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1. Introduction 

The contamination of aquatic ecosystems by organic micropollutants notably discharged 

from wastewater treatment plants is a growing scientific and societal concern that raises 

several questions regarding the potential for adverse effects on wild organisms and human 

health [1]. Among the involved chemicals, many pharmaceutical products have been 

quantified at concentrations below 1 µg L-1 [2]. In the mid-1970s, Goldberg et al. [3] 

suggested for the first time the use of biota to monitor levels and trends of chemical 

contamination in water. Among the so-called integrating matrices implemented in 

biomonitoring programs, Gammarus fossarum is known as a sentinel species for river 

monitoring [4]. Its use in freshwater biomonitoring and ecotoxicology risk assessment 

programs has steadily increased over the last few years [5, 6], based on the analysis of a pool 

of organisms. Very recently, due to analytical improvements, the 

identification/quantification of contaminants and metabolites in G. fossarum was made 

possible at the scale of one single individual. Indeed, progress in the liquid chromatography 

coupled to mass spectrometry (LC-MS) systems, instrumental downsizing achieved with the 

advent of nanoLC-high resolution mass spectrometry (nanoLC-HRMS) [7, 8] and the 

miniaturization of the sample preparation step thanks to µ-QUECHERS procedure [9] allowed 

to assess the inter-individual variabilities of contaminants and metabolites in small size 

organisms. Nevertheless, given the analytical challenge associated with the study of very low 

biotic matrice masses, and the lack of available data on metabolism of invertebrates, very 

few studies were interested in the detection and identification of metabolites or biomarkers 
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in single organism following an exposure to pharmaceutical compounds. The effect of 

mixture of pharmaceutical compounds on the metabolism, likely to underlie toxic effects, 

especially in invertebrates, remains a vast field of research. 

Besides analytical breakthroughs, the spreading of omic sciences (genomics, proteomics, 

metabolomics) has also triggered an evolution of the chemometric methods, for many topics 

including environmental ones. Analysing data coming from designed experiments turned out 

to be an interesting field of research investigation [10, 11]. Among multivariate methods, 

ANOVA-Simultaneous Component Analysis (ASCA) [12] and ANOVA-Principal Component 

Analysis (APCA) [13] were introduced in the second half of the 2000s. They both combine 

analysis of variance (ANOVA) and Principal Component Analysis (PCA) to get simplified view 

of the multivariate data while taking into account their designed structure. ANOVA 

decomposes the data matrix into pure effect submatrices according to the design of 

experiment and a residuals matrix. Then PCA is performed on each effect submatrix so as to 

represent information in a reduced-dimensional space. In the case of APCA, experimental 

submatrices are built by adding the residuals to each pure effect submatrix prior to PCA 

calculations. To improve regression models, ANOVA decomposition has also been associated 

to other methods such as PLS [11]. Other authors combined ANOVA with multi-block analysis 

such as ANOVA ComDim (AComDim) [14, 15] or ANOVA Multiblock OPLS (AMOPLS) [16, 17] 

to perform one single analysis of the submatrices instead of several PCAs. Due to the ANOVA 

step, all these methods could provide biased estimators of the factor effects in the case of 

unbalanced designs. Hence, extensions of ASCA and APCA methods dedicated to unbalanced 
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designs, called ASCA+ and APCA+, were recently developed [18]. These methods consist in 

decomposing the data matrix by using the general linear model (GLM) and an appropriate 

factor coding. GLM allows rewriting ANOVA model as a multiple linear regression making 

possible the generalization of ANOVA model parameters estimation to unbalanced designs 

[18, 19]. 

In this context, the objective of this study was to investigate the effect of an exposure to two 

benzodiazepine derivatives on the metabolism of male and female G. fossarum. Gammarids 

were exposed to a mix of carbamazepine (widely used as antiepileptic treatment) and 

oxazepam (used as an anxiolytic and in alcohol withdrawal). Untargeted metabolomic 

analysis were conducted according to a full factorial design by using nanoLC-HRMS following 

a µ-QuEChERS extraction. Due to the limited number of individuals, APCA and APCA+ were 

used for data processing with the aim to investigate the effect of drugs mixture on the 

metabolome and whether this effect was related to the gender of the individual. 

 

2. Material and methods 

2.1. Chemicals and reagents 

Carbamazepine and oxazepam standards were purchased from Sigma-Aldrich (St. Quentin 

Fallavier, France) with purity higher than 99%. Twelve analytical standards of metabolites or 

degradation products of carbamazepine were used for quality control (QC): 10,11 

epoxicarbamazepine, oxacarbamazepine, acridine, 9(10H) acridanone, and 10,11 dihydroxy 

carbamazepine were supplied by Sigma-Aldrich; licarbazepine, eslicarbamazepine, 11-keto-
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oxcarbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine and iminodibenzyl by TLC 

PharmaChem (Mississauga, Ontario, Canada); 2-hydrocarbamazepine and 3-

hydroxycarbamazepine by Toronto Research Chemicals (Toronto, Ontario, Canada). 

Hexakis(2,2-difluoroethoxy)phosphazene used for lock mass calibration was purchased from 

Santa Cruz Biotechnology, Dallas, (United States) and was dissolved in methanol (MeOH). 

Ultra-pure water (18.2 MΩ cm-1) was obtained from a Milli-Q A10 water purification system 

from Millipore (St. Quentin en Yvelines, France). Methanol (MeOH) was a LC-MS quality 

grade and was supplied by BioSolve (Dieuse, France) and acetic acid was obtained from Fluka 

(Sigma-Aldrich). Citrate buffer salts from Agilent Technology (Massy, France) were used for 

QuEChERS extraction. 

2.2. Sample collection and preparation 

To ensure the homogeneity of the physiological conditions of gammarids, calibrated adults 

(size and state of development) were selected. Both male and female gammarids were 

exposed 14 days in semi-static conditions. Male or female gammarids were placed into 

thermostated beakers (12°C) filled either with 200 mL of clean water or of mixture of 

carbamazepine and oxazepam at a concentration of 1000 ng L-1 each. Organisms were 

continuously oxygenated and fed ad libitum.  

Five individuals were collected after a 14-days exposure for each of the following condition: 

female exposed (J14COF), male unexposed (J14M) or female unexposed (J14F). For male 

exposed (J14COM), only four gammarids were available. A total of 19 samples were 

therefore collected and immediately freezed and lyophilized. 
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The extraction of compounds (endogenous or exogenous metabolites) was adapted from the 

previous work of Garcia-Galan et al. [20]. One lyophilized organism was processed at a time. 

First, it was ground in a centrifuge tube with stainless steel grinding ball for 3 min at 1,000 

rpm. Then 500 µL of milliQwater, 500 µL of ACN and 500 mg of citrate buffers were added in 

the tube before vortexing during 30 s and centrifuging during 2 min at 10,000 rpm. 

Afterward, 400 µL of supernatant ACN were added to 80 mg of dispersive phase (mixture of 

primary secondary amine and C18) before vortexing during 30 s and centrifuging during 2 

min at 10,000 rpm. Finally, 200 µL of the purified supernatant were transferred into an LC 

vial, evaporated to dryness under a N2 stream and reconstituted in 100 µL of H2O/MeOH 

(90/10) for nanoLC-HRMS analysis. 

For the preparation of spiked QC, control gammarids (i.e. unexposed gammarids) were 

spiked with carbamazepine and oxazepam at 150 ng g-1 each and with the twelve analytical 

standards, then extracted and purified as above. 

A blank matrix (BM) was also used, corresponding to control gammarids that have 

undergone the same sample preparation procedure as the exposed ones. 

Pooled QC are detailed in section 2.3.2. 

 

2.3. NanoLC-HRMS analysis 

2.3.1. Equipment 
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Analyses were performed on an Ultimate 3000 Nano Chromatography System 

(Thermofisher®, Villebon sur Yvette, France) coupled to a Maxis Plus mass spectrometer 

equipped with a CaptiveSpray source (Bruker Daltonics®). The chromatographic separation 

was performed on a C18 PepMap 100 column (150 mm × 75 µm ID, 2 µm, 100 Å) 

(Thermofisher®) with the experimental conditions described by Sordet et al. [21]. The 

ionization was in positive mode with the following settings for the source: capillary voltage 

of 1500 V, drying gas of 3L/min (N2), and drying temperature of 150°C. Full scan mass spectra 

were recorded over the range of 50–1000 m/z, with a scan rate of 0.4 Hz in profile mode 

with the following transfer parameters: funnel 1 rf of 200 Vpp, multipole rf of 50 Vpp, 

quadrupole energy of 5 eV, collision energy of 7 eV, stepping basic and a prepulse storage of 

5 µs. A lock mass calibration was used to calibrate the data with the infusion of Hexakis(2,2-

difluoroethoxy) phosphazene (m/z = 622.0290) into the CaptiveSpray. Hystar®, OToFcontrol 

1.9, Data Analysis 4.4 (Bruker Daltonics®) were used for instrument control to perform mass 

calibration and also to export raw data in netCDF format which is an open one. Hence the 

data can be further manipulated with online tools or dedicated software. 

2.3.2. Sample sequence and operating conditions 

A 2² full factorial design was used to evaluate the effect of two experimental factors as well 

as the effect of their two-factor interaction. As illustrated in Figure 1, the first factor (X1) was 

the exposure to carbamazepine and oxazepam: the coded levels -1 and +1 corresponded to 

unexposed and exposed gammarids, respectively. The second factor (X2) was the gammarid 

gender, coded -1 for the males and +1 for the females. Each of the four experiments has 
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been performed five times requiring the characterization of five individuals. From a technical 

point of view, a single measurement sequence was not possible due to the number of 

samples to be analysed. Indeed, each sample was planned to be injected in triplicate, and 

the chromatographic separation was followed by a reconditioning of the column and the 

cleaning of the pre-column to prevent cross-contamination between samples. So, it was 

decided to split the 19 samples into two distinct groups to be handled independently: 3 

individuals of each operating conditions were gathered in sequence A (except for “male 

exposed” condition with only two samples) whereas only 2 individuals were characterized 

per studied condition in sequence B. 

One pooled quality control was obtained for each sequence by mixing equal volumes of each 

of the sequence samples (i.e. 11 samples in the case of sequence A (QCA) and 8 samples in 

the case of sequence B (QCB)). A blank matrix sample (BM), the pooled QCs (QCA or QCB) 

and a spiked QC were injected at the beginning and at the end of each analytical sequence, 

as well as after every 4 injections so as to monitor the instrumental drift. At the end of the 

sequence A, the mass spectrometer source was cleaned and the mobile phase was renewed 

before starting sequence B. QCA samples were also regularly injected during sequence B. 

The full analytical run planned for each analytical sequence is presented in Figure S1. The 

way QCs were used to correct the data is described in section 2.5. 

2.4. Pre-processing and pre-treatment of raw data 

As presented by the flowchart in Figure 2, and in accordance with the proposals of Goodacre 

et al. [22], several pre-processing and pre-treatment steps have been applied to the raw 
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data prior to multivariate data analysis. After mass calibration and net CDF export, data were 

normalized according to the intensity measured at the lock mass calibration. Then, after a 

feature detection step, Missing Value Imputation (MVI) was performed. Finally, filtering and 

QC correction were successively applied prior to APCA/APCA+ in order to highlight the 

variables responsible for possible exposure or gender effect. Each step of the flowchart is 

described in more details in the following sections. 

2.4.1. Lock mass normalisation 

The classical lock mass compound hexakis(2,2-difluoroethoxy)phosphazene was added into 

the source so as to be ionised continuously throughout the analytical sequences [23]. 

At each scan, we performed: i) a mass shift correction using the mass of the lock mass 

compound 622.0290 and ii) a lock mass normalisation by dividing the intensity of each 

detected signal by the signal intensity of the lock mass compound. This was done for all the 

samples in both sequences using Matlab® software (Mathworks Inc, Natick MA, USA). 

2.4.2. Feature detection 

After lock mass normalisation, data were pre-processed on a local cluster thanks to the 

XCMS R package (Version 1.50.1). The first step was to look for peaks present individually in 

each sample. To this end, the Centwave algorithm was used with the following parameters 

for the function xcmsSet: scanrange = c(180,600), ppm = 5, peakwidth = c(10,60), mzdiff = 

0.005, snthresh = 6, prefilter = c(6,10000). They were chosen from the results on spiked QCs 

so as to ensure the recovery of the peaks corresponding to the 14 added compounds (the 
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two pharmaceuticals and the twelve analytical standards as described in part 2.2). In a 

second step, the peaks matching the same couple were affected to the same group and 

identified by the median mass to charge ratio (m/z) and the median retention time (tr) 

determined from the experimental values. Only those couples present in a half of the total 

number of samples or in a half of samples prepared under identical operating conditions 

were retained thereafter (minfrac = 0.5). The other settings for the XCMS group function 

were: bw = 5, mzwid = 0.015 and max = 100. If a peak was detected in the sample, its height 

was kept in the resulting table otherwise data was missing and had to be estimated. In the 

rest of the text, the terms (mz;tr), couple, feature or variable will be used indistinctly. 

2.4.3. Missing value imputation 

As detailed in Di Guida et al. [24], missing values in metabolomics datasets may be due to 

three main reasons: i) some metabolites are not present in all the analysed samples, ii) 

metabolite concentration is not high enough leading to poor signals similar to the analytical 

background and iii) no metabolite peak is identified at the feature detection step because 

the algorithm’s criteria are not fully met. Missing values are the result of biological and 

technical issues and their distribution may be random or systematic. Here the XCMS fillpeaks 

function, classically used for MVI in metabolomics, was applied to manage missing values 

prior to the use of chemometric methods. Another method based on means calculation was 

also tested: a missing value was replaced by the mean intensity calculated from the signals 

of the corresponding variable (mz;tr) obtained for all the samples subjected to the same 

experimental conditions. If no peak was detected (i.e. no mean intensity was available), we 
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used the corresponding mean value calculated from the BMs signals after peak reintegration 

by the fillpeaks algorithm. 

2.4.4. Filtering 

A final step consisted in filtering the obtained data matrix. A variable (mz;tr) was kept in the 

dataset if: i) it was detected in each pooled QC of a sequence with a coefficient of variation 

less than 30% and ii) it was characterized by a ratio between the mean signals measured 

from the pooled QCs and the blank samples BMs superior or equal to 10. 

2.4.5. QC correction 

In each analytical sequence, as described in part 2.3.2, four samples were bracketed by two 

QCs so as to provide data to use for signal correction within each sequence (Figure S1). The 

correction for the experimental drift was adapted from the Quality Control-based Robust 

Loess Signal correction procedure (QC-RLSC) proposed by Dunn et al. [25]. A local first 

degree polynomial was fitted to the QC data with respect to the order of injection. The 

correction curve thus obtained was interpolated for the whole analytical sequence, to which 

each metabolic feature was normalized. Signal correction was performed within both 

analytical sequences A and B on the base of QCA and QCB samples, respectively. Moreover, 

an additional correction between the two sequences was achieved using QCA samples that 

were also injected during the sequence B (Figure S2). 

2.5. ANOVA-Principal Component Analysis (APCA) and APCA+ 
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APCA starts with the decomposition of the data matrix into pure effects and residuals 

submatrices according to the ANOVA model: 

Y = M0 + M1 + M2 + M12 + E   (1) 

where Y is the data matrix, M0 is the mean effect matrix, E is the error matrix, M1, M2 and 

M12 are the pure effect (main factor and interaction) submatrices. These matrices are of 

dimension n x m where n is the total number of samples and m is the number of variables. 

In APCA, PCA is not directly performed on the different effect matrices as in ASCA but on 

experimental ones that correspond to pure effect associated with residuals, i.e. (Mi+E) 

matrices. Then, as in ASCA, each factor effect is interpreted through score and loadings 

plots.  

But, as mentioned in introduction, these techniques require a balanced experimental design. 

And here, a sample was missing in sequence A (see part 2.2) that led us to use APCA+ 

method to be sure to avoid biased estimations of factor effects. As described in Thiel et al. 

[18], APCA+ is based on the general linear model (GLM) expressed as:  

Y = X Θ + E    (2) 

where Y is the data matrix of dimension n x m, X is the model matrix of dimension n x p, Θ is 

the parameter matrix of dimension p x m and E is the error matrix of dimension n x m where 

p is the number of parameters in the model 

Here, the used 2² full factorial design X was made of 19 experiments and is written as: 



12 
 

X = 

�
��
��
��
��
��
��
��
��
��
�� �� �� �1��1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 −1 −11 1 −1 −11 1 −1 −11 1 −1 11 −1 1 −11 −1 1 −11 −1 1 −11 −1 1 −11 −1 1 −11 −1 −1 11 −1 −1 11 −1 −1 11 −1 −1 11 −1 −1 1 �

��
��
��
��
��
��
��
��
�


  (3) 

Unbiased estimators of the model parameters are obtained by ordinary least square 

method:  

Θ�  = (X’X)-1
X’Y    (4) 

For each effect f, a new model matrix ��∗ is built from X keeping only the block Xf that 

corresponds to the effect of interest and replacing all the other columns by zeros. The effect 

matrix �� �, being obtained by multiplying ��∗ matrix by Θ�  matrix, is expressed by : 

��� = ��∗Θ� = ��Θ��   (5) 

where Xf and Θ�� are the subblocks of matrix X and Θ�  corresponding to effect f. 

In APCA and APCA+ methods, the residuals matrix � = � − �Θ�  is added to each pure effect 

submatrix �� � prior to PCA. 
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If two groups of samples are clearly identified in the score plot along the first principal 

component according to the two levels of the experimental factor f, then the factor might 

have a significant effect [14]. By extending the ANOVA F-test to multivariate data, the test 

statistic �� allows to test the significance of an effect f and is defined by the following 

expression [19]: 

�� = ��/��²��������²
�������²     (6) 

where �� !!, is the error matrix estimated with all effects taken into account in the model 

and �/�, the residuals matrix estimated without including the effect f in the model. The 

statistical significance of the test statistic is assessed by performing a permutation test (nperm 

= 1000) [19, 26]. Here we used the permutation approach described by Anderson et al. [26] 

for fixed effects two-way ANOVA design with interaction (Eq. 1). As an example, to test the 

significance of the main effect exposure, samples were permuted between the exposure 

factor levels keeping the gender factor levels constant. For the interaction term, the 

permutation of raw data were unrestricted. 

The test statistic (Eq. 6) is determined for each permutation (re-ordering) (nperm = 1000). 

Finally, a p-value is obtained that corresponds to the proportion of the values of the statistic 

obtained under permutation that are equal to or larger than the observed value (the 

significance level is 0.05). 

The percentage of variance explained by each main effect or interaction was calculated as in 

[18]: 
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%#$%� = ��/��²��������²
‖����‖² × ���   (7) 

All APCA/APCA+ calculations were achieved by using Matlab® software (Mathworks Inc.). 

 

3. Results and discussion 

3.1. Influence of the lock mass normalisation 

In a first attempt, data were analysed as they were obtained after the conversion to netCDF 

format. In these conditions, very high variabilities were observed for samples injected in 

triplicate. This is illustrated in Figure 3a, by the representation of Extracted Ion 

Chromatograms (EICs) of oxazepam [M+H]+ ion from a female sample. 

As internal standards were not included during sample preparation because of the 

prohibitive price of labelled metabolites and the risk to alter the samples, an original way to 

normalize the data was found. Ideally, the signal measured for the mass calibrant should 

remain invariant during run and within runs of a sequence. However, signal may be 

impacted by both the elution gradient of the mobile phase and the source clogging. Dividing 

the signal measured at each m/z by the signal at m/z = 622.0290 for each scan made it 

possible to compare samples without the unwanted variation of the detector sensitivity. 

After this lock mass normalisation, the repeatability between injection replicates was greatly 

improved as illustrated in Figure 3c, and was evaluated through the coefficient of variation 

(CV) determined from the triplicate measurements. As an example, CV characterizing 

carbamazepine and oxazepam [M+H]+ ions from a male and a female sample exposed to 
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both pharmaceuticals are reported in Table 1. CV were about 24 to 33% from the raw data 

while they dropped to values comprised between 5 and 14% after lock mass normalisation, 

thus indicating the strong benefit to use this pre-processing technique in this metabolomic 

context. 

Another positive impact of this normalisation procedure was on the peak detection step. As 

illustrated in Figure 3b, the signal for the lock mass compound evolved during the analytical 

run. As the signal of the lock mass compound was affected in the same manner as other 

analytes, it was used to correct the drift of the mass spectrometer. This improved the 

feature detection step in the case of oxazepam since a single peak (Figure 3c) instead of a 

double one (Figure 3a) was detected using the lock mass normalisation. 

3.2. Missing values imputation 

After the feature detection step, the data matrix was made of 76 observations (BMs, QCs, 

spiked QCs and samples) and 10,966 m/z retention pairs and contained 58% of missing 

intensity values. In metabolomics studies where data are pre-processed by XCMS, missing 

values are commonly completed by using the Fillpeaks algorithm. Here, this strategy was 

first applied to fill the data matrix but incoherent values were observed. 

As an example to illustrate this point, the EICs of carbamazepine and oxazepam [M+H]+ ions 

corresponding to blank, unexposed and exposed samples were compared. For this purpose, 

we calculated the ratio between the mean intensity measured for the unexposed samples 

and the blank samples (ratio 1) and the ratio between the mean intensity measured for the 
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exposed and the unexposed samples (ratio 2). Ratio 1 should be low since comparing two 

signals near the detection limit and ratio 2 should be high. 

Calculations were done for both carbamazepine and oxazepam [M+H]+ ions, for male and 

female samples respectively. Results are gathered in Table 2. In the case of oxazepam 

[M+H]+ ion, expected results were obtained: no peak was observed from the analysis of 

blank and unexposed samples leading to low ratio 1 values (<3) while a significant signal was 

obtained from exposed samples (ratio 2 values > 7). But surprisingly, the exact opposite was 

observed for carbamazepine indicating the Fillpeaks algorithm failed here. One explanation 

may be that the carbamazepine [M+H]+ peak is not well defined at an acquisition frequency 

of 0.4Hz, which was preferred to 1Hz to promote sensitivity (Figure S2). This may lead to 

errors at the feature detection step that could be propagated in the peak reintegration 

process. Other examples of peak detection errors that may occur when using XCMS and 

MZmine2 are explained in details in the work of Myers et al. [27]. In particular, these authors 

highlighted the link between the local noise underestimation and the detection of false 

positive peaks. 

To limit errors of peak reintegration, missing values imputations by mean replacement were 

preferred. If the peak existed but did not appeared at the feature detection step, this was 

compensated by taking into account the mean signal from other samples under the same 

operating conditions.  

3.3. QC correction 
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To illustrate the influence of the QC correction on the results, PCA was performed on the 

whole dataset including both sequences A and B. The corresponding scores plots (PC1 vs 

PC2) for the non-corrected and the QC-corrected data are presented in Figure 4a and 4b, 

respectively. Figure 4a shows a clear separation of the samples along the first principal 

component PC1 according to the sequence they belonged to. After the QC-based inter-

sequences correction, the sequences appeared projected closer onto PC1-PC2 plane (Figure 

4b) but the correction was not sufficient enough to make the sequences comparable. 

Consequently, from an analytical point of view, results obtained from the two sequences 

could not be considered together in a whole dataset. The samples from each sequence were 

thus investigated independently. Sequence A was characterized by an unbalanced full 

factorial design X made of 11 experiments and sequence B by a balanced design with 8 

experiments. APCA+ and APCA methods were therefore applied to the results of sequence A 

and B, respectively. Calculations were done in both cases using the GLM approach since it 

provides not only identical results to an ANOVA decomposition in the case of balanced 

designs but also the determination of unbiased estimators in unbalanced ones [19]. 

3.4. Exposed and unexposed males and females 

For each of the 4 operating conditions studied (female exposed, male exposed, female 

unexposed and male unexposed), three gammarids were analysed in sequence A and two 

gammarids in sequence B. As indicated in part 2.3.2, each sample was injected in triplicate. 

The use of ANOVA model (Eq. 1) requiring independent replicated samples, the average of 

the technical triplicates were first calculated. Then, APCA+ and APCA methods were applied 
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to the results obtained from sequence A and B, respectively in order to investigate the effect 

on gammarid metabolome of the two factors (the exposure to pharmaceuticals and the 

gammarid gender) and their interaction. The data matrix was centred and decomposed into 

three pure effect submatrices (factor X1, factor X2 and interaction X1X2) and a residuals 

matrix (see part 2.5, Eq. 1). 

The use of APCA or APCA+ means that the residuals matrix was added to the pure effect 

submatrix prior to PCA. The resulting score plots PC1 vs PC2 obtained for the exposure and 

the gender effect, are respectively presented in Figures 5a and 5b for sequence A. A clear 

separation of the samples depending on their experimental conditions was observed for 

each factor along the first principal component. Moreover, the percentage of variance 

explained by each effect in the model was determined to evaluate their impact on the 

gammarids metabolism (Eq 7). The exposure and the gender effects accounted for 19 and 

22% of the total variability respectively, indicating non-negligible effect. To assess the 

significance of these effects on the gammarids metabolome, a set of 1000 permutations was 

applied to the data with the restriction that the level of the factor not under consideration 

was not modified. The significance of both effects was attested by p-values inferior to 0.05.  

Similar results were obtained from the analysis of sequence B results: exposure and gender 

effects explained 15% and 20% respectively of the total variance and the corresponding 

score plots PC1 vs PC2 exhibited a clear separation of the samples according to the operating 

conditions (Figures 5c and 5d). 
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Regarding the interaction effect, the explained variance was about 9% for sequence A and 

the performed permutations test indicated non statistically significant effect (p-value ~0.30). 

Conclusions were less clear for sequence B since the variance explained by the interaction 

effect was about 15% indicating a non-negligible interaction between the gender and the 

exposure factors.  

Nevertheless, owing to the agreement of the results obtained from both analytical 

sequences concerning the significativity of the main effects, an in-depth investigation of the 

variables involved in these effects was achieved by studying the principal components 

loadings. Due to their high number (1372 couples for sequence A and 1084 couples for 

sequence B), only the variables whose contribution (loadings) belonged to the fourth 

quartile were selected as discriminating couples. For the remaining variables (343 and 274 

couples for sequences A and B, respectively), the extracted ion chromatograms were 

individually examined. Couples were considered important: i) in the exposure effect if 

detected in all samples exposed to the pharmaceuticals or in all samples non exposed, ii) in 

the gender effect if detected in all female gammarids or in all male gammarids. This led to 

only a few couples that seemed to be responsible for a discrimination between male and 

female organisms or between exposed and unexposed gammarids. These variables are listed 

in Table 3. 

The peak (m/z 170.0554; tr = 23.1 min) was proposed as a possible marker of the gender 

effect. The corresponding extracted ion chromatograms presented in Figure 6 showed that 
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the signal intensity was reduced in the male gammarids samples compared to the female 

ones for both exposed and unexposed gammarids whatever the sequence. 

The peak (m/z 318.3002; tr = 22.8) min was proposed as a possible marker of the exposure 

effect. 

 

4. Conclusion 

In this untargeted metabolomics study performed on aquatic microinvertebrates at the 

individual scale, we put in evidence the necessity to normalize the data and raised 

mathematical problems with the Fillpeaks algorithm at the missing values imputation step. 

This last issue was solved with a means method that was used in complement to the 

Fillpeaks algorithm. Furthermore, to our knowledge, it was the first time that the lock mass 

normalisation was proposed to help in normalising the data. 

Thanks to an efficient combination of nanoLC-HRMS with the recent APCA or APCA+ 

method, a difference in the behaviour of Gammarus fossarum males and females exposed to 

a mixture of two pharmaceutical compounds was shown. Discriminant variables were 

highlighted to explain part of the exposure and gender effects thus attesting the strategy 

was adapted to experiments with a limited number of individuals exposed to the same 

operating conditions. 

Further analytical strategies (based on MS/MS fragmentation, mass spectral database 

interrogation) should now be considered to identify the nature of the potential biomarkers. 



21 
 

 

 

 

 

Acknowledgments  

The authors gratefully acknowledge the support by the French EC2CO program (INSU-CNRS). 

 

Compliance with ethical standards  

 

Conflict of interest  

The authors declare that there is no conflict of interest. 

 



Figure 1: Representation of the four experiments designed according to a 2² full factorial 

design 

Figure 2: Pre-processing (in orange), pre-treatment (in yellow) and processing (in green) 

steps applied to the raw data 

Figure 3: EIC of oxazepam [M+H]
+
 ion from an exposed female sample injected in triplicate 

measured before a) and after c) lock mass normalisation. The corresponding EIC of the lock 

mass compound is given in b) 

Figure 4: ASCA+ scores plots PC1 vs PC2 obtained from the analysis of both sequences A (full 

dots) and B (empty dots) data before (a) and after (b) inter-sequences correction 

Figure 5: Scores plots PC1 vs PC2 obtained from PCA of (M1+E) matrix (a) for sequence A and 

c) for sequence B) and (M2+E) matrix (b) for sequence A and d) for sequence B) to determine 

the effects of the exposure factor and the gender factor, respectively 

Figure 6: EIC obtained for the variable (m/z 170.0556; tr 23.1 min) detected in sequences A 

(a and b) and B (c and d) for male (M) or female (F) samples exposed to the pharmaceuticals 

(J14CO) or not (J14) 
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Table 1 Inter-replicates CV measured from a male and a female samples before and after 

lock mass normalisation 

Inter-replicates 

CV 

Before normalisation After normalisation 

male female male female 

Carbamazepine 30% 33% 14% 9% 

Oxazepam 29% 24% 10% 5% 

  



 

Table 2 Mean ratios measured between blank and unexposed samples (Ratio 1) and 

between unexposed and exposed samples (Ratio 2) for both carbamazepine and oxazepam 

[M+H]
+
 ions after the Fillpeaks reintegration obtained from male and female gammarids  

 

Means Ratio 

Unexposed Samples vs Blank 

Ratio 1 

Exposed Samples vs Unexposed 

Ratio 2 

male female male female 

Carbamazepine 10 9 1 1 

Oxazepam 3 2 7 13 

  



 

Table 3 Variables responsible for the exposure, gender and interaction effects in the 

gammarid metabolism 

m/z tR in min effect 

170.0556 23.1 gender 

172.9555 23.5 gender 

182.1254 20.5 gender 

277.2164 24.9 gender 

213.1485 22.2 exposure 

277.1910 20.1 exposure 

318.3002 23.0 exposure 

522.2086 10.5 exposure 

 



 




