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Abstract Mass-Spring Systems (MSS) simulating elastic ma-
terials obey constraints known in elasticity as the Cauchy
relations, restricting the Poisson ratio of isotropic systems
to be exactly ν = 1/4. We remind that this limitation is in-
trinsic to centrosymmetric spring systems (where each node
is a center of symmetry), forbidding them for instance to
simulate incompressible materials (with ν = 1/2). To over-
come this restriction, we propose to supplement the spring
deformation energy with an energy depending on the vol-
ume only, insensitive to change of shape, permitting MSS to
simulate any real isotropic materials. In addition, the free-
dom in choosing the spring constants realizing a given elas-
tic behavior allows to manage instabilities. The proposed hy-
brid model is evaluated by comparing its response to various
deformation geometries with analytical model and/or Finite
Element Model (FEM). The results show that the hybrid
MSS model allows to simulate any compressible isotropic
elastic material and in particular the nearly incompressible
(Poisson ratio ν ' 1/2) biological soft tissues to which it is
dedicated.
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Lyon, Laboratoire de Physique, CNRS, UMR5672, Lyon, France.

S. Nicolle
Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC
UMR T9406, F-69622 Lyon, France.

1 Introduction

From computer graphics to bioengineering applications, mod-
eling soft materials subjected to large deformations is highly
challenging. In particular, not only the realism of a deforma-
tion but also stability issues are still the main difficulties of
the development of deformable object models, regardless of
the domain of application. The needs and the requirements
are however not the same, depending on whether the mod-
els are designed for animation or for scientific applications
involving usually different computational approaches.

In computer graphics the computational speed and the
visual realism of body deformation are main objectives in
the development of new models. The mass-spring systems
(MSS) meet these needs, as they are based on simple phys-
ical laws (relating the discretized acceleration of masses to
the reacting spring forces) which allow fast computations
and real-time topological changes (such as cutting or pierc-
ing). Therefore mass-spring systems are a great success among
computer graphics developers [33,14].

From another point of view, many new biomedical activ-
ities, such as the computer-based surgery, need soft material
models which must represent biofidelic mechanical behavior
while allowing real-time simulations. The main requirement
of the biomedicine dedicated models is based on their ro-
bustness and the accuracy of their mechanical response (real
3D deformation and haptic forces). Since MSS can not prop-
erly simulate incompressible bodies, such as soft organs, be-
cause of the Cauchy constraints, existing instabilities and in-
ability to derive a link between the physical body properties
and the MSS parameters, scientists reckoned that the finite
element method (FEM) was undeniably more relevant than
the MSS for satisfying this need.

Using FEM gives the possibility of applying different
physical laws in form of constitutive functions and precise
boundary conditions to the model. Nevertheless, this better
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description of the mechanical behavior in case of FEM is
counterbalanced by the advantages of mass-spring models,
namely fast computation and effortless topological modi-
fications in real-time without additional pre-computations
(which are still necessary when using FEM). This holds for
both linear and angular spring systems, as well as mixed sys-
tems [29].

To contribute to the effort of simulating soft tissues in
real time, we propose a new formulation of the 3D MSS to
improve its mechanical behavior for simulating any com-
pressible isotropic soft materials while satisfying stability
conditions. In particular, the MSS limitations prevent an ar-
bitrary choice of the Poisson ratio (i.e. the ratio determin-
ing how a volume changes during a deformation). Thus in
this paper we will focus on several solutions: (i) determin-
ing the stiffness constants of springs for 3D cubic symmetric
MSS to reflect the Young modulus of the modeled body; (ii)
addressing the stability issues of MSS; (iii) controlling the
change of volume during a deformation process in agree-
ment with the Poisson ratio of the modeled material.

In Section 2, we present the related work concerning
simulation based on a mass-spring system. Section 3 presents
the classical mass-spring model. Section 4 reminds the lin-
ear elasticity theory using a system based on springs. Some
reminders about linear elasticity are given in Appendix A.
Section 5 describes our approach to propose a hybrid mass-
spring system (HybMSS) to deal with the limitations of the
Cauchy theory. In this section, we address the formulation
of our HybMSS (springs’ configuration and their parame-
ters) and the addition of correction forces to simulate mate-
rials with any Poisson’s ratio. Section 6 presents the results
of our experimentations followed by a discussion. Section 7
concludes this article and presents future work. Moreover,
Table 1 gives the notations used in the article.

2 Previous work

Mass-spring models are widely used in computer graphics
thanks to their fast computational capabilities [10]. They
allow to simulate cloths in 2D [7] or deformable solids in
3D [35,34]. They are based on an intuitive approach to simu-
late these elastic materials, with a discretization of an object
into a set of particles (or masses) interconnected by a set of
springs. However, the accuracy of their mechanical behav-
ior is difficult to improve because of the local nature of de-
formations’ treatment. It is also due to troubles to correctly
adjust the stiffness of springs according to the mechanical
properties of the materials [24,32] and difficulties to ensure
the correct change of volume of compressible bodies. In this
context, studies present attempting to reduce the impact of
these issues over the years with several solutions.

Bourguignon [6] proposed an approach based on tetrahe-
dral and hexahedral meshes to ensure the volume conserva-
tion of an element (with a maximal relative error 1.5%). The
volume-correcting force formulation uses information from
springs (stiffness, damping) and vertices (positions, veloci-
ties) to tie the vertices to the barycenter of a volume instead
of treating the vertex’ forces only along the 3 main dimen-
sions. However, since the hexahedral meshes are not homo-
geneous in their approach (the masses are not distributed
evenly) the model can be used only for limited types of bod-
ies. Also, the authors do not associate the volume-correcting
forces to the actual volume of mesh elements.

Working on tetrahedral meshes, Mollemans [26] intro-
duced an additional force term for the volume conservation.
The force consists of 3 components: internal, external and
corrective one (the latter factored by a constant, which is
based on the influence of the elastic deformation and change
of volume). The corrective force is based on the change of
a volume of a basic element, but in the general calculations
only the biggest forces are taken into account under condi-
tion F > 0.1 Fmax. Such treatment ensures a good speed-up,
but involves a major drawback for the accuracy.

Jarrousse [16] presented a simple method for volume
conservation of myocardial non-linear anisotropic elastome-
chanical tissues. A hydrostatic work term (involving defor-
mation tensor) is added to the energy density function, used
later on to calculate volume preservation forces. However,
such a method destabilizes the system, therefore the model
is not suitable for real-time simulation.

Duan [12] presented novel compensations for 2D and 3D
MSS, used in case of over-stretching or over-compressing a
body. The concept called Position Based Mass-Spring Sys-
tem, has been inspired by Position Based Dynamics [4,11].
In this work springs are limited to 10% extension/compression
to respect the natural behavior of materials. The results show
mean error of 3.3% for small and 4.2% for non-linear defor-
mations in comparison with FEM, proving model’s usability
for real organ simulation. Unfortunately, the method is not
universal and the mesh-dependent deformation ratios need
to be set up by the user to achieve best results.

To improve the accuracy, another approach involves in-
corporating the bio-mechanical properties of the simulated
material into the formulation of the spring stiffness. Baudet [3]
proposed a formulation based on the Young modulus and the
Poisson ratio, and Natsupakpong [27] a formulation based
on the Lamé constants. Moreover, Baudet [3] specifies forces
to improve 2D and 3D MSS, but unfortunately they do not
work with co-rotational modifications and they are based on
an area-preserved energy. Moreover, the formulation of the
Baudet forces was based on the assumption of small defor-
mations (the Hooke law).

With the same approach, Kot [22,20,21] presented a method
for overcoming the limitation of fixed Poisson’s ratio when
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simulating elastic homogeneous isotropic bodies. His ap-
proach is verified on a cubic and disordered lattice. The
method makes use of the existing vertices and correspond-
ing distances between them, which makes the MSS look
more like a meshless structure and behave like a fluid with
no viscosity. Additional phenomenon which the authors in-
troduce into the system is causing the nodes not only to
repel each other, but also to radiate a dispersive momen-
tum in random directions when two nodes start approaching
each other. The approximated force of this momentum flow
makes up for the desired value of Poisson’s ratio. The for-
mulation involves two adjustable parameters, which make
the system behave differently at varied setup. The authors
point out that when the Poisson ratio is changed, the cor-
responding change needs to be made to the bulk modulus
to keep the Young modulus fixed. Unfortunately the method
may increase the computation time twice.

Angular springs were considered by Kirkwood [19] in
the study of molecular vibrations and later used in Sahimi
and Arbabi’s Bending Bond model [30,29]. Such springs,
resisting changes of shape with no sensitivity to change of
volume, allow to manipulate the shear modulus without chang-
ing the Bulk modulus, thereby varying the Poisson ratio.

Arnab and Raja [1] came up with an idea of additional
force terms based on the change of volume and incorporat-
ing the bulk modulus into their 3D surface MSS model. This
idea takes into account the elastic parameters of the simu-
lated body (Young’s modulus and Poisson’s ratio), which the
authors use to simulate breast surgery. The global deforma-
tion allows conservation of the volume, however the model
itself is not generic and does not possess internal volume.

Born and Huang [5] give a comprehensive account of
the dynamics and statics of crystals, using interatomic po-
tentials as an essential ingredient instead of Cauchy’s inter-
atomic forces, resulting in a greater generality. Although the
proper behavior of the general model under solid rotation
has been questioned [17,13], the Born-Huang theory of sys-
tems with central forces [5, §11] is immune to such criti-
cisms and, interestingly, applies to our mass-spring systems.
Our treatment correspond indeed to Born and Huang’s with
the further simplification that, our springs being linear, the
potentials are quadratic in the displacements.

Despite so many great improvements of MSS that are be-
ing made over the years, the problem of Cauchy’s limitation
of the fixed Poisson ratio (namely ν = 1/4 in 3D) persists
for centrosymmetric spring systems. This article presents
a new formulation of MSS supporting large deformations
while preserving the isotropy of the material for any Pois-
son’s ratio including negative. In this context, we propose
a generic model, working regardless of the external forces
and any topological modifications that the sample may un-
dergo. The 3D structure is based on the formulation of the

spring stiffness parameters according to the Young Modulus
E of the material, and the addition of correction forces based
on the Poisson ratio ν of the material. The additional force
term have been established from the volume strain energy to
ensure a correct behavior of the simulated material during
deformations.

3 The classical mass-spring model

The mass-spring model is based on the discretization of an
object into a set of particles interconnected by springs. We
denote xa(t),va(t) the position and velocity of particle a at
time t, ma being its mass. Moreover, the force acting on the
particle a exerted by the springs connected to it is given by

f(s)a (t)=∑
b

kab f(s)ab =∑
b

kab
xb(t)−xa(t)
|xb(t)−xa(t)|

(|xb(t)−xa(t)|− lab)

where f(s)ab (t) is the force exerted by the spring that connects
the particle a to the particle b, and lab and kab are the length
at rest and the spring stiffness constant respectively. The
length in the deformed state of the spring is then l′ab(t) =
|xb(t)− xa(t)|. Thus, the force exerted by the springs on a
particle a can be written

f(s)a (t) = ∑
b

kab (xb(t)−xa(t))
(

1− lab

|xb(t)−xa(t)|

)
(3.1)

To simulate the behavior of an object based on a MMS,
the simulation loop is classically governed by the Newton’s
laws, thus deforming the initial lattice so that the MSS mim-
ics the behavior of an elastic continuum. At each time t, the
following computations are consequently performed on ev-
ery particle of the MSS:

1. Computation of the total force fa = f(s)a + f(g)a + f(v)a act-
ing on a particle a, namely the force f(s)a defined by equa-
tion (3.1) due to the springs connecting a to neighboring
particles and the gravitational force f(g)a = mag with g
being the gravitational acceleration. This force derives
from the gravitational energy defined by −∑a mag · xa.
To these classical forces, we add our correction force
f(v)a which will be introduced in equation (5.15).

2. Computation of the acceleration of a particle a at time t
according to Newton’s second law:

∂va(t)
∂ t

=
fa(t)
ma

.
∂xa(t)

∂ t
= va(t)

3. Computation of the new velocity va(t + h) and position
xa(t + h) of the particle a using a numerical integra-
tion scheme like the Euler semi-implicit [28] or implicit
one [2], with h being the time step of the simulation.
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Symbol Explanation
t time of a simulation
h time step of a simulation
xa position of a particle a
va velocity of a particle a
ma mass of a particle a
fa sum of the forces exerted on a particle a
f(g)a force exerted by the gravity on a particle a
f(v)a correction force exerted on a particle a
f(s)a spring’s force exerted on a particle a
f(s)ab force exerted by a spring connecting particles a,b
W volume density of energy
C elasticity tensor
ε strain tensor
σ stress tensor
E Young’s modulus
ν Poisson’s ratio
λ , µ Lamé coefficients
K shear modulus
G bulk modulus
κ additionnal coefficient of the bulk modulus
(s) MSS
(s+iso) MSS with isotropy assumption
(HybMSS) hybrid MSS
(HybMSS+iso) hybrid MSS with isotropy assumption
Vc volume of an undeformed cell
V ′c volume of a deformed cell
r end-to-end vector of an undeformed spring
r′ end-to-end vector of a deformed spring
a,b,c edge vectors averaged over the edges of a cell
kab stiffness of a spring connecting particles a,b
lab length at rest of a spring connecting particles a,b
l′ab length of a spring connecting particles a,b
le,ke characteristics of edge springs
l f ,k f characteristics of face diagonal springs
lc,kc characteristics of cube diagonal springs

Table 1 Notations used in the article.

4 Theoretical notions about springs system

We want our springs system to reproduce the behavior of an
elastic matter, especially of an isotropic matter. In annexe,
we recall the theory of linear elasticity based on the macro-
scopic symmetry of the considered material, known as the
multi-constant theory, as opposed to the rari-constant the-
ory based on assumptions at the molecular level, to be con-
sidered thereafter. Note that a historical account of the rari-
vs multi-constant debate is given in [34].

4.1 The rari-constant theory: matter as a system of springs

Interested in the atomic constitution of matter, still hypo-
thetical in his time, mathematician Augustin-Louis Cauchy
studied the macroscopic state of stress of matter construed
as an ensemble of molecules acting on one another through
pairwise central forces, i.e. forces whose line of action passes
through the interacting molecule’s centers, assuming that the
molecules are placed at centers of symmetry of the molec-
ular arrangement [9,8]. In short, Cauchy modeled material
bodies as mass-spring systems.

Following his lead, consider a spatially periodic lattice
of cells of a volume Vc, each cell containing several springs
labeled with index α (with no implicit summation over α),
of natural length lα and spring constant kα . In a deforma-
tion that changes the spring length from lα to l′α , the volume
density of spring elastic energy reads

W (s) =
1

2Vc
∑

α∈cell
kα(l′α − lα)2. (4.1)

Strictly speaking, W (s) is the energy per volume at rest, but
the difference with the energy per deformed volume is of
higher order and therefore immaterial in linear elasticity.

The dimension of the cell defines the microscopic scale
and the deformation is assumed to vary over a much greater,
macroscopic scale, the deformation gradient is thus nearly
uniform at the scale of the cell. Consider therefore a homo-
geneous deformation u(x) = (∇∇∇u)T · x with uniform defor-
mation gradient ∇∇∇u imposed on the system boundaries. Un-
der Cauchy’s assumptions of symmetry, the spring will de-
form affinely with the macroscopic deformation, their end-
to-end vector rα changing to r′α = rα +(∇∇∇u)T ·rα and their
length changing from lα =

√
rα

2 to

l′α =

√
r′α

2 = lα +
1
lα

∇i u j rα irα j = lα +
1
lα

εi j rα irα j (4.2)

at first significant order in ∇∇∇u. Inserting this expression into
the energy (4.1) yields

W (s) =
1

2Vc
∑

α∈cell
kα

(
1
lα

εi j rα irα j

)2

=
1

2Vc
∑

α∈cell

kα

l2
α

εi j εkl rα i rα j rα k rα l (4.3)

According to linear elasticity property (see appendix), the
energy is also defined by 1

2 Ci jkl εi j εkl which, for a springs
system, involves:

C
(s)
i jkl =

1
Vc

∑
α∈cell

kα

lα 2 rα i rα j rα k rα l . (4.4)

The macroscopic elasticity tensor is thus completely sym-
metric with respect to its four (also interchanged) indices,
thus supplementing symmetry relations with, what are now
called, the Cauchy relations:

C
(s)
i jkl = C

(s)
ik jl , (4.5)

which were pointed by Saint-Venant [31, §12-13]. These re-
lations reduce the number of independent components of the
stiffness tensor to 15 in the general case, hence the name
rari-constant theory given to Cauchy’s derivation of elastic-
ity from microscopic arguments.
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4.2 For isotropic materials

In isotropic materials (see appendix), applying this relation
to the isotropic stiffness tensor results in

λ = G and C
(s+iso)
i jkl = G (δi jδkl +δikδ jl +δilδ jk) (4.6)

where the shear modulus G obtains by taking twice the trace
of the stiffness tensor in (4.4) and (4.6) with:

G =
1

15
C
(s+iso)
iikk =

1
15 Vc

∑
α∈cell

kα l 2
α . (4.7)

The rari-isotropic material is thus described by one and only
one elastic constant. The deformation energy then reduces to

W (s+iso) = G (
1
2

Tr(ε)2 +Tr(ε)2) = G (
1
2
(εkk)

2 + εi jεi j).

(4.8)

Moreover, the rari-Young and Poisson moduli become

E =
5 G
2

(4.9)

and

ν = 1/4 (4.10)

The Cauchy relation thus takes a particularly simple form:
the Poisson modulus of isotropic spring systems cannot dif-
fer from 1/4 [34].

5 Our hybrid mass-spring system

Real matter, however, happens to evade Cauchy’s assump-
tions, thus multi-constant elasticity is in order for real mate-
rials, in contrast with mass-spring systems that provide per-
fect examples of rari-constant materials. Since our aim is to
mimic real matter using numerical springs, this is an unfor-
tunate limitation that leads us to supplement springs with a
purely volume-dependent energy. By doing so, we allow ν

to differ from 1/4, as is the case in real matter. This route is
opposite to that taken in the Bending-Bonds model, where
linear springs are supplemented with angular springs sensi-
tive to change of angles, thus reacting to change of shape
but not to change of volume [30,29]. The Bending-Bonds
model thus allows arbitrary Poisson ratios as well as ours
but it seems at a greater computational cost.

5.1 Our theoretical approach

In our hybrid system (HybMSS), we consider the spring en-
ergy which is supplemented with a new term - quadratic in
the relative volume change. We note V ′c the volume of the
deformed cell. The volume density of the energy in a cell is
thus written

W (HybMSS) = W (s)+W (v)

=
1

2Vc
∑

α∈cell
kα(l′α − lα)2 +

κ

2

(
V ′c −Vc

Vc

)2

(5.1)

where κ is a coefficient relative to the material linked to the
volume variation. Since the relative volume change is (V ′c −
Vc)/Vc = εkk, we have (from 4.4)

W (HybMSS) = 1
2 C

(HybMSS)
i jkl εi j εkl ,

with C
(HybMSS)
i jkl =

1
Vc

∑
α∈cell

kα

lα 2 rα i rα j rα k rα l +κ δi jδkl .

(5.2)

The new stiffness tensor C(HybMSS) being the sum of the
spring stiffness tensor and a compression term proportional
to κ .

For isotropic materials. If the spring system has been de-
vised to be elastically isotropic (like that defined in next sec-
tion), then one has

W (HybMSS+iso) =
1
2
(G+κ)(εkk)

2 +G εi jεi j (5.3)

where G (being contributed by the springs) is still given by
equation (4.7). The energy of the hybrid system for isotropic
material therefore identifies with the multi-constant isotropic
energy, with λ = G+κ .

If we consider an uniaxial strain experiment character-
ized by σxx 6= 0,σyy = σzz = 0 which involves εyy = εzz, the
Young and Poisson moduli are defined by E = σxx/εxx and
ν = −εyy/εxx. Thus, the Young and Poisson moduli of the
hybrid system are defined in terms of G and κ by:

E = G
3κ +5G
κ +2G

and ν =
1
2

κ +G
κ +2G

(5.4)

and the bulk modulus becomes

K = κ +
5
3

G. (5.5)

Thus, κ has a meaning of an additional bulk modulus.

Summary of our approach. The recipe for designing our
theoretical hybrid system thus follows: (i) first make the size
lα small enough for the deformation to be approximately
homogeneous over a cell, then (ii) adjust the spring con-
stants to get the desired shear modulus G (as presented in
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the next part as it depends on the geometry of the cell),
and (iii) finally set κ = K− 5

3 G, κ = G(4ν − 1)/(1− 2ν)

or κ = G(5G− 2E)/(E − 3G) depending on whether K,
ν or E is prescribed. As a function of E and ν , one has
G= E/(2(1+ν)) and κ = E(4ν−1)/((2(1+ν)(1−2ν))).

The free setting of κ and µ thus allows our HybridMSS
to display any desired elastic constants, in contrast with the
fixed ν = 1/4 that characterizes MSS (with κ = 0). Note,
however, that mechanical stability imposes −1 ≤ ν ≤ 1/2
and that materials found in nature have 0≤ ν ≤ 1/2, the lim-
its ν = 0 being reached by cork and ν = 1/2 corresponding
to incompressible materials, i.e. materials with a shear mod-
ulus µ much smaller than the compression modulus K.

5.2 Formulation of our HybMSS using cubical cells

To verify our theoretical approach in practice, we pave the
3D space with a lattice of cubical MSS cells of edge length
le and volume Vc = le3 as shown in Fig. 1.

Fig. 1 An element of our MSS composed of 12 edge springs, 12 face
diagonal and 4 inner diagonal springs interconnecting the particles.

A particle endowed with mass is thus affixed to each
cube vertex, connected to neighboring particles by springs
and acted upon by different forces. We chose to place not
only springs on the edges, but also springs on the diagonals
of the cells face and springs on the inner diagonals of the
element. Thus, a cell of our HybMSS is composed of 12
springs (of stiffness constant ke and length le) spanning the
edges, parallel to the axes directions, 4 springs (of stiffness
constant kc and length lc = le

√
3) spanning the cube diago-

nals placed inside the volume, and 12 springs (of stiffness
constant k f and length l f = le

√
2) spanning the face diago-

nals. In the undeformed state the springs belonging to any
given cell have the following characteristics:

– Since any edge spring belongs to four adjacent cells,
only one edge spring (ke, le) must be counted in each di-
rection for a given cell. These springs span the following
vectors of length le:

r1 = (le,0,0)T , r2 = (0, le,0)T , r3 = (0,0, le)T .

– The four inner diagonal springs are represented by the
following vectors of length lc =

√
3 le:

r4 = (le, le, le)T , r5 = (le, le,−le)T ,

r6 = (le,−le, le)T , r7 = (−le, le, le)T .

– Since each face belongs to two adjacent cells, one must
count once each of the following vectors of length l f =√

2 le:

r8 = (le, le,0)T , r9 = (le,−le,0)T , r10 = (0, le, le)T ,

r11 = (0, le,−le)T ,r12 = (le,0, le)T , r13 = (le,0,−le)T .

Considering one element, the contribution of these springs
to the stiffness tensor (4.4) is written, with Vc = l3

e ,

C
(s)
i jkl = l−3

e

{ 3

∑
α=1

l−2
e ke rα i rα j rα k rα l

+
7

∑
α=4

l−2
c kc rα i rα j rα k rα l

+
13

∑
α=8

l−2
f k f rα i rα j rα k rα l

}
= l−5

e

{
ke

3

∑
α=1

rα i rα j rα k rα l

+
kc

3

7

∑
α=4

rα i rα j rα k rα l +
k f

2

13

∑
α=8

rα i rα j rα k rα l

}
.

By symmetry, components of the stiffness tensor C(s)

having an odd number of identical indices vanish and, direc-
tions 1, 2 and 3 being equivalent, the non-zero components
of C(s) are

C
(s)
1111 = l−5

e

{
ke

3

∑
α=1

(rα1)
4 +

kc

3

7

∑
α=4

(rα1)
4 +

k f

2

13

∑
α=8

(rα1)
4

}

= l−1
e

(
ke +

4
3

kc +2 k f

)
(5.6)

= C
(s)
2222 = C

(s)
3333,

and

C
(s)
1122 = l−5

e

{
ke

3

∑
α=1

(rα1rα2)
2

+
kc

3

7

∑
α=4

(rα1rα2)
2 +

k f

2

13

∑
α=8

(rα1rα2)
2
}

(5.7)

= l−1
e

(
4
3

kc + k f

)
(5.8)

= C
(s)
1133 = C

(s)
2233 = C

(s)
1212 = C

(s)
1313 = C

(s)
2323,

directly obtained from equation (5.6).
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The spring stiffness tensor thus has two independent com-
ponents, as expected for a Cauchy-abiding system of cubic
symmetry [34], (i.e invariant under π/2 rotations about axes
1, 2 and 3) whereas multi-constant theory allows three inde-
pendent components for cubic systems [23].

Beyond its intrinsic cubic symmetry, our spring system
can be tuned so as to be elastically isotropic. To that end,
the constants ke, kc and k f must be chosen in such a way
that the spring stiffness tensor C(s) can be cast into the form
(4.6). This happens if and only if

C
(s)
1111 = 3 C

(s)
1122 (5.9)

leading to the elastic isotropy condition

ke =
8
3

kc + k f , (5.10)

and the shear modulus being

G = C
(s)
1122 = l−1

e

(
4
3

kc + k f

)
. (5.11)

If G is specified, we are left with one remaining degree
or freedom. We choose it as a ratio A = k f /kc. Solving the
system for the spring constants in terms of A and G or of A
and E results in:

kc =
3 G le
4+3A

=
6
5

E le
4+3A

k f = Akc

ke = Gle
8+3A
4+3A

=
2 E le

5
8+3A
4+3A

(5.12)

The parameter A ranges from 0 (vanishing face diagonal
springs) to ∞ (vanishing cube diagonal springs).

5.3 Formulation of our correction forces for cubical cells

The volume V ′c of the deformed cell has no unambiguous
definition since an arbitrary displacement of a cube’s ver-
tices does not necessarily send the four vertices of any face
into a plane figure. We therefore introduce the following vol-
ume approximation

V ′c = a · (b× c), (5.13)

where a,b,c are edge vectors averaged over edges of the cell
(Fig 1) defined by:

a =
1
4
(x2−x1 +x3−x4 +x5−x6 +x8−x7)

b =
1
4
(x3−x2 +x4−x1 +x8−x5 +x7−x6)

c =
1
4
(x6−x1 +x8−x3 +x5−x2 +x7−x4)

(5.14)

This formula gives the exact volume for homogeneous
deformations of the original cell, however strong this homo-
geneous deformation is, and provides an approximation in
inhomogeneous deformations (inhomogeneously deformed
cells, however, call for mesh refinement). As required on
physical grounds [18], expression (5.1-5.13) of the compres-
sion energy W (v) is invariant in solid rotations, leaving V ′c
and W (v) unchanged. Expression (5.13) however infringes
the proscription of pseudoscalar products in the Hamiltoni-
ans of physical systems [18, note 5], with the consequence
that W (v) is not invariant in central inversions, which change
V ′c into−V ′c . Such transformations, however, must pass through
the singular point V ′c = 0, an event that will not happen in lin-
ear elasticity. Moreover, our system thus avoids locking into
inverted configurations, their energy being unfavourable. Note
that changing ((V ′c −Vc)/Vc)

2 for ((V ′c
2−Vc

2)/(2Vc
2))2 =

((V ′c −Vc)/Vc)
2 +O(V ′c −Vc)

3 in equation (5.1) would re-
sult in the same linear elastic behavior whilst avoiding the
pseudoscalar product, since V ′c

2 can be expressed as a com-
bination of scalar products of the vectors a, b and c, to the
expense of both an increased computational complexity and
a recovered propensity to lock into inverted configurations.

The correction force on a particle a derives from the
volume-dependent term of the energy density W (HybMSS) with:

f(v)a = −∂W (v)

∂xa
=− ∂

∂xa

(
κ

2
(V ′c −Vc)

2

Vc

)
= −κ

V ′c −Vc

Vc

∂V ′c
∂xa

= −κ
(
l−3
e a · (b× c)−1

) ∂V ′c
∂xa

(5.15)

The gradient of V ′c with respect to the positions of parti-
cles 1 to 8 is easily found to be

∂V ′c
∂x1

=−∂V ′c
∂x8

=−(b× c)− (c×a)− (a×b),

∂V ′c
∂x2

=−∂V ′c
∂x7

= (b× c)− (c×a)− (a×b),

∂V ′c
∂x3

=−∂V ′c
∂x6

= (b× c)+(c×a)− (a×b), (5.16)

∂V ′c
∂x4

=−∂V ′c
∂x5

=−(b× c)+(c×a)− (a×b).

It must be kept in mind that, since any particle belongs to
eight neighboring cells, the total correction force on this par-
ticle is the sum of the contributions of the considered cells.
The computational cost of equation (5.16) compares favor-
ably with that of forces derived from angular springs: see
[30, eq.3] and terms in β in [29, eq.2.27-28].
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5.4 Assembly of cubical hybrid MSS cells

To simulate the mechanical behavior of a complex object,
we represent it by an assembly of our 3D hybrid MSS cells.
To create the whole hybrid MSS, we proceed as following:

– The global mass of the object is distributed on the dif-
ferent particles of the system. That is, considering a 3D
object of mass density ρ , the mass ma of each particle a
is defined by ma = ∑ j

ρ

8 V j
c with ∑ j being the sum over

all the cubical elements to which ma belongs, with vol-
umes defined by V j

c .

– An edge spring has a stiffness ke/4 if the edge is not
shared between several elements. Then, the Kirchhoff’s
law is applied: for example an edge spring has a stiffness
ke if the edge is in the middle of the lattice (i.e. with 4
neihboring cubical elements).

– A face diagonal spring has a stiffness k f /2 if the con-
sidered face is not common with any other element (i.e.
for the faces at the boundaries of the mesh). Then, the
Kirchhoff’s law is applied: for example the face diago-
nal springs have a stiffness k f if the considered face is
common with 2 elements.

6 Experimental results

We compared our mass-spring system using correction forces
with and witout face diagonal springs, with experiments per-
formed using LS-Dyna software [15], which is a tool per-
forming finite element (FEM) simulations. We used LS-Dyna
version 971dR4 (LSCT, Livermore, CA, USA) with the elas-
tic law and implicit solution for the material simulated.

6.1 The simulated experimentations

A deformation of a material can be decomposed into 5 basic
experiments (shown in Fig. 2): shearing, tension, compres-
sion, bending and torsion. Our objective is to study the re-
sponse of the body to all the types of tests. Each of the main
experiments was performed with the same set of parameters
and using three simulation method cases:

– Our hybrid mass-spring system with only edge and inner-
diagonal springs (i.e. without face diagonal springs) (de-
noted HybMSS-FD), using the formulation of stiffness
defined in (5.12); the parameter A is set to 0 to simulate
no face-diagonal springs; and to be able to use full range
of the Poisson ratio we apply the correction forces;

– Our hybrid mass-spring system with face diagonal springs
and correction forces (i.e. our full formulation of part (5.2))
(denoted HybMSS);

– Finite Element Method (denoted FEM).

In all the instances except of the beam bending experi-
ment (which is examined at equilibrium), we fixed the time-
step to 0.001 s, and the total number of iteration steps to
10,000 (i.e. 10 s). No gravity is used in those experiments.
For the correction forces expressed in (5.15), we used the
compression modulus κ with ν 6= 1/2. Note, that in case of
ν = 1/4 the correction forces are equal to 0, as the mass-
spring system naturally models this case.

The tensile and the beam bending experiments were per-
formed on a beam of a size 0.4×0.4×2.4 m3. Two different
mesh densities were used for both experiments: 4× 4× 24
and 8×8×48 elements. Additionally, for the beam flexion
we use the gravity constant g =−10 m/s2.

All the other experiments were performed on a sample of
10×10×10 cubes of a unit size 0.5 m, which makes a sam-
ple of total volume V0 = 125 m3. The corresponding FEM
experiments were performed on samples of size matching
exactly the ones used for mass-spring system tests.

6.2 Comparison between the several approaches
The deformations were limited to 5% and 20%. The detailed
parameters description and results for the compression and
tension experiments after 10 seconds of deformation process
are presented in Tables 2 and 3. The column e shows the rel-
ative change of the volume computed using the following
formula: e = |Vc−V ′c |/Vc to validate body’s volume behav-
ior during simulations. Below we present the comparison of
different approaches (HybMSS-FD, HybMSS, FEM and/or
analytical solution) for the previously introduced test cases.

Compression. In Fig. 3, showing the compression experi-
ments, we can see a great difference in the behavior of the
samples. The wrinkle instability is very noticeable in ex-
periments on HybMSS-FD (a)-(c), which is clearly ’wrin-
kled’ due to the lack of springs in the face. In the same time,
both HybMSS (e-f) and FEM (h-i) show slightly ’swollen’
but regular figure with divergent volume distribution. In-
compressible part of this experiment shows slightly different
image though. Unlike all the other experimental cases, the
FEM compression (i) is also slightly ’wrinkled’, which was
definitely not an expected outcome. Here the impact of the
correction forces is visible the best, paired with the visually
correct solution and smooth walls of the HybMSS sample.
Additionally we can verify the numerical results of HybMSS
from Table 2 with the compressible (ν = 0) HybMSS exper-
iment in the figure and see that the walls of the cube are
perfectly straight and the compressibility rate matches the
theoretical one, exactly as expected.

Tension. Fig. 4 showing tensile test results is the opposite of
the compression experiment. Here, taking into account the
numerical data, we can see that the volume of the wholly
compressible HybMSS (d) has a very regular shape, with
the horizontal walls staying parallel to the X axis, without
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(a) Shearing (b) Compression (c) Tension (d) Torsion (e) Bending

Fig. 2 Illustrations of the five test cases performed to validate our hybrid 3D mass-spring system.

ν = 0 ν = 0.25 ν = 0.499
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Fig. 3 Compression experiment comparison between HybMSS-FD, HybMSS and FEM at a big (20 %) deformation with different Poisson’s ratios.
The color scale corresponds to the displacement from the original position.

any curve, similarly to the FEM solution with the same pa-
rameters (g) and the HybMSS-FD experiment (a). We owe
this shape to the correction forces, which ’guard’ the correct
volume changes within the samples. We can also observe
that the distribution of the volumes is much improved be-
tween HybMSS-FD (b)-(c) and HybMSS (e)-(f). In contrast
to that, all HybMSS-FD (b-c), HybMSS (e, f) and FEM (h,
i) show a nice flex curve, which is slightly too deep for the
HybMSS-FD simulation at ν = 1/4. Additionally, according
to Table 3, even the correction forces cannot change the huge

impact, which is made by the lack of face-diagonal springs,
making the variations between HybMSS-FD and HybMSS
volumes noticeable.

In every experiment presented in Tables 2 and 3, the dif-
ferences between all the models are observable. However,
the highest relative error’s value of the volume conserving
HybMSS-FD models (ν = 0.499) reaches 0.01%, even with-
out the use of face-diagonal springs. The biggest deviation
of the HybMSS from the FEM appeared in the 20% defor-
mation in tensile test with ν = 0.25 and it differs by 1.21%,
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ν = 0 ν = 0.25 ν = 0.499

H
yb

M
SS

-F
D

(a) (b) (c)

H
yb

M
SS

(d) (e) (f)

FE
M

(g) (h) (i)

Fig. 4 Tension experiment comparison between HybMSS-FD, HybMSS and FEM with big (20 %) deformation. The color scale corresponds to
the displacement from the original position.

Model E ν deformation e
HybMSS-FD 5.37%

HybMSS 10,000 0 5% 5.61%
FEM 5.00%

HybMSS-FD 3.25%
HybMSS 10,000 0.25 5% 3.17%

FEM 3.10%
HybMSS-FD 0.00%

HybMSS 10,000 0.499 5% 0.01%
FEM 0.02%

HybMSS-FD 23.62%
HybMSS 10,000 0 20% 19.88%

FEM 20.00%
HybMSS-FD 15.99%

HybMSS 10,000 0.25 20% 13.52%
FEM 12.70%

HybMSS-FD 0.01%
HybMSS 10,000 0.499 20% 0.00%

FEM 0.10%

Table 2 Testing parameters and results of the compression.

which is a very acceptable difference to say the least. We
can easily see that the change of the HybMSS volume in
comparison to FEM has a very small deviation. However it
is essential to compare these numerical results with the ac-
tual shape deformations, as we did, to see the real role of the
correction forces matched with the use of full set of springs.

Beam bending. Fig. 5 presents the results of the beam un-
der gravity experiment in comparison with the analytical
curve computed using the following Euler-Bernoulli equa-
tion [25]:

y(x) =
ρglh

24 E I
(4Lx3−6L2x2− x4). (6.1)

Model E ν deformation e
HybMSS-FD 7.46%

HybMSS 10,000 0 5% 4.40%
FEM 5.00%

HybMSS-FD 0.85%
HybMSS 10,000 0.25 5% 2.54%

FEM 2.61%
HybMSS-FD 0.00%

HybMSS 10,000 0.499 5% 0.00%
FEM 0.00%

HybMSS-FD 24.92%
HybMSS 10,000 0 20% 20.00%

FEM 19.99%
HybMSS-FD 3.15%

HybMSS 10,000 0.25 20% 8.90%
FEM 10.11%

HybMSS-FD 0.00%
HybMSS 10,000 0.499 20% 0.00%

FEM 0.00%

Table 3 Testing parameters and results of the tension simulations.

It takes into account the parameters: l, h - width and
height of a beam, L - the length of the beam, ρ - the body
density, gravity g and the moment of inertia I = lh3/12. It
is visible with two beam densities that the curve seems to
converge to the analytical solution.

On the other hand we can compare also the results of
HybMSS with HybMSS-FD on the same figure. HybMSS-
FD beam is much softer and even though the coarser beam
is close to the analytical solution, we can see that with the
change of mesh resolution the beam becomes softer than the
correct result.
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An interesting property of the beam can be observed on
Fig. 6, where in the HybMSS-FD case there are apparent
wrinkles at the compressed part of the beam, which are ab-
sent when face diagonal springs are used. We can see the
impact of those springs very clearly.
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Fig. 5 Beam under gravity comparison between HybMSS, HybMSS-
FD and the analytical solution. E = 10 MPa (upper), E = 2 MPa
(lower), ν = 0.25, g =−10, A = 1.

Fig. 6 Beam under gravity: HybMSS-FD (left), HybMSS (right). E =
2 MPa, ν = 0.25, g = −10. The color scale corresponds to the dis-
placement from the original position.

Shearing. In case of the shearing experiment (see Fig. 7) we
can study the shape of the body on Fig. 8. The plots repre-
sent the cross-sectional view of the middle layer (meaning
Z = 5) in the X−Y plane. A slight wave on the layers of the
sample, which is in fact a natural behavior of an elastic body,
is an obligatory element of this type of deformation. Here,
the correction forces ensure smoothness of the sample at ev-
ery layer, and the difference between the HybMSS and FEM
is minor, since it is the role of the inner diagonal springs to
deform the volumes correctly at this type of deformation.

Additionally, Table 4 presents a study of the order of
magnitude of the top plate response to deformation for shear-
ing experiment with Poisson’s ratio ν = 1/4. The presented
values represent force ([N]) and we can see that for HybMSS-
FD and HybMSS they do not differ much from the FEM,
which is exactly our objective.

Deformation HybMSS-FD HybMSS FEM
5% 3,390 3,396 3,317
20% 14,662 14,600 13,234

Table 4 Response of the top plate in shearing deformation with E =
10,000, ν = 0.25. The measured response is force [N].

We can also study the average difference of the HybMSS
and FEM positions at this layer, which for the Poisson ra-
tio values ν = 0, ν = 0.25 and ν = 0.499 are respectively:
0.042 m, 0.013 m and 0.019 m. Let us remind that the sam-
ples are of a wall length 5 m.

Torsion. Adequately, Fig. 9 shows the results of torsion ex-
periment. We compare the cross-sectional view of the mid-
dle layer (Y = 5) on X − Z plane of a deformed body in
Fig. 10. The experiments are visibly smooth and we can see
how close the HybMSS is to the FEM solution. Here again
we can verify the average difference of the HybMSS and
FEM point’s positions to additionally confirm the HybMSS
model’s accuracy. For the Poisson ratio values ν = 0, ν =

0.25 and ν = 0.499 the average difference between points
reaches respectively: 0.064 m, 0.030 m and 0.008 m.

Similarly as in case of the shearing experiment, Table 5
presents a study of the order of magnitude of the top plate
response to torsional deformation, also with Poisson’s ra-
tio ν = 1/4. We can see that the order of magnitude of the
HybMSS-FD and HybMSS experiments correspond with the
FEM solution, which we owe to the correction forces and
physically based stiffness formulation.

Deformation HybMSS-FD HybMSS FEM
5% 1,277 1,306 1,279
20% 60,005 60,565 57,981

Table 5 Response of the top plate in torsion deformation with E =
10,000, ν = 0.25. The measured response is torque [N·m].
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Fig. 7 Shearing experiment with big (20%) deformation at different Poisson’s ratios, E = 10,000; comparison between HybMSS and FEM. The
color scale corresponds to the displacement from the original position.
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Fig. 8 Shape of the body for the shearing experiment with big (20%) deformation at different Poisson’s ratios, E = 10,000; comparison between
HybMSS and FEM.

6.3 Performance Study

We compared the performance of our two approaches, HybMSS-
FD and HybMSS, with a third version called HybMSS-CF
which has face diagonal springs but without correction forces.
This comparison allows us to evaluate the impact of the ad-
dition of the face diagonal springs and the impact of the
computation of the correction forces. These tests were achieved
on a Intel R© CoreTM i7−4790K @ 4.00 GHz CPU.

Two experiments were performed, compression and beam
under gravity, with 4 different mesh sizes for both cases.
The first four meshes are cubical and the last four are beams
of a 1 : 1 : 6 length ratio. The cause for using two types of
meshes (cube and beam) is to show how the performance
changes depending on the type of deformation. As we can

see in Table 6, the number of springs for HybMSS-FD is
much smaller that for HybMSS and for HybMSS-CF (about
2.5 times bigger).

We decided to execute 1,000 iterations of the compres-
sion experiment; 300,000 iterations of the beam flexion test.
Fig. 11 and 12 show the two experiments (compression and
beam under gravity) performance plotted versus the number
of mesh volumes. Of course the expected outcome of these
simulations was that HybMSS-CF method will have slightly
higher execution time than the simpler HybMSS-FD, due to
the difference of the number of springs. Then, HybMSS per-
formed even worse, since the number of springs was already
increased and it is necessary to compute the force correc-
tions for each volume separately.
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Fig. 9 Torsion experiment with big (20%) deformation at different Poisson’s ratios, E = 10,000; comparison between HybMSS and FEM. The
color scale corresponds to the displacement from the original position.
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Fig. 10 Shape of the body for the torsion experiment with big (20%) deformation at different Poisson’s ratios, E = 10,000; comparison between
HybMSS and FEM.
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Fig. 11 Real time performance of 1,000 iterations versus the number
of mesh elements (volumes) with CPU-software configuration I for the
compression experiment and the simulation methods: HybMSS-FD,
HybMSS-CF, HybMSS.
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14 Appendix

Mesh size #volumes #vertices #springs
no FD with FD

10×10×10 1,000 1,331 7,630 19,630
15×15×15 3,375 4,096 25,020 65,520
20×20×20 8,000 9,261 58,460 154,460
30×30×30 27,000 29,791 194,490 518,490

4×4×24 384 625 3,136 7,744
8×8×48 3,072 3,969 23,232 60,096

10×10×60 6,000 7,381 44,680 116,680
16×16×96 24,576 28,033 178,816 473,728

Table 6 Details of the meshes used in the performance experiments.
no FD is the number of springs without face diagonal springs, while
with FD is the number of springs including the face diagonal springs.

In average, HybMSS-CF is 1.4 times slower than HybMSS-
FD, due to the additional springs. HybMSS is 2.1 times
slower than HybMSS-FD, due to the additional computa-
tion done in order to compute the correction forces. Note
that this computation is not yet parallelized.

6.4 To Summarize

To sum up, we saw that the use of correction forces and face
diagonal springs in mass-spring systems plays a huge role
in the body behavior and the shape of resulting deformation.
The presented experimental results show that HybMSS cre-
ates natural deformations of shapes expected by the physical
laws unlike the HybMSS-FD system, which lacks realistic
shape deformation provided by the face-diagonal springs.
Additionally the numerical results indicate that it is possi-
ble to create a mass-spring model which ensures the correct
compressibility rate in a sample locally throughout all vol-
umes and not just as an average result.

7 Conclusions and perspectives

In this paper we introduced improvements to the classical
MSS used to simulate isotropic tissues. The proposed con-
tributions include avoiding the wrinkle instability and intro-
ducing the physically correct stiffness formulations for all
the used types of springs and extension of the MSS to use
all the real values of Poisson’s ratio. Working on cubical-
symmetrical meshes, we shown the effect of face-diagonal
springs on the simulation; presented and validated the new
stiffness computation, which incorporates the mechanical
information about a body into the model; and we shown how
to locally correct volumes in order to keep the simulation
physically correct with adequate Poisson’s ratio.

The model presented in this article is straight-forward
in the usage, it has adjustable parameters and succeeds to
simulate incompressible isotropic materials (presented ν =

0.499) with a minimal error. The basic formulation of the
force can be modified according to the type of material and

type of simulation that the user wants to perform (like linear
or non-linear body behavior). Additionally, the full range of
Poisson’s ratio values can be used while simulating isotropic
bodies thanks to the formulation, which escapes Cauchy’s
limitations. There are no additional structures introduced into
MSS other than its classical springs and the user is finally
able to model the behavior of isotropic bodies with various
Young’s modulus and Poisson’s ratio values.

The solution is suitable for real-time applications (the
mean performance of 10 second simulation of HybMSS on
a sample of 1,000 elements on Intel R© CoreTMi7− 4790K
CPU @ 4.00 GHz processor is 2.44 s for ν = 1/4 and 5.579 s
for ν 6= 1/4), however the additional computation of the vol-
ume and correction forces on every element obviously wors-
ens the performance. It is possible to improve the computa-
tion time using TBB or consider other parallelization.

We are still working on additional features, especially
adjusting the correction forces to work with different base
shapes in 3D (tetrahedra, prisms, pyramids). We also aim to
accurately simulate behavior of real soft tissues, like liver,
spleen and kidney, which will be much more successful us-
ing incompressible simulation model combined with a non-
linear force formulation.

APPENDIX A. Theoretical notions of linear elasticity

A.1. The multi-constant theory of elasticity

Consider a deformation that brings a material point from its
rest position x ∈ R3 to a new position x+u(x). Obviously,
a homogeneous displacement u(x) = cst amounts to a uni-
form translation, generating no stress in the material, so the
lowest-order quantity of interest in elasticity is the displace-
ment gradient ∇∇∇u, the symmetric part of which is called the
strain tensor defined by:

εεε =
1
2
(
∇∇∇u+(∇∇∇u)T) , εi j = ε ji =

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (7.1)

In linear elasticity, the deformation energy is a quadratic
function of the deformation tensor, its volume density being
written

W =
1
2
Ci jkl εi j εkl , (7.2)

where the fourth-rank tensor C is the stiffness tensor. [We
use the implicit summation convention of repeated Cartesian
indices i, j,k and l over the values 1, 2 and 3.] The antisym-
metric part of ∇∇∇u, which corresponds to solid-body rota-
tions, does not enter expression (7.2) since the deformation
energy is invariant with respect to such rotations. Moreover,
since εi j = ε ji, one has

Ci jkl =
∂ 2W

∂εi j∂εkl
= C jikl = Ci jlk = Ckli j. (7.3)
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The stress tensor σσσ derives from the energy:

σi j =
∂W
∂εi j

= Ci jklεkl , (7.4)

the component σi j being the elastic force along the i-direction
transmitted across a unit area of a surface normal to the j-
direction. This proportionality relation between stress and
strain is Hooke’s law.

A.2. Relations for an isotropic material

Among the 34 = 81 components of the stiffness tensor C,
only 21 are independent in the general case due to rela-
tions (7.3) [23]. Symmetries of the material further reduce
this number; the most symmetric materials being isotropic,
in which case C(iso) is independent of the orientation of the
reference axes and can be written

C
(iso)
i jkl = λ δi jδkl +G (δikδ jl +δilδ jk) (7.5)

in terms of the two Lamé constants λ and G, where G is
named the shear modulus (the relation between stiffness ten-
sor and material symmetry is derived in [23].) The deforma-
tion energy of an isotropic material then reads

W (iso) =
λ

2
Tr(ε)2 +G Tr(ε)2 =

λ

2
(εkk)

2 +G εi jεi j (7.6)

and the stress tensor is

σ
(iso)
i j = λ δi j εkk +2 G εi j (7.7)

Besides, an alternative set of elastic constants, widely
used to wholly describe an isotropic elastic material, is the
Young modulus E and the Poisson ratio ν which are related
to Lamé parameters by:

E = G
3λ +2G

λ +G
and ν =

λ

2 (λ +G)
. (7.8)

In particular, they are most useful in uniaxial stress situa-
tions: in a stress state such that the only non-zero stress com-
ponent is σ

(iso)
xx , the non-zero strain components are εxx =

σ
(iso)
xx /E and εzz = εyy =−ν εxx.

A last elastic constant of interest is the bulk modulus

K = λ +
2 G
3

(7.9)

such that, in an uniform dilation εi j =
1
3 δi j∆V/V changing

volume V by ∆V =V εkk, the stress is σ
(iso)
i j = K∆V/V δi j =

Kεkkδi j.
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