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Abstract: The purpose of this work is to establish the 

existence and uniqueness of the solution of the porous 

medium equation where the solution is subject to certain 

constraints, for the boundary conditions of Dirichlet and 

resolve it by different numerical methods. 

After a appropriate change of variables, we consider an 

implicit time discretization scheme that leads to solve at 

each time a sequence of nonlinear stationary problems. For 

each stationary problem, we use a spatial discretization that 

leads to each time to solve a multivalued large nonlinear 

algebraic system. Finally, we applied subdomain asynchronous 

parallel methods without overlapping and we established the 

convergence by a contraction technique. 

Parallel solution; Keywords:  Optimisation problem; 

Hydrodynamic limit; Relaxation methods  

INTRODUCTION 

One of the main motivations of the physical study of the 

hydrodynamic limit comes from a branch of statistical 

mechanics. The goal is to characterize the macroscopic 

equation governing the evolution of a fluid or gas from a 

microscopic random dynamic. At the microscopic level the 

evolution of the particles is modeled on a microscopic volume 

according to the initial profile, after renormalization in space 

and time, at the time t the system is described by the density of 

particles which is the solution of the partial differential 

equation of the parabolic type under the scaling change, it 

called hydrodynamic equation, that describe the spatial and 

temporal evolution of the macroscopic variables of a fluid or 

gas evolving in a volume from a microscopic dynamics at 

random due to the large number of particles. The purpose of 

this work is to treat numerically the hydrodynamic equations 

by numerical methods with homogeneous boundary conditions 

of Dirichlet  

1-Problem presentation

First, We consider the boundary value problem (1.1) equipped 

with homogeneous Dirichlet boundary condition  

then we have to find the solution u(t,x) , the density function, 

which satisfies  the following boundary value problem :
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Consider now the change of variables 
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then the problem (1.1) can be written as follows: 
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we consider the following functional
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the problem (1.4) is equivalent to the following problem  
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is classically an Hilbert space.

2-Existence and uniquness of the solution 
Lemma 1. If 0 < v < 1, the mapping v → j(v) is Frechet-differentiable 

and its derivative is equal to 
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Lemma 2. If 0 = d0 ≤ v ≤ d1 < 1, the mapping v → j(v) is convex; 

moreover, the mapping v → j′(v) is increasing. 

Lemma 3. The functional v → g(v) is uniformly convex, i.e. 

( ) ( ) ( ) ( )( ) ( ) ( )

] [ ( )

2

1,

1

0

1
1 1

2

0,1 , ,

g g w g w c w

w

t t
t u t tu t u

t u

W

-
+ - - + - ³ W -

" Î " Î WH

where c(Ω) is a positive constant. Moreover, the mapping v → g(v) is 

Frechet-differentiable and, respectively, the first and the

second Frechet-derivative are equal to 

!!!!!!!!!!!g′(v),w" = a(v,w) − L(w) and !g′′(v).w,w" = a(w,w).

Corollary 4. The functional v → g(v) + j(v) =
#$a(v, v) − L(v) + j(v) is 

uniformly convex. 

Lemma 5. The functional v → g(v) =
#$a(v, v) − L(v) tends towards to 

infinity when the norm %v%1,Ω tends to infinity.

Proposition 6. Let J : K & H1,0 → R be an uniformly convex function, 

differentiable on a real Hilbert space H1,0 , where K is a non-void closed 

convex set. Then there exists one and only one solution of the constrained 

optimization problem (1.6). 

3. Multivalued formulation of the problem 

The previous model problem equipped with homogeneous Dirichlet 

boundary conditions, can also be classically 

formulated like a multivalued problem; indeed, in convex optimization 

(see [8,17]), the solution of this problem satisfy 

' ()*+,- . /#01,2345,6576,89- : ;< = >?@-A = BCD@-A E FG

where BCD@-A is the subdifferential of the indicator function CD(v) of the 

convex subset K; recall that the indicator function of K defined byCD@-A H I F,)J,- . K=L,M65NOP)2NG
and 

BCD@-A H
QRS
RT U0,,,,,,,,,,,,,)J,-V W +1]:L0 F]0 )J,,-V H +1F0,,,)J,+1 W -V W +#[F0=L[0,,,)J,,-V H +#U0,,,,,,,,,,,,,)J,-V X +#

G
4. Numerical solution of the model problem 

4.1.Discretization  

!

In order to simplify the presentation, we will consider that Ω &YZ,Ω

=[F0 \]Z , with d = 1, 2 or 3. We consider also that Ω is discretized with 

an uniform mesh h =
#^_# , where n . `, the grid points being constituted 

by N discretization points, where N = *Z ,in the case of Dirichlet 

boundary condition the complete discretization leads, at each time step, 

to the solution of the following large multivalued nonlinear algebraic 

system

Φ(V) + δt .AV + ∂Ψ(V) − abE 0, (4.1)

Note that, using such spatial discretizations, the matrix A is irreducibly 

diagonally dominant; since the diagonal entries of A are positive and all 

its off-diagonal entries are nonpositive, thus, A is a nonsingular            

M-matrix (see [13]).

4.2. Parallel subdomain iterative methods without overlapping 

Let η . `, be a positive integer and consider now the following block 

decomposition of problem (4.1) into η subproblems

Φi(cdi ) + δt .Ai,i.,cdi+ δt .e 8)0 >fghV cdj − ;<i + ∂Ψi(cdi ) E 0,ii . {1, . . . , η}, (4.2)

Then, we associate to the problem (4.2) the following fixed point 

mapping at it is fixed point Vj if it exists (and we will verify in the sequel 

that this property is true) 

cdi @k6,f 8)0 )Al#m;<) : n)@cd),A : k6,f e 8)0 >fghV cd>:Pd),o H ()@cdA0 @pfqAii . {1, . . . , η},

Consider now the solution of the subproblems (4.2) by an asynchronous 

parallel subdomain method without overlapping (see [12,18]) which can 

be written as follows 

rn)@cs_#),A = ,k6,f 8)0 )f cs_#) = Ps_#) H ;<) : k6,f e 8)0 >fghV t>0 uv,) . 2@wAcs_#) H cs)0 )J,,,) x 2@wA,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, G,,,(4.4)

where tVs_# H tVs_#@cs_#)A , {W1, . . . ,Wi−1,−,Wi+1, . . . ,Wη} are the 

available values of the components Vj for j y i, defined by Wj = cz{@sAj,

S s p p N is a sequence of non-empty subsets of {1, 2, . . . , η}

that indicates the components updated at the (p + 1)-th relaxation step 

and R = {ρ1(p), . . . , ρη(p)}p.N, is a sequence of element of `|;

furthermore S and R verify the following assumptions :

ip . N, s(p) y U0 ii . {1, 2, . . . , η}, the set {p . N|i . s(p)} is infinite,ii . {1, . . . , η},ip . N, }g@wA ~ w0ii . {1, . . . , η}, �u�s�� })@wA H =L.



Remark. The algorithm (4.4) describes a computational method where 

the communications between the processors can be synchronous or 

asynchronous. For parallel synchronous methods,  ρ(p) = p, ip . `.

Moreover if s(p) = {1, . . . , η}, i.e. S = {{1, . . . , η}, . . . {1, . . . , η}, . 

. .} and ρ(p) = p, ip . `, then (4.4) describes the sequential block 

Jacobi method 

If s(p) = p.mod(η) + 1, i.e. S = {{1}, {2}, . . . , {η}, {1}, . . . , {η}, . . 

.} and ρ(p) = p, ip .,`, then (4.4) models the sequential block Gauss–

Seidel method. Besides, 

If S = {{1}, . . . , {η}, {η}, {η − 1}, . . . , {1}, {1}, . . . , {η}, {η}, . . . , 

{1}, . . .} then (4.4) models the sequential alternating direction method 

(ADI). This model of parallel asynchronous algorithm therefore appears

like a more general model.

4.2.1. Convergence of parallel subdomain methods

For any given vector W . RN let us consider the following implicit fixed 

point iteration deduced from (4.3) n)@cVA = ,k6,f 8))f cV = PV@cVA H ;<V : k6,f�8)>fghV t>0,,,PV@cVA . B�)@c),A0,,ii . {1, . . . , η}, (4.5)

and then we can set V = F (W). For another vector W′  we can write also 

analogously  n)@c?VA = ,k6,f 8))f c?V =PV@c?VA H ;<V : k6,f�8)>fghV t ?>0 i), . , �\0 f f f 0 ��,,
P5NON,PV@c�,VA . B�)@c�,V,A0 (4.6)

Subtracting (4.5) and (4.6), we obtain

n)@cVA : n)@c?VA = 8))f @cV : c?VA=PV@cVA : PV@c?VA H :�8)>fghV @t> :t�,>Af,,@pf�A
Let us denote by !, "i the usual bilinear form associated with a pair of dual 

spaces, %.%k the classical lk-norm defined in Y^� and %f %�d the norm 

defined in the dual space; let gi. Gi(Vi − V′i ) be an element of the 

duality map, where ii . {1, . . . , η},ik . [1,∞], gi satisfies

Gi(Vi − V′i ) gi Y^� ! Vi − V′i gi"i % Vi − V′i %k and ,% �), %�d 1

Then by multiplying (4.7) by gi, we obtain for all i 

! n)@cVA : n)@c?VA, gi"i+! PV@cVA : PV@c?VA, gi"i+,k6f !,8))f @c) : c�)A0 �)"u
H :k6,f�!,8)>f @t> : t�,>A0 �)"u

>y)
A being an M-matrix, the diagonal submatrices Aii, ii . {1, . . . , η}, are 

also M-matrices. Applying a characterization of M-matrices from [19], 

these submatrices are strongly accretive matrices, i.e. ii . {1, . . . , η}
the following inequality holds

!,8))f @cV : c?VA0 �)"u � �VV % ,c), : ,c�), % �,0 @�VV X FA�,,,@pf�A
since the subdifferential mapping is maximal monotone and the operator 

Φi is increasing and consequently also maximal monotone, then the left 

hand side of the previous relation can be minored by �VV % ,c), : ,c�), % �
Concerning the right hand side of the previous relation, the mapping  !., ."i being a bilinear form, ij . {1, . . . , η}, j y i, for all k . [1,∞], we 

obtain the following upper bound

�!,8)>f @t> : t�,>A0 �)"ughV ~��Vg % ,t> : t�>, % �ghV 0,,,,�Vg X FA�,,,@pf�A
where μij denotes the subordinate matrix norm of Aij associated with the 

scalar norm %.%k. Taking into account relations (4.8) and (4.9) we obtain 

the following inequality

% ,c), :,c?), % � ~��Vg�VV % ,t> : t�>, % �0ghV ,,,,,,i), ., �\0 f f f 0 ��,,@pf\FA,
Let us now denote by �b the following (η × η) matrix

�bVg H �F,)J,) H >,,,�)>�)) ,)J,) y >G
�b,is a nonnegative matrix. Moreover let us define the vectorial norm of a 

vector Y, by the positive vector of Y|, the components of which are 

� � ��� H I� 0 ��g��0 � �; 
thus, the inequalities (4.10) can be written as follows 

�c) : c�)� ~ �bf �t> : t�>�0 it0 @pf\\A
Note that the matrix �b with diagonal entries null and off-diagonal entries 

equal to 
�)>�)) is the Jacobi matrix of a matrix ,� with diagonal entries equal 

to μii and off-diagonal entries equal to −μij. If � is an irreducible

M-matrix then,�b is an irreducible and non-negative matrix and all 

eigenvalues of  �b have a modulus less than one. Let us denote by ν the 

spectral radius of �b,and by Γ .Y| the associated eigenvector. Classically 

by the Perron–Frobenius theorem, all the components of Γ are strictly 

positive and the following inequality �bΓ ≤ νΓ is valid, where 0 ≤ ν < 1

(see [20]). If we consider the weighted uniform norm defined by

�c��0� H ���# V | ¡�cV�¢£V ¤
then, by a straightforward way, we obtain 

�(@cA : (@c�A�¥0� ~ ¦�c : c��¥0�0 i,c0c� . Y§0 @pf\¨A
Then, using the last inequality (4.12), F is a contraction and we obtain a 

result of existence and uniqueness of both the fixed point of F and of the 

solution of Problem (4.1). Then, if the previous assumptions are verified, 

i.e. � is an irreducible M-matrix, whatever be the initial guess V0, the 

convergence of the parallel asynchronous, synchronous and sequential 

iterations described by (4.4), results now either from [12,18] associated to 

the property of contraction with respect of a vectorial norm (4.11) of the 

mapping F or directly of the contraction in the usual sense (4.12) by 

applying the result of [21]. Then we can formulate the following result. 

Proposition 1  

@© being a diagonal increasing operator, under the following 

assumptions :

- the matrix � is an M-matrice. 

- ª a diagonal increasing operator.
the parallel asynchronous, synchronous and sequential iterative 

subdomain method without overlapping defined by (4.4) converge to cd. 
Remark1 
Practically, the algebraic system to solve is split into �9 blocks, �9≤ η,

contiguous blocks, corresponding to a coarser subdomain decomposition

without overlapping 

proposition 2 

Consider the solution of the algebraic system (4.1) by the parallel 

asynchronous relaxation methods (4.4),  under the assumptions of 

Proposition 1. Then, the sequential and the parallel synchronous and 

asynchronous subdomain methods without overlapping (4.4) converge to 

the solution of the problem (4.1) for every coarser subdomain 

decomposition. 

Proof 

Indeed, considering a point decomposition of the model problem, we can 

state a similar result than the one stated in Proposition 1 for this particular 



decomposition and applying a result of [15], the proof follows from a 

straightforward way for every coarser subdomain decomposition. 

5-Numerical experiments 

the iterative scheme that computes V(q+1) is the Newton algorithm: 

QS
T«¬_­0® H «¬,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,@¯°±=²�@«¬_­0³A¯« H :@²@«¬_­0³A = ¯°±«¬_­0³ :²@«¬A«b¬_­0³_­ H «¬_­0³ = ¯«0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,«¬_­0³_­ H ³´µ¶@«b¬_­0³_­A,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

G
Where  

n?@·A H ¸f · #¹l#
º@\ : · #¹A$

d=1 d=2 d=3
Time steps Discr.points Time steps Discr.points Time steps Discr.points

20 1000 20 50*50 20 50*50*50

Table1: Number of time steps and number of discretization points on each axis for d = 1, 2, 3. 

Newton-relaxation 3D Newton-relaxation 2D Newton-Gauss 1D

Time Linear G.S.iterat Time Linear G.S.iterat Time Linear

1458.9 2 60 (1) 9.42 2 16 (1) 5.03 4 or 3

- - 59 (2) - - 1 (2) - -

Table 2: Elapsed time (seconds), number of linearizations and average number of Gauss–

Seidel iterations for each linearization phase for d = 2, 3. 

6. Conclusion 

In the present study we have solved the modified porous medium 

equation by a numerical way; such solution has been possible when 

Dirichlet boundary conditions are considered. Due to the constraints on 

the solution, the more convenient formulation of the problem is obtained 

by perturbation to the problem by the subdifferential mapping of the   

indicator function of the convex set describing these constraints. After  

appropriate assumptions, particularly the facts that the spatial 

discretization matrix is an M-matrix and also that the affine system is 

perturbed by increasing diagonal operators, this formulation allows to 

study in a unified way the behavior of the sequential and parallel 

relaxation methods used for the solution of the discretized problem by 

various subdomains methods. Parallel experiments show the efficiency of 

the studied method. 
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