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PHASE RETRIEVAL FOR WIDE BAND SIGNALS

PHILIPPE JAMING, KARIM KELLAY & ROLANDO PEREZ III

Abstract. This study investigates the phase retrieval problem for wide-
band signals. We solve the following problem: given f ∈ L2(R) with

Fourier transform in L2(R, e2c|x| dx), we find all functions g ∈ L2(R)

with Fourier transform in L2(R, e2c|x| dx), such that |f(x)| = |g(x)| for
all x ∈ R. To do so, we first translate the problem to functions in the
Hardy spaces on the disc via a conformal bijection, and take advantage
of the inner-outer factorization. We also consider the same problem
with additional constraints involving some transforms of f and g, and
determine if these constraints force uniqueness of the solution.

1. Introduction

The phase retrieval problem refers to the recovery of the phase of a func-
tion f using given data on its magnitude |f | and a priori assumptions on
f . These problems are widely studied because of their physical applica-
tions in which the quantities involved are identified by their magnitude and
phase, where the phase is difficult to measure while the magnitude is easily
obtainable. Some physical applications of phase retrieval problems include
works related to astronomy [11], lens design [12], x-ray crystallography [26],
inverse scattering [27], and optics [28]. More physical examples were given
in the survey article of Klibanov et. al. [22] and the book of Hurt [16]. A
more recent overview of the phase retrieval problem was given by the article
of Grohs et. al. [14], which discussed a more general formulation of the
phase retrieval problem using Banach spaces and bounded linear function-
als, as well as results related to the uniqueness and stability properties of
the problem.

Phase retrieval problems have been given more interest because of progress
in the discrete (finite-dimensional) case, starting with the work of Candès
et. al. [7] and of Waldspurger et. al. [31], which formulated the phase
retrieval problem as an optimization problem and used algorithms to deter-
mine the solutions. On the other hand, phase retrieval problems devoted
to the continuous (infinite-dimensional) case have been solved in various
settings, such as, for one-dimensional band-limited functions [1, 2, 32], for
functions in the Hardy space on the disc without singular parts [5], for real-
valued band-limited functions from the absolute values of their samples [29],
for 2π-periodic time-limited signals from magnitude values on the unit circle
[13], and for real-valued functions in the Sobolev spaces [15]. We refer the
reader to [3] for more discussion and examples of continuous phase retrieval
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problems, in particular on the stability of the problem and other useful ref-
erences. Our aim in this paper is to investigate the phase retrieval problem
for wide-band functions, namely functions with mildly decreasing Fourier
transforms.

Before we summarize our results, let us give a quick overview of the
phase retrieval problem in the band-limited and narrow band cases: given
a band-limited function (i.e. a function with compactly supported Fourier
transform) f ∈ L2(R), find all band-limited functions g ∈ L2(R) such that

|f(x)| = |g(x)| for all x ∈ R. (1)

This problem in the class of compactly supported functions has been solved
by Akutowicz [1, 2] in the mid-1950’s, and independently by Walther [32]
in 1963. To solve the problem, they first used the Paley-Wiener Theorem
which states that f and g extend into holomorphic functions in the complex
plane that are of exponential type, that is, f, g grow like ea|z|. Next, they
showed that (1) is then equivalent to

f(z)f(z̄) = g(z)g(z̄) for all z ∈ C. (2)

Observe that (2) is a reformulation of (1) when z is real and is an equality
between two holomorphic functions so that it is valid for all z ∈ C. Finally,
they used the Hadamard Factorization Theorem which states that holomor-
phic functions of exponential type are characterized by their zeros. Now,
(2) implies that each zero of g is either a zero of f or a complex conjugate
of a such a zero. Thus, it follows that g can be obtained by changing ar-
bitrarily many zeros of f into their complex conjugates in the Hadamard
factorization of g, and this is called zero-flipping.

McDonald [24] extended this proof to functions that have Fourier tran-
forms with very fast decrease at infinity. For instance, in the case of Gaussian

decrease, if |f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|2 , a > 0, then f, g extend to holomorphic
functions of exponential type 2 so that Hadamard factorization can still be
used. Thus, the solutions also can be obtained by zero-flipping. Further-
more, this proof extends to functions which satisfy an exponential decay
condition of the form

|f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|α for a > 0 and α > 1, (3)

but breaks down at α = 1. Therefore, the main goal of this work is to
investigate the phase retrieval problem for functions satisfying (3) but for

α = 1, i.e. |f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|. Functions with this decay are sometimes
called wide-band signals in the engineering community. Here, the functions
f and g only extend holomorphically to an horizontal strip Sa = {z ∈ C :
|Imz| < a} in the complex plane so that (2) only holds for z ∈ Sa, which
implies that Hadamard factorization cannot be used. To overcome this
difficulty, we first reduce the problem to the Hardy space on the disc using a
conformal bijection. We then exploit the inner-outer-Blashcke factorization
in the Hardy space on the disc. The solution is now more evolved than the
band-limited case as, aside from zero-flipping, the singular inner function
and the outer function also take part in the solution. For our main results,
we go back to the strip to solve our initial problem using an equivalent
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inner-outer-Blaschke factorization on the strip, and provide analogs of the
consequences shown on the phase retrieval problem on the disc.

Generally speaking, the solution set of a phase retrieval problem is very
large. Thus, additional constraints are considered to reduce the solution set.
For instance, Klibanov et. al. provided different examples of supplementary
information to force uniqueness, or at least to reduce the solution set. We
here follow the same aim of reducing the set of solutions by coupling two
phase retrieval problems. For our first coupled problem, we add a condition
involving a fixed reference signal h: |g − h| = |f − h|. We use its geometric
interpretation to show that this problem has exactly two solutions. We will
also look at the problem with an additional condition involving the Fourier

transforms: |ĝ| = |f̂ |. This coupled problem is also known as the Pauli
problem. Here, we do not get uniqueness for our case, in fact, we explicitly
construct an uncountable family of solutions using Riesz products. Next,
we look at the coupled problem with the condition |Dg| = |Df | where D is
a derivation operator. Using the special properties of D, f and g, we show
that this coupled problem has exactly two solutions. Finally, for our last
coupled problem, we add the condition |g| = |f | on a segment on the strip.
We show the uniqueness of the solution by using our main results.

This work is organized as follows. Section 2 is a quick review of definitions
and results on analysis and Hardy spaces. Section 3 is devoted to the solution
of the phase retrieval problem in the wide-band case. We will look at the
phase retrieval problem on the unit disc and on the strip. Section 4 is
devoted to the coupled phase retrieval problems.

2. Preliminaries

2.1. Notation. For a domain Ω ⊂ C, Hol(Ω) is the set of holomorphic
functions on Ω. For F ∈ Hol(Ω) we denote by Z(F ) the set of zeros of F ,
counted with multiplicity. Write Ω = {z̄ : z ∈ Ω} and if F ∈ Hol(Ω), we

denote by F ∗ the function in Hol(Ω) defined by F ∗(z) = F (z̄). It will be
convenient to denote the conjugation function by C, where C(z) = z̄ for all
z ∈ C.

The unit disc D is defined as D = {z ∈ C : |z| < 1} and its boundary T is
defined by T = {z ∈ C : |z| = 1}. Let c > 0 and Sc be the strip defined as
Sc := {z ∈ C : |Imz| < c}, and S := S1.

For a nonnegative and locally integrable function ω on R, the weighted
L2 space on R is given by

L2
ω(R) = L2(R, ωdt) =

{
f is measurable : ||f ||2L2

ω(R)
=

∫

R

|f(t)|2ω(t) dt < +∞

}
.

Finally, consider a measure space (X1,A1, µ), a measurable space (X2,A2),
and a measurable map ψ : X1 → X2. Recall that the pullback measure of
X1 by ψ is given by

ψ∗µ(A) = µ(ψ(A))
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for A ∈ A1. Equivalently, if h is a function such that f ◦ ψ is integrable on
X1 with respect to µ, then we have the change of variables formula

∫

X2

hd(ψ∗µ) =

∫

X1

h ◦ ψ dµ.

2.2. Hardy Spaces on the Disc. Recall that the Hardy space on the disc
D is defined as

H2(D) =

{
F ∈ Hol(D) : ||F ||2H2(D) = sup

0≤r<1

1

2π

∫ π

−π
|F (reiθ)|2 dθ < +∞

}
,

and

H∞(D) =

{
F ∈ Hol(D) : ||F ||H∞(D) = sup

w∈D
|F (w)| < +∞

}
.

We will need the following key facts. First, every F ∈ H2(D) admits a radial
limit F (eiθ) = limr→1 F (re

iθ) for almost every eiθ ∈ T (see e.g [23, Lemma

3.10]) with F ∈ L2(T), F̂ (n) = 0 for n = −1,−2, ..., and log |F | ∈ L1(T).
Furthermore [23, Section 7.6], every function F ∈ H2(D) can be uniquely
decomposed as

F = eiγBFSFOF

where eiγ ∈ T, BF is the Blaschke product formed from the zeros of F , SF
is a singular inner function, and OF is the outer part of F . More precisely,
the Blaschke product is defined for all w ∈ D as

BF (w) =
∏

α∈Z(F )

bα(w), (4)

where

bα(w) =




w if α = 0
α

|α|

α− w

1− ᾱw
if α 6= 0

.

The singular part is given by

SF (w) = exp

(∫

T

w + eiθ

w − eiθ
dνF

(
eiθ
))

, (5)

where νF is a finite positive singular measure (with respect to the Lebesgue
measure). Finally, the outer part is determined by the modulus of the radial
limit of F

OF (w) = exp

(
1

2π

∫ π

−π

w + eiθ

w − eiθ
log |F

(
eiθ
)
| dθ

)
. (6)

2.3. Hardy Spaces on the Strip. There are essentially two ways of defin-
ing the Hardy space on the strip S. To start, let us define the conformal
bijection φ : S −→ D given by

φ(z) := tanh
(π
4
z
)
.

Observe that φ has the following properties: φ∗ = φ, φ(R) = [−1, 1], and
φ(∂S ∩ C±) = T±, where C+,C− denote the upper and lower halves of C
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respectively, and T+,T− denote the upper and lower halves of T respectively.
On one hand we shall consider the following Hardy spaces defined

H2(S) =
{
f ∈ Hol(S) : f ◦ φ−1 ∈ H2(D)

}
,

and ||f ||H2(S) = ||f ◦φ−1||H2(D). It can then be shown [4, Theorem 2.2] that

H2(S) = H2
W (S) isometrically where

H2
W (S) =

{
f ∈ Hol(S) : ||f ||2H2

W
(S) = sup

|y|<1

∫

R

|f(t+ iy)|2

|W (t+ iy)|
dt < +∞

}
,

and W (z) =
1

4 cosh2(π4 z)
= πφ′(z) for all z ∈ S.

Now this last space can be identified to the natural analogue of the Hardy
space on the disc:

H2
τ (S) =

{
f ∈ Hol(S) : ||f ||2H2

τ (S)
= sup

|y|<1

∫

R

|f(t+ iy)|2 dt < +∞

}
.

More precisely f ∈ H2
τ (S) if and only if W 1/2f ∈ H2

W (S) if and only if

f̂ ∈ L2(R, e2|ξ|dξ).

Finally by using [4, Theorem 2.1], we obtain the factorization on H2
τ (S).

Lemma 2.1. Let f ∈ H2
τ (S). Then the unique inner-outer factorization of

f is given by

f(z) =
eiγBF (φ(z))SF (φ(z))OF (φ(z))

W (z)1/2

for all z ∈ S and for some γ ∈ R. For all z ∈ S, the Blaschke product Bf is
given by

Bf (z) =
∏

β∈Z(f)

bφ(β)(φ(z)), (7)

while the singular inner function Sf is given by

Sf (z) = exp

(∫

∂S

φ(z) + φ(ζ)

φ(z) − φ(ζ)
dµf (ζ)

)
(8)

where µf = φ−1
∗ νF is the pullback measure of νF on ∂S, and the outer

function Of is given by

Of (z) = exp

(
−1

2πi

∫

R

φ(z) + φ(x+ i)

φ(z)− φ(x+ i)

φ′(x+ i)

φ(x+ i)
log |W (x+ i)1/2f(x+ i)|dx

+
1

2πi

∫

R

φ(z) + φ(x− i)

φ(z)− φ(x− i)

φ′(x− i)

φ(x− i)
log |W (x− i)1/2f(x− i)|dx

)
.

(9)

Proof. For F ∈ H2(D) and z ∈ S, by Theorem 2.1 from [4] we have

F (φ(z)) =W 1/2(z)f(z) and equivalently,

f(z) =
F (φ(z))

W (z)1/2
=
eiγBF (φ(z))SF (φ(z))OF (φ(z))

W (z)1/2
.
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Note that this is well-defined on S since W (z) = πφ′(z) 6= 0 for any z ∈ S.
The formulas for the Blaschke product and singular inner function easily

follow from Bf (z) = BF (φ(z)) and Sf (z) = SF (φ(z)). For the outer func-
tion, we need to split the integral since φ(∂S ∩C±) = T±. Hence, the outer
function is given by

Of (z) = OF (φ(z)) = exp

(
1

2π

∫ π

0

φ(z) + eiθ

φ(z)− eiθ
log |F

(
eiθ
)
|dθ

+
1

2π

∫ 0

−π

φ(z) + eiθ

φ(z)− eiθ
log |F

(
eiθ
)
|dθ

)

for all z ∈ S. By applying the substitutions eiθ = φ(x+ i), θ ∈ [0, π] on T+

and eiθ = φ(x− i), θ ∈ [−π, 0] on T−, we get (9). �

3. Phase Retrieval in H2
τ (S)

3.1. Reduction of the Problem. In this section, we consider f, g ∈ L2(R)

with f̂ , ĝ ∈ L2(R, e2c|ξ|dξ) such that |f(x)| = |g(x)| for every x ∈ R. Our
goal is to determine, for a given f , all possible g’s.

To do so, let us write fc(x) = f(cx) and gc(x) = g(cx) so that fc, gc ∈

L2(R) with f̂c, ĝc ∈ L2(R, e2|ξ|dξ) and |fc(x)| = |gc(x)| for every x ∈ R so
that it is enough to consider the case c = 1.

Note that f̂ , ĝ ∈ L2(R, e2|ξ|dξ) if and only if f, g ∈ H2
τ (S). Thus, f and

g extend holomorphically to S and |f(x)| = |g(x)| for every x ∈ R can be
written as

f(x)f(x̄) = g(x)g(x̄) for all x ∈ R. (10)

But now, (10) is an equality between two holomorphic functions on R so
that it is valid also for all x ∈ S. In other words, we are now trying to solve
the following problem: given f ∈ H2

τ (S), find all g ∈ H2
τ (S) such that

f(z)f∗(z) = g(z)g∗(z) for all z ∈ S. (11)

It turns out that this problem is easier to solve when transfering the

problem to the disc. Multiplying W 1/2(z), W 1/2(z̄) to both sides of (11),
we obtain

(W 1/2f)(z)(W 1/2f)(z̄) = (W 1/2g)(z)(W 1/2g)(z̄)

for all z ∈ S. According to [4], the functions F = W 1/2f ◦ φ−1 and G =

W 1/2g ◦ φ−1 are in H2(D). Hence, by applying the substitution z = φ−1(w)
and z̄ = φ−1(w̄) to the previous equation, we get

F (w)F ∗(w) = G(w)G∗(w) for all w ∈ D. (12)

Therefore, we have translated the equality on the strip to an equivalent
equality on the disk. Finally, we are now trying to solve the following prob-
lem on the disc: given F ∈ H2(D), find all G ∈ H2(D) such that (12)
holds for all w ∈ D. Note that (12) is equivalent to |F (w)|2 = |G(w)|2 for
w ∈ (−1, 1).
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3.2. The Phase Retrieval Problem on the Disc. In this section, we
look at the equivalent phase retrieval problem on the disc.

Let F ∈ H2(D) and write F = BFSFOF with BF , SF , OF given in equa-
tions (4), (5) and (6), respectively. The factorization of F ∗ is given by

F ∗ = eiλBF ∗SF ∗OF ∗ = eiλB∗
FS

∗
FO

∗
F .

Since the factorization inH2(D) is unique, we have BF ∗ = B∗
F , SF ∗ = S∗

F ,
and OF ∗ = O∗

F . Hence, for all w ∈ D, the Blaschke product formed from
the zeros of F ∗ is given by

BF ∗(w) = B∗
F (w) =

∏

α∈Z(F )

bᾱ(w) =
∏

α∈Z(F )

bα(w). (13)

The singular part of F ∗ is given by

SF ∗(w) = S∗
F (w) = exp

(∫

T

w + eiθ

w − eiθ
d(C∗νF )

(
eiθ
))

, (14)

for all w ∈ D, where C∗νF is the pullback measure of T by the conjugation
function C. Finally, for all w ∈ D, the outer part of F ∗ is given by

OF ∗(w) = O∗
F (w) = exp

(
1

2π

∫ π

−π

w + eiθ

w − eiθ
log |F

(
e−iθ

)
| dθ

)
. (15)

We use all of the facts above to prove the following lemma.

Lemma 3.1. Let F,G ∈ H2(D). Then

|F (w)|2 = |G(w)|2 for all w ∈ (−1, 1)

if and only if

(i) the zero sets of F and G satisfy

Z(F ) ∪ Z(F ) = Z(G) ∪ Z(G);

(ii) the singular measures νF and νG, associated with F and G respec-
tively, satisfy

νF + C∗νF = νG + C∗νG

on T; and
(iii) the radial limits satisfy

|F
(
eiθ
)
F
(
e−iθ

)
| = |G

(
eiθ
)
G
(
e−iθ

)
|

almost everywhere on T.

Proof. Let F,G ∈ H2(D). Note that FF ∗ and GG∗ have decompositions
given by

FF ∗ = BFBF ∗SFSF ∗OFOF ∗ and GG∗ = BGBG∗SGSG∗OGOG∗ .

Notice that BFBF ∗ is again a Blaschke product, SFSF ∗ is again a singular
inner function, and OFOF ∗ is again an outer function. Indeed, for all w ∈ D,
(13) implies that

BF (w)BF ∗(w) =
∏

α∈Z(F )∪Z(F )

bα(w),
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while (14) implies that

SF (w)SF ∗(w) = exp

(
1

2π

∫

T

w + eiθ

w − eiθ
d (νF + C∗νF ) (e

iθ)

)
,

and finally, (15) implies that

OF (w)OF ∗(w) = exp

(
1

2π

∫ π

−π

w + eiθ

w − eiθ
log |F (eiθ)F (e−iθ)|dθ

)
.

Thus, writing the same for GG∗ and using the uniqueness of the decom-
position, FF ∗ = GG∗ implies that BFBF ∗ = BGBG∗ , which in turn implies
that

Z(F ) ∪ Z(F ) = Z(G) ∪ Z(G).

Furthermore, FF ∗ = GG∗ also implies that

SFSF ∗ = SGSG∗ and OFOF ∗ = OGOG∗ .

Thus,

νF + C∗νF = νG + C∗νG

on T, and by Fatou’s theorem [23, Lemma 3.10], we have for almost every
θ ∈ R

lim
r→1

(OF (re
iθ)OF ∗(reiθ)) = lim

r→1
(OG(re

iθ)OG∗(reiθ)),

which in turn implies that

|F
(
eiθ
)
F
(
e−iθ

)
| = |G

(
eiθ
)
G
(
e−iθ

)
|

almost everywhere on T. �

We can now construct such G’s to solve the equivalent phase retrieval
problem on the disc. Let N+ denote the Smirnov class, namely those func-
tions holomorphic on D of the form f = g/h, where g and h are bounded
and holomorphic on D and h is outer function. g is outer, then f is called
outer function. Note that if f ∈ N+ then by Fatou’s Theorem [10, Theorem
1.3], the radial limit f∗ almost everywhere on T and log |f∗| ∈ L1(T). The
following corollary immediately follows from Lemma 3.1.

Corollary 3.2. Let F,G ∈ H2(D). Then |F | = |G| on (−1, 1) if and only
if the inner-outer decomposition of F and G are given by

F = eiγBFSFOF and G =iγ′
BGSGOG

where

• γ, γ′ ∈ R;
• BF , SF , OF are given by (4), (5), (6) respectively;

• BG is the Blaschke product associated with the set A∪ (Z(F )\A) for
some A ⊂ Z(F );

• SG is the singular inner function associated with the positive singular
measure νG = νF + ρ, where ρ is an odd real singular measure; and

• OG = UOF where U ∈ N+ is an outer function and U = 1/U∗ on
D.
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Remark 3.3. We write ρ = ρ+−ρ−, where ρ+ is the positive part while ρ−
is the negative part. Note that the positive part and the negative part have
disjoint supports. Since ρ is an odd measure, C∗ρ = −ρ and given E ⊂ T

such that E ∩ E = ∅, we have suppρ+ ⊂ E. Thus, we take ρ− = C∗ρ+.
Furthermore, for νG to be positive, we need the condition C∗ρ+ ≤ νF , or
equivalently, ρ+ ≤ C∗νF .

Proof of Corollary 3.2. Let F,G ∈ H2(D) with inner-outer decompositions
as defined on Corollary 3.2. Observe that the properties of the Blaschke
product BG and the singular inner function SG immediately follow from
Lemma 3.1. For the outer function, by Lemma 3.1, we have

|OF (e
iθ)OF (e

−iθ)| = |OG(e
iθ)OG(e

−iθ)| (16)

almost everywhere on T. Hence,

log |OG(e
iθ)| = log |OF (e

iθ)|+ log |U(eiθ)|

almost everywhere on T, where log |U(eiθ)| is an odd real-valued function of
θ and log |U | ∈ L1(T). Since |OG(e

iθ)| = |OF (e
iθ)U(eiθ)| almost everywhere

on T and OG and OF are outer functions, we get

OG(z) = OF (z)OU (z), z ∈ D.

HenceOU = OG/OF ∈ N+. Moreover, (16) implies that |OU (e
iθ)OU (e

−iθ)| =
1 almost everywhere on T, and so OU (z)O

∗
U (z) = 1 on D. �

We can actually identify the solutions of the phase retrieval problem on
the disc in terms of a factorization. Let us consider an analog of the result
of McDonald [24, Proposition 1].

Corollary 3.4. Let F,G ∈ H2(D). Then |F | = |G| on (−1, 1) if and only
if there exist u, v ∈ Hol(D) such that F = uv and G = uv∗.

Proof. Let F,G ∈ H2(D). By Corollary 3.2, we have the factorizations

F = BFSFOF and G = BFSFOF .

First, observe that we can write the Blaschke products BF and BG as

BF = B1B2 and BG = B1B
∗
2

where B1 is the Blaschke product associated with A ⊂ Z(F ) and B2 is the
Blaschke product associated with Z(F )\A. On the other hand, we can write
the singular measures νF and νG as

νF = ν1 + ν2 and νG = ν1 + C∗ν2

where

ν1 = νf +
ρ+ − C∗ρ+

2
and ν2 =

C∗ρ+ − ρ+
2

,

so that SF = Sν1Sν2 and SG = Sν1S
∗
ν2 .

Since OG = UOF where U is an outer function, U ∈ N+ and UU∗ = 1
on D. We write

OF = OFU
1/2U−1/2

and

OG = OFU
1/2U1/2 = OFU

1/2(U−1/2)∗
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Therefore, we take

u = B1Sν1OFU
1/2 and v = B2Sν2U

−1/2.

�

3.3. Back to the Strip. In this section, we go back to the phase retrieval
problem on the strip. Using Corollary 2.1, we see that Lemma 3.1 translates
to functions on H2

τ (S). By a change of variable and by applying the inner-
outer factorization on H2

τ (S), we have:

Lemma 3.5. Let f, g ∈ H2
τ (S). Then

|f(z)|2 = |g(z)|2 for all z ∈ R

if and only if

(i) the zero sets of f and g satisfy

Z(f) ∪ Z(f) = Z(g) ∪ Z(g);

(ii) the singular measures µf and µg, associated with f and g respec-
tively, satisfy

µf + C∗µf = µg + C∗µg

on ∂S; and
(iii) the boundary values satisfy

|f(x+ i)f(x− i)| = |g(x+ i)g(x − i)|

almost everywhere on R.

We now construct the solutions of the problem on the strip. Let N+
τ (S)

the Smirnov class of holomorphic functions in the S such that f = F (φ(z))/W 1/2(z)
where F ∈ N+. The following result immediately follows from Lemma 3.5.

Theorem 3.6. Let f, g ∈ H2
τ (S). Then |f | = |g| on R if and only if the

inner-outer decomposition of f and g are given by

f =iγ W−1/2BfSfOf and g = eiγ
′
W−1/2BgSgOg

where

• γ, γ′ ∈ R;
• Bf , Sf , Of are given by (7), (8), (9) respectively;

• Bg is the Blaschke product associated with the set A∪ (Z(f)\A) with
A ⊂ Z(f);

• Sg is the singular inner function associated with the positive singular
measure µg = µf +σ, where σ is an odd real singular measure, given
by σ = σ+ − C∗σ+, satisfying C∗σ = −σ and σ+ ≤ C∗µf ; and

• Og is the outer part of uOf where u ∈ N+
τ (S) is an outer function

and u = 1/u∗ on S.

Remark 3.7. Observe that possible trivial solutions to the problem on the
strip are given by:

(1) g(z) = ceiηzf(z) and (2) g(z) = ceiηzf∗(z)

with |c| = 1 and η ∈ R. Those trivial solutions are retrieved as follows

– the factor c is c = ei(γ−γ′)

– the factor eiηz is the factor u of the outer part as eiηz(eiηz)∗ = 1
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– the replacement of f by f∗ is obtained by taking A = ∅ for the Blaschke
part, σ = C∗µf − µf so that µg = C∗µf for the inner part and finally
u = Of∗/Of so that the outer part of g is Og = uOf = Of∗ .

Corollary 3.4 also translates to a result on the strip with a simple change
of variable.

Corollary 3.8. Let f, g ∈ H2
τ (S). Then |f | = |g| on R if and only if there

exist u, v ∈ Hol(S) such that f = uv and g = uv∗.

Finally, we go back to our initial phase retrieval problem. The following
result directly follows from Theorem 3.6.

Corollary 3.9. Let f ∈ L2(R) and f̂ ∈ L2(R, e2c|ξ|dξ). Then there exists

g ∈ L2(R) such that ĝ ∈ L2(R, e2c|ξ|dξ), |f(x)| = |g(x)| for all x ∈ R, and

g = eiκW−1/2BgSgOg

where

• eiκ ∈ T;
• Bg is the Blaschke product associated with the set A∪ (Z(f)\A) with
A ⊂ Z(f);

• Sg is the singular inner function associated with the positive singular
measure µg = µf +σ, where σ is an odd real singular measure, given
by σ = σ+ − C∗σ+, satisfying C∗σ = −σ and σ+ ≤ C∗µf ; and

• Og is the outer part of uOf where u ∈ N+
τ (S) is an outer function

and u = 1/u∗ on S.

4. Coupled Phase Retrieval Problems

In this section, we are investigating coupled phase retieval problems, i.e.
problems of the form |u| = |v|, |Tu| = |Tv| where T is some transform. This
additional assumption involving T may either lead to uniqueness or at least
to the reduction of the set of solutions.

4.1. Adding a Fixed Reference. Klibanov et. al. [22] considered the
following constrained problem:

|g| = |f | and |g − h| = |f − h| (17)

where h is a fixed reference signal. They were able to show that there are
at most two solutions of this problem. For the following result, we look at
a similar problem. It turns out that for the wide-band case, we also obtain
two solutions.

Theorem 4.1. Let f, g ∈ H2
τ (S) and h be a nonzero complex-valued function

such that Φ = ei argh is bounded and analytic on R. Suppose that |g(x)| =
|f(x)| and |g(x)− h(x)| = |f(x)− h(x)| for (a.e.) x ∈ R. Then there exists

two solutions of this problem, namely g(x) = f(x) or g(x) = f(x)Φ(x)2, for
x ∈ R.

Proof. Consider the two circles on C: C(0, |f(x)|) and C(h(x), |f(x)−h(x)|).
These two circles have two intersection points, one being f(x), the other

being f(x)Φ(x)2 (eventually being the same as the first one).
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|f(x)|

0

h(x)

|f(x)− h(x)|

f(x)

f(x)Φ(x)2

The circles C(0, |f(x)|) and C(h(x), |f(x) − h(x)|).

Therefore, for each x ∈ R, either g(x) = f(x) or g(x) = f(x)Φ(x)2. By
the pigeonhole principle, one of these two alternatives is valid on a set of
positive measure. But f, g and fΦ2 are all analytic so that if g = f on a set
of positive measure, then g = f everywhere, otherwise if g = fΦ2 on a set
of positive measure, then g = fΦ2 everywhere as well. �

Remark 4.2. If we do not assume Φ to be analytic, then b̄Φ2 may not be
analytic and would therefore not be a solution.

4.2. Pauli’s Problem. For our next result, we add a constraint involving
the Fourier transforms:

|g| = |f | and |ĝ| = |f̂ | (18)

This problem is due to Pauli, who speculated that (18) would imply g = cf
for some c ∈ T. However, one may construct many pairs (f, g) satisfying
(18) for which this is not the case (see e.g.Vogt [30], Corbett and Hurst
[8, 9]). Such pairs are now called Pauli partners. In the band-limited case,
Ismagilov [17] and the first author [18] have independently shown that the set
of the Pauli partners may be arbitrarily large. However, altough this is not
explicitly stated in [17, 18], for a given band-limited f only finitely band-
limited partners (up to trivial solutions) are constructed. The following
result shows that the solution set of the Pauli problem in the wide-band
case may be arbitrarily large as well and even uncountable.

Theorem 4.3. There exists f ∈ H2
τ (S) which has a nondenumerable infinity

of Pauli partners which are not constant multiples of one another.

Proof. The proof is a direct adaptation of [17, 18].
Let {αn}

∞
n=0 be a sequence of non-zero real numbers such that

∑+∞
n=1 |αn|

2 <
∞ and consider the associated Riesz product

Rα(x) =

∞∏

n=1

(
1 + 2iαn sin(2π3

nx)
)
.

For properties of Riesz products, we refer the reader to the book of Katznel-
son [21]. We may write this Riesz product as a Fourier series

Rα(x) =
∑

k∈Z

ake
2πikx. (19)
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Next, let ϕ ∈ L2(R) be such that ϕ̂ is supported on [0, 1] and note that
ϕ̂ is bounded. For all x ∈ R, take f = Rαϕ. As

f(x) =

(∑

k∈Z

ake
2πikx

)
ϕ(x),

we get

f̂(ξ) =
∑

k∈Z

akϕ̂(ξ − k).

Now, observe that ak = 0 unless there exists an integerN and η1, . . . , ηN ∈

{−1, 0, 1} with ηN 6= 0 such that k =

N∑

j=1

ηj3
j . Further, N and the ηj ’s are

uniquely determined by k. In this case, a simple computation shows that
3N−1 ≤ |k| ≤ 3N+1 and that

|ak| =
N∏

j=1

|αj |. (20)

Therefore, if we chose 0 < |αj| ≤ e−2·3j+1

, we get

|ak| ≤ |αN | ≤ e−2·3N+1

≤ e−2|k|.

As a consequence, for k ≤ |ξ| ≤ k + 1,

|f̂(ξ)| = |ak||ϕ̂(ξ − k)| ≤ e−2|k|‖ϕ̂‖∞ ≤ Ce−2|ξ|.

It follows that f ∈ H2
τ (S).

Next, let ε = {εn}
∞
n=1 ∈ {−1, 1}N and α(ε) = {αnεn}

∞
n=1. In particular,

for ε = 1 = (1, 1, . . .), α(1) = α. Observe that the associated Riesz product

Rα(ε)(x) =
∞∏

n=1

(
1 + 2iαnεn sin(2π3

nx)
)
=
∑

k∈Z

ak(ε)e
2πikx

has the following properties:

• for every x ∈ R, |Rα(ε)(x)| = |Rα(x)|;
• for every k ∈ Z, |ak(ε)| = |ak|.

This last property follows directly from (20). Note also that Rα(ε) is not a
constant multiple of Rα(ε′) if ε 6= ε′.

It remains to define fε = Rα(ε)ϕ. Then fε has the following properties:

• fε ∈ H2
τ (S) and fε is not a constant multiple of fε′ if ε 6= ε′;

• |fε(x)| = |fε′(x)| for all x ∈ R;

• |f̂ε(ξ)| = |f̂ε′(ξ)| since for k ≤ |ξ| ≤ k + 1, k ∈ Z,

|f̂ε(ξ)| = |ak(ε)||ϕ̂(ξ − k)| = |ak(ε
′)||ϕ̂(ξ − k)| = |f̂ε′(ξ)|.

�
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4.3. Derivation Operator. We first look at a direct consequence of Corol-
lary 3.8. Let b, q ∈ R with |q| < 1. For all z ∈ S and f ∈ H2

τ (S), consider

the operator
∂

∂z
which gives the derivative of f , the operator δ given by

δ(f)(z) = f(z + b)− f(z),

and the operator γ given by

γ(f)(z) = f(qz)− f(z).

The key property is that if D is one of
∂

∂z
, δ or γ and ϕ,ψ ∈ H2

τ (S), then

D(ϕ · ψ) = Dϕ · ψ + ϕ ·Dψ.

McDonald [24, Theorem 1] considered the coupled phase retrieval problem:
f, g entire, |g(x)| = |f(x)| with the additional constraint |Dg(x)| = |Df(x)|
for x ∈ R. McDonald showed that if f = uv and g = uv∗, then |Dg| = |Df |
is equivalent to

(
Dv

v
−
Dv∗

v∗

)(
Du∗

u∗
−
Du

u

)
=
DfDf∗ −DgDg∗

ff∗
= 0,

which imposes strong restrictions on either u or v. With these, McDonald
was able to significantly reduce the solution set into two solutions. As a
consequence of Corollary 3.8, McDonald’s result directly extends to the wide-
band case. We omit the proof as it is mutadis mutandis the one provided
by McDonald.

Corollary 4.4. Let f, g ∈ H2
τ (S) and D be one of the operators

d

dx
, δ or γ.

Suppose that |g(x)| = |f(x)| and |Dg(x)| = |Df(x)| for (a.e.) x ∈ R. Then:

(i) For the cases D =
d

dx
and D = γ, either g = βf or g = βf∗ for

some constant β ∈ R.
(ii) For the case D = δ, either g = V f or g = V f∗ where V is a mero-

morphic function that has period b and continuous and unimodular
on R.

4.4. Modulus on a Segment on S. In the spirit of what was done by
Boche et. al. [5], we now consider that |g(z)| = |f(z)| for z in a curve on S.
A similar idea can also be found in [19]. For this part, we add the fact that
|g(z)| = |f(z)| for every z on a segment lying on the strip S. We first look
at this additional constraint on the phase retrieval problem on the disc.

Lemma 4.5. Let f, g ∈ H2(D) such that |g(x)| = |f(x)| for x ∈ (−1, 1) and

|g(z)| = |f(z)| for z ∈ eiθ(−1, 1) (21)

where θ /∈ πQ. Then g = cf for some c ∈ T.

Proof. Let f, g ∈ H2(D) and Z = Z(f)△Z(g). Since |g(x)| = |f(x)| for all
x ∈ (−1, 1), we have Z = Z . It clearly follows that Z ∩ R = ∅.
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D

0

i

θ

1

The disc D and the segment eiθ(−1, 1).

Since |g(x)| = |f(x)| for all x ∈ eiθ(−1, 1), we have Z = RefθZ where
Refθ refers to a reflection with respect to the segment eiθ(−1, 1). Hence,
by composing Z = Z and Z = RefθZ , we get that Z = Rot2θZ , where
Rot2θ refers to a counterclockwise 2θ-rotation with respect to 0. Now, since
θ /∈ πQ, either Z = ∅ or Z is uncountable. Since the zero set is discrete, Z

cannot be uncountable, and so Z = ∅. Hence, Z(f) = Z(g), which implies
that the Blaschke products formed by the zeros of f and g given by Bf and
Bg respectively, are equal.

Now, observe that since |g(x)| = |f(x)| for all x ∈ (−1, 1), Lemma 3.1
implies that for eiζ ∈ T,

νf (e
iζ) + νf (e

−iζ) = νg(e
iζ) + νg(e

−iζ).

Using this equation, the Fourier coefficients of νf and νg satisfy

ν̂f (n) + ν̂f (−n) = ν̂g(n) + ν̂g(−n), for all n ∈ N. (22)

On the other hand, |g(x)| = |f(x)| for all x ∈ eiθ(−1, 1) implies that
|f(eiθx)| = |g(eiθx)| for all x ∈ (−1, 1). For z ∈ D, we now write F (z) =
f(eiθz) and G(z) = g(eiθz) so that F,G ∈ H2(D) and |F (w)| = |G(w)| for
all w ∈ (−1, 1). Note that for w, z ∈ D, we have

SF (w) = exp

(∫

T

w + eiζ

w − eiζ
dνF (e

iζ)

)

= exp

(∫

T

zeiθ + eiζ

zeiθ − eiζ
dνF (e

iζ)

)
,

and so by letting u = ζ − θ, we get

SF (w) = exp

(∫

T

z + eiu

z − eiu
dνf (e

i(u+θ))

)
.

Thus by Lemma 3.1, we have for eiζ ∈ T,

νf (e
i(θ+ζ)) + νf (e

i(θ−ζ)) = νg(e
i(θ+ζ)) + νg(e

i(θ−ζ)). (23)

Next, define the measure µ on T by µ(eiζ) = νf (e
i(ζ+θ)) for eiζ ∈ T, with

Fourier coefficients given by

µ̂(n) =

∫

T

e−inθdνf (e
i(ζ+θ)) = einθν̂f (n)
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for n ∈ N. Hence, the previous equation and (23) imply that for n ∈ N,

einθν̂f (n) + e−inθν̂f (−n) = einθν̂g(n) + e−inθν̂g(−n).

Now this equation together with (22) imply that

ν̂g(n) =
e−inθν̂f (n)− einθν̂f (n)

e−inθ − einθ
= ν̂f (n)

and ν̂g(−n) = ν̂f (−n), for all n ∈ N. It follows that νf = νg and so Sf = Sg.
We now prove the same for the outer part. Since |g(x)| = |f(x)| for all

x ∈ (−1, 1), Lemma 3.1 again implies that for a.e. eiζ ∈ T,

log |f(eiζ)|+ log |f(e−iζ)| = log |g(eiζ)|+ log |g(e−iζ)|.

For eiζ ∈ T, letting hf (e
iζ) = log |f(eiζ)| implies that the Fourier coefficients

of hf and hg satisfy

ĥf (n) + ĥf (−n) = ĥg(n) + ĥg(−n), for all n ∈ N. (24)

On the other hand, by definition of F and G, we have for a.e. eiζ ∈ T,

log |f(ei(θ+ζ))|+ log |f(ei(θ−ζ))| = log |g(ei(θ+ζ))|+ log |g(ei(θ−ζ))|.

Using this equation and a similar argument to te one for the Fourier coeffi-
cients of the singular measures, we get that for n ∈ N,

einθĥf (n) + e−inθĥf (−n) = einθĥg(n) + e−inθĥg(−n).

Hence, by this equation and (24) we get that ĥg(n) = ĥf (n) for all n ∈ Z.
Therefore hf = hg, and so Of = Og.

Finally, since Bf = Bg, Sf = Sg and Of = Og, we have g = cf for some
c ∈ T. �

We now consider the coupled phase retrieval problem on the strip that
includes a more general form of the constraint given in (21). Using the
previous lemma, we establish the uniqueness of the solution of the following
problem.

Theorem 4.6. Let f, g ∈ H2
τ (S) such that |g(x)| = |f(x)| for x ∈ R and

|g(z)| = |f(z)| for z ∈
(
−eiθ + a, eiθ + a

)

where a ∈ R and θ /∈ πQ. Then g = cf for some c ∈ T.

Proof. Without loss of generality, we let a = 0 so that the segment intersects
the real line at the origin. Consider f1/2(z) = f(12z), g1/2(z) = g(12z) for all

z ∈ D. Observe that f1/2, g1/2 ∈ H2(D), and |g1/2| = |f1/2| on (−1, 1) and

on eiθ(−1, 1). Hence, g1/2 = cf1/2 on D for some c ∈ T by the Lemma 4.5,

and so g = cf on 1
2D. Therefore, since f, g ∈ Hol(S) and g = cf on 1

2D so
we have g = cf on S. �
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