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Abstract: The increasing share of photovoltaic (PV) power in the global energy mix presents a great challenge to power grid
operators. In particular, PV power’s intermittency caused by varying weather conditions can lead to mismatches between energy
production and expectation. Battery Energy Storage Systems (BESS) are often put forward as a good technological solution to
these problems, as they are able to mitigate PV power forecast errors. However, the investment cost of such systems is still high,
which questions the benefits in relation to the cost of using these systems in operational contexts. In this paper, we compare
several strategies to manage a PV power plant coupled with a BESS in a market environment. They are obtained by stochastic
optimization using a Model Predictive Control (MPC) approach. This paper proposes an approach that takes into account the aging
of the BESS, both at the day-ahead level and in the real-time control of the BESS, by modeling the cost associated with BESS
usage. As a result, the BESS arbitrates between compensating forecast errors and preserving its own life expectancy, based on
both PV production and price scenarios derived from probabilistic forecasts. A sensitivity analysis is also carried out to provide
guidelines on the optimal sizing of the BESS capacity, depending on market characteristics and BESS prospective costs.

1 Introduction

The significant share of PV power employed in several countries
poses challenges due to the discrepancies between expected and
actual energy production. This is a major issue for Transmission Sys-
tem Operators (TSO), which have to ensure that energy production
and demand always match. Most countries apply policies whereby
the risk is borne by the PV plant operators, which pay the TSO for
any discrepancies between their day-ahead forecast production and
actual production.

Thus, the derivation of optimal bids on a day-ahead electricity
market for intermittent energy production resources has been an
active field of research in recent years. In [1] and [2], the authors pro-
posed different ways of deriving bids using probabilistic forecasts of
the production. Reference [3] developed these ideas and proposed
analytical solutions to the optimal bidding problem. However, the
revenue of a given producer is still quite sensitive to the uncertainty
of the power generation resource, and the financial penalties caused
by forecast errors can represent a significant loss for the producer.

BESS units are viewed as a good technical solution to deal with
these problems, thanks to their ability to compensate for forecast
errors. However, these systems are still costly and their actual finan-
cial benefit is difficult to quantify in the long term, which makes PV
plant operators reluctant to install them. Thus, it is very important
to define strategies that ensure the optimal operation of a PV/BESS
system, so that the benefit of installing a storage system is maxi-
mized. Two strategies are required: one for the day-ahead level when
bids are submitted to the electricity market, and one for the real-time
control of the BESS.

Several papers propose bidding strategies at the day-ahead level
for standalone large-scale BESS [4], [5]. Although they report good
performance, the optimal offering strategy is largely dependent on
market design. Besides, these authors assume that a BESS can freely
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charge or discharge on the grid, which is not the case when con-
sidering combined PV/BESS. An interesting result from [5] is that
maximizing the BESS owner’s profit results in reduced social wel-
fare, which shows that the price signals do not necessarily work in
favor of the grid’s operation. In [6], the authors propose a bidding
method for a combined wind/hydro plant, but they assume perfect
wind forecasts at the operation stage. Reference [7] also proposes
a method for a wind/hydro plant for both the day-ahead and oper-
ational stages, but they do not attempt to model the market prices
because of their high volatility.

The standard method for real-time control of PV/BESS is Model
Predictive Control (MPC). This consists in optimizing the control of
the BESS on a receding horizon, in order to take into account the
forecast future state of the system when optimizing the next time
step. Different loss functions can be optimized on the receding hori-
zon. In most cases, the optimized function is either the producer’s
profit [8], [9] or the energy imbalance [10], that is the deviation
between the planned schedule and the actual outcome, without tak-
ing profit into consideration. Some authors also propose an MPC
approach to bid on intra-day market sessions [11], [12]. The uncer-
tainty of the upcoming PV production is sometimes included in both
the day-ahead planning and the real-time control of the BESS, as in
[13], [14] or [15].

Overall, several points are often neglected in the literature. The
first is the aging cost of a BESS. This is mentioned in [9], where
constraints are defined to improve the life expectancy of the BESS,
and in [12] where the MPC loss function is penalized by the total
amount of energy flowing in and out of the BESS. At the day-ahead
level, [4] considers aging with a finer modeling. While few papers
consider the uncertainty of renewable energy forecasts, [5] and [16]
model this uncertainty using production scenarios.

We include all of these elements to propose and compare differ-
ent strategies for controlling a PV/BESS system. These strategies
include all of the elements that lacked in the previous approaches.
Deterministic forecasts of both day-ahead and balancing prices are
performed, along with probabilistic forecasts of the PV power pro-
duction. In particular, we establish that it is very important to use
a representation of the uncertainty based on production scenarios,
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derived from the forecasts. Using a sequence of forecast distribu-
tions fails to account for the temporal correlation of the forecast
errors, which is critical to the good operation of a storage system.
In addition, a model of the cost associated with the BESS aging is
implemented to take it into account at both day-ahead and real-time
decision levels. Most of the strategies are obtained by stochastic opti-
mization using an MPC approach, but we also provide analytical
solutions after simplifying the bidding problem.

The key contributions of the paper are (1) the inclusion of the
BESS usage cost as a penalization of the revenue when propos-
ing bids or managing the BESS in real time; (2) the derivation of
a closed-form analytic solution to the market penalty minimization
problem at the real-time level. This allows us to extend analytic
solutions in the literature that provide the optimal bid for RES gener-
ation considering a hedging option based on a storage device; (3) an
additional contribution of this paper is the sensitivity analysis per-
formed on the results to evaluate the influence of BESS size and
market prices on the relevance of using a PV/BESS. In particular,
the optimal sizing of the BESS depending on the control strategy is
discussed. We also determine the best strategy depending on market
prices e.g. whether it is better to use a BESS only to compensate the
forecast errors, or whether production should also be shifted to times
with higher day-ahead prices.

The paper is structured as follows: in section 2, the assumptions
we make for modeling the market are presented. Then sections 3
and 4 present the methods proposed for controlling the PV/BESS at
the day-ahead and real-time stages, respectively. Section 5 describes
the tools involved in these methods, and section 6 describes the test
case. Section 7 shows the results, while the sensitivity analysis is
performed in section 8. Finally, section 9 draws the conclusions of
the paper.

2 Market Structure

In this paper, the market structure we consider comprises two parts:

• A day-ahead market where all actors can submit buying and sell-
ing orders up to 12 AM before the day of delivery. The orders are
then aggregated to make supply and demand curves and ultimately
derive a day-ahead price π for each market time unit.
• A balancing market where all actors must financially compensate
any deviation between the amount of energy sold on the day-ahead
market and the actual energy they have produced i.e. the imbalance.
The compensation is derived after the day of delivery. The devia-
tions are compensated with a balancing price which changes for each
market time unit.

We consider a dual-price market. This means that the balancing
prices are different depending on the sign of the imbalance. We note
π+ the balancing price for positive imbalances (energy produced
higher than energy sold), and π− the balancing prices for negative
imbalances (energy produced lower than energy sold). In such a sit-
uation, for a given time step, the revenue R of a producer that sells
an amount of energy B (for Bid) but actually produces E writes:

R = πB +

{
π+(E −B) if E > B
π−(E −B) if E < B

(1)

It is useful to rewrite the revenue as:

R = πE − πB(E −B) (2)

with

πB =

{
π − π+ if E > B
π − π− if E < B

(3)

This formulation is useful because it clearly reflects the way the
revenue is calculated. The first term of the equation is the revenue
generated from selling the actual energy produced at the day-ahead
price. The second term is a penalty term corresponding to the finan-
cial compensation of the imbalances. Usually, the balancing prices

are defined such that π+ ≤ π ≤ π−, so that this second term is
positive.

Finally, to derive the control algorithms, we reformulate by differ-
entiating the part of the productionE that comes from the PV panels
EPV and the part that comes from the BESS EBESS .

We also introduce a term C(EBESS), that reflects the costs due
to aging of the BESS when used to deliver the amount of energy
EBESS . This is obtained with the rainflow counting algorithm [17].
The aging of the BESS can be divided into two components, i.e.
cycling aging and calendar aging, which is the degradation caused
by time. In the remainder of the paper, we will focus on the cycling
aging of the BESS and consider its calendar aging as a given life-
time. The end-of-life of the BESS is thus defined as the minimum
lifetime given by the cycling and calendar aging. As an example, if
the calendar aging gives a lifetime of 20 years, and the cycling aging
a lifetime of 50 years, we consider that the actual lifetime of the
BESS is 20 years (as opposed to considering that the cycling aging
adds up to the 20 years given as the calendar lifetime).

We penalize the revenue with the cost associated with the life-
loss of the BESS. Note that the penalized revenueR′ is not an actual
cash flow, and that the cost associated with the life-loss is only here
to make the control of the BESS more conservative regarding the
lifetime. The penalized revenue R′ then writes:

R′ = π(EPV + EBESS)− πB(EPV + EBESS −B) (4)

− C(EBESS)

3 Day-ahead Offering Strategy

Different algorithms are required for day-ahead bidding of the
PV/BESS, and for real-time control of the system. The aim of
the first control algorithm is to provide the bids of the combined
PV/BESS for the forthcoming day. We propose a first benchmark
where the BESS is not used at the day-ahead level, and a second
where the BESS is taken into account along with its usage cost.

In all the proposed algorithms, the PV/BESS is considered a
price-taker. This means that we assume that the PV/BESS bids have
no influence on the day-ahead price. This hypothesis seems reason-
able since the generation of the PV/BESS is low compared to the
typical volume of energy exchanged on electricity markets. How-
ever, the number of participant with uncertain production, usually
having a price taker behavior, increases on electricity markets. Thus,
the influence they have on the day-ahead prices becomes more and
more significant. For the sake of simplicity, we do not model this
influence in this paper.

3.1 Benchmark: No BESS in the day-ahead planning

For the benchmark, we do not use the BESS at the day-ahead level,
and thus, all the terms related to the BESS are ignored. To derive the
optimal bids B∗DA, we must then solve:

B∗DA = argmaxB∈RN

N∑
i=1

πiEi − πB,i(Ei −Bi) (5)

where N is the number of market time units in a day. In these
conditions, it has been proven that the optimal bids that minimize
the penalties for the producer are given by [1]:

B∗DA,i = F−1i

(
πi − π+,i

π−,i − π+,i

)
(6)

where Fi is a forecast Cumulative Distribution Function (CDF)
of the energy production of the plant for the i-th market time unit.
The application of this strategy for a PV power plant thus requires a
probabilistic PV power forecasting model, and a forecasting model
of the day-ahead and regulation prices. This benchmark strategy is
referred to as strategy DA0 in the remainder of the paper.
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3.2 Optimal bidding using the BESS

When the BESS is used at both the day-ahead and real-time lev-
els, then the entire formulation of the revenue from equation (4) is
optimized. Once again, we separate the bids into one part accompa-
nied by uncertainty from the PV plant BPV , and the output from
the battery BBESS . Since the BESS is controllable, we assume
that the actual output of the BESS EBESS is equal to the amount
bid BBESS . With these assumptions, the optimization problem that
needs to be solved to derive the optimal bids is:

B∗PV ,B
∗
BESS = argmax[BPV ∈RN ,BBESS∈RN ] (7)

N∑
i=1

πi(EPV,i +BBESS,i)− πB,i(EPV,i −BPV,i)

− C(BBESS,i)

However, to ensure that we can assume that EBESS = BBESS ,
and to correctly simulate the operation of a BESS, we must add sev-
eral constraints. To define the constraints, we note as SOC (for State
of Charge) the amount of energy in the battery at a given time step,
relative to its full capacity Cap.

− 1

ηCh
Cap(1− SOCi) < BBESS,i < ηDisCapSOCi (8)

−BBESS < ηChEPV (9)

Cap|SOCi − SOCi−1| ≤ K (10)

The first constraint ensures that the energy in the BESS is never
lower than 0 or higher than the capacity of the battery, taking into
account the charge and discharge rates of the BESS, respectively
ηCh and ηDis. The second constraint ensures that the BESS can
only be charged from the PV plant, and not from the grid. Finally,
the third constraint is a limitation on the power rating of the BESS,
defined by the parameter K.

This strategy again requires probabilistic forecasts of the upcom-
ing PV power production and forecasts of the day-ahead and balanc-
ing prices. In the remainder of the paper, this is referred to as strategy
DA1.

4 Real-time Control

In real-time control of the PV/BESS, the algorithms are different.
Since we are now in real time, the day-ahead prices and energy sold
on the electricity market are known, and the only sources of uncer-
tainty come from the PV power generation and balancing prices.
Along with the benchmark strategy, which is to not use the BESS
at all, we define two additional real-time control strategies.

The first one is purely analytical and tries to minimize the penal-
ties for the next market time unit, without taking into account the
BESS aging cost or the near future after the next market time unit.
In contrast, the second strategy takes all of these factors into account.

4.1 First strategy

The first algorithm minimizes the term arising from imbalances
between the bids and PV/BESS production. Since we are in real
time, the bids BDA have already been submitted and the market has
been cleared. Thus, the day-ahead prices π are known and the only
design variable is the BESS outputEBESS . The BESS is allowed to
deviate from its planning BBESS to compensate deviations coming
from the PV power forecast error, thus we do not necessarily have
EBESS = BBESS anymore. At this stage, the only design vari-
able is the amount of energy we charge or discharge from the BESS
EBESS . In this case, we can write the real-time revenue RRT as a
function of EBESS only and get:

RRT (EBESS) =EPV π − (EPV + EBESS −BDA) (π − πB)

+ EBESSπ − C(EBESS) (11)

For the first method, we focus on reducing the penalties, so we
neglect the term πEBESS and the BESS usage costs C(EBESS).
The first neglected term represents a profit that can be obtained
from the difference in day-ahead prices during the day. How-
ever, this profit is supposed to have already been realized at
the day-ahead level. Besides, the profit alternates between posi-
tive and negative values depending on the charge or discharge of
the BESS. Its impact should thus be reduced when summed over
several time steps. On the other hand, the penalty term Pen =
(EPV + EBESS −BDA) (π − πB) is always positive. Finally,
neglecting the BESS usage costs allows us to propose a closed-form
solution to the revenue maximization problem. The expectation of
the penalty term Pen for the next time step writes:

E(Pen) =
∫En

0
(p+ EBESS −BDA)(π − πB)fPV (p)dp

(12)
where En is the maximum amount of energy that the plant can

produce on a given time step, and fPV is the Probability Distribu-
tion Function (PDF) of the PV power. Since πB is dependent on the
sign of the imbalance, the expectation of the penalty term must be
rewritten:

E(Pen) =

BDA−EBESS∫
0

(p+ EBESS −BDA)(π − π−)fPV (p)dp

+

En∫
BDA−EBESS

(p+ EBESS −BDA)(π − π+)fPV (p)dp

(13)

Usually, the prices are defined so that imbalances that support the
grid imbalance at the national level are not penalized. That is:

π+ = π, π− >π if the grid is short of energy (14)

π+ < π, π− =π if the grid contains excess energy (15)

We assume that we have an estimation of the probability pG for
the grid to fall short on the national level. We can then substitute the
forecast regulation prices π+, π− with random variables πpos, πneg
modeled by a sum of Dirac distributions:

πpos(x) = pGδ(x− π) + (1− pG)δ(x− π+) (16)

πneg(x) = pGδ(x− π−) + (1− pG)δ(x− π) (17)

which gives:

E(Pen) = pG(π − π−)
BDA−EBESS∫

0

(p+ EBESS −BDA)fPV (p)dp

+ (1− pG)(π − π+)

En∫
BDA−EBESS

(p+ EBESS −BDA)fPV (p)dp

(18)

Using the variable change x = p−BDA, we get:
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E(Pen) = pG(π − π−)
∫−EBESS

0
(x+ EBESS)fPV (x+BDA)dx

+ (1− pG)(π − π+)

∫En−BDA

−EBESS

(x+ EBESS)fPV (x+BDA)dx

(19)

Finally, using the Leibniz rule for differentiating under the inte-
gral sign, we obtain:

dE(Pen)
dEBESS

=pG(π − π−)FPV (BDA − EBESS)

+ (1− pG)(π − π+)(1− FPV (BDA − EBESS)
(20)

The second derivative is:

d2E(Pen)
dE2

BESS

=− pG(π − π−)fPV (BDA − EBESS)

+ (1− pG)(π − π+)fPV (BDA − EBESS) (21)

This second derivative is always positive by definition of the regu-
lation prices. Thus, by making the first derivative equal to 0, we find
the minimum:

E∗BESS = BDA − F−1PV

 1

1 +
pG

1− pG
π− − π
π − π+

 (22)

The first method is then to compute a forecast distribution of the
PV power, deterministic forecasts of the regulation prices, and the
probability that the system will fall short, and to inject them into
this optimal solution. Although the solution is in a closed form, the
BESS constraints prevent the use of this solution more than one time
step ahead, and the BESS usage cost is neglected. This is referred to
hereafter as the RT1 method.

4.2 Second strategy

The second method is very similar to the offering strategy including
the BESS from section 3.2, however it is performed using a Model
Predictive Control (MPC) approach, to adapt it to the real time. This
means that the whole revenue formulation is maximized over the
NMPC next time steps, then the result of the optimization from the
first time step is used as the command for the BESS for the next mar-
ket time unit. This allows us to take into account the future forecast
state of the system in the real-time control.

Since we are in a real-time setting, the day-ahead prices and bids
are known, as for the first real-time strategy. As a result, the only
design variable is the BESS command. Therefore, the optimization
problem to solve for each time step is:

E∗BESS = argmaxEBESS∈RNMPC (23)

NMPC∑
i=1

(EPV + EBESS)π − (EPV + EBESS −BDA) (π − πB)

− C(EBESS)

(24)

subject to the same constraints as in section 3.2. We also add the
constraint that the day-ahead BESS schedule must remain feasible
over the NMPC next time steps after the operation of the BESS,
which translates by:

− 1

ηCh
Cap(1− SOCi) ≤ BBESS,i ≤ ηDisCapSOCi (25)

We change NMPC at each time step, depending on the time of
day, so that all of the remaining day is included in the optimiza-
tion. This is especially important because day-ahead planning often
results in full discharge of the BESS in the evening when day-ahead
prices are usually high due to high demand. As such, the whole day
must be included in the optimization loop. If NMPC is too low,
the BESS could discharge itself entirely during the day to compen-
sate forecast errors, and thus be unable to provide the energy in the
evening. This second method is referred to as RT2.

5 Forecasting and Optimization Tools

To implement these different algorithms, several supplementary
models are required. They are presented in this section.

5.1 Probabilistic forecasts for PV production

One of the most important models required is the PV power forecast
model. All approaches require probabilistic forecasts of PV power
production.

The model we implemented is based on the Analog Ensem-
ble (AnEn) proposed in [18]. We extended it in several ways to
improve its performance and allow it to produce reliable forecasts
for both short-term and long-term forecasts, and with different time
resolutions.

The main extensions are:

• The inclusion of different data sources such as measurements and
satellite data, in addition to Numerical Weather Predictions (NWPs)
that are the only data source in the original model.
• A dynamic algorithm to compute the relevance of each source
of data depending on the forecast start time and horizon, so that
the weight of the different sources varies over time. For example,
the forecasts rely much more on measurements for forecasts with
horizons under one hour, or on NWPs for day-ahead forecasts.

This model is well suited to control algorithms, since it can
provide forecasts with both high resolutions (up to 1 minute) for
real-time control strategies, and long horizons (up to 48 hours) for
day-ahead planning algorithms.

The PV power forecasting model is presented in more detail in
[19].

5.2 Market quantity forecasts

Day-ahead planning algorithms require forecasts of both day-ahead
and balancing prices. Real-time control algorithms also require
forecasts of balancing prices.

day-ahead prices are obtained with a Support Vector Regression
(SVR) model, which is commonly used for energy price forecast-
ing [20]. The inputs of the regression are the forecasts of national
demand and renewable energy generation for the next day, along
with the month and day of the week.

In the next step, the balancing price forecasts are obtained by
applying k nearest neighbor (k-NN) methodology to the day-ahead
price. In real time, since the day-ahead prices are known, the k-NN
model is applied again using the actual day-ahead prices to update
the balancing price forecasts.

5.3 Optimizer

To solve the different optimization problems that appear in the con-
trol algorithms, we decide to employ stochastic optimization, since
we already dispose of probabilistic forecasts of the PV power gen-
eration. A large number of PV production scenarios are generated
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following [21]. The scenarios are then reduced using a Partition-
ing Around Medoids (PAM) algorithm, and the median of the
objective over the scenarios is optimized. The resulting non-linear
optimization problem is solved using the COBYLA algorithm [22].

The PAM algorithm reduce the scenarios by partitioning the
whole set of scenarios in a fixed number of classes k. The algorithm
can be summarised as follows:

• Compute the distance between each pairs of scenarios. In the
paper, we used the sum of the euclidean distances between the
realizations as the distance. In other words, given two scenarios
P1,...t and P ′1,...,t, the distance between the scenarios is given by

D =
∑t

i=1

√(
Pi − P ′i

)2
• Find k scenarios that are representative of the whole scenarios,
called medoids. To do so, the sum of the distances between each
scenario and its closest medoid is minimized using an heuristic
optimization algorithm.
• Associate each scenario to its closest medoid.

Then, the medoids are used as probable scenarios, and the prob-
ability of each medoid is estimated by the number of scenarios
populating this medoid’s class compared to the total number of
scenarios.

We considered it important to use scenarios to represent the
uncertainty because of the temporal dimension of the PV/BESS
management problem. This temporal dimension can be seen from
the second constraint formulated in equation (9). One of the essen-
tial characteristics of PV power forecasts is the positive correlation
between the forecast errors at consecutive time steps. In other words,
if a forecast error is positive (resp. negative) for a given time step, the
forecast error for the following time step is also likely to be positive
(resp. negative). This is a problem for BESSs, because since a BESS
can compensate forecast errors, a significant error present on several
consecutive time steps would quickly either charge the BESS to its
maximum or discharge it to its minimum, depending on the sign of
the error. Due to the temporal correlation of the errors, this worst-
case scenario is much more likely than the consecutive distributions
might suggest if they were considered independent. During the sim-
ulation, the energy remaining in the BESS is tracked to ensure that
the second constraint from equation (9) is respected.

6 Test Case

A simulation of the control of the PV/BESS is performed for four
months (January to May 2017)for a large PV plant located in France.
The plant is situated at longitude -0.9223889, latitude 44.19025 with
an elevation of 72 meters above sea level, and has an installed power
of 9 828 kWp.

The entire control is carried out taking an MPC approach. For
each time step, the PV power and market quantity forecasts are
updated based on the inputs known at the time. Then, if the day-
ahead market closes for the considered time step, bids are submitted
for the next day using one of the two methods from section 3. The
control set-point for the next time step is obtained using one of the
two methods from section 4. Then, the process goes to the next time
step, updates the BESS State Of Charge (SOC), the PV power, and
market quantities forecast, and continues the algorithm until the final
time step. A flowchart of the algorithm is represented on Fig. 1.

The NWPs required for the AnEn model are obtained from
the European Center for Medium-range Weather Forecasting
(ECMWF), along with measurements and satellite data to improve
short-term forecasts. Forecasts of the national demand and renew-
able energy generation required for the day-ahead price forecasts are
provided by RTE, the French Transmission System Operator (TSO).

The BESS considered in the test case is a lithium-ion storage sys-
tem. Aging parameters for the rainflow counting algorithm are taken
from [23] and [24]. Regarding costs, prospective values for the year
2030 from [24] are used in the base case, that is a 200 C/kWh invest-
ment cost. Besides, in all simulations, we set the parameterK, which
controls the power rating of the BESS so that the BESS can fully

Fig. 1: Flowchart of the overall optimization approach

charge or discharge in two hours. This is to simulate a BESS with a
power rating of 0.5C, which is common in commercial lithium-ion
storage systems.

The simulation is performed on the software R, using the pack-
ages e1071 [25] for the SVR model and nloptr [26] for the
implementation of the COBYLA algorithm.

Different combinations of day-ahead and real-time methods are
evaluated. The sensitivity of the results to the installed capacity of
the BESS and its investment costs is studied, providing guidelines on
the sizing of the BESS for such applications. The different method
combinations tested are summarized in table 1.

An example of the typical output from the four strategies is rep-
resented on Fig. 2. We can see that strategies S1 and S2 focus only
on reducing the imbalance. Strategy S3 tends to reduce the imbal-
ance but also shifts the production to benefit from high prices in the
evening. Finally, strategy S4 spends most of the day charging the
BESS and then entirely discharges it in the evening.

7 Results

7.1 Performance of the forecasting models

The PV power model’s performance over the testing period is repre-
sented on Fig. 3. The graphs show the Mean Absolute Error (MAE)
and the bias of the model for different forecast horizons normalized
using the PV plant’s installed capacity Pn . For the sake of simplic-
ity, only a deterministic analysis of the results instead of a thorough
probabilistic evaluation is performed, taking the expectancy of the
forecasted distributions as a deterministic forecast. These indicators
are defined as follows for a set of Nf forecasts and targets {ŷ, y}:

Table 1 Evaluated strategies

Strategy DA bidding RT control

S0 (benchmark) DA0 RT0
S1 DA0 RT1
S2 DA0 RT2
S3 DA1 RT1
S4 DA1 RT2
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MAE =
1

Nf

Nf∑
i=1

|y − ŷ| (26)

BIAS =
1

Nf

Nf∑
i=1

(y − ŷ) (27)

To understand further the behavior of the control models, the
MAE and biases of the price forecasting models are reported on table
2.

Table 2 Performance of the price forecasting models

day-ahead Balancing - positive errors Balancing - negative errors
Day-ahead Intra-day Day-ahead Intra-day

BIAS (%) 16.5 17.8 0.77 17.9 1.32
MAE (%) 20.1 26.6 16.4 27.3 22.2

The results show that the shorter the forecast horizon, the lower
the error. This intuitive result confirms our intuition in differentiating
between a day-ahead and a real-time control algorithm, since the
forecast updates improve the forecast accuracy in the short-term.

The price forecasts are subject to greater forecast errors. How-
ever, the quantity of interest for the control algorithm is the relative
magnitude of the balancing prices compared to the day-ahead prices,
and not the absolute forecast value. Since the balancing price fore-
casts are subject to a similar bias between positive and negative
errors, the relative magnitudes should be preserved. Still, the values
reported are only averages and not fully representative of the model’s
behavior, and price forecast errors can still lead to counterproductive
behavior e.g. by compensating an imbalance that would not have

(a) BIAS

(b) MAE

Fig. 3: Performance of the PV power forecasting model

(a) Strategy S1 (b) Strategy S2

(c) Strategy S3 (d) Strategy S4

Fig. 2: Example outputs from the four strategies, for day 2017-01-16
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been penalized, or ignoring an imbalance that is actually penalized
much more than expected. Using a representation of the uncertainty
of the price forecasts would definitely improve this aspect, by lower-
ing the "trust" that the control algorithms would put in a given value
as a deterministic forecast of the prices.

The bias of the models also offers relevant information to explain
the control algorithms. As shown on Fig. 3, the model develops
a slight bias when the forecast horizon increases, and thus tends
to overestimate the production. Thus, the bids have a tendency to
be higher than the actual production. Ultimately, this results in
the BESS having to discharge more frequently than charge, which
facilitates the emergence of saturation effects.

7.2 Test Case Results

The results of the study are shown on table 3. The results presented
feature actual cash flows i.e. the revenue indicated in the table does
not include the cost associated with the BESS life loss. The purpose
of this cost is only to help the algorithms controlling the BESS in a
more conservative way.

Table 3 Evaluation Results

S1 S2 S3 S4
Error reduction (%) 9.6 11.6 -0.47 -5.5

Penalty reduction (%) 13.5 15.5 12.9 9.11
Revenue increase (%) 1.09 0.53 3.52 2.60

BESS life loss (%) 0.08 0.11 0.43 0.38

We can see from the results that only strategies S1 and S2 con-
tribute to reducing the imbalance. With strategies S3 and S4, the
total imbalance is actually increased compared to the case without
BESS. Since the BESS is used in day-ahead trading, its available
capacity to compensate imbalances is decreased. Besides, if the
day-ahead forecast errors are high, then the BESS cannot fulfill its
day-ahead commitment. For example, if the forecasts overestimate
the PV power generation and the BESS is scheduled to discharge
entirely in the evening, the lower amount of PV production prevents
the BESS from realizing its commitment because it cannot charge
up to the required SOC before discharging. This ultimately results
in a higher imbalance. Since the PV power forecasting model has a
tendency to overestimate production, this is a common scenario.

Reducing the imbalance more naturally results in a greater imbal-
ance reduction for strategies S1 and S2. It is remarkable that strategy
S2 is better at reducing both the error and revenue compared to
S1. This is the direct influence of taking into account the near
future when managing the BESS, as the control considers both the
upcoming residual imbalance and price forecasts.

However, despite the increased imbalance, strategies S3 and S4
feature a much higher revenue increase. This is because they profit
from the differences in day-ahead price at different times of the day,
which is impossible with strategies S1 and S2 where the BESS does
not participate in the day-ahead bidding. The revenue stream from
this source of profit is much more reliable than from the compen-
sation of imbalances, because the day-ahead price behavior is much
less volatile, and it has a marked daily pattern featuring higher prices
in the morning and evening when energy demand is high. As a result,
the revenue from strategies S3 and S4 is much higher despite their
increased imbalance. Overall, the strategy that leads to the highest
increase in revenue is strategy S3.

Finally, the BESS degradation is quite low for all strategies,
although greater for strategies S3 and S4 where deep charging and
discharging cycles are performed. Overall, BESS life loss is very
low. In the worst case, the BESS life loss is 0.43 % over the 4 months
of the testing period, which means that the BESS would last around
75 years considering only the cycling life loss. In practice, calendar
aging will reduce the lifetime of the BESS and cause its end of life
much earlier, typically after 10-20 years of usage [27].

(a) Strategies S1 and S2

(b) Strategies S3 and S4

Fig. 4: Sensitivity to BESS size

8 Sensitivity Analysis

In this section, we discuss the sensitivity of the results to different
parameters of the simulation. To perform the sensitivity analysis, we
extrapolated the raw results from the initial simulations. We used
different methods depending on the strategy and the parameter for
which we evaluate the sensibility.

8.1 Sensitivity to the BESS dimension

This analysis was based on our observation that BESS life loss from
cycling aging is very low compared to the calendar aging. Therefore,
we neglected the BESS aging in the objective function from equation
(4). Following this, we noticed that both the objective function and
the constraints were linear with respect to the BESS capacity. Thus,
for the optimization problems for DA1 and RT2, we extrapolated that
reducing the BESS bidsBBESS by the same factor as the BESS size
reduction would provide a good estimate of the optimal bids, while
still respecting the constraints. Note however that this approach is
only valid for BESS sizes lower than the size of the initial simulation,
because the constraint from equation (9) remains true for lower bids.
However, if the BESS size and thus the BESS optimal bids increase,
this constraint could be strongly violated.

For the algorithms DA0 and RT1, the decisions are independent
from the BESS size. Thus we only have to calculate the simulation
results with the same commands as the control algorithm, but ensur-
ing that the constraints are respected to show the saturation effects
from the BESS.

The sensitivity of the results to the BESS size is reported on Fig.
4. As revenue, imbalance and penalties increase almost linearly with
the installed capacity, we represent the revenue increase per capacity
installed to better reflect the efficiency of the different approaches.

For strategies S1 and S2, it seems that strategy S2 is more effi-
cient for lower BESS sizes, while S1 is better for bigger BESSs.
This is understandable, as strategy S2 takes into account the current
SOC of the BESS when controlling it, and thus is better at managing
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small BESSs where BESS saturation occurs much more often. On
the contrary, in larger BESSs, these saturation effects are much less
frequent, and strategy S1 performs better, as it has behaves more
greedily i.e. it ignores the BESS life loss and maximizes instanta-
neous profit, without saturation effects. Using PV power forecasting
models with a lower bias, the size for which the saturation effects
become significant could be reduced, allowing easier management
of small BESSs.

There is, however, an exception for a BESS size of around 10% of
the installed PV power. It seems that for this ratio, the most critical
imbalances are compensated, and any increase in BESS size gener-
ates marginally less profit. With strategy S2, more parameters than
only the price signals are included in the control, which is actu-
ally detrimental to this BESS ratio. Overall, the revenue increase
per BESS size is smoother with strategy S2, and we expect that this
peak for strategy S1 is largely dependent on the test data. In any case,
the larger the BESS, the lower the amount of revenue generated per
installed BESS capacity. This suggests that the best strategy when
the BESS is not allowed to participate in the day-ahead market is to
install a small BESS, controlled with strategy S2.

For strategies S3 and S4, the same effects appear: strategy S4
performs better for small BESSs, then is outperformed by the more
greedy S3 strategy for larger BESSs when the saturation effects are
less frequent. However, unlike with strategies S1 and S2, a larger
BESS generates more revenue for strategy S3. It thus seems prefer-
able to install larger BESSs, controlled by strategy S3 when they can
take part in the day-ahead market.

Overall, it appears from the results that taking BESS life loss
into account does not generate a significant improvement in control
strategies. Besides, taking the near future into account when manag-
ing a BESS is only useful when the ratio of BESS capacity compared
to PV capacity is low (that is, ≤ 10%). For higher ratios, the satu-
ration effects are less frequent and thus a simpler algorithm can be
used.

Besides, it seems that the market conditions of the test case are
not favorable to PV/BESS. Compared to the 200,000 C/MWh we
used as the installation price of a BESS, gaining at most 450 Cover
the course of the test period (4 months) leads to an extremely long
return on investment.

8.2 Sensitivity to market conditions

Finally, we established that one parameter was of particular impor-
tance for analyzing the results, and that was the market conditions.
Namely, we compared the difference in results when the day-ahead
prices are higher, and when the magnitude between the day-ahead
prices and balancing prices is higher.

However, we assumed that the controlling algorithms’ output was
the same after modifying the price signals. This assumption is true
only for strategies S1 and S3, if we keep the same relative magnitude
between the day-ahead and balancing prices, so that the perception
of the financial risk of being in imbalance is the same for the different
algorithms. For strategies S2 and S4, since other quantities than the
prices are involved in the real-time controlling algorithms, it is not
possible to modify the price signals without modifying the control
of the BESS.

We tested the strategies on two variations of the price signals.
The results are represented on Fig. 5. The first variation we tested
involved multiplying the day-ahead prices by a given factor, main-
taining the same difference between the day-ahead and balancing
prices ("day-ahead only"). The second variation was to multiply the
difference between the balancing prices and the day-ahead prices
by a given factor, keeping the same day-ahead signal ("Balancing
only"). Finally, we can also multiplied both signals ("day-ahead
and balancing"). However, we observed that the multiplication fac-
tor must remain the same so that the relative difference between
day-ahead and balancing prices remains the same.

Naturally, strategy S1 only benefits when the balancing prices are
modified, since it only focuses on compensating the penalties. More-
over, it benefits even greater when the gap between the day-ahead
and balancing increases without increasing the day-ahead prices, as

(a) Strategy S1

(b) Strategy S3

Fig. 5: Sensitivity of the results to market conditions

the relative size of the penalties compared to the day-ahead revenue
is lower when the day-ahead price increases. For strategy S1 to be
optimal, it is thus better to have a market with significant balanc-
ing prices compared to the day-ahead prices i.e. that penalizes the
imbalances more.

Strategy S2 benefits from increasing all price signals, since it
deals with both day-ahead revenue and imbalance compensation.
However, the marginal increase of revenue when increasing only the
day-ahead prices is higher than when increasing only the balanc-
ing prices. Thus, it seems that a larger share of the revenue increase
comes from the day-ahead revenue rather than from the imbalance
compensation. Overall, strategy S3 is efficient with high electricity
prices, and high imbalance compensation.

For both strategies, the revenue increase is at best directly propor-
tional to the market prices. Since it is also directly proportional to the
BESS installation cost, the return on investment time of a PV/BESS
could be significantly reduced if both the BESS installation cost and
the prices increase. Depending on whether the day-ahead or balanc-
ing prices increase, or both, this would result in different optimal
control strategies.

9 Conclusion

In this paper, several strategies have been studied for the participa-
tion of a PV power plant coupled with a BESS in a dual-price elec-
tricity market. The different strategies include stochastic methods
to consider upcoming PV power generation uncertainty, day-ahead
and balancing price forecasts, and BESS life loss in the control of
PV/BESS. We also studied whether it is preferable to use BESS
capacity to shift production in day-ahead bidding, or to focus only
on reducing imbalances caused by the forecast errors of PV power
forecasting models.

The different strategies were evaluated on a 4-month test case.
Analysis of the raw results, along with a sensitivity analysis on
both the BESS size and the market conditions highlighted several
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aspects of the management of a PV/BESS. The main findings are the
following:

• Due to the frequent small cycling of the battery, cycling aging is
low compared to the calendar aging of a lithium-ion battery. Thus,
this component can be neglected and it seems more profitable to
maximize the usage of the BESS without taking into account its life
loss.
• A BESS can efficiently contribute to the reduction of a plant’s
imbalance and penalties. However, since the gap between balancing
prices and day-ahead prices is quite low and more unreliable com-
pared to the gap between the day-ahead prices at different times of
a day, it is much more efficient in terms of revenue to use the BESS
for shifting the production at the day-ahead level, instead of reducing
the imbalance.
• In the context of participation in day-ahead and balancing mar-
kets, the saturation effects of a BESS seem to become significant for
BESS capacities below 1 MWh for 10 MW of PV power. Thus, the
current SOC of BESSs must be taken into account in the controlling
algorithm for these capacities. When the installed BESS is higher,
the saturation effects still appear but they are much less detrimen-
tal to the benefits, so that is easier to ignore the current SOC in the
control algorithm.
• Overall, the benefit of installing a BESS is very low compared
to the installation cost of a BESS. The sensitivity analysis reveals
that this benefit could be significantly improved by both a lower
BESS cost, and higher day-ahead and balancing prices. Still, other
revenue streams for the BESS should definitely be studied, namely
participating in ancillary services markets.
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15 Keerthisinghe, C., Verbič, G., Chapman, A.C. ‘Evaluation of a multi-stage stochas-
tic optimisation framework for energy management of residential pv-storage
systems’. In: Australasian Universities Power Engineering Conference (AUPEC).
(Perth, Australia, 2014). pp. 1–6

16 Ding, H., Pinson, P., Hu, Z., Song, Y.: ‘Optimal Offering and Operating Strate-
gies for Wind-Storage Systems with Linear Decision Rules’, IEEE Transactions
on Power Systems, (2017), 31, (6), pp.4755–4764

17 Musallam, M., Johnson, C.M.: ‘An Efficient Implementation of the Rainflow
Counting Algorithm for Life Consumption Estimation’, IEEE Transactions on
Reliability, (2012), 61, (4), pp.978–986

18 Alessandrini, S., Delle Monache, L., Sperati, S., Cervone, G.: ‘An Analog Ensem-
ble for Short-term Probabilistic Solar Power Forecast’, Applied Energy, (2015),
157, pp.95–110

19 Carriere, T., Vernay, C., Pitaval, S., Kariniotakis, G.: ‘A novel approach for prob-
abilistic photovoltaic power forecasting covering multiple time frames’, IEEE
Transactions on Smart Grid, (2019),

20 Weron, R.: ‘Electricity Price Forecasting: A Review of the State-of-the-art With
a Look Into the Future’, International Journal of Forecasting, (2014), 30, (4),
pp.1030–1081

21 Golestaneh, F., Gooi, H., Pinson, P.: ‘Generation and Evaluation of Space-time
Trajectories of Photovoltaic Power’, Applied Energy, (2016), 176, pp.80–91

22 Powell, M.J. ‘A Direct Search Optimization Method that Models the Objective
and Constraint Functions by Linear Interpolation’. In: Advances in Optimization
and Numerical Analysis. (Springer, 1994). pp. 51–67

23 Duggal, I., Venkatesh, B.: ‘Short-term scheduling of thermal generators and battery
storage with depth of discharge-based cost model’, IEEE Transactions on Power
Systems, (2015), 30, (4), pp.2110–2118

24 Fuchs, G., Lunz, B., Leuthold, M., Sauer, D.U. ‘Technology Overview on Elec-
tricity Storage: Overview on the Potential and on the Deployment Perspectives of
Electricity Storage Technologies’. (ISEA - Institut für Stromrichtertechnik und
Elektrische Antriebe, 2012).

25 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.. ‘e1071: Misc
Functions of the Department of Statistics, Probability Theory Group (Formerly:
E1071)’. (TU Wien, 2017). R Package Version 1.6-8

26 Johnson, S.G.. ‘The NLopt Nonlinear-optimization Package’. (MIT, 2018).
http://ab-initio.mit.edu/nlopt

27 Rydh, C.J., Sandén, B.A.: ‘Energy Analysis of Batteries in Photovoltaic Sys-
tems. Part I: Performance and Energy Requirements’, Energy Conversion and
Management, (2005), 46, (11-12), pp.1957–1979

pp. 1–9
9


