × [0,+∞[,

p(x, t = 0) = n0(x) ∈ C∞
0 (Ω,R+) ∩ C0

c (R),

(6)

then there exists c > 0 and C > 0 such that for all x ∈ Ω,

c× δ(x)α

1 + |x|d+2α
≤ p(x, t = 1) ≤

C

1 + |x|d+2α
. (7)

Once (5) is obtained we can focus on the propagation phenomena. The question of propagation
in a Fisher KPP type equation involving a fractional Laplacian in a constant environment was first
treated by Cabré and Roquejoffre in [7]. They proved that the front position is exponential in
time (see also [9] for instance for some heuristic and numerical works predicting such behavior).
Next, Cabré, Coulon and Roquejoffre proved in [6] the convergence to a stationary state with
an exponential speed in a periodic heterogeneous environment. Thanks to a different approach
introduced by Méléard and Mirrihami in [20], the authors proved the result of an exponential speed
of propagation in a constant environment. More recently, [5], [24] and [19] extended this approach
to derive the speed of propagation for different non-local operators in the case of a homogeneous
enviroment for [5] and a periodic environment for [19] and [24]. The idea introduced in [20] is
to use an asymptotic approach as known as ”approximation of geometric optics”. The main idea
of this approach is to perform a long time-long range rescaling to catch the effective behavior of
solution (see for instance [14] and [12] for the classical Laplacian case). We follow this general
idea. Thus, we expect that in large time the propagation front is located in

B =
{
(x, t) ∈ R× R

+|(1 + 2α) log |x| < |λ0|t
}
.

where λ0 is defined by (2). We perform the following change of variable

(x, t) 7→ (|x|
1
ε
x

|x|
,
t

ε
). (8)

A such scaling does not change the geometry of the set B. Next, we rescale the solution of (1) as
follows :

nε(x, t) = n(|x|
1
ε
x

|x|
,
t

ε
) (9)

and a new steady state :

n+,ε(x) = n+(|x|
1
ε
x

|x|
). (10)

For any set U and any positive constant ν, we introduce the following new sets :

Uν = {x ∈ U| dist(x, ∂U) > ν} , U−ν = {x ∈ R| dist(x,U) < ν} and Uε =
{
x ∈ R| |x|

1
ε
−1x ∈ U

}
.

For reasons of brevity, we will always denote (Uν)
ε by Uε

ν . We also introduce the following set :

Bδ =
{
(x, t) ∈ R× [0,+∞[ | |x|1+2α ≤ e|λ0|t−δ

}
.

Concerning the initial data, we assume that

n0 ∈ C∞
0 (Ω,R+) ∩ C∞

c (R,R+), n0 6≡ 0. (H2)
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Theorem 3. Assume (H1) and (H2). Then
(i) nε converges locally uniformly to 0 in Bc,
(ii) nε

n+,ε
converges locally uniformly to 1 in (Ωε×]0,+∞[) ∩ B.

A direct consequence of this result is the invasion of the unstable state by the stable state:

Corollary 2. Assume (H1) and (H2). Then for all ν > 0 :

(i) ∀c < |λ0|
1+2α

, lim
t→+∞

n(x, t) = n+(x) uniformly on x ∈ {|x| < ect},

(ii) ∀C > |λ0|
1+2α

, lim
t→+∞

n(x, t) = 0 uniformly on x ∈
{
|x| > eCt

}
.

1.4 Strategy and organization of the paper

One of the main arguments to prove Theorem 3, is that, using the rescaling (8), as ε→ 0, the term

((−∆)α(n)n−1) (|x|
1
ε
−1x, t

ε
) vanishes. More precisely, one can provide a sub and a super-solution to

the rescaled equation which are indeed a sub and a super-solution to a perturbation of an ordinary
differential equation derived from (1) by omitting the term (−∆)α and multiplying by the principal
eigenfunction associated to the operator (−∆)α − Id in Ω±ν . These sub and super-solutions also
have the property that when one applies the operator f 7→ (−∆)α(f)f−1 to such functions, the
outcome is very small in the interior of Ων and of order O(ε2) as ε tends to 0. Moreover, these sub
and super-solutions have algebraic decay at infinity. Obviously, we can not put the sub-solution
below n0. However, using the heat kernel estimates given by Theorem 2, we are able to put the
sub-solution below the solution n for t ≥ 1. Finally, to prove the convergence of nε, we use the
method of perturbed test functions from the theory of viscosity solutions and homogenization
(introduced by Evans in [10] and [11]).

We close the introduction by noticing that all the presented results can be extended to the
multi-dimensional case. Let Ω be a smooth non-connected periodic domain of Rd

i.e. Ω =
⋃

k∈Zd

Ω0 + ak, with Ω0 a smooth bounded domain of Rd and ak ∈ R
d.

We assume that
(Ω0 + ai) ∩ (Ω0 + aj) 6= ∅ if and only if i = j.

Moreover, if we denote ei the i
th vector of the canonical basis of Rd then ak+ei − ak = aei .

The assumption (H1) has to be adapted in the following way: we assume that the principal

eigenvalue λ̃0 of the Dirichlet operator (−∆)α − Id in Ω0 is negative. For the sake of simplicity,
the study is done in one dimension. The only result presented in multi-dimension is the parabolic
estimates of Theorem 2.

In section 2, we demonstrate Theorem 1. Next, section 3 is dedicated to the proof of Theorem
2. Section 4 introduces all the requirements to achieve the proof of Theorem 3. Finally, section 5
is devoted to the proof of Theorem 3. All along the article, the constant denoted by c or C may
change from one line to another when there is no confusion possible and we drop the constant Cα

and the Cauchy principal value P.V. in front of the fractional Laplacian for better readability.

2 Uniqueness of the stationary state n+

First, we state a proposition which gives the shape of any non-trivial bounded sub and super-
solution to (3) near the boundary. Then, we use this result to prove the uniqueness result. Since
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the proof of the existence is classical we do not provide it. It relies on an increasing sequences
initialized by εφA (see [23] for more details).

Proposition 1. (i) If u is a smooth positive bounded function such that:

1. u(x) = 0 for all x ∈ Ωc,

2. (−∆)αu(x) ≤ u(x)− u(x)2 for all x ∈ Ω,

then there exists C > 0 such that
u(x) ≤ Cδ(x)α.

(ii) If v is a smooth positive bounded function such that:

1. v(x) = 0 for all x ∈ Ωc,

2. (−∆)αv(x) ≥ v(x)− v(x)2 for all x ∈ Ω,

3. ∃x ∈ Ω such that v(x) > 0,

then there exists c > 0 such that
cδ(x)α ≤ v(x).

Before giving the proof of Proposition 1, we recall a lemma proved in Annex B of [22] which
states a useful barrier function.

Lemma 1 ([22]). There exists C > 0 and a radial continuous function ψ ∈ H1
loc(R) satisfying :





(−∆)αψ ≥ 1 in ]− 4, 4[\]− 1, 1[,

ψ ≡ 0 in ]− 1, 1[,

0 ≤ ψ ≤ C|x− 1|α in ]− 4, 4[\]− 1, 1[,

1 ≤ ψ ≤ C in R\]− 4, 4[.

(11)

Proof of Proposition 1. Proof of (i). Let u be a continuous positive bounded function such that
u = 0 in Ωc and (−∆)αu ≤ f(u) in Ω. To help the reading, we demonstrate the result near the
boundary point 0. The proof works the same for each point of the boundary. We rescale the
function given by Lemma 1:

φ(x) := max(1,

(
A

8

)2α

,maxu) ψ(
8

A
x+ 1).

Then, according to Lemma 1, we have the following properties for φ:





(−∆)αφ ≥ 1 in ]0,
3A

8
[,

φ ≡ 0 in ]−
A

4
, 0[,

0 ≤ φ ≤ C|x|α in ]0,
3A

8
[,

max u ≤ φ ≤ Cmax(1,

(
A

8

)2α

,maxu) in R\[−
5A

8
,
3A

8
],

(12)
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Next, we can deduce that in [0, 3A
8
]c, u ≤ φ. We want to prove by contradiction that u ≤ φ in

[0, 3A
8
]. If we assume that there exists x0 ∈ [0, 3A

8
] such that (φ − u)(x0) < 0. Then, there exists

x1 ∈]0,
3A
8
[ such that (φ− u)(x1) = min

x∈R
(φ− u)(x) < 0. Thus,

(−∆)α(φ− u)(x1) < 0, and (−∆)α(φ− u)(x1) ≥ 1− u(x1) + u(x1)
2 ≥ 0,

a contradiction.
Proof of (ii). Let v be a continuous positive function bounded such that v = 0 in Ωc and

(−∆)αv ≥ f(v) in Ω. An easy but important remark is the following: thanks to the non-local
character of the fractional Laplacian, since there exists x ∈ Ω such that v(x) > 0, we deduce that
v > 0 in the whole domain Ω. Otherwise, we could conclude to the following contradiction :

∃x ∈ Ω such that v(x) = 0 and (−∆)αv(x)− v(x) + v(x)2 = −

∫

R

v(y)

|x− y|1+2α
dy < 0.

Next, we define wk : (x, t) ∈ R× [0,+∞[7→ wk(x, t) ∈ R as the solution of






∂twk + (−∆)αwk = wk − w2
k, in ]2kA, 2(k + 1)A[×]0,+∞[,

wk(x, 0) = 0, in R\]2kA, 2(k + 1)A[×[0,+∞[

wk(x, 0) = v(x), in ]2kA, 2(k + 1)A[.

(13)

Thanks to the first remark, and recalling (H1), we deduce thanks to Theorem 5.1 in [3] that
wk(., t) −→

t→+∞
wstat(.). Thus, we conclude thanks to the maximum principle that

wstat(x) ≤ v(x), ∀x ∈ R

with wstat the solution of

{
(−∆)αwstat = wstat − w2

stat, in ]2kA, 2(k + 1)A[,

wstat = 0 in R\]2kA, 2(k + 1)A[.
(14)

Note that the above wstat does not depend on the choice of k, i.e. wk(·, t) converges as t tends to
+∞ to the same wstat (up to a translation).
Since, ]2kA, 2(k+1)A[ is bounded, we apply the results of [22] to find that there exists a constant
c > 0 such that

cδ(x)α1]2kA,2(k+1)A[(x) ≤ wstat(x) ≤ v(x).

The previous analysis holds for every k ∈ Z. We conclude that

cδ(x)α ≤ v(x). (15)

Proof of Theorem 1. The argument relies on the fact that two steady solutions are comparable
everywhere thanks to Proposition 1. This is in the spirit of [2] in a different context. Let u and
v be two bounded steady solutions to (3). By the maximum principle, we easily have that for all
x ∈ R,

u(x) ≤ 1 and v(x) ≤ 1.
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We will assume that

v

(
A

2

)
≤ u

(
A

2

)
. (16)

Thanks to Proposition 1, we deduce the existence of two constants 0 < c ≤ C such that:

cδ(x)α ≤ u(x) ≤ Cδ(x)α and cδ(x)α ≤ v(x) ≤ Cδ(x)α.

Thus there exists a constant λ > 1 such that for all x ∈ R,

u(x) ≤ λv(x). (17)

We set l0 := inf {λ ≥ 1| ∀x ∈ R, u(x) ≤ λv(x)}. The point is to prove by contradiction that l0 = 1.
It implies that A

2
is a contact point. It will allow us to conclude thanks to the fractional maximum

principle that u = v.
We assume by contradiction that l0 > 1. Next, we define :

w̃ = inf
x∈Ω

(l0v − u)(x)

δ(x)α
≥ 0. (18)

There are two cases to be considered.
Case 1: w̃ > 0.

We show in this case that we can construct l1 < 1 such that u(x) ≤ l1l0v(x) for all x ∈ R and it will
be the contradiction. If w̃ > 0, then there exists µ ∈]0, 1[ and ν > 0 such that for all x ∈ Ω\Ων ,

(µl0v − u)(x)

δ(x)α
≥
w̃

2
. (19)

Actually, if there does not exist such couples (µ, ν) then we deduce that for all n ∈ N, there exists
(xn)n∈N ∈ Ω, such that δ(xn) ≤

1
n
and

((1− 1
n
)l0v − u)(xn)

δ(xn)α
<
w̃

2
.

Passing to the liminf we get the following contradiction :

0 < w̃ ≤
w̃

2
.

The existence of the couple (µ, ν) implies that

(µl0v − u)(x) ≥ 0, ∀x ∈ Ω\Ων . (20)

Next, we show that
∃ρ > 0 such that ρ ≤ (l0v − u)(x) ∀x ∈ Ων . (21)

Actually, if a such ρ does not exist then there exists a sequence (xn)n∈N ∈ Ω such that δ(xn) ≥ ν
and (l0v − u)(xn) −→

n→+∞
0. Then we obtain

(l0v − u)(xn)

δ(xn)α
≤

(l0v − u)(xn)

να
−→

n→+∞
0

which is in contradiction with the fact that w̃ is positive. The existence of a such ρ implies that
(
(1−

ρ

max l0v
)l0v − u

)
(x) ≥ 0, ∀x ∈ Ων . (22)

Finally, if we define l1 = max(µ, 1− ρ

max l0v+1
) then we obtain the desired contradiction. Therefore

this case can not occur.
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Case 2: w̃ = 0.
We consider (xn)n∈N a minimizing sequence of w̃. There are 3 subcases : a subsequence of (xn)n∈N
converges to x0 ∈ Ω, a subsequence of (xn)n∈N converges to xb ∈ ∂Ω and any subsequence of
(xn)n∈N diverges.

Subcase a: There is x0 ∈ Ω, such that (l0v−u)(x0)
δ(x0)α

= 0.

Since x0 ∈ Ω we deduce that (l0v − u)(x0) = 0. Hence, by the maximum principle, u = l0v. We
deduce l0v is a solution of (3) and we conclude that :

l0(v − v2) = l0(−∆)α(v) = (−∆)α(l0v) = l0v − (l0v)
2. (23)

This equation leads to l0 = 1, a contradiction.

Subcase b: There is xb ∈ ∂Ω, such that lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

= 0.

Here is a summary of what we know:

(i) l0v − u ≥ 0,

(ii) (−∆)α(l0v − u) ≥ −l0(l0v − u),

(iii) (l0v − u)(xb) = 0.

According to the fractional Hopf Lemma [16], the previous assumptions leads to lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

>

0. However, we have assumed that lim inf
x→xb,

x∈Ω

(l0v−u)(x)
δ(x)α

= 0, a contradiction.

Subcase c: There exists a minimizing sequence (xn)n∈N such that |xn| tends to the infinity.
We first set

xk = xk − ⌊
xk
A
⌋,

where ⌊x⌋ is the entire part of x. Since xk ∈ [0, A], we deduce that up to a subsequence xk
converges to x∞ ∈ [0, A]. Then we define:

uk(x) = u(x+ xk) and vk(x) = v(x+ xk).

We also define the following set :

Ω∞ = {x ∈ R| x+ x∞ ∈ Ω} .

For every compact set K of Ω∞, there exists n0 ∈ N such that

∀n ≥ n0, ∀x ∈ K, x+ xn ∈ Ω∞.

Thus, for all n ≥ n0,

(−∆)αun(x) = un(x)− un(x)
2 and (−∆)αvn(x) = vn(x)− vn(x)

2 ∀x ∈ K.

According to [21], we deduce that the sequences (un)n∈N and (vn)n∈N converge up to a subsequence
locally uniformly to u∞ and v∞ in Cβ(Ω∞) with some β > 2α. Hence we deduce that

(−∆)αu∞(x) = u∞(x)− u∞(x)2 and (−∆)αv∞(x) = v∞(x)− v∞(x)2, ∀x ∈ K.
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Since it is true in every compact subset of Ω∞, it follows that

(−∆)αu∞(x) = u∞(x)− u∞(x)2 and (−∆)αv∞(x) = v∞(x)− v∞(x)2, ∀x ∈ Ω∞.

Remark that

l0v∞ − u∞ ≥ 0 and lim inf
x→0
x∈Ω∞

(l0v∞ − u∞)(x)

dist(x, ∂Ω∞)α
= 0.

Hence, if x∞ ∈]0, A[ then 0 ∈ Ω∞ and we fall in the subcase a).
If x∞ /∈]0, A[ then 0 ∈ ∂Ω∞ and we fall in the subcase b).
Both cases lead to a contradiction.

Thus, we conclude that l0 = 1.

Remark. Noticing that for all x ∈ Ω, we have

(−∆)α(n+(.+ 2A))(x) =

∫

R

n+(x+ 2A)− n+(y + 2A)

|x+ 2A− (y + 2A)|1+2α
dy = n+(x+ 2A)− n+(x+ 2A)2,

we deduce by uniqueness of the solution of (3) that n+ is 2A−periodic.

3 The fractional heat kernel and the preparation of the

initial data

We first prove Theorem 2, then we apply it to estimate the position of n at time 1.

Proof of Theorem 2. We recall that for this proof Ω is a smooth domain of Rd. First, let ν0 > 0 be
such that for all x0 ∈ ∂Ων0 , the open ball B(x0, ν0) ⊂ Ω. Next, note that thanks to a translation
and possibly a scaling, we can suppose the following hypothesis:

∃µ > 0 such that µ < n0(x) for all x ∈ B(0, 2). (24)

Thanks to (24), we can focus our study on x ∈ Ω\B(0, 2). Thus, it is sufficient to prove that there
exists a constant c > 0 such that

∀x ∈ Ω\B(0, 2), we have
cδ(x)α

(|x|+ ν)d+2α
≤ p(x, 1)

with ν = min(1
2
, ν0). To achieve the proof, there will be 3 steps.

First, we introduce a suitable decomposition of the fractional Laplacian to prove the existence of
c1 > 0 such that





c1
|x|d+2α

≤ ∂tp(x, t) + Lαp(x, t) + λp(x, t) for all (x, t) ∈ (Ω\B(0, 2))×]0, 1],

p(x, t) = 0 for all (x, t) ∈ Ωc × [0, 1],

p(x, t = 0) = n0(x) ∈ C∞
0 (Ω,R+)

(25)

where

Lαp(x, t) =

∫

B(0,ν)

p(x, t)− p(x+ y, t)

|y|d+2α
dy and λ =

∫

Rd\B(0,ν)

1

|y|d+2α
dy.
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In a second step, we will show that

∃c2 > 0 such that
c2

(|x|+ ν)d+2α
≤ p(x, t = 1) for all x ∈ Ων\B(0, 2). (26)

Finally, we prove the same kind of result near the boundary :

∃c3 > 0 such that
c3δ(x)

α

(|x|+ ν)d+2α
≤ p(x, t = 1) for all x ∈ (Ω\Ων) \B(0, 2). (27)

Before starting the details of the proof, we will need two intermediate lemmas. Let φν be the
principal positive eigen function of the following equation:





Lαφν = µνφν for all x ∈ B(0, ν)

φν = 0 for all x ∈ B(0, ν)c,

φν ≥ 0, ‖φν‖∞ = 1.

The first lemma is the following.

Lemma 2. Let w be the solution of the following problem:





∂tw + Lαw = 1 for all (x, t) ∈ B(0, ν)×]0,+∞[

w(x, t) = 0 for all (x, t) ∈ B(0, ν)c × [0,+∞[,

w(x, t = 0) = 0 for all x ∈ B(0, ν).

(28)

Then there exists a constant cν > 0 such that

cν × φν(x) ≤ w(x, t = 1).

Proof. We define τ(t) =
1

µν

(1− e−µν t) such that

{
τ ′(t) + µντ(t) = 1,

τ(0) = 0.

Thanks to this choice of τ(t), the application w(x, t) := τ(t) × φν(x) is a sub-solution to (28).
Actually, we have

(∂t + Lα)(w)− 1 = τ ′φν + µντφν − 1 ≤ τ ′φν + µντφν − φν = φν(τ
′ + µντ − 1) = 0.

Since w(t = 0) = 0 ≤ w(t = 0), we can conclude thanks to the comparison principle that for all
t ≥ 0 and all x ∈ R

d, we have

w(x, t) ≤ w(x, t) ⇒ w(x, 1) =
1

µν

(1− e−µν )φν(x) = cνφν(x) ≤ w(x, 1).

Next, we establish a barrier function for Lα in the spirit of those introduced in [22].

11



Lemma 3. There exists a function ψ such that






Lαψ ≤ 0 in B(0, ν)\B(0,
ν

2
),

ψ = 0 in B(0, ν)c,

ψ ≤ 1 in B(0,
ν

2
),

c(ν − |x|)α ≤ ψ in B(0, ν),

ψ is continuous in B(0, ν)\B(0,
ν

2
).

Proof. We just have to consider C large enough such that the first point and the third of the
lemma holds with the following ψ:

ψ(x) :=

(
1

C
(ν − |x|2)α +

1

2
1B(0, ν

4
)(x)

)
1B(0,ν)(x).

Indeed, defining f(x) := (ν − |x|2)α, we have for C large enough and x ∈ B(0, ν)\B(0, ν
2
)

Lαψ(x) ≤
Lαf(x)

C
−

1

2

∫

B(0, ν
4
)

1

|x− y|d+2α
dy ≤

sup
B(0,ν)\B(0, ν

2
)

|Lαf |

C
−
m(B(0, 1))

2× 5d+2α
×

(
4

ν

)2α

< 0.

The other conditions follow.

Step 1. We first split the fractional Laplacian into 2 parts:

(−∆)αp(x, t) =

∫

Rd\B(0,ν)

p(x, t)− p(x+ y, t)

|y|d+2α
dy + Lαp(x, t) = I1 + Lαp(x, t).

For I1, we obtain :

I1 =

∫

Rd\B(0,ν)

p(x, t)− p(x+ y, t)

|y|d+2α
dy = λp(x, t)−

∫

Rd\B(0,ν)

p(x+ y, t)

|y|d+2α
dy.

Since |x| > 2, and since p ≥ 0 (according to the comparison principle), we have

inf
t∈(0,1)

z∈B(0,1)

p(z, t)

∫

B(0,1)

1

|z − x|d+2α
dz ≤

∫

B(−x,1)

p(x+ y, t)

|y|d+2α
dy ≤

∫

Rd\B(0,ν)

p(x+ y, t)

|y|d+2α
dy. (29)

Let us notice that, inf
t∈(0,1)

z∈B(0,1)

p(z, t) > 0.

Indeed, let φ2 be the first positive eigen-function of the Dirichlet fractional Laplacian in B(0, 2)
and λ2 the associated eigenvalue

i.e.






(−∆)αφ2 = λ2φ2 for x ∈ B(0, 2),

φ2 = 0 for x ∈ B(0, 2)c,

‖φ2‖∞ = 1.

12



Then the function
p(x, t) := µ× φ2(x)× e−λ2t

is a sub-solution of (6) (where µ is defined by (24)). According to the maximum principle, we have

0 < µ× min
B(0,1)

φ2 × e−|λ2| ≤ p(x, t) for all (x, t) ∈ B(0, 1)× [0, 1].

We conclude to the existence of a positive constant c1 > 0 such that:

c1
|x|d+2α

≤

∫

Rd\[−ν,ν]

p(x+ y, t)

|y|d+2α
dy.

So we have shown (25). If we define v(x, t) = eλt × p(x, t), we find the following system:






c1
|x|d+2α

≤ ∂tv(x, t) + Lαv(x, t) for (x, t) ∈ (Ω\B(0, 2− ν))×]0, 1],

v(x, t) = 0 for (x, t) ∈ Ωc × [0, 1],

v(x, t = 0) = n0(x) ∈ C∞
0 (Ω,R+).

(30)

Step 2. Pick x0 ∈ Ων\B(0, 2). Then, we have for all (x, t) ∈ (Ω\B(0, 2− ν))×]0, 1]:

c1
(|x0|+ ν)d+2α

1B(0,ν)(x− x0) ≤
c1

|x|d+2α
≤ ∂tv(x, t) + Lαv(x, t).

That leads to

1B(0,ν)(x− x0) ≤ ∂t(
(|x0|+ ν)d+2α

c1
v) + Lα(

(|x0|+ ν)d+2α

c1
v).

Then, according to the maximum principle and Lemma 2, we have

cνφν(x− x0) ≤
(|x0|+ ν)d+2α

c1
v(x, t = 1). (31)

If we evaluate (31) at x0, we obtain:

cνc1e
−λφν(0)

(|x0|+ ν)d+2α
≤ p(x0, t = 1).

Defining c2 = cνc1e
−λφν(0), we have proved (26).

Step 3 : As in the proof of Proposition 1, we can show by contradiction that there exists a
positive constant c0 such that for all x ∈ R

d,

c0ψ(x) ≤ φν(x)

where ψ is defined in Lemma 3. Then we take x1 ∈ Ω\(Ων ∪B(0, 2− ν). Since Ω is assumed to be
smooth, there exists x0 ∈ ∂Ων such that x1 ∈ B(x0, ν), B(x0, ν) ⊂ Ω and ν − |x1 − x0| = δ(x1).
Thanks to (31) and the fourth point of Lemma 3, we deduce

cνc0cδ(x1)
α = cνc0c(ν − |x1 − x0|)

α × 1B(0,ν)(x1 − x0) ≤ cνφν(x1 − x0) ≤
(|x0|+ ν)d+2α

c1
v(x1, t = 1).

We deduce that there exists c3 > 0 such that (27) holds true.
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Combining (24), (26) and (27) yields the conclusion of the Theorem.

We apply Theorem 2 to show that starting from n(x, 0) ∈ C∞
0 (Ω)∩C∞

c (R), the solution of (1)
n(·, t = 1) has algebraic tails.

Proposition 2. There exists two constants cm and cM depending on n0 such that for all x ∈ Ω,
we have

cmδ(x)
α

1 + |x|1+2α
≤ n(x, 1) ≤

cM
1 + |x|1+2α

. (32)

Proof. Defining M := max(max n0, 1), the solution n belongs to the set [0,M ] (0 is a sub-solution
and M is a super-solution).

We begin with the proof that cmδ(x)α

1+|x|1+2α ≤ n(x, 1).
Let n be the solution of :





∂tn(x, t) + (−∆)αn(x, t) = −Mn(x, t) for all (x, t) ∈ Ω×]0,+∞[,

n(x, t) = 0 for all (x, t) ∈ Ωc × [0,+∞[,

n(x, 0) = n0(x) for all x ∈ R,

(33)

Thanks to the maximum principle, we deduce that for all (x, t) ∈ R× [0,+∞[, we have

n(x, t) ≤ n(x, t).

Moreover, if we define p(x, t) = eMtn(x, t), we find that p is solution of (6). According to Theorem
2, we deduce that there exists cm > 0 such that

cmδ(x)
α

(1 + |x|1+2α)
≤ n(x, t = 1) ≤ n(x, t = 1). (34)

The proof works the same for the other bound.

In what follows, we make a translation in time to keep n(x, 1) as our initial data. In other
words, we will suppose that there exists cm and cM such that:

∀x ∈ R,
cm × δ(x)α

1 + |x|1+2α
≤ n(x, 0) ≤

cM
1 + |x|1+2α

. (H2’)

4 Rescaling and preparation for the proof of Theorem 3

In this section, we introduce all the requirements for the proof of Theorem 3. We begin by perform-
ing the rescaling (8). Next, we obtain a sub-solution and a super-solution for the rescaled problem
with ε small enough. Finally, we prove some convergence results on the principal eigenvalue λν of
(−∆)α − Id in Ων and on n+,ν the stationary state of (3) in Ων when ν is small.

We perform the scaling (8) on equation (1) with the new initial condition satisfying (H2’). The
equation becomes





ε∂tnε + (−∆)αε nε = nε(1− nε) for (x, t) ∈ Ωε×]0,+∞[,

nε(x, t) = 0 for (x, t) ∈ Ωεc×]0,+∞[,

nε(x, 0) = n0,ε(x) ∈ C∞
0 (Ωε,R+).

(1ε)
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where (−∆)αε nε(x, t) = (−∆)αn
(
|x|

1
ε

x
|x|
, t
ε

)
.

Set

g(x) :=
1

1 + |x|1+2α
.

We first state in the spirit of [6] the behavior of g under the fractional Laplacian.

Lemma 4. Let γ be a positive constant in ]0, α[ such that 2α−γ < 1. Let χ ∈ Cα(R) be a periodic
positive function and g(x) := 1

1+|x|1+2α . Then there exists a positive constant C, such that we have
for all x ∈ R:
(i) for all a > 0,

|(−∆)αg(ax)| ≤ a2αCg(ax),

(ii) for all a ∈]0, 1],

|K̃(g(a.), χ)(x)| ≤
Ca2α−γ

1 + (a|x|)1+2α
= Ca2α−γg(a|x|),

where K̃(u, v)(x) =
∫
R

(u(x)−u(y))(v(x)−v(y))
|x−y|1+2α dy is such that

(−∆)α(u× v) = (−∆)α(u)× v + u× (−∆)α(v)− K̃(u, v).

Since, the same kind of result can be found in the appendix A of [19], we do not provide the
proof of this lemma. Note that here, the lemma is stated with less regularity on χ such than in
[19]. Nevertheless, there is no difficulty to adapt the proof.

Notation. As we have introduced (−∆)αε nε(x, t) = (−∆)αn
(
|x|

1
ε

x
|x|
, t
ε

)
, we introduce

K̃ε(u, v)(x, t) = K̃(u, v)(|x|
1
ε
−1,

t

ε
).

For any application h : R 7→ R, we define

hε : R → R

x 7→ h(|x|
1
ε
−1x).

According to (H1), taking ν ∈]0, A−A0

2
[, the principale eigenvalue λν of the Dirichlet operator

(−∆)α − Id in Ων is negative. We will denote the associated periodic and positive eigenfunction
by φν .

Theorem 4. We assume (H1) and (H2’). Let ν be a positive constant such that ν < A−A0

2
.

Let Cm belongs to ]0,min( |λν |
2(max φν+1)

, cmνα

max φν+1
)[, CM to ] max( 2|λ−ν |

min
Ω

φ−ν
, cM
min
Ω

φ−ν
),+∞[ and δ to

]0,min(
√
|λν | − Cmmax φν ,

√
CMmin

Ω
φ−ν − |λ−ν |)[. Then there exists εν > 0 such that for all

ε < εν, the following is true.

1. If fm
ε is defined as

fm
ε (x, t) =

Cme
− δ

ε

1 + e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε

× (φν,ε(x) + ε),

then it is a sub-solution of (1ε) in Ωε
ν×]0,+∞[.

15



2. If fM
ε is defined as

CM

1 + e
−t
ε
(|λ−ν |+ε2)− δ

ε |x|
1+2α

ε

× φ−ν,ε(x),

then it is a super-solution of (1ε).

3. For all (x, t) ∈ R× [0,+∞[, fm
ε (x, t) ≤ nε(x, t) + ε and nε(x, t) ≤ fM

ε (x, t).

Proof. We begin by proving (1). Let (x, t) be in Ωε
ν×]0,+∞[. We define:

ψε(x, t) =
Cme

− δ
ε

1 + e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε

, thus fm
ε (x, t) = ψε(x, t)× (φν,ε(x) + ε).

We bound ε∂tψε from above:

ε∂tψε(x, t) = ε
Cm

(|λν |−ε2)
ε

e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε e−
δ
ε

(1 + e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε )2

= ψε(x, t)

[
(|λν | − ε2)

e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε

1 + e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε

]

≤ ψε(x, t)[|λν | − ε2 − ψε(x, t)(φν,ε(x) + ε)].

(35)

The last inequality holds because by denoting by D = e−
t
ε
(|λν |−ε2)− δ

ε |x|
1+2α

ε and using the definition

of Cm, we obtain for all ε < min(
√

|λν |
2
, 1)

|λν | − ε2 − ψε(φν,ε + ε)−
(
|λν | − ε2

) D

1 +D
=

|λν| − ε2 − Cm(φν,ε + ε)e−
δ
ε

1 +D

≥
|λν | − ε2 − |λν |

2

1 +D

≥ 0.

Next, we compute (−∆)αε f
m
ε (x, t)

(−∆)αε f
m
ε (x, t) = (φν,ε + ε)(x)(−∆)αεψε(x, t) + ψε(x, t)(−∆)αε φν,ε(x)− K̃ε(ψ, (φν + ε))(x, t).

Combining (35) and the above equality we find:

ε∂tf
m
ε (x, t) + (−∆)αε f

m
ε (x, t)− fm

ε (x, t)(1− fm
ε (x, t))

≤ fm
ε (x, t)(|λν | − ε2 − fm

ε (x, t)) + (φν,ε(x) + ε)(−∆)αεψε(x, t) + ψε(x, t)(−∆)αε φν,ε(x)

− K̃ε(ψ, φν + ε)(x, t)− fm
ε (x, t)(1− fm

ε (x, t))

= fm
ε (x, t)(|λν | − ε2) + (φν,ε(x) + ε)(−∆)αεψε(x, t)

+ (λν + 1)ψε(x, t)φν,ε(x)− fm
ε (x, t)− K̃ε(ψ, φν + ε)(x, t)

= fm
ε (x, t)(|λν | − ε2) + (φν,ε(x) + ε)(−∆)αεψε(x, t)

+ (λν + 1)ψε(x, t)(φν,ε(x) + ε)(x, t)− ε(λν + 1)ψε(x, t)− fm
ε (x, t)− K̃ε(ψ, φν + ε)(x, t)

= −ε2fm
ε (x, t) + (φν,ε(x) + ε)(−∆)αεψε(x, t)− ε(λν + 1)ψε(x, t)− K̃ε(ψ, φν + ε)(x, t).

(36)
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Thanks to Lemma 4, we obtain

|(−∆)αεψε(x, t)| = |Cme
− δ

ε (−∆)αε (gε(e
−[t(|λν |−ε2)+δ]

1+2α .))(x)|

≤ |Cme
−

2α[t(|λν |−ε2)+δ]
ε(1+2α)

− δ
ε (gε)(e

−[t(|λν |−ε2)+δ]
1+2α x)|.

We deduce that there exists ε2 > 0 such that for all ε < ε2:

|(−∆)αεψε(x, t)| ≤
ε2

3
ψε(x, t). (37)

Since (φν + ε) is periodic, positive and Cα according to [22] (Proposition 1.1), we conclude from
Lemma 4 that there exists γ ∈]0, α[ and a constant C such that

|K̃ε(ψ, φν + µ)(x, t)| ≤ Ce−
[t(|λν |−ε2)+δ](2α−γ)

ε(1+2α) ψε(x, t).

We deduce the existence of ε3 > 0 such that for all ε < ε3, we have

|K̃ε(ψ, φν + µ)(x, t)| ≤
ε3

3
ψε(x, t). (38)

Noticing that λν + 1 > 0, inserting (37) and (38) into (36), we conclude that for all ε < εν :=

min(ε2, ε3,
√

|λν |
2
, 1) and (x, t) ∈ Ωε

ν × [0,+∞[ we have:

ε∂tf
m
ε (x, t) + (−∆)αε f

m
ε (x, t)− fm

ε (x, t) + fm
ε (x, t)2

≤ −ε2fm
ε (x, t) + (φν,ε + µ)(x)(−∆)αψε(x, t)− ε(λν + 1)ψε(x, t)− K̃ε(ψ, φν + ε)(x, t)

≤ −ε2fm
ε (x, t) +

ε2

3
fε(x, t) +

ε2

3
fε(x, t)

≤ −
ε2

3
fm
ε (x, t)

≤ 0.

Therefore, fm
ε is a sub-solution of (1ε).

The proof of (2) follows the same arguments as the proof of (1).
For the proof of (3), we only have to check that the initial data are ordered in the right way.

According to (H2′) and the definition of Cm, we have that

∀x ∈ Ωε
ν , f

m
ε (x, 0) ≤

Cm(maxφν + ε)

1 + |x|
1+2α

ε

≤
cmν

α + ε

1 + |x|
1+2α

ε

≤
cmδ(x)

α

1 + |x|
1+2α

ε

+ ε ≤ nε(x, 0) + ε.

Furthermore, for all (x, t) ∈ (Ωε
ν)

c × [0,+∞[, we know that ε = fm
ε (x, t) ≤ nε(x, t) + ε. Thus we

conclude from the maximum principle that for all (x, t) ∈ R× [0,+∞[, we have

fm
ε (x, t) ≤ nε(x, t) + ε. (39)

The other inequality can be obtained following similar arguments.
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Before dealing with the proof of Theorem 3, we need intermediate results about λ0 and n+.
We approach λ0 by λν where λν is the principal eigenvalue of the Dirichlet Laplacian (−∆)α − Id
in Ων . The second proposition approaches the stationary state n+ by the stationary state of
(−∆)αnν,+ = nν,+ − n2

ν,+ in Ων and 0 outside Ων .

Proposition 3. The map
(
ν ∈]− A−A0

2
, A−A0

2
[7→ λν

)
is increasing and continuous.

We let the proof of this proposition to the reader since there is no difficulty. The proof relies
on the Rayleigh quotient for the monotony and on the uniqueness of the principal eigenvalue for
the continuity.

Proposition 4. For all ν ∈ [0, A − A0[, there exists a unique steady state nν,+ to the following
equation: {

(−∆)αnν,+ = nν,+(1− nν,+) for x ∈ Ων ,

nν,+(x) = 0 for x ∈ Ωc
ν .

(40)

Proof. The proof of the existence and uniqueness follows the proof of Theorem 1 since the hypoth-
esis (H1) is verified.

Then, we continue by proving that the dependance of nν,+ on the parameter ν is continuous.
As Proposition 4, the proof is classical. Nevertheless, it uses Theorem 1 so we provide it.

Proposition 5. The steady state nν,+ converges uniformly to n+ as ν → 0.

Proof. The convergence outside Ω is trivial since nν,+ = n+ = 0.
Let µ be a positive constant in ]0, A−A0

2
[. We show the convergence inside Ωµ. We first show that

for all 0 < ν1 < ν2 we have
nν2,+ ≤ nν1,+ ≤ n+. (41)

Actually, take w0 ∈ C∞
0 (Ων2 ,R

+) ∩ Cc(R,R
+). Then we consider the three systems:






∂tw1 + (−∆)αw1 = w1(1− w1) for (x, t) ∈ Ων1×]0,+∞[,

w1(x, t) = 0 for (x, t) ∈ Ωc
ν1
× [0,+∞[,

w1(x, 0) = w0(x),





∂tw2 + (−∆)αw2 = w2(1− w2) for (x, t) ∈ Ων2×]0,+∞[,

w2(x, t) = 0 for (x, t) ∈ Ωc
ν2
× [0,+∞[,

w2(x, 0) = w0(x),

and 



∂tw + (−∆)αw = w(1− w) for (x, t) ∈ Ω×]0,+∞[,

w(x, t) = 0 for (x, t) ∈ Ωc × [0,+∞[,

w(x, 0) = w0(x).

According to the maximum principle, we have that for all (x, t) ∈ R× [0,+∞[

w2(x, t) ≤ w1(x, t) ≤ w(x, t).

18



If we take the limit in time in the above inequalities, we find (41). Thus, the map (ν 7→ nν,+) is
decreasing. Since nν,+ is bounded, we deduce that nν,+ −→

ν→0
n0,+ pointwise. Moreover, n0,+ is a

steady solution to the equation (1). By uniqueness of n+ (induced by Theorem 1), we deduce that

n0,+ = n+.

Since the sequence (nν,+)ν≥0 is decreasing and the limit n+ is continuous, we deduce from the Dini
Theorem that the convergence is uniform in [µ,A−µ]. Moreover, since nν,+ and n+ are periodic, it
is enough to prove that the convergence is uniform in the set [µ,A−µ] to conclude to the uniform
convergence in the whole domain Ωµ. Thus, nν,+ converges uniformly to n+ in Ωµ.
We deduce that for all τ > 0 and for all µ > 0, there exists ν0 > 0 such that for all ν ∈]0, ν0[,

|n+(x)− nν,+(x)| ≤ τ, ∀x ∈ Ωµ ∪ Ωc.

It remains to prove the same relation in Ω\Ωµ. Thanks to Proposition 1, we know that there exists
C > 0 such that for all x ∈ R

n+(x) ≤ Cδ(x)α.

We deduce that for all τ > 0, there exists µ0 > 0 such that for all µ ∈]0, µ0[, we have

n+(x) ≤
τ

2
, ∀x ∈ Ω such that δ(x) < µ.

Thanks to (41), we deduce that for all µ ∈]0, µ0[ and for all ν > 0, we have

|n+(x)− nν,+(x)| ≤ 2n+(x) ≤ τ, ∀x ∈ Ω\Ωµ.

We conclude that nν,+ converges uniformly to n+ as ν → 0.

5 The proof of Theorem 3

We first provide the proof of the convergence of nε to 0 in Bc. Next, we prove of the convergence
of nε to n+,ε in (Ωε × R

+) ∩ B. This proof is the difficult part of this section.

Proof of the convergence of nε to 0 in Bc. Let K be a compact set of Bc. According to Theorem
4, we know that for all (x, t) ∈ K,

0 ≤ nε(x, t) ≤ fM
ε (x, t) ≤

Cmax φ−ν

1 + e
−t(|λ−ν |+ε2)−δ+(1+2α) log(|x|)

ε

,

where δ can be taken as small as we want. For δ small enough we have that for all (x, t) ∈ K

2δ ≤ (1 + 2α) log(|x|)− |λ0|t.

Thanks to Proposition 3, we deduce the existence of ν1 > 0 and ε1 such that for all (x, t) ∈ K we
have for all ν < ν1 and ε < ε1,

δ ≤ (1 + 2α) log(|x|)− t|λ0|+ t(|λ0| − |λ−ν | − ε2)− δ = −t(|λ−ν |+ ε2)− δ + (1 + 2α) log(|x|).

The conclusion follows.
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Proof of the convergence of nε to n+,ε in (Ωε × R
+) ∩ B. It is sufficient to prove the uniform con-

vergence in the set
(
Ωε

2δ̃
×B(t, r)

)
∩B2δ̃ with B(t, r) a neighborhood of some positive time t and

for all positive constants δ̃ arbitrarly small. More precisely, let t be a positive time and δ̃ be a
positive constant. We define

V (t) = B (t, r′) with r′ := min


 t

2
,

δ̃

8|λ0|
,

√
δ̃

16


 (42)

as a neighborhood of t. The aim is to show that for all µ > 0, there exists ε0 > 0 (depending on δ̃

and µ) such that we have for all ε < ε0 and all (x, t) ∈
(
Ωε

2δ̃
×B(t, r

′

2
)
)⋂

B2δ̃

|
nε(x, t)

n+,ε(x)
− 1| ≤ µ. (43)

The proof is split into two parts :

Part A) For all ε > 0 small enough, we have for all (x, t) ∈
(
Ωε

2δ̃
× B(t, r

′

2
)
)
∩ B2δ̃,

nε(x, t)

n+,ε(x)
≤ 1 + µ.

Part B) For all ε > 0 small enough we have for all (x, t) ∈
(
Ωε

2δ̃
× B(t, r

′

2
)
)
∩ B2δ̃,

1− µ ≤
nε(x, t)

n+,ε(x)
,

Proof of Part A. We start with the easiest part. A super-solution to (1) is obtained by taking
sup n0 as an initial datum. The conclusion follows.

The non trivial part is the lower bound. The main difficulty wich comes from the boundary

will be encountered in this second part. We will overcome it by studying a modification of
nε(x, t)

n+,ε(x)

which localizes the minimum of
nε(x, t)

n+,ε(x)
. The modification is defined as follows:

Ψε(x, t) :=





(nε(x, t) + ε)(1 + e
−|λ0|t0+δ̃

ε |x|
1+2α

ε )e
(t−t0)

2

ε

nν̃,+,ε(x)
if x ∈ Ωε

ν̃

+∞ otherwise ,

(44)

where ν̃ will be chosen later. This is very much in the spirit of the comparison techniques for
viscosity solutions.

Proof of Part B. Let t0 ∈ V (t). In order to achieve this part, we split the study into 5 main
steps:

(i) We show that for ν̃ ∈ [0, δ̃], to be specified later, the minimum of Ψε is atteined at some
point (xε, tε) ∈ (Ων̃ × V (t)) ∩ B.
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(ii) We show that for ν̃ small enough tε −→
ε→0

t0.

(iii) We use this minimum to prove the existence of ε(δ̃, µ, t0) such that for all ε ≤ ε(δ̃, µ, t0)

1−
µ

8
≤
nε(xε, tε)

n+,ε(xε)
. (45)

(iv) We bring back (45) to (x0, t0) where x0 is any point of Ω2δ̃ ∩

{
x ∈ R| |x| ≤ e

|λ0|t0−2δ̃
1+2α

}
.

(v) We show the existence of ε(δ̃, µ) such that we have

∀ε ≤ ε(δ̃, µ) and ∀(x, t) ∈

(
Ωε

2δ̃
× B(t,

r′

2
)

)
∩ B2δ̃, 1− µ ≤

nε(x, t)

n+,ε(x)
.

Step (i). We focus on the localisation of the minima of Ψε defined by (44).
We recall that according to Theorem 4, for all ν̃ ∈]0, A−A0

2
[ there exists εν̃ > 0 such that for all

ε ≤ εν̃ we have

(φ ν̃
2
,ε(x) + ε)×

Cme
− δ

ε

1 + e
− t

ε
(|λ ν̃

2
|−ε2)− δ

ε |x|
1+2α

ε

≤ nε(x, t) + ε. (46)

Remark that the constant δ in (46) can be taken as small as we want, thus we will take it such
that

δ ≤
δ̃

4
. (47)

We want to prove that the minimum of Ψε is taken in (Ωε
ν̃ × V (t)) ∩ B. More precisely, the

goal now is to prove that in (Ωε
ν̃ × V (t)) ∩ Bc, Ψε −→

ε→0
+∞ whereas Ψε(x, t0) is bounded for all

x ∈ Ωε
2ν̃ ∩

{
x ∈ R| |x| < e

|λ0|t0−2δ̃
1+2α

}
.

Before dealing with the details, we provide one last inequality given by (46). For all (x, t) ∈
(Ωε

ν̃ × V (t)) ∩ Bc we have :

Ψε(x, t) ≥ (φ ν̃
2
,ε(x) + ε)×

Cme
− δ

ε

1 + e−
t|λ ν̃

2
|−ε2)+δ

ε |x|
1+2α

ε

×
(1 + e

−|λ0|t0+δ̃

ε |x|
1+2α

ε )e
(t−t0)

2

ε

nν̃,+,ε(x)

≥ Cm ×
min
Ων̃

φ ν̃
2

maxnν̃,+

×
e−

δ
ε (1 + e

−|λ0|t0+δ̃

ε |x|
1+2α

ε )e
(t−t0)

2

ε

1 + e−
t(|λ ν̃

2
|−ε2)+δ

ε |x|
1+2α

ε

≥ C ×
e

−δ−|λ0|t0+δ̃+(1+2α) log |x|+(t−t0)
2

ε

1 + e−
t(|λ ν̃

2
|−ε2)+δ

ε |x|
1+2α

ε

.

(48)

Proof that Ψε diverges in (Ωε
ν̃ × V (t)) ∩ Bc. Let (x, t) ∈ (Ωε

ν̃ × V (t)) ∩ Bc. We have to
consider two cases :

Case 1: −t(|λ ν̃
2
| − ε2)− δ + (1 + 2α) log |x| ≤ 0.

In this case,

1 + e
− t

ε
(|λ ν̃

2
|−ε2)− δ

ε |x|
1+2α

ε ≤ 2.

21



According to (42), (47) and since (x, t) ∈ Bc, we have

δ̃

4
≤ δ̃−δ+ |λ0|(t−t0)−|λ0|t+(1+2α) log |x|+(t−t0)

2 = −δ−|λ0|t0+ δ̃+(1+2α) log |x|+(t−t0)
2.

Inserting these two above inequalities in (48) gives

Ψε(x, t) ≥ C ×
e

−δ+δ̃−|λ0|t0+(1+2α) log |x|+(t−t0)
2

ε

2
≥
C

2
e

δ̃
4ε −→

ε→0
+∞. (49)

Case 2: −t(|λ ν̃
2
| − ε2)− δ + (1 + 2α) log |x| > 0.

In this case note that

1 + e
−t(|λ ν̃

2
|−ε2)−δ+(1+2α) log |x|

ε ≤ 2e
−t(|λ ν̃

2
|−ε2)−δ+(1+2α) log |x|

ε .

Thus we deduce that in (48) we have

Ψε(x, t) ≥ C ×
e

−δ−|λ0|t0+δ̃+(1+2α) log |x|+(t−t0)
2

ε

2e−
t(|λ ν̃

2
|−ε2)−δ+(1+2α) log |x|

ε

=
C

2
× e

−|λ0|t0+δ̃+(t−t0)
2+t(|λ ν̃

2
|−ε2)

ε .

Thanks to Proposition 3 and (42), there exists two positive constants ν̃1 and ε1 such that for all
ν̃ < ν̃1 and ε < ε1, we have

|t(|λ ν̃
2
| − ε2)− |λ0|t0 + (t− t0)

2| ≤
δ̃

2
, ∀t ∈ V (t). (50)

We deduce that
Ψε(x, t) ≥ Ce

δ̃
2ε −→

ε→0
+∞. (51)

Proof that Ψε(x, t0) is bounded for x ∈ Ωε

2δ̃
∩

{
x ∈ R | |x| < e

|λ0|t0−2δ̃
1+2α

}
. Take x ∈ Ωε

2δ̃
∩

{
x ∈ R | |x| < e

|λ0|t0−2δ̃
1+2α

}
, it follows that

−|λ0|t0 + (1 + 2α) log(|x|) + δ̃ ≤ −δ̃.

According the maximum principle, we have for ε < 1

nε(x) + ε ≤ 2.

We find that

Ψε(x, t0) ≤
2(1 + e−

δ̃
ε )

min
Ω2ν̃

nν̃,+
≤

4

min
Ω2ν̃

nν̃,+
.

We deduce that for all ν̃ < min(A−A0

2
, ν̃1, δ̃) and all ε < min(ε1, εν̃, 1), there exists (xε, tε) ∈

(Ωε
ν̃ × V (t))

⋂
B such that Ψε(xε, tε) = min

(x,t)∈R×V (t)
Ψε(x, t). Remark that this minimum is global in

space and local in time.
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Step (ii). We show by contradiction that

∃ν̃2 > 0, such that ∀ν̃ ≤ ν̃2 we have tε −→
ε→0

t0.

If it does not hold, there exists a constant τ > 0 such that |tεk − t0| > τ with εk −→
k→+∞

0. According

to Proposition 3, there exists ν̃2 > 0 and ε2 > 0 such that for all ν̃ < ν̃2 and for all ε ≤ ε2 we have

t||λ0|+ ε2 − |λ ν̃
2
|| ≤

τ 2

2
, ∀t ∈ V (t). (52)

We are going to show that Ψεk(xεk , tεk) −→
k→+∞

+∞ which is a contradiction. Thanks to (46), we

obtain

Ψεk(xεk , tεk) ≥ Cm ×
min
Ων̃

φ ν̃
2

maxnν̃,+

×
e
− δ

εk (1 + e
−|λ0|t0+δ̃

εk |xεk |
1+2α
εk )e

(tεk
−t0)

2

εk

1 + e
−

tεk
εk

(|λ ν̃
2
|−ε2k)−

δ
εk |xεk |

1+2α
εk

≥ Cm ×
min
Ων̃

φ ν̃
2

maxnν̃,+
×
e

−|λ0|t0+(1+2α) log |xεk
|+δ̃−δ+(tεk

−t0)
2

εk

1 + e
−

tεk
εk

(|λ ν̃
2
|−ε2

k
)− δ

εk |xεk |
1+2α
εk

.

Recalling that (xεk , tεk) ∈ B, we deduce that (1 + 2α) log |xεk | − |λ0|tεk < 0 and then

Ψεk(xεk , tεk) ≥ C ×
e

δ̃−δ+|λ0|(tεk
−t0)+(tεk

−t0)
2

εk

1 + e
−

tεk
(|λ ν̃

2
|−ε2

k
)+δ

εk |xεk |
1+2α
εk

.

By definition of τ and thanks to (42), we have

τ 2 < δ̃(1−
1

4
−

1

4
) + τ 2 ≤ δ̃ − δ + |λ0|(tεk − t0) + (tεk − t0)

2.

We deduce that

Ψεk(xεk , tεk) ≥ C ×
e

τ2

εk

1 + e

−tεk
(|λ ν̃

2
|−ε2

k
)+(1+2α) log |xεk

|−δ

εk

.

Moreover, since (xεk , tεk) ∈ B, we have

−tεk(|λ ν̃
2
| − ε2k) + (1 + 2α) log |xεk | − δ = −tεk(|λ ν̃

2
| − |λ0| − ε2k)− |λ0|tεk + (1 + 2α) log |xεk | − δ

≤ |tεk(|λ ν̃
2
| − |λ0| − ε2k)|.

Since tεk ∈ V (t) and thanks to (52), we obtain that

−tεk(|λ ν̃
2
| − ε2k) + (1 + 2α) log |xεk | − δ ≤ |tεk(|λ ν̃

2
| − |λ0| − ε2k)| ≤

τ 2

2
.

We deduce the following contradiction

Ψεk(xεk , tεk) ≥
C

2
× e

τ2

2εk −→
k→+∞

+∞.
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Step (iii). We go back to (1ε). We want to demonstrate that

1−
µ

8
≤
nε(xε, tε)

n+,ε(xε)
. (53)

In order to achieve it, we first fix ν̃ as follows. According to Proposition 3, there exists ν̃3 such
that for all ν̃ < ν̃3,

∀x ∈ Ων̃ , 1−
µ

16
≤
nν̃,+(x)

n+(x)
. (54)

For the following, we fix ν̃ = min(ν̃1, ν̃2, ν̃3, δ̃).
Next, we evaluate (1ε) at (xε, tε) and we divide by (nε(xε, tε) + ε) to find :

(
nε × nε(nε + ε)−1

)
(xε, tε) =− ε

(
∂t(nε + ε)(nε + ε)−1

)
(xε, tε)

−
(
(−∆)αε ((nε + ε)(nε + ε)−1 − nε(nε + ε)−1

)
(xε, tε).

(55)

The term (nε × nε(nε + ε)−1) (xε, tε) has two terms that we are going to control separately.
Control of ε (∂t(nε + ε)(nε + ε)−1) (xε, tε). We prove that

−
µ min

Ων

n+

32
≤ ε∂t(nε + ε)(nε + ε)−1(xε, tε). (56)

Since (xε, tε) is a local minimum in time of Ψε, we obtain

ε∂tΨε(xε, tε) = 0

⇒ε∂t(
(nε(xε, tε) + ε)(1 + e−

|λ0|t0+δ̃

ε |xε|
1+2α

ε )e
(tε−t0)

2

ε

nν̃,+,ε(xε)
) = 0

⇒ε
(
∂t(nε + ε)(nε + ε)−1

)
(xε, tε) = −2(tε − t0).

Since tε −→
ε→0

t0 (thanks to Step (ii)), we conclude to the existence of εt0 > 0 such that for all

ε < εt0 , (56) holds true.
Control of (−∆)αε (nε + ε)(nε + ε)−1(xε, tε). We first introduce a new notation :

hε(x, t) =
e

−(t−t0)
2

ε

1 + e
−|λ0|t0+δ̃

ε |x|
1+2α

ε

= e
−(t−t0)

2

ε × gε(e
−|λ0|t0+δ̃

1+2α x)

such that :

Ψε(x, t) =





(nε(x, t) + ε)

hε(x, t)× nν̃,+,ε(x)
if x ∈ Ωε

ν̃

+∞ otherwise.

Then, since Ψε(xε, tε) = min
(x,t)∈R×V (t)

Ψε(x, t), we deduce that for all y ∈ Ωε
ν̃

Ψε(xε, tε) ≤ Ψε(y, tε) ⇒
nν̃,+,ε(y)hε(y, tε)

nν̃,+,ε(xε)hε(xε, tε)
− 1 ≤

nε(y, tε) + ε

nε(xε, tε) + ε
− 1. (57)

Moreover, for all y ∈ R\Ωε
ν̃ ,

−1 =
nν̃,+,ε(y)hε(y, tε)

nν̃,+,ε(xε)hε(xε, tε)
− 1 ≤

nε(y, tε) + ε

nε(xε, tε) + ε
− 1. (58)
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The combination of (57) and (58) gives :

−(−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)
−1 (xε, tε) ≤ −(−∆)αε

(
(nε + ε)(nε + ε)−1

)
(xε, tε). (59)

Conclusion : Back to (1ε). Inserting (56) and (59) in (55) and remarking that nε × nε(nε +
ε)−1 ≤ nε, we find that

nν̃,+,ε(xε)−
µ min

Ων̃

n+

32
−
(
(−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)

−1 − nε(nε + ε)−1 + nν̃,+,ε

)
(xε, tε) ≤ nε(xε, tε).

(60)
Next, we show that for ε small enough we have

−
µ min

Ων

n+

32
≤

(
(−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)

−1 − nε(nε + ε)−1 + nν̃,+,ε

)
(xε, tε). (61)

We perform the computation of (−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)
−1 (xε, tε):

(−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)
−1 (xε, tε)

= (−∆)αε (nν̃,+,ε) (nν̃,+,ε)
−1 (xε) + (−∆)αε

(
gε(e

−
(|λ0|t0+δ̃)

1+2α ·)

)(
gε(e

−
(|λ0|t0+δ̃)

1+2α ·)

)−1

(xε, tε)

+ K̃ε

(
nν̃,+, g(e

−
(|λ0|t0+δ̃)

1+2α ·)

)(
nν̃,+,εgε(e

−
(|λ0|t0+δ̃)

1+2α ·)

)−1

(xε, tε).

According to Lemma 4, there exists ε3 > 0 such that for all ε < ε3 we have

(−∆)αε (nν̃,+,εhε) (nν̃,+,εhε)
−1 (xε, tε)

= (−∆)αε (nν̃,+,ε) (nν̃,+,ε)
−1 (xε) + oε(1)

≥ 1− nν̃,+,ε(xε)−
µ min

Ων

n+

64

and

1−
µ min

Ων

n+

64
≤

(
nε(nε + ε)−1

)
(xε, tε).

We deduce that (61) holds true.
Inserting (61) in (60), we find that for all ε ≤ min(ε1, ε2, ε3, εν̃, εt0)

nν̃,+,ε(xε)−
µ min

Ων

n+

16
≤ nε(xε, tε).

Dividing by n+,ε(xε) in the previous inequality, we find thanks to (54) that (53) holds true.

Step (iv). Take x0 ∈ Ωε

2δ̃
∩
{
x | (1 + 2α) log |x| ≤ |λ0|t0 − 2δ̃

}
. Now we want to bring back

(53) at the point (x0, t0). Remark that since ν̃ ≤ δ̃ we have Ωε

2δ̃
⊂ Ωε

ν̃ . We also recall that thanks
to Proposition 3,

∀x ∈ R, nν̃,+(x) ≤ n+(x). (62)

Then there are two cases :
1) hε(xε, tε) ≤ hε(x0, t0),
2) hε(xε, tε) > hε(x0, t0).
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Case 1 : hε(xε, tε) ≤ hε(x0, t0).
Since Ψ(xε, tε) = min

(x,t)∈R×V (t)
Ψε(x, t) and according to (53) and (62) we deduce that

1−
µ

4
≤ 1−

µ

8
≤
nε(xε, tε)

n+,ε(xε)

≤
nε(xε, tε) + ε

n+,ε(xε)

≤
(nε(xε, tε) + ε)

nν̃,+,ε(xε)
×
hε(xε, tε)

hε(xε, tε)

≤
(nε(x0, t0) + ε)

nν̃,+,ε(x0)
×
hε(xε, tε)

hε(x0, t0)
≤

(nε(x0, t0) + ε)

nν̃,+,ε(x0)
.

Case 2 : hε(xε, tε) > hε(x0, t0).
Since (x0, t0) ∈ B2δ̃ we have

−|λ0|t0 + (1 + 2α) log(|x|) + δ̃ < −δ̃.

We deduce the existence of ε4 such that for all ε < ε4, we have

1−
µ

8
≤

1

1 + e−
δ̃
ε

≤
1

1 + e−
(|λ0|t0+δ̃)

ε |x0|
1+2α

ε

= hε(x0, t0). (63)

Moreover, thanks to the definition of hε, we have

1 ≤ e
(tε−t0)

2

ε × (1 + e
(−|λ0|t0+δ̃)

ε |x|
1+2
ε ) = hε(xε, tε)

−1. (64)

Recalling that Ψε(xε, tε) = min
(x,t)∈R×V (t)

Ψε(x, t) and the inequalities (62), (63) and (64), we find that

1−
µ

4
≤ (1−

µ

8
)2 ≤

nε(xε, tε)

n+,ε(xε)

≤
nε(xε, tε) + ε

n+,ε(xε)

≤
(nε(xε, tε) + ε)

nν̃,+,ε(xε)
×
hε(x0, t0)

hε(xε, tε)

= Ψε(xε, tε)× hε(x0, t0)

≤ Ψε(x0, t0)× hε(x0, t0) =
nε(x0, t0) + ε

nν̃,+,ε(x0)
.

We deduce that for all ε < ε(δ̃, µ, t0) := min
i∈{1,...,4}

(εi, εν̃, εt0 , 1,
µ

4min
Ω
2δ̃

nν̃,+
) and all x0 ∈ Ωε

2δ̃
∩

{
x ∈ R| |x| ≤ e

|λ0|t0−2δ̃
1+2α

}
we have

1−
µ

2
≤
nε(x0, t0) + ε

nν̃,+,ε(x0)
−

ε

nν̃,+,ε(x0)
=
nε(x0, t0)

nν̃,+,ε(x0)
.
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Since x0 ∈ Ωε

2δ̃
⊂ Ωε

ν̃ , we deduce that (54) holds true then we conclude thanks to the previous
inequality that

1− µ ≤ (1−
µ

2
)× (1−

µ

8
) ≤

nε(x0, t0)

nν̃,+,ε(x0)
×
nν̃,+,ε(x0)

n+,ε(x0)
=
nε(x0, t0)

n+,ε(x0)
.

Step (v). We show by contradiction that there exists ε(δ̃, µ) > 0 such that for all ε ≤ ε(δ̃, µ)

and all (x, t) ∈
(
Ωε

2δ̃
×B(t, r

′

2
)
)
∩ B2δ̃ we have

1− µ ≤
nε(x, t)

n+,ε(x)
.

Assume that such a non null ε(δ̃, µ) does not exist. Next, for all t ∈ V (t) we define

ε(δ̃, µ, t) = sup

{
ε0 > 0 | 1− µ ≤

nε(x, t)

n+,ε(x)
for all ε < ε0, x ∈ Ωε

2δ̃
∩

{
x ∈ R| |x| ≤ e

|λ0|t−2δ̃
1+2α

}}
.

Thanks to Step (iv), we know that for all t ∈ V (t)

ε(δ̃, µ, t) > 0.

Since we assume that ε(δ̃, µ) does not exist, we deduce the existence of (tk)k∈N ∈ B(t, r
′

2
), such

that
ε(δ̃, µ, tk) → 0.

Up to an extraction, we assume that tk −→
k→+∞

t∞ with t∞ ∈ B(t, r
′

2
). Since t∞ ∈ V (t), we deduce

that ε( δ̃
2
, µ
2
, t∞) > 0. We are going to exhibit a contradiction based on this fact.

Since we assume that ε(δ̃, µ, tk) → 0, we deduce that

∃N ∈ N such that ∀k ≥ N, ε(δ̃, µ, tk) <
ε( δ̃

2
, µ
2
, t∞)

2
.

We deduce that for all k > N , there exists εk ∈]
ε( δ̃

2
,
µ
2
,t∞)

2
, ε( δ̃

2
, µ
2
, t∞)[ such that the following holds

true :

∃xk,εk ∈ Ωεk

2δ̃
∩

{
x ∈ R| |x| ≤ e

|λ0|t−2δ̃
1+2α

}
such that

nεk(xk,εk , tk)

nεk,+(xk,εk)
< 1− µ.

Moreover, since tk → t∞, we deduce the existence of N0 ∈ N such that for all k ≥ N0 we have

Ωε

2δ̃
∩

{
x ∈ R| |x| ≤ e

|λ0|tk−2δ̃

1+2α

}
⊂ Ωε

δ̃
∩

{
x ∈ R| |x| ≤ e

|λ0|t∞−δ̃

1+2α

}
. (65)

Furthermore, the set K :=
((

Ωε

δ̃
× V (t)

)
∩ Bδ̃

)
×]

ε( δ̃
2
,
µ
2
,t∞)

2
, ε( δ̃

2
, µ
2
, t∞)[ is compact. Since the map

((x, t, ε) 7→ nε(x, t)) is continuous, we deduce that ((x, t, ε) 7→ nε(x, t)) is uniformly continuous in

K. We conclude to the existence of N1 ≥ N0 such that for all k ≥ N1, all ε ∈]
ε( δ̃

2
,
µ
2
,t∞)

2
, ε( δ̃

2
, µ
2
, t∞)[

and all x ∈ Ωε

δ̃
∩

{
x ∈ R||x| < e

|λ0|t∞−δ̃

1+2α

}
we have

1−
µ

2
<

nε(x, tk)

nε(x, t∞)
. (66)
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By definition of ε( δ̃
2
, µ
2
, t∞), we deduce thanks to (65) and (66) that for all ε ∈]

ε( δ̃
2
,
µ
2
,t∞)

2
, ε( δ̃

2
, µ
2
, t∞)[

and all x ∈ Ωε

2δ̃
∩

{
x ∈ R||x| < e

|λ0|tk−2δ̃

1+2α

}
we have

1− µ ≤ (1−
µ

2
)2 ≤

nε(x, tk)

nε(x, t∞)
×
nε(x, t∞)

n+,ε(x)
=
nε(x, tk)

n+,ε(x)
.

Since the previous inequality holds true for ε = εk and x = xk,εk for k ≥ max(N,N1), the
contradiction follows.

We conclude that for all µ > 0, δ̃ > 0 and t > 0, there exists ε(δ̃, µ) > 0 and r > 0 such that

for all ε < ε(δ̃, µ) and for all (x, t) ∈
(
Ωε

2δ̃
×B(t, r)

)
∩ B2δ̃ we have

1− µ ≤
nε(x, t)

n+,ε(x)
.

Aknoledgement
S. Mirrahimi is grateful for partial funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research, innovation programme (grant agreement No639638),
held by Vincent Calvez and the chaire Modélisation Mathématique et Biodiversité of Véolia En-
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