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ABSTRACT:

In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to
the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When
implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component
has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by
exchanging a module.
The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer,
2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we
applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion
models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the
size of the residuals of a tilt-shift lens calibration.
Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However,
when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This
suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively
low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel
projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

1. INTRODUCTION

The mathematical problem that is solved by the Bundle adjust-
ment (BA) process includes a residual between two components.
One residual component is the simulated projection of an ob-
ject point according to the camera model at hand. The other
component is computed from the corresponding image measure-
ment1. As a typical presentation, consider equation (1) below
(Luhmann et al., 2014, equation (4.94)) Ignoring ∆x′ and ∆y′,
equation (1) completely describes the projection of the object
point (OP) (X,Y, Z) through a pinhole camera with principal
point (x′0, y

′
0) and camera constant z′ placed at (X0, Y0, Z0) and

with an orientation given by the matrix R.
∗Corresponding author
1For simplicity, in this paper we ignore additional observations of ob-

ject point coordinates, etc.

Another requirement of the bundle adjustment is the linearisa-
tion of equation (1) with respect to any parameter that is to be
estimated (see e.g. Kraus (1993, Sec. 5.3.2), Wolf and Dewitt
(2000, App. D-4), Mikhail et al. (2001, App. C.3), or Luhmann
et al. (2014, Sec. 4.4.2)). Some partial derivatives of equation (1)
are given in equation (2) below (Luhmann et al., 2014, equation
(4.96)). In equation (2), kX and kY are the respective numerators
of equation (1), and N is the denominator.

What may not be immediately obvious from equation (1) is that
the computation can be split into a sequence of basic operations.
The goal of this paper is to show how that can be done and that,
if each operation is treated as a module with a responsibility for
computing both the result of the operation and its linearisation
(Jacobians) with respect to any parameter, the computation of the
analytical Jacobians can be greatly simplified.

x′ = x′0 + z′
r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ ∆x′,

y′ = y′0 + z′
r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ ∆y′.

(1)

∂x′

∂X
= − z′

N2
(r13kX − r11N),

∂x′

∂Y
= − z′

N2
(r23kX − r21N),

∂x′

∂Z
= − z′

N2
(r33kX − r31N),

∂y′

∂X
= − z′

N2
(r13kY − r12N),

∂y′

∂Y
= − z′

N2
(r23kY − r22N),

∂y′

∂Z
= − z′

N2
(r33kY − r32N),

(2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-133-2018 | © Authors 2018. CC BY 4.0 License.

 
133



Camera
center

Object
point

Rotation
matrix

3D trans-
lation

3D
rotation

Pinhole
pro-

jection
Scaling

Camera
constant

Principal
point

2D trans-
lation

p
p0 R

v q m

c u0

n

Figure 1: The computational chain corresponding to equation (5). The gray circles indicate bundle adjustment parameters. The white
circles indicate component functions in equation (4). The arrows indicate how the parameters and results are propagated. The arrow
labels indicate the name of the formal (input) parameter of the corresponding function.

2. SPLITTING THE RAYS

2.1 Basic functions

If we group the parameters as

p =

XY
Z

 , p0 =

X0

Y0

Z0

 , q =

kXkY
N

 ,

u =

(
x′

y′

)
, u0 =

(
x′0
y′0

)
, ∆u =

(
∆x′

∆y′

)
,

(3)

and introduce the basic functions

T3(p, p0) = p+ p0, 3D translation (4a)

L(R, v) = Rv, 3D rotation (4b)

H(q) =
1

q3

(
q1
q2

)
, Pinhole projection (4c)

S(c,m) = cm, Scaling (4d)

T2(n, u0) = n+ u0, 2D translation, (4e)

we may write equation (1) as the following composition:

u = g(p, p0, R, z
′, u0)

≡ T2(S(z′, H(L(RT , T3(p,−p0)))), u0).
(5)

In the definition of the functions in equation (4), generality has
been favoured over typical usage to simplify future extensions.
For instance, the function L(R, v) describes a 3D linear trans-
formation whereas the typical usage is with a rotation matrix R.
Similarly, the translation T3(p, p0) is defined with a positive sign
on p0 whereas the typical usage would be T3(p,−p0).

The algorithm corresponding to equation (5) is shown in Algo-
rithm 1 with a graphical representation in Figure 1.

2.2 Linearisation

The linearisation of composed functions are governed by the chain
rule (see Appendix A). For example, the Jacobian of the projec-
tion function g in equation (5) with respect to the object point

Algorithm 1 Pinhole projection corresponding to equation (5).
1: procedure PINHOLENOJAC(p, p0, R, c, u0)
2: a1 ← T3(p,−p0)
3: a2 ← L(RT , a1)
4: a3 ← H(a2)
5: a4 ← S(c, a3)
6: a5 ← T2(a4, u0)
7: return a5
8: end procedure

coordinates p is the matrix product of five Jacobians[
dg

dp

]
=

[
dT2

dn

]
n=S(z′,H(L(RT ,T3(p,−p0))))

·
[
dS

dm

]
m=H(L(RT ,T3(p,−p0)))

·
[
dH

dq

]
q=L(RT ,T3(p,−p0))

·
[
dL

dv

]
v=T3(p,−p0)

·
[
dT3

dp

]
,

(6)

where · indicates matrix multiplication and the subscripts indi-
cate at which point the respective Jacobians are evaluated. A
detailed inspection of equation (6) reveals that it is identical to
equation (2).

To better highlight the chaining, a simplified notation that leaves
the evaluation point implicit may be used:[

dg

dp

]
=

[
dT2

dS

] [
dS

dH

] [
dH

dL

] [
dL

dT3

] [
dT3

dp

]
. (7)

2.3 Modularisation

Algorithm 2 is an extension to Algorithm 1 to also compute the
Jacobian according to Equation (6). In Algorithm 2, each func-
tion is assumed to compute both the function value proper and the
Jacobians with respect to each parameter. From Algorithm 2, we
see that each function will indeed have all the necessary informa-
tion to compute the function value and its Jacobians at the proper

Algorithm 2 Algorithm 1 extended to compute Jacobians. Each
function is capable of computing the Jacobians with respect to
each of its parameters. This example only shows the Jacobians
necessary to compute

[
dg
dp

]
according to equation (6).

1: procedure PINHOLEWITHJAC(p, p0, R, c, u0)
2: (a1, Jp)← T3(p,−p0) . Jp =

[
dT3
dp

]
3: (a2, Jv)← L(RT , a1) . Jv =

[
dL
dv

]
v=a1

4: (a3, Jq)← H(a2) . Jq =
[
dH
dq

]
q=a2

5: (a4, Jm)← S(c, a3) . Jm =
[
dS
dm

]
m=a3

6: (a5, Jn)← T2(a4, u0) . Jn =
[
dT2
dn

]
n=a4

7: J ← JnJmJqJvJp . J =
[
dg
dp

]
8: return (a5, J)
9: end procedure
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Figure 2: The computational chain implemented in DBAT (Börlin and Grussenmeyer, 2013). In the photogrammetric formulation,
the optical scaling in the camera results in image coordinates expressed in physical units, e.g. mm. The image coordinates are scaled
from pixels to mm before the Brown (1971) polynomials are used to ”correct” the measured image coordinates for lens distortion. The
residual (thick circle) is computed as the difference between the projected ideal point and the corrected point.
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Figure 3: The DBAT implementation of the Computer Vision formulation of the Brown (1971) lens distortion model (Tsai, 1987;
Heikkilä and Silvén, 1997; Zhang, 2000). The Brown polynomials are used to ”add” lens distortion to the projected ideal point in
normalised units before the coordinates are scaled directly to pixels. The residual (thick circle) is computed between the measured
point and the ideal projected point with added lens distortion. The same modules have been used as in Figure 2.

evaluation point. Thus, by adding the requirement that each func-
tion should be able to compute its own Jacobians, we may modu-
larise the residual computations and use the functions as building
blocks. Furthermore, as each module is self-contained, it is pos-
sible to validate the analytical Jacobian of each module indepen-
dently.

2.4 Photogrammetric modules

In addition to the functions listed in equation (4), we add the com-
putation of the rotation matrixR from the ω−φ−κ Euler angles
(Förstner and Wrobel, 2004, eqs. (2.128)–(2.130))

R(ω, φ, κ) = R3(κ)R2(φ)R1(ω), (8a)

the Brown (1971) lens distortion model

D(u,K, P ) = u+ dr(u,K) + dt(u, P ), (8b)

and the 2D affine transformation

A2(u, b) =

(
1 + b1 b2

0 1

)
u. (8c)

In equation (8b), the vectors K and P contain the radial and tan-
gential distortion coefficients, respectively. In equation (8c), the
scalar b1 controls the aspect ratio and b2 controls the skew. For
more details and derivation of the Jacobians, see Appendix B.

3. USAGE

The modular technique has previously been used in the open-
source Damped Bundle Adjustment Toolbox (DBAT)2 package
(Börlin and Grussenmeyer, 2013, 2016). In the 2016 paper, the
technique was used to implement two bundle pipelines that used
different adaptations of the Brown (1971) lens distortion model.
In the Photogrammetric formulation, the Brown polynomials are
used to ”correct” for the effect of lens distortion on the measured
image coordinates. In contrast, the formulation largely adopted
by the Computer Vision community uses the same polynomials
to ”add” lens distortion to the ideal projection of object points
(Tsai, 1987; Heikkilä and Silvén, 1997; Zhang, 2000). The two
pipelines are contrasted in figures 2 and 3.

In this paper, we have used the modular technique to investigate
the effect of the relative ordering of an affine transformation and
lens distortion on the calibration of a tilt-shift lens. Two exten-
sions of the photogrammetric pipeline of Figure 2 was imple-
mented in DBAT. The reference implementation (Model 2) has
no affinity. In Model 3, the affinity was applied before lens dis-
tortion. In Model 4, the affinity was applied after. The corre-
sponding functions are:

r2 = D(T2(S(s, u),−u0),K, P ), (9a)

r3 = D(A2(T2(S(s, u),−u0), b),K, P ), (9b)

r4 = A2(D(T2(S(s, u),−u0),K, P ), b), (9c)

2https://github.com/niclasborlin/dbat
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Figure 4: Two versions of the right-hand side of Figure 2 with different relative placement of the affine transformation with respect to
lens distortion. In Model 3 (left), the affine distortion was applied before lens distortion. In Model 4 (right), the affine distortion was
applied after lens distortion. Note that in both cases, the digital scaling uses square pixel sizes. Any non-unit aspect ratio is handled by
the affine step.

Figure 5: The synthetic network consisted of 24 cameras at vary-
ing roll angles. The simulated targets were in a 3D configuration
with a largest dimension of 1000 mm.

where s is the pixel size and u the measured image coordinates.
The models are illustrated in Figure 4. As an illustration of the
(low) level of complexity needed, the difference in the compu-
tation of the Jacobian with respect to the principal point u0 was
limited to a inserting a Jacobian at the proper place in the matrix
product (in addition to a change in the evaluation points):[

dr2
du0

]
= −

[
dD

du

] [
dT2

du0

]
, (10a)[

dr3
du0

]
= −

[
dD

du

] [
dA2

du

] [
dT2

du0

]
, (10b)[

dr4
du0

]
= −

[
dA2

du

] [
dD

du

] [
dT2

du0

]
. (10c)

4. EXPERIMENTS AND RESULTS

4.1 Simulation experiment

The first experiment was constructed to investigate the effect, if
any, the difference in affine-lens distortion ordering had. Two sets
of synthetic data were generated, where simulated error-free im-
age observations were generated by back-projection of known 3D
object coordinates and with known exterior orientation param-
eters (EO), and camera calibration parameters (IO) of a strong
self-calibration network. The network consisted of 24 cameras
at varying roll angles. About 100 targets were simulated in a 3D
configuration with a largest dimension of 1000 mm (Figure 5).

The following algorithms were used to simulate Model 3 and
Model 4 (note that the order is reversed compared to Figure 4
as we are building image observations):

Figure 6: The Nikon D750 DSLR camera with the PC-E Micro
NIKKOR 45 mm f/2.8D ED tilt-shift lens used in this paper.

Model 3 1. Collinearity equations (3D translation, 3D rota-
tion, pinhole projection and optical scaling).

2. Introduce lens distortion (iterative, [mm]).

3. Convert from mm to pixels using a non-square pixel
size corresponding to b1 = 0.01218.

4. Introduce the principal point [pixel].

Model 4 1. Collinearity equations (3D translation, 3D rota-
tion, pinhole projection and optical scaling).

2. Apply an affine transformation of the image coordi-
nates corresponding to b1 = 0.01218.

3. Introduce lens distortion (iterative, [mm]).

4. Convert from mm to pixels using a square pixel size.

5. Introduce the principal point [pixel].

Both simulations used a skew (shear) parameter of b2 = 0. The
algorithms were implemented in software developed in-house at
FBK and not by DBAT.

Each synthetic data set was analysed by a self-calibration bundle
adjustment using DBAT models 2, 3, and 4. The datum problem
was solved by fixing the EO parameters of one camera and one
coordinate of another. No control points were used and the prior
weight for the image observations corresponded to a sigma of
0.1 pixels. The following parameters were estimated; the focal
length, the principal point, the radial distortion parameters K1-
K3, and the tangential distortion parameters P1-P2. For models
3 and 4, the affine parameters b1-b2 were also estimated. The
quality of each analysis was evaluated in image space (σ0 and 2D
image point RMS) and object space (3D RMSE between the true
and estimated OP coordinates). The results are given in Table 1.
When the correct estimation model was used, the simulated b1
value was recovered to the number of available decimals and the
internal and external residuals were effectively zero. When the
wrong model was used, the residuals were significantly higher.
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Table 1: Assessment of the analysis of the synthetic data sets. The IO parameters columns indicate what IO parameters and how many
(n) were included in the estimation. The point RMS is the average residual over all image observations. The 3D RMSE is the average
error over all object points. The b̂1 column shows the estimated b1 value.

Simulated DBAT IO parameters Internal assessment External assessment
dataset model parameters n b̂1 σ0 Point RMS (pixels) 3D RMSE (µm)

3 2 b1 b2 P 8 0 34.2847 4.56 620.60
3 b1 b2 P 10 0.01218 00.0003 0.00 000.01
4 b1 b2 P 10 0.01223 00.3773 0.05 008.26

4 2 b1 b2 P 8 0 34.1330 4.54 616.59
3 b1 b2 P 10 0.01212 00.3697 0.05 008.33
4 b1 b2 P 10 0.01218 00.0003 0.00 000.01

Table 2: Assessment of DBAT estimation models 2, 3, and 4 on the real-world data set. The IO parameters and assessment are as in
Table 1, except that the target coordinates computed from the NORMAL data set was used as the true data. The estimated b1 value was
about 0.0019 for all green rows. The corresponding value of b2, when estimated, was about 10−5.

DBAT IO parameters Internal assessment External assessment
model b1 b2 P n σ0 Point RMS (pixels) RMSE (µm)

2 P 8 5.9 0.79 82.3
6 5.9 0.80 92.9

3 b1 b2 P 10 1.1 0.15 11.9
b1 P 9 1.1 0.15 11.9
b1 b2 8 3.0 0.41 73.2
b1 7 3.0 0.41 72.9

b2 P 9 5.9 0.79 82.3
b2 7 5.9 0.80 92.6

4 b1 b2 P 10 1.1 0.15 11.9
b1 P 9 1.1 0.15 11.9
b1 b2 8 3.0 0.41 73.3
b1 7 3.0 0.41 73.3

b2 P 9 5.9 0.79 82.3
b2 7 5.9 0.80 92.8

4.2 Camera calibration of a tilt-shift lens

In the second experiment, models 2, 3 and 4 were used to cali-
brate a camera with a tilt-shift lens. A tilt-shift lens allows the
following movements of the lens (Ray, 2002):

• a tilt, i.e. a rotation of the optical axis around either the exit
pupil or the center of the sensor plane,

• a shift, i.e. a translation of the optical axis, and

• a rotation, i.e. a rotation about the optical axis.

The data set from Nocerino et al. (2016) was used for the cali-
bration. The data set was acquired by a Nikon D750 full-frame
DSLR camera with a PC-E Micro NIKKOR 45mm f/2.8D ED
tilt-shift lens (Figure 6) in two different configurations:

NORMAL The normal configuration where neither tilt nor shift
was applied.

TILTED The lens was tilted in the vertical plane by 4 degrees.

The calibration target was a 3D photogrammetric calibration test
object (Figure 7) with about 170 coded targets with a largest di-
mension of 900 mm. A high redundancy photogrammetric cam-
era network was realised, consisting of up to 48 convergent im-
ages, with a diversity of camera roll angles to enhance the deter-
minability of the IO parameters (Fraser, 2001).

The NORMAL data set was analysed and used as a reference for
the processing of the TILTED data set. The TILTED data set was

Figure 7: The 3D test object consisted of about 170 coded targets
with a largest dimension of 900 mm.

analysed by a self-calibration bundle adjustment in DBAT using
models 2, 3 or 4. The datum and prior weights were the same as
in the synthetic experiment. Furthermore, the parameters b1, b2,
andP were individually included or excluded from the estimation
(P1 and P2 were always estimated together). The quality of the
estimation was evaluated as in the synthetic experiment with the
results of the NORMAL data set used as the reference. The results
are given in Table 2.

From Table 2, we may conclude that the difference between mod-
els 3 and 4 on real-world data is small. The internal and external
residuals were small when the aspect parameter b1 and the de-
centering distortion parameters P1-P2 were included in the esti-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-133-2018 | © Authors 2018. CC BY 4.0 License.

 
137



mation. In those cases, the estimated b1 value was about 0.0019.
This value is equal to the value in Nocerino et al. (2016, Table 3,
column T-4S0R90) that was estimated by other software. In con-
trast, the inclusion of b2 had a negligible effect on the residuals.

5. DISCUSSION

In this paper we discuss how the residual computations used by
bundle adjustment can be split into modules. If each module is
responsible for computing Jacobians with respect to each parame-
ter, in addition to the function value proper, Jacobians of complex
expressions can be computed using the chain rule. Furthermore,
the analytical Jacobians of each module can be validated inde-
pendently of the other modules.

The modular technique has previously been used in the Damped
Bundle Adjustment Toolbox (DBAT) to model the Photogram-
metric and Computer Vision adaptations of the (Brown, 1971)
lens distortion models (Börlin and Grussenmeyer, 2016). In this
paper, the Photogrammetric pipeline was extended by an affine
transformation. Two models with different placement of the affine
transformation compared to lens distortion were implemented with
minimal effort.

An experiment on synthetic image observations was performed.
The conclusion is that the relative placement of the affine trans-
formation and lens distortion does matter and that DBAT was able
to distinguish which model was used to generate the synthetic
data.

The tilt-shift lens is a complex design whose projection model
is not yet rigorously supported by DBAT. In a previous paper, it
was found that some of the deviation of the tilt-shift lens from the
classic photogrammetric projection model (pin-hole with Brown
lens distortion) could be absorbed by including the affine distor-
tion parameter b1 in the estimation Nocerino et al. (2016). In
this paper, the calibration experiment was constructed to test the
hypothesis that the order of the affine and lens distortion trans-
formations could be modified to explain more of the tilt-shift dis-
tortion. The results suggest that the hypothesis was false — com-
pared to other, possibly unmodelled effects, the ordering does
not significantly contribute to the observed residuals. The results
however support the conclusion in Nocerino et al. (2016) that the
aspect parameter b1 and the decenter parameters P1-P2 are sig-
nificant but the skew parameter b2 is not.

The primary goal of this paper was to show how the presented
modularity of DBAT can be used to test novel projection mod-
els. The first experiment shows that the ordering does have an
effect and is detectable if it is the dominant factor. The second
experiment shows that the tested re-ordering has little effect, thus
suggesting that the ordering is not the dominant factor. In both
cases, the implementation effort to test the hypothesis was min-
imal. This suggests that DBAT can be used to test novel projec-
tion models in the future. Potential uses of the modularity include
replacing a module to form another projection model. For exam-
ple, the pin-hole module could be swapped by a fish-eye module,
or rotation modules could be swapped between omega-phi-kappa
and azimuth-tilt-swing.

Future work to better understand the tilt-shift lens include mod-
elling changes in the 3D geometry of the lens with DBAT.
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A. THE CHAIN RULE

According to the chain rule, if a univariate function h(x) is formed
as the composition of two univariate, differentiable functions f(x)
and g(x) as

h(x) = f(g(x)), (11)

the derivative h′(x) of the composed function may be calculated
as the product of the derivatives f ′(x) and g′(x). With substitu-
tions y = f(u), u = g(x), the derivative may be written as

dy

dx
=
dy

du

du

dx
, (12)

where the re-appearance of the denominator du of one factor as
the numerator of the next gives the chain rule its name. To make
it clear where each derivative is computed, the computation of
h′(x) at x = c is usually written as

dy

dx

∣∣∣∣
x=c

=
dy

du

∣∣∣∣
u=g(c)

du

dx

∣∣∣∣
x=c

, (13)

where the subscript is to be read “evaluated at”.

The chain rule may be extended to multivariate functions. For
instance, if

g(x(u, v), y(u, v), z(u, v))

is a function of (x, y, z) that themselves are functions of (u, v),
the chain rule dictates that

∂g

∂u
=
∂g

∂x

∂x

∂u
+
∂g

∂y

∂y

∂u
+
∂g

∂z

∂z

∂u
, (14a)

∂g

∂v
=
∂g

∂x

∂x

∂v
+
∂g

∂y

∂y

∂v
+
∂g

∂z

∂z

∂v
. (14b)

If the variables are collected in vectors

w =

(
u
v

)
, t(w) =

x(w)
y(w)
z(w)

 , (15)

we find that the Jacobian
[
dg
dw

]
at w = c[

dg

dw

]
w=c

=

[
dg

dt

]
t=t(c)

[
dt

dw

]
w=c

(16)

is the product of the two Jacobians
[
dg
dt

]
and

[
dt
dw

]
.

B. JACOBIANS

B.1 Preliminaries

This section mostly follows (Magnus and Neudecker, 2007).

B.1.1 The vec(·) operator Given an m× n matrix

A =
(
a1 · · · an

)
=

a11 · · · a1n
...

. . .
...

am1 · · · amn

 ∈ <m×n, (17)

the vectorisation operator vec(·) rearrangesA into a column vec-
tor where the elements of A are in column-major order

vec(A) =

a1...
an

 =


a11
a21

...
amn

 ∈ <mn×1. (18)

B.1.2 Jacobians of matrix functions The Jacobian of any
scalar- or vector-valued function f with respect to a matrix ar-
gument A is implicitly assumed to be with respect to vec(A), i.e.[

df(A)

dA

]
≡
[
df(A)

d vec(A)

]
. (19)

Furthermore, the Jacobian of any matrix-valued function F (A) is
implicitly assumed to be applied to vec(F (A)), i.e.[

dF (A)

dA

]
≡
[
d vec(f(A))

d vec(A)

]
. (20)

B.1.3 The Kronecker product The Kronecker product C =
A ⊗ B, where the matrices A ∈ <m×n, B ∈ <p×q , and C ∈
<mp×nq , is defined as

C = A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 . (21)

B.1.4 The Jacobian of matrix expressions For matricesA ∈
<k×l, B ∈ <l×m, C ∈ <m×n, the following identities hold:

vec(AB) = (Im ⊗A) vec(B) (22a)

= (BT ⊗ Ik) vec(A) (22b)

and

vec(ABC) = (CT ⊗A) vec(B) (23a)

= (In ⊗AB) vec(C) (23b)

= (CTBT ⊗ Ik) vec(A). (23c)

Equations (22) and (23) can be used to derive Jacobians of matrix
products.

B.2 Component functions

B.2.1 The transpose The transpose of an m-by-n matrix A

B(A) = AT (24a)

is a permutation of the elements of A. The Jacobian is a permu-
tation matrix known as the Commutation matrix Kmn[

dB

dA

]
= Kmn. (24b)

B.2.2 Translation The translation of a point p ∈ <3 in by an
offset c ∈ <3 is given by

T3(p, p0) = p+ p0. (25a)

The Jacobians of T3 with respect to p and p0 are[
dT3(p, p0)

dp

]
=

[
dT3(p, p0)

dp0

]
= I3. (25b)

If the translation is applied to m points stored as columns in P ,
we instead get

T3(P, p0) = P + p01
T
m, (25c)

and [
dT3(P, p0)

dP

]
= Im ⊗ I3 = I3m (25d)[

dT3(P, p0)

dp0

]
= 1m ⊗ I3. (25e)

Similarly for a 2D point u and offset u0,

T2(u, u0) = u+ u0,

[
dT2(u, u0)

du

]
=

[
dT2(u, u0)

du0

]
= I2.

(26)
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B.2.3 3D linear transformation An arbitrary linear transfor-
mation of a point p ∈ <3 can be formulated as

L(M,p) = Mp, (27a)

with Jacobians given by (22)[
dL(M,p)

dM

]
= pT ⊗ I3,

[
dL(M,p)

dp

]
= M. (27b)

B.2.4 3D rotation matrix If the 3D rotation matrix is defined
using the ω − φ − κ Euler angles (Förstner and Wrobel, 2004,
eqs. (2.128)–(2.130)), and with the vector k =

(
ω φ κ

)T ,
we have the following rotations

R1(ω) =

1 0 0
0 cosω − sinω
0 sinω cosω

 , (28a)

R2(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 , (28b)

R3(κ) =

cosκ − sinκ 0
sinκ cosκ 0

0 0 1

 , (28c)

R(k) = R(ω, φ, κ) = R3(κ)R2(φ)R1(ω), (28d)

with Jacobians given by Lucas (1963, eqs. (3)–(9))[
dR(k)

dω

]
= −R(ω, φ, κ)Px, (28e)[

dR(k)

dφ

]
= −R3(κ)R2(φ)PyR1(ω), (28f)[

dR(k)

dκ

]
= −PzR(ω, φ, κ), (28g)[

dR(k)

dk

]
=
([

dR(k)
dω

] [
dR(k)
dφ

] [
dR(k)
dκ

])
. (28h)

B.2.5 Pin-hole projection The pin-hole projection of a 3D
point p to a 2D point is given by

H(p) =
1

p3

(
p1
p2

)
, (29a)[

dH(p)

dp

]
=

1

p3

(
1 − p1

p3

1 − p2
p3

)
. (29b)

B.2.6 2D scaling The scaling of the 2D point u by a scalar k
is given by

S(k, u) = ku. (30a)[
dS(k, u)

du

]
= kI2,

[
dS(k, u)

dk

]
= u. (30b)

B.2.7 2D affine transformation The affine transformation ma-
trix A is defined as

Am(b) =

(
1 + b1 b2

0 1

)
, (31a)

where b are the affine parameters. The corresponding 2D affine
transformation function A2 is defined as

A2(u, b) = Am(b)u, (31b)[
dA2(u, b)

du

]
= Am(b),

[
dA2(u, b)

db

]
=

(
uT

0T2

)
. (31c)

B.2.8 Lens distortion

B.2.8.1 Components To simplify the expressions below, we
define a number of helper functions: The r function is the norm
(“radius”) squared of a vector:

r(u) = uTu,

[
dr(u)

du

]
= 2uT , (32a)

The vp function expands a scalar value x to a vector of its powers:

vp(x;n) =


x
x2

· · ·
xn

 ,

[
dvp(x;n)

dx

]
=


1

2x1

· · ·
nxn−1

 , (32b)

The radial scaling function rs computes the inner product be-
tween a coefficient vector c and the power vector of the radial
values squared:

rs(u, c) = cT vp(r(u); |c|), (32c)[
drs(u, c)

du

]
= cT

[
dvp(r(u); |c|)

dr

] [
dr(u)

du

]
, (32d)[

drs(u, c)

dc

]
= vp(r(u); |c|)T , (32e)

where |c| is the number of elements of the vector c. Finally, the
tangential scaling function ts computes the non-radial part of the
tangential distortion

ts(u, p) = (uTuI2 + 2uuT )p, (32f)[
dts(u, p)

du

]
= 2puT + 2pTuI2 + 2upT , (32g)[

dts(u, p)

dp

]
= uTuI2 + 2uuT . (32h)

Given the helper functions above, the radial distortion part of
Brown (1971, equation (20)) is reduced to

dr(u,K) = urs(u,K), (33a)[
ddr(u,K)

du

]
= I2rs(u,K) + u

[
drs(u,K)

du

]
, (33b)[

ddr(u,K)

dK

]
= u

[
drs(u,K)

dK

]
. (33c)

Furthermore, if the P vector of Brown (1971, equation (20)) is
split into the tangential part Pt =

(
P1 P2

)T and radial part

Pr =
(
P3 P4 . . .

)T , the tangential distortion part of Brown
(1971, equation (20)) becomes

dt(u, P ) = ts(u, Pt)(1 + rs(u, Pr)), (34a)[
ddt(u, P )

du

]
= (1 + rs(u, Pr))

[
dts(u, Pt)

du

]
+ ts(u, Pt)

[
drs(u, Pr))

du

]
, (34b)[

ddt(u, P )

dPt

]
= (1 + rs(u, Pr))

[
dts(u, Pt)

dPt

]
, (34c)[

ddt(u, P )

dPr

]
= ts(u, Pt)

[
drs(u, Pr)

dPr

]
, (34d)[

ddt(u, P )

dP

]
=
([

ddt(u,P )
dPt

] [
ddt(u,P )
dPr

])
. (34e)
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