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An Integrated Approach for Value-oriented Energy
Forecasting and Data-driven Decision-making.

Application to Renewable Energy Trading
Thomas Carriere and George Kariniotakis, Senior Member, IEEE

Abstract—Short-term forecasts of generation or demand are
required as inputs into several power system management func-
tions. Forecast models are in general tuned to provide optimal
accuracy and reliable estimations of associated uncertainty. In a
second step, these forecasts are used as input in tools that perform
various functions such as scheduling, reserves estimation, and
trading in electricity markets. These functions often integrate
algorithms that in turn optimize a value-related criterion, like
cost, reliability, income, etc. The literature has shown that in
some processes, like energy trading, this value may be optimized
if a specific quantile forecast is selected rather than the forecast
considered as most accurate. In this paper we propose a new
data-driven approach in which the two steps of forecasting and
decision-making are unified into one function that is optimized
considering a single criterion, i.e. the value featured in the
decision-making process. This approach allows us to bypass the
use of specific forecasting models and could be extended to
any decision-making process for which the inputs, outputs and
objective functions are well defined. An intermediate approach
is evaluated where a meta-optimization is applied to tune the
forecast model as a function of the value it brings. This inter-
mediate approach can also prove efficient, but does not allow us
to bypass the forecasting models. The applications considered to
evaluate the concept are photovoltaic and wind power generation
trading in a day-ahead market, where we simultaneously optimize
a forecasting model and a trading strategy, considering the final
revenue on the electricity market as the objective function.

For the meta-optimization, an Analog Ensemble (AnEn) model
is used to forecast PV production, coupled with a Support Vector
Regression (SVR) to forecast market prices. For the data-driven
approach, we use an Extreme Learning Machine (ELM). As
the objective function is highly complex and non-linear, the
optimization is carried out by Particle Swarm Optimization
(PSO).

Index Terms—Data-driven decision making, energy trading,
machine learning, price forecasting, renewable energy forecasting

I. INTRODUCTION

THE increasing share of weather-dependent renewable
energies (RES), like wind and photovoltaics (PV), in the

global energy mix creates a significant challenge for electricity
grid operators. The inherent variability of RES generation can
cause mismatches between energy production and expectation.
On electricity markets, RES plant operators support this risk by
paying for discrepancies. Therefore, obtaining accurate energy

T. Carriere and G. Kariniotakis are with MINES ParisTech, PSL Uni-
versity, Centre PERSEE, CS 10207, rue Claude Daunesse, 06904 Sophia
Antipolis Cedex, France (e-mail: thomas.carriere, georges.kariniotakis each
with @mines-paristech.fr)

T. Carriere is also with Third Step Energy, 55 allée Pierre Ziller, 06560
Sophia Antipolis Cedex, France (e-mail: thomas.carriere@thirdstep.energy)

production forecasts is crucial for effective management of
RES power plants. As a result, a wealth of forecasting models
have been studied in the literature. Reference [1] provides a
thorough review of existing approaches. These forecasts are
then used as input for different applications, such as trading in
electricity markets, congestion management, scheduling, and
reserves estimation [2]. In cases of high RES penetration it is
crucial to consider uncertainty in the decision-making process.
This involves using probabilistic rather than spot forecasts
in the form of probability density function (PDF), quantiles,
scenarios or otherwise [3].

Previous works consider forecasting and decision-making as
two distinct modeling steps, each optimized based on their own
criteria. Forecasting models are built to optimize prediction
performance, for example Root Mean Square Error (RMSE)
or reliability, and then used as input into the decision-making
function, which either just translates into value or is optimized
to maximize value. The term ”value” refers to the optimization
objective of the decision-making process. It may correspond to
the reduction of operation costs, the maximization of revenue
in a market, etc.

Previous research on forecasting, such as within the Euro-
pean project SafeWind, has concluded that a future perspective
involves optimizing forecasting models to take into account
not only prediction performance of the models, but also their
final use and how this is translated into value through the
function that uses these forecasts as input for decision-making.
However, the value of a given forecast is different for different
users e.g. energy producers or Transmission System Operators
(TSO). In reference [4], the authors showed that a wind
power plant operator could benefit more from biased forecasts
when trading on an electricity market, while the TSO would
benefit more from an unbiased forecasting model. This was
illustrated in [5] where an analysis of how the bids submitted
in an electricity market changed with respect to the objective
function of the decision-making model. However, the different
objective functions were not also used to tune the wind
power forecasting model, but only the trading unit. Reference
[3] suggested that in uncertainty forecasts, end-users should
use different uncertainty representations depending on the
final application. It also provided guidance on which forecast
properties are preferable for five typical applications of wind
power forecasting. Similarly, [6] proposed new evaluation
frameworks for solar power forecasting that incorporate the
economical value of the forecasts.

Following these works, the motivation behind this paper
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is to address this perspective, thus making a radical change
to the classic paradigm by developing a closer link between
the two steps of the standard modeling chain, i.e. forecasting
and decision-making. More precisely we propose a new data-
driven approach in which the two steps of forecasting and
decision-making are unified into one function that is opti-
mized considering a single criterion, i.e. the value featured
in the decision-making process. This approach can bypass
the development of specific forecasting models and can be
generalized to any decision-making process for which the
inputs, outputs and objective functions are well defined. An
intermediate approach is evaluated, where a meta-optimization
is applied to tune the forecast model as a function of the value
it brings, however this is not generalizable since it uses specific
models depending on the decision-making process considered.

The proposed fully data-driven approach may be potentially
applicable to various types of complex problems. An example
is the problem of a virtual power plant participating in energy
and ancillary services markets, i.e. as in [19]. The forecasting
step involves forecasting models for renewable generation
and 8 market quantities and a model for decision-making.
In total, 10 models need to be built, tuned and maintained
operationally. Following the approach proposed here, they can
be replaced by a single model. The data-driven approach can
be suitable for implementation in automated applications like
trading agents. It simplifies the overall modeling chain and
thus reduces maintenance needs and the propagation of errors.
In order to demonstrate the proof of concept, in this paper
we narrow the area of application to the trading of RES
generation, namely PV and wind production, on a day-ahead
energy market. The original modeling chain in this problem
involves five steps (PV forecasting, price forecasting, positive
and negative imbalance cost forecasting and the trading algo-
rithm).

Reference [7] linked the predictability of a power plant to
its revenue. However, the goal was to arbitrate between pre-
dictability and the capacity factor of wind power plants at the
investment phase. Numerous papers have proposed advanced
trading models to participate in the energy market [8], [9] and
used the revenue generated as a measure of the performance
of their work. However, these approaches were developed in
an open-loop setup, and although the performance in terms
of income was assessed, it was not fed back to optimize the
structural parameters of the forecasting or the trading model
itself. On the other hand, reference [10] used a reinforcement
learning approach to make bids on an electricity market based
only on market data, without knowing the exact market rules.
Nevertheless, a forecast of the renewable power generation
was required, and the forecasting and decision-making steps
were two separate parts of the modeling chain.

The key contribution of this paper is to propose two
approaches that link the two steps of forecasting and decision-
making. In a first approach, we introduce a meta-optimization
of the forecast models, where all of the hyperparameters
from the models involved in the decision-making process
are optimized at once. The objective function we propose
to perform this optimization is the value generated from the
model forecasts with the decision-making (trading) process.

The second approach goes further by merging the forecasting
and decision-making steps into a single modeling step where
the input is potentially composed of the inputs of the initial
models and the output is the output of the decision-making
process. This is a fully data-driven decision-making approach,
as explained earlier.

Both approaches require optimization loops that use the
revenue generated on the electricity market as the objective
function. Such optimizations can be difficult to perform,
as the loss function has to be evaluated using PV power
forecasts over a significant time period, and is nonlinear.
As a result, a heuristic optimization algorithm is employed.
Popular heuristics include Genetic Algorithms (GA) [11],
or Particle Swarm Optimization (PSO) [12]. Reference [13]
suggests that the PSO algorithm is generally better in terms
of convergence, but that it has a higher computational cost
because of the communication required between the particles
for each generation. However, since the function evaluations
are quite long, this communication cost is low compared
to the evaluations. Thus, we use the PSO algorithm as an
optimization engine.

Both approaches are compared with the standard two-step
approach in the literature through two case-studies featuring
real-world data from PV plants in France with the EPEX day-
ahead market, or wind farms in Denmark with the NordPool
day-ahead market. For probabilistic PV power forecasting, we
use a model from the Analog Ensemble (AnEn) family with
accuracy comparable to the state-of-the-art [14], [15], [16].
The AnEn model relies on k-nearest-neighbor (kNN) method-
ology, which is well understood [17], so that its behavior can
be controlled through its hyperparameters. Wind power fore-
casts come from a previous study [18]. All simulations were
performed with the software R, using the additional packages
e1071 [19] and pso [20]. They were partially parallelized and
run on a 2.5 GHz quad-core CPU with 16 GB of RAM.

In general, advanced trading of RES production on day-
ahead markets involves both RES generation forecasts and
forecasts of day-ahead and regulation prices [21], [22], [23].
Regarding the price forecasts, a review of price forecasting
models is proposed in [24]. Here, we use a standard Support
Vector Regression (SVR) approach for price forecasts, as they
are only used to test the methodology. For trading on multiple
markets, like ancillary services, the trading process may also
involve forecasting several additional quantities (i.e. in [25]).
The model chain inevitably becomes very complex in these
cases.

The paper is organized as follows. Section II presents the
different approaches that we will compare in the following
sections. Section III presents the first test case on which
these approaches are compared, and the forecasting tools
used to implement these approaches. Section IV presents the
results obtained on the second test case. Finally, section III-F
analyzes the results from the test case and section V draws
the conclusions of the paper.

II. METHODOLOGY OF THE DIFFERENT APPROACHES

In this work, we propose two alternative approaches to
the standard implementations of decision-making processes
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in energy trading. Usually, these standard implementations
require numerous models specific to the given process. The
output of these models is combined following a strategy to
derive the optimal decision. For example, in the case of
RES energy trading in a dual-price market, four models are
required: one for forecasting the RES production, one for the
day-ahead spot price, and two for the imbalance prices for
positive and negative imbalances.

As mentioned above, each of the dedicated forecast models
contains meta-parameters. Typically in the literature, each
model is optimized for its own performance (”Reference”
approach hereafter). In the first approach we propose here, we
jointly and simultaneously optimize the meta-parameters of all
three types of forecast models under a common objective. All
of the approaches are represented on Fig. 1.

To formalize the different approaches, we consider an ap-
plication where a decision D(X) has to be taken conditionally
to a set of inputs X . We suppose that the standard approach
is given by a trading strategy applied to a combination of
different dedicated forecasting models using the inputs X . We
note as M1,...,n(X) each of the dedicated models forecasting
the quantities yi involved in the decision process, and as
T (y1, ..., yn) the trading strategy that combines the outputs
to obtain the optimal decision. The decision-making process
is thus modeled by:

D(X) = T (M1(X), ...,Mn(X)) (1)

Furthermore, we consider that each of the n dedicated
models uses a set of parameters Θ1,...,n, and we note as MΘi

i

the output of the i-th model using the parameters Θi. These
parameters define the decision-making process entirely, and
are calculated differently in the different approaches.

Finally, we suppose that we have a function Eval(d) that
evaluates the value associated with the decision d. Based
on these generic notations, we formulate hereafter the three
approaches that we will compare.

A. Reference Approach: Separate Optimization

The reference approach consists in separately optimizing the
PV power forecasting model and the three models that predict
the market quantities. This is the most intuitive approach, as
it seems natural that the whole trading chain would perform
better if the specific performance of each element of the chain
were optimized.

To assess the performance of each element, we use the
RMSE for deterministic quantities and the Continuous Ranked
Probability Score (CRPS) for probabilistic quantities. Consid-
ering that we have a set of m point forecasts ŷi or cumulative
distribution function forecasts F̂y

i
, i ∈ [1 : m], along

with their verification values yi, these criteria are defined as
follows:

RMSE (ŷ, y) =
1

m

√√√√ m∑
i=1

(yi − ŷi)2 (2)

CRPS
(
F̂y, y

)
=

1

m

m∑
i=1

∫ ∞
−∞

(
F̂y

i
(x)− 1

(
x > yi

))
dx

(3)

where 1() outputs 1 if the condition in parenthesis is met,
and 0 otherwise. The optimization of the parameters of the
whole chain is then performed by identifying the optimums
separately. We note the evaluation function G, which is the
RMSE if the evaluated model is deterministic, and the CRPS
otherwise.

Θ∗i = argminθ
{
G
(
Mθ
i (X) , Yi

)}
(4)

B. First Proposed Approach: Simultaneous Optimization

In this approach, we optimize the whole chain globally,
using the value of the decision process as the objective
function. The point of this optimization is that the individual
forecasting models could adapt to each other’s forecast errors.
For example, if a given model is biased, another model could
also acquire a bias to compensate the former. The adaptations
that the models could perform on each other are highly
dependent on the final objective of the decision process.

Noting as Θ = {Θ1, ...,Θn} the set of parameters that
gathers all of the parameters of the individual models, the
optimization problem we must solve in this approach is thus:

Θ∗ = argmaxΘ=[Θi,...,Θn] {Eval(D(X))} (5)

= argmaxΘ=[Θi,...,Θn]

{
Eval

(
T
(
MΘ1

1 (X), ...,MΘn
n (X)

))}
C. Second Proposed Approach: Direct Bidding with a Unique
Model

The second approach we propose is to bypass the fore-
casting models, and replace them with a unique model that
directly provides the decision, as shown in Fig. 3. The inputs
and outputs of this unique model are the same as the inputs
and outputs of the global decision-making process.

For each test case, the model we use to provide the decision
is an Artificial Neural Network (ANN). One reason for this
choice is that ANNs are very sensitive to the tuning of
the parameters, since it is the parameters that identify the
interaction between the different sources of data.

Models from the ANN family are generally trained using the
backpropagation algorithm. This algorithm makes the training
of the network very efficient. However, it can only be used
when the objective function of the network is differentiable.
This is not the case here, since the network is trained using
an arbitrary function to derive the value of the decisions. As a
result, we use the PSO to train the network. Since we cannot
benefit from the efficiency of the backpropagation algorithm,
we use the Extreme Learning Machine (ELM) variant of the
standard ANN to accelerate the training. ELM consists in



4

Fig. 1. Schematic representation of the different approaches

randomly setting the parameters of the model except for the
output layer, then optimizing the parameters of the output layer
only. Training of these networks is very fast, and in addition
they are able to approximate any non-linear function [26].
They have also been used to forecast PV power in [12], [27].

The main risk with this model is overfitting. Since the
number of parameters is significant, the model can easily
memorize the entries from the training set to achieve high
accuracy on the training without developing the ability to
generalize. However, finely controlling the behavior of the
model through the parameters can help the model capture more
interaction between the PV-related and market-related inputs.

III. TEST CASE I: TRADING OF PV POWER ON THE EPEX
SPOT MARKET

In this test case, we study the participation of an RES power
plant as a Balance Responsible Party (BRP) on a dual-pricing
electricity market. The market structure assumed is:
• A day-ahead market where each participant has to submit

buying or selling orders the day before delivery.
• A balancing market where each BRP has to take respon-

sibility for its imbalances.
These two markets are sequential. First, the producer sub-

mits its bids for the next day. Then after delivery, the producer,
which is also a BRP, pays the TSO for its imbalances through
the balancing market. Intra-day markets to correct the produc-
ers position during the delivery day are not considered.

A dual-pricing electricity market refers to the case where
imbalances are settled through two different prices depending
on their sign. Usually, if the producer produces more energy

than it has sold, then the excess energy is sold at a price lower
than the spot prices for this market time unit. On the contrary,
when the producer produces less than it has sold, it has to buy
the lacking energy at a price higher than the spot price for this
market time unit.

Under such markets, the revenue of a producer for a given
market time unit is:

R(EC) = πEC +

{
π+(E − EC) if E > EC
π−(E − EC) if E < EC

(6)

where EC is the energy sold by the producer, E is the
actual delivered energy, π is the spot price that is given by
the market clearing after the bids from all market participants
have been submitted, and π+ and π− are the regulation prices
for positive and negative imbalances, computed by the TSO,
depending on the cost it had to meet to compensate the
producers imbalances. The price for positive imbalances is
usually lower than or equal to the spot price, so that any
surplus energy compared to the bids is rewarded at a price
lower than the spot price. Similarly, the price for negative
imbalances is usually higher than or equal to the spot price,
so that any missing energy is penalized at a higher price than
the spot price.

In the first approach, we keep the standard model chain
for RES energy trading on electricity markets, where RES
power and market quantity forecasts are first produced, then
used by a trading strategy that estimates the optimal bids.
However, we propose a global optimization loop that optimizes
the whole model chain using the revenue generated on the
electricity market as the objective function. This approach is
compared to the reference approach, where we optimize the
models separately to maximize their performance, then inject
their forecasts into the trading strategy. We will first present
the trading strategy, then the RES power and market quan-
tity forecasting models, before formulating the optimization
problem we propose to solve with this approach.

A. Trading Strategy

The strategy we apply is described in [21]. It relies on the
hypothesis that the RES producer bids have no influence on
the spot price (”price taker” hypothesis). This hypothesis is
true when the penetration of price takers is low. However,
since increasing numbers of RESs are participating in elec-
tricity markets, usually following a price-taker strategy, the
influence of RES bids on the spot price can become significant.
However, we do not consider this influence in the rest of this
article to avoid modeling it.

Based on equation (6), we can rewrite the revenue of a
producer as follows:

R(EC) = πE + πR(E − EC) (7)

πR =

{
π+ − π if E > EC
π− − π if E < EC

(8)

With this formulation, we can see that the first term in (7) is
independent from the bid, as the price-taker hypothesis states
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that π is independent from EC , and so is the actual energy
produced E. Note that by definition of the regulation prices,
the second term is always negative. Thus, maximizing the
revenue is equivalent to minimizing the function gE(EC) =
πR(E−EC). The optimization problem that gives the optimal
bid E∗C is then:

E∗C = argminEC∈[0,En] {E[gE(EC)]} (9)

= argminEC∈[0,En]


En∫
0

gx(EC)fE(x)dx

 (10)

where En is the maximum amount of energy that the plant
can produce during a market timestep, and fE is the PDF
of the actual energy generation E. We set En to the energy
quantity that can be produced with the installed power during
the length of a market time unit. Replacing gE(EC) by its
actual value, we obtain:

E∗C = argminEC∈[0,En]


En∫
0

πR(x− EC)fE(x)dx

 (11)

The exact solution to this problem is given by [21]:

EC(t)∗ = F−1
E

(
π − π+

π− − π+

)
(12)

where FE is a forecast Cumulative Distribution Function
(CDF) of the energy production of the plant. The application
of this strategy for an RES power plant then requires input
from a probabilistic RES power forecasting model, and from
spot and regulation price forecasting models.

B. PV Power Forecasting Model: the Analog Ensemble

The model we use to produce PV production forecasts for
the first case study is an improvement of the AnEn model [14],
which is presented in [28]. One advantage of this model is that
it is very close to a kNN estimator, which makes it simple to
understand. As a result we can define hyperparameters that
control the properties of the forecasts quite well.

The AnEn model performs a search to identify the past
situations most similar to the one we want to forecast, based on
an adaptive metric on the predictor variables, to create a set of
likely values called the Analog Ensemble. The density is then
estimated using this set of likely values. In our case, density
estimation is performed by a Kernel Density Estimation (KDE)
using an Epanechnikov kernel [29].

The metric used to search for the most similar historical
situations is a weighted sum of the average Minkowski dis-
tance of order p for each feature, on the k time steps preceding
the historical instant for which the similarity is assessed. The
weights are defined by the mutual information (MI) between
the considered feature and the PV generation, conditional to
the forecast horizon. These are then normalized so that they
add up to 1, using a parameter q to control the ratio between
the contribution of the most informative feature and the least
informative to the metric.

The MI is often used in machine learning for feature
selection [30]. It measures the extent to which the fact of
knowing a variable reduces the uncertainty of another variable.
The MI between two random variables X and Y , knowing
their respective marginal density distributions pX and pY and
their joint density distribution pX,Y , is:

MI (X,Y ) =

∫ ∫
pX,Y (x, y) log

(
pX,Y (x, y)

pX (x) pY (y)

)
dxdy

(13)
To calculate the metric between the instant to forecast t and

an instant in the past t′ with a forecast horizon h (that is, if
the model is run at t− h), the metric writes:

(Xt,Ht′) =

Nv∑
i=1

whi

√√√√ 0∑
j=−k

(Xi,t+j −Hi,t′+j)
2 (14)

infhi = MI
(
Lh (Hi) , EPV

)
(15)

whi =

(
infhi

)q∑((
infhi

)q) (16)

The two sets X and H contain respectively the features
of the instant to forecast and the historical instants. Nv is the
number of features used for computing the metric. Lh is the lag
operator and EPV is the PV electricity generation. Finally, the
mutual information MI is computed using empirical estimates
of the joint distributions. The variables used to compute the
metric are irradiance, temperature, wind speed, cloud cover
and humidity forecasts obtained from the European Center for
Medium-Range Weather Forecasts (ECMWF). We use also a
clear-sky profile computed by the McClear model [31].

The parameters introduced here are the hyperparameters
that control the behavior of the metric. p penalizes significant
differences between the inputs, while q controls the relative
importance of each feature. k is introduced so that an instant
t in the evening (resp. morning) cannot be considered similar
to an instant t′ in the evening (resp. morning).

Finally, two remaining parameters allow us to control the
bias of the model. The first is the number of most similar
historical situations N that we retain for estimating the PDF,
and the second is the length LPV of the period preceding the
instant to be forecast that we use to search for analogs.

According to our results, the higher these parameters, the
lower the bias of the model. When the time period over which
the analogs are searched increases, the model loses some of
its conditionality on recent weather conditions, since old data
is used. In addition, increasing the number of analogs also has
the effect that the models conditionality on the actual weather
forecasts is lost, because as the number of analogs increases,
each additional analog used is observed in a situation that is
less similar to the actual weather forecasts. Ultimately, as these
parameters increase in number, the more the model tends to
produce an unconditional climatological average of the power
as a forecast, which would be perfectly reliable, and thus have
no bias.

Some illustrative probabilistic forecasts for a given plant
are reported on Fig. 2 along with a quantification of the



6

TABLE I
BIAS OF THE MODELS FOR VARYING N AND LPV VALUES

Bias (%)
N = 240, LPV = 50 0.15
N = 240, LPV = 150 0.09
N = 720, LPV = 50 0.03

models bias in Table I with varying N and LPV values to
illustrate this effect. To isolate the effect of these parameters,
all the other parameters keep the same value Each shade of
grey represents a prediction interval (PI), with increasing steps
of 2%. Using a longer time period to identify the analogs,
or increasing the number of analogs, results in a curve that
looks more like the typical ”bell” curve of PV production,
neglecting the intra-day variability. Ultimately, when taking
the expectancy of the forecast distributions as deterministic
estimates of the production, this results in a less biased model
in the deterministic sense.

C. Forecasting Market Quantities

At the time of the bids, we are not yet aware of the three
prices π, π+ and π−. Therefore, we have to implement a
forecasting model for these three market quantities.

We use Support Vector Regression (SVR) to obtain a
deterministic estimate of the spot price, using as inputs the
day of the week, time of day, a forecast of the national energy
demand provided by the TSO, and the spot price observed
the day before at the same time. SVR models are a machine
learning technique commonly used for energy price forecasting
[24]. The SVR model uses a radial kernel with a parameter γ
and we use a parameter C to penalize the constraint violations.

The other prices π+ and π− are forecast by employing
a simple kNN estimator, using the predicted spot price as a
feature. The only parameters we use are then n, the number
of neighbors we retain, and LPrice the length of the period
over which we look for neighbors. Depending on whether
these parameters relate to the positive or negative regulation
price-forecasting model, they are noted n+, LPrice+ or n−,
LPrice− . As for the AnEn model, these parameters allow us
to control the bias-variance trade-off of the model.

D. Application of the Approaches

We study the output from the two proposed approaches
relating to thirteen PV power plants located in France. In-
situ measurements of power injected into the grid, local
temperature, and solar irradiance are available for the three
plants from May 2015 to May 2017. Weather forecasts from
the ECMWF were obtained for the same period. The period
from May 2015 to May 2016 was used as a training set and
the period from June 2016 to May 2017 as the testing set.

In this test case, following the notations from Section II,
we have four individual models:
• MΘ1

1 , which forecasts the PV power with the parameters
Θ1 = [p, q, k,N,LPV ]

• MΘ2
2 , which forecasts the spot price with the parameters

Θ2 = [C, γ]

• MΘ3
3 , which forecasts the balancing price for negative

errors with the parameters Θ3 = [n−, LPrice− ]

• MΘ4
4 , which forecasts the balancing price for positive

errors with the parameters Θ4 = [n+, LPrice+ ]

Following the methodology from Section II, the implemen-
tation of the three approaches is straightforward. We also
compare the three approaches with an even simpler one, where
the bids on the electricity market are simply the expectation
of the PV power generation. All of the approaches compared
are represented on Fig. 3.

The different approaches are noted ”Benchmark” for the
base case where the bids are the expectancy of the forecast PV
power, ”Reference” for the case where each of the 4 models is
optimized separately, ”Approach 1” for the joint optimization
of meta-parameters of the 4 models, and ”Approach 2” for the
second proposed approach of the single data-driven model.

For the reference and first approaches, the model chain is
optimized by solving the optimization problems formulated in
Section II over the training set. Then, the optimal chain is used
to obtain bids for the testing set. For the second approach,
the number of neurons for the ELM network is calculated
using a 10-fold cross validation on the training set. Once the
architecture of the ELM is established, it is trained over the
whole training period, then used on the testing set to obtain
the bids.

Fig. 4 shows the results from the different approaches
for a given trading day. These days are randomly chosen
for illustrative purposes. The ELM approach is much more
conservative than the other ones. This results in a negative bias
that will be studied in Section III-F. Besides, it is interesting
to note that the reference and first approaches, which use
a PV power forecast model, tend to produce bids that are
more volatile, while the second approach tends to produce
smoother bids. Finally, while the reference and first approaches
both use market information and thus do not only rely on
PV power forecasts, the second approach proposes bids that
deviate comparatively more from the PV power expectancy,
because of its revenue-focused optimization.

E. Convergence History and Computational Cost
Fig. 5 reports the convergence history of our proposed

approaches 1 and 2. The training error is monitored and at
the point that it seems to stop decreasing, training is stopped.
This occurs at around 200 iterations for the second approach,
and at only 10 iterations for the first approach.

Parameters tested during the evaluation are saved and eval-
uated a posteriori on the testing set, to check for any signs of
overfitting. The different models do not seem to have overfitted
the data, as the testing error does not increase before the end
of the training.

The computational costs of each approach are reported in
Table II. The training time indicates the time required to
perform one iteration of the PSO algorithm for the given
approach. The evaluation time is the time required to compute
the model over the testing set. Since the learning of the model
is delayed until a forecast is requested for the approaches in-
volving the AnEn model (Benchmark, Reference and approach
1), the evaluation time is much longer.



7

(a) N = 240 analogs, LPV = 50 days (b) N = 240 analogs, LPV = 150 days (c) N = 720 analogs, LPV = 50 days

Fig. 2. Example of PV probabilistic forecasts for a given day

Fig. 3. Flowchart of the different approaches

Fig. 4. Bids from the different approaches for day 2016-05-16
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Fig. 5. Convergence history for approaches 1 and 2

TABLE II
COMPUTATIONAL COST OF THE DIFFERENT APPROACHES

AnEn SVR App. 1 App 2
Training time (s) 9960 1800 12740 26.4

Evaluation time (s) 830 150 980 0.78

F. Evaluation Results

1) Evaluation of the trading strategies: The performances
of the different strategies for the different plants are compared
on Fig. 6. They show the improvement of each approach for
different criteria, relative to the worst performing approach
for that plant. Complete quantitative results are reported in
Appendix A. The strategy that yields the best revenue varies
considerably between all of the plants studied, although all
approaches seem to yield very similar revenues.

Of the 13 other plants, none obtained the best revenue with
the benchmark approach, 3 with the reference approach, 4
with the first approach, and 5 with the second approach. No
approach stands out significantly from the others in terms of
net revenue. Still, the first and second approaches produced
the best results for 9 out of 13 plants, which suggests that it is
worth using revenue as the objective function. It is interesting
to note that the models that were optimized with the first
approach performed worse according to CRPS and RMSE
evaluations, but still generated more revenue.

For all the approaches, a non-convex optimization has to be
solved, since all the objective function are non-convex with
respect to the model parameters. However, for the 4 plants that
produced a higher revenue with the reference or benchmark
approach, it is likely that the more complex optimization prob-
lems involved in the first and second approaches, which use a
more complex function in the final step (the revenue instead
of the convex RMSE/CRPS), and more design variables, are
more likely to fall within a local minimum that ultimately
results in lower revenues.

However, what is interesting is that the second approach
systematically causes the highest imbalances, yet produces the
lowest penalty per imbalance. Thus, it seems that the ELM
model involved in this approach focuses more on reducing

errors when the regulation prices are significant than on
reducing the total amount of errors.

More generally, the more market information the approaches
include, the more imbalances they generate, but with fewer
penalties per imbalance. The reference approach generates
a low error but a high penalty per imbalance. When using
approach 1 instead of the reference approach, and thus in-
corporating market information in the PV power forecasting
model, the imbalances increase but the penalties per imbalance
decrease. Finally, the second approach results in the most
imbalances but the lowest penalties per imbalance.

2) Behavior of trading strategies: To understand the reason
why the different approaches perform differently, we analyze
the bidding behavior of the different approaches. First, we
analyze the bias in the bids to understand how the different
approaches use the market information. Table III shows the
average bias of the approaches over all of the plants.

From the bids error statistics, we can see that adding market
information to PV power forecasts without considering the
value creates a significant bias, because the bids are not the
expected outcome of the distribution, but a given quantile
that depends on market information. Depending on how often
positive or negative errors are penalized, the bids can then
show a tendency to prefer positive or negative errors. However,
it seems from the results that the market information that
was used was not sufficiently accurate that using it without
other considerations would increase revenue. Taking the first
approach, the bids bias decreases, to the level of the benchmark
approach. Still, the revenue is higher. This suggests that taking
the first approach allows the models to use market information
in order to increase the revenue without abandoning the bias.

For the second approach however, the bids acquire a signif-
icant negative bias. This can be explained by the magnitude of
the regulation prices. Over the period of the test case, the neg-
ative errors were penalized by 21.2 C/MWh on average, while
the positive errors were penalized by only 10.29 C/MWh,
and the model learned that the penalty was usually lower for
positive errors. It seems that the second approach learned that
this tendency of market prices was reliable enough to include
it in the bidding behavior and thus systematically proposed
lower bids, at the price of increasing the total imbalance. This
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(a) Total imbalance

(b) Net revenue

(c) Average penalty per imbalance

Fig. 6. Comparison of the different approaches

approach has proved effective with numerous power plants.

TABLE III
AVERAGE BIAS OF THE DIFFERENT APPROACHES

Bench. Ref. App. 1 App 2
Bias (%) 0.098 0.33 0.096 -0.82

Another effect can also be identified when looking at the
evaluation results. We looked at the spread of the errors
depending on the magnitude of the regulation prices for
both positive and negative imbalances, in order to understand

how the second approach could generate lower penalties with
higher imbalances. The results are shown on Fig. 7 for plant
2, and indicate that the errors in the second approach are
concentrated on low penalty levels, especially for positive
errors.

Overall, the models adapt in different ways to minimize
revenue. Approach 1 tends to recalibrate the bidding process
after incorporating market information. The second approach
behaves differently, as it tends to offer lower bids than the ex-
pected production. This is because negative errors are usually
penalized more heavily than positive ones. It is also much
better at identifying instants when the regulation prices are
high, with most of its errors occurring when the regulation
price is low. However, since it does not rely on PV power
forecasts, it creates more imbalances than the first approach.

The choice of a given approach depends highly on the
context. The difference in revenue is not significant and should
not be a sufficient incentive for the energy producer to choose
one approach instead of another. However, the behavior of the
approaches might be relevant. In a system where the difference
between high and low balancing prices is significant, the
second approach would be preferable, since it concentrates
the imbalances when the balancing price is low. On the other
hand, when this difference is low, any of the other approaches
would be more beneficial since they generate fewer imbalances
overall. If the regulating prices correctly translate the most
preferable approach for the grid, the amount of penalties would
be a sufficient criterion to decide on the best approach, because
in that case, the approach that is the most supportive of the
grid would also be subject to fewer penalties.

IV. TEST CASE II: TRADING OF WIND POWER ON THE
NORDPOOL MARKET

In this test case, we study the participation of a wind
producer in the alternative electricity market NordPool. This
test case is intended to illustrate the case of an RES producer
that does not have the means to produce its own forecast, and
thus buys forecasts from a third party. The goal is to show that
even with limited input, the second approach can improve the
decision-making process.

All data relative to the wind power come from a previous
study [18]. The forecasts are obtained using regression forests
and are deterministic. Therefore, in the following methodol-
ogy, the CDF of the wind power forecasts Fw are considered
to be a Heaviside function on the deterministic forecast Ew:

FW (p) = 1 if p > EW , 0 otherwise (17)

Note that in this case, market quantity forecasts cannot be
used since they are employed to derive an optimal quantile of
the CDF to bid on the electricity market, which will always
reduce to the deterministic forecast of the wind power.

Besides, since we do not dispose of our own forecast
model, we cannot apply the reference and first approaches
to the trading problem, since they require optimization of the
forecast model with different objective functions. Thus, only
two strategies can be evaluated: the benchmark strategy, where
the deterministic wind power forecast is bid on the electricity
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(a) Positive errors (b) Negative errors

Fig. 7. Cumulated errors depending on regulation price magnitude

market, and the second approach, where the deterministic wind
power forecasts are used as inputs for the ELM model.

We study the output from nine wind power plants located
in Denmark. In situ measurements of energy generation are
available from January 2008 to October 2009. The year 2008
was used as the training period, and the period from January
to October 2009 as the test period.

The benchmark approach is implemented by bidding the de-
terministic wind power forecasts. The second approach could
also be implemented by using the wind power forecasts as
input of the ELM model. Results from the two approaches are
summarized in Table IV. In this study, once again, the second
approach consistently produces more imbalances, however it
almost always outperforms the benchmark.

This case study is of great value, as it consolidates the
fact that the second approach produces bids that cause more
imbalances, but lowers the average amount of penalties paid
for any imbalance. In the first case study, this did not generate
higher revenue, however, in the different electricity market
involved in case study II, the revenue was higher with the
second approach.

V. CONCLUSIONS

In this paper, we introduced two novel approaches to
deal with complex model chains that integrate forecasting
and decision-making functions. The application example was
that of trading RES production on a day-ahead market. The
model chain in this case includes four forecasting models and
one decision-making model. While the first approach can be
perceived as a fairly straightforward extension of the meta-
optimization currently employed in forecasting approaches, the
second approach introduces a completely new paradigm since
it replaces the initial model chain with a single, direct data-
driven model. The contributions of the paper for this specific
application are (1) the direct use of revenue as an objective
function to optimize the parameters of the models, when using
separate models for PV power forecasts and market quantity
forecasts and (2) the proposal of a trading model that bypasses
the models for PV and market quantity forecasting by using
a neural network trained for market performance to directly
produce bids.

All of the models behaved differently when using market
performance as the objective function for optimizing their
parameters. The first approach featuring separate models
modified the individual models to recalibrate the bidding
process after introducing market information, while the second
approach acquired a negative bias to compensate the higher
price of negative errors. The second approach also learned to
minimize the errors when the price penalizing the imbalances
was significant.

The approaches were implemented in two different case
studies, one for trading PV power on the EPEX SPOT
electricity market, and one for trading wind power on the
NordPool market. In the first case, using the revenue as the
objective function did not clearly create models that generate
more revenue on electricity markets than the reference state-of-
the-art approach, although it was possible to identify bidding
behavior trends in the different approaches. Compared to
the first approach, the second approach is more efficient for
trading, with a lower amount of penalty per imbalance, but it
creates more imbalances. In the second case however, using
the revenue as the objective yielded better results for all wind
power plants but one. A research direction could be to use the
uncertainty in the energy price with probabilistic forecasts and
Monte-Carlo methods to improve further the effectiveness of
using revenue as an objective function.

This paper illustrates the feasibility of a concept that opens
broad perspectives for application in other functions related
to power systems management. Further work could test this
concept on energy markets with different pricing rules (i.e.
single-pricing for imbalance settlement), to evaluate whether
it is suitable for any set of market rules. This would require
modifying the objective function of the optimization loops
to correspond to market rules. In addition, in markets where
several consecutive decisions have to be made (e.g. intra-day
market sessions or control of a storage system coupled with
the power plant), each decision-making process would have
to be modeled with an ELM model. The authors expect that
the best approach for a given application is primarily driven
by the imbalance penalization rules, and extending the work
to new market structures could test this hypothesis, as in our
study no model clearly outperformed the others in dual-pricing
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TABLE IV
EVALUATION RESULTS FOR THE TESTING PERIOD (JAN 2009 - OCTOBER 2009)

Plant number 1 2 3 4 5 6 7 8 9
Forecast RMSE (%) 14.0 15.6 15.0 16.6 16.3 19.0 16.5 15.6 16.1

Absolute Bids Error (MWh) 654 746 705 785 764 946 774 752 757
Benchmark Penalties (DKK) 14 969 17 896 15 303 17 279 18 681 22 711 19 055 15 473 17 082

Net Revenue (DKK) 334 704 379 988 323 179 367 804 365 797 438 805 358 754 386 620 352 124
Penalty per imbalance (DKK/MWh) 22.4 22.9 21.2 22.2 23.8 23.2 23.2 21.6 22.3

Forecast RMSE (%) - - - - - - - - -
Absolute Bids Error (MWh) 657 775 720 757 797 970 814 751 762

Approach 2 Penalties (DKK) 14 317 17 645 14 874 16 841 18 784 21 043 18 322 15 193 17 279
Net Revenue (DKK) 335 357 380 239 323 608 368 242 365 695 440 473 359 487 386 900 351 928

Penalty per imbalance (DKK/MWh) 21.8 22.8 20.7 22.3 23.6 21.7 22.5 20.2 22.7

markets.
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ANNEX A: COMPLETE EVALUATION RESULTS OF THE FIRST TEST CASE

Plant Benchmark Reference Approach 1 Approach 2
Price forecasts RMSE (%) - 48.19 66.93 -
AnEn forecasts CRPS (%) 5.81 5.81 5.89 -

1 : 9828 kWp Absolute bids error (MWh) 3116 3009 3033 3386
Penalties (Eur) 22171 20762 20143 22554

Net revenue (Eur) 405302 406711 407330 405245
Average penalty per imbalance (Eur/MWh) 7.11 6.90 6.64 6.66

AnEn forecasts CRPS (%) 5.64 5.64 5.78 -
2 : 2694 kWp Absolute bids error (MWh) 834 823 839 987

Penalties (Eur) 5402 5270 5597 5267
Net revenue (Eur) 131209 131342 131015 131495

Average penalty per imbalance (Eur/MWh) 6.47 6.41 6.67 5.34
AnEn forecasts CRPS (%) 4.79 4.79 6.01 -

3 : 10008.96 kWp Absolute bids error (MWh) 2116 2043 2426 2478
Penalties (Eur) 13675 13441 14208 13881

Net revenue (Eur) 420860 421094 420327 421336
Average penalty per imbalance (Eur/MWh) 6.46 6.58 5.86 5.60

AnEn forecasts CRPS (%) 5.25 5.25 5.38 -
4 : 6876 kWp Absolute bids error (MWh) 2016 1984 2048 2375

Penalties (Eur) 14494 13829 13449 15920
Net revenue (Eur) 298524 299189 299569 297351

Average penalty per imbalance (Eur/MWh) 7.19 6.97 6.57 6.70
AnEn forecasts CRPS (%) 9.55 9.55 10.25 -

5 : 4296 kWp Absolute bids error (MWh) 2255 2253 2308 2981
Penalties (Eur) 14057 13754 13376 12692

Net revenue (Eur) 164241 164544 164922 165654
Average penalty per imbalance (Eur/MWh) 6.23 6.10 5.80 4.26

AnEn forecasts CRPS (%) 5.91 5.91 6.01 -
6 : 11994 kWp Absolute bids error (MWh) 3996 3893 3929 4576

Penalties (Eur) 29246 27159 26172 33526
Net revenue (Eur) 524398 526485 527472 520387

Average penalty per imbalance (Eur/MWh) 7.32 6.98 6.66 7.33
AnEn forecasts CRPS (%) 5.16 5.16 5.30 -

7 : 5064 kWp Absolute bids error (MWh) 1456 1447 1492 1590
Penalties (Eur) 8979 8775 8815 9722

Net revenue (Eur) 207045 207249 207209 206692
Average penalty per imbalance (Eur/MWh) 6.17 6.06 5.91 6.11

AnEn forecasts CRPS (%) 5.58 5.58 5.74 -
8 : 9504 kWp Absolute bids error (MWh) 2922 2859 2941 3250

Penalties (Eur) 18194 17763 19238 17494
Net revenue (Eur) 364464 364896 363420 365180

Average penalty per imbalance (Eur/MWh) 6.23 6.21 6.54 5.38
AnEn forecasts CRPS (%) 5.67 5.67 5.63 -

9 : 9504 kWp Absolute bids error (MWh) 2831 2839 2773 3184
Penalties (Eur) 18290 18367 17974 18964

Net revenue (Eur) 377056 376979 377372 376591
Average penalty per imbalance (Eur/MWh) 6.46 6.47 6.48 5.96

AnEn forecasts CRPS (%) 5.45 5.45 5.64 -
10 : 4224 kWp Absolute bids error (MWh) 1258 1245 1282 1551

Penalties (Eur) 7570 7190 7665 8111
Net revenue (Eur) 179434 179815 179339 178894

Average penalty per imbalance (Eur/MWh) 6.02 5.77 5.98 5.23
AnEn forecasts CRPS (%) 5.00 5.00 5.08 -

11 : 3300 kWp Absolute bids error (MWh) 889 884 889 1109
Penalties (Eur) 6015 5597 5328 5656

Net revenue (Eur) 127122 127540 127809 127496
Average penalty per imbalance (Eur/MWh) 6.77 6.33 5.99 5.10

AnEn forecasts CRPS (%) 5.16 5.16 5.33 -
12 : 2610 kWp Absolute bids error (MWh) 743 739 764 836

Penalties (Eur) 4690 4449 4597 4666
Net revenue (Eur) 98424 98665 98517 98471

Average penalty per imbalance (Eur/MWh) 6.32 6.02 6.01 5.58
AnEn forecasts CRPS (%) 5.18 5.18 5.38 -

13 : 11994 kWp Absolute bids error (MWh) 3084 3009 3170 3656
Penalties (Eur) 22173 20414 21493 22095

Net revenue (Eur) 382414 384173 383094 390523
Average penalty per imbalance (Eur/MWh) 7.19 6.78 6.78 6.04
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