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The purpose of this work is to establish the existence and uniqueness of the solution of the porous medium equation where the solution is subject to certain constraints, for the boundary conditions of Dirichlet and resolve it by different numerical methods.

After a appropriate change of variables, we consider an implicit time discretization scheme that leads to solve at each time a sequence of nonlinear stationary problems. For each stationary problem, we use a spatial discretization that leads to each time to solve a multivalued large nonlinear algebraic system. Finally, we applied subdomain asynchronous parallel methods without overlapping and we established the convergence by a contraction technique.

Parallel solution;

INTRODUCTION

One of the main motivations of the physical study of the hydrodynamic limit comes from a branch of statistical mechanics. The goal is to characterize the macroscopic equation governing the evolution of a fluid or gas from a microscopic random dynamic. At the microscopic level the evolution of the particles is modeled on a microscopic volume according to the initial profile, after renormalization in space and time, at the time t the system is described by the density of particles which is the solution of the partial differential equation of the parabolic type under the scaling change, it called hydrodynamic equation, that describe the spatial and temporal evolution of the macroscopic variables of a fluid or gas evolving in a volume from a microscopic dynamics at random due to the large number of particles. The purpose of this work is to treat numerically the hydrodynamic equations by numerical methods with homogeneous boundary conditions of Dirichlet

1-Problem presentation

First, We consider the boundary value problem (1.1) equipped with homogeneous Dirichlet boundary condition then we have to find the solution u(t,x) , the density function, which satisfies the following boundary value problem :
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we used the implicit temporary discretization
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is classically an Hilbert space.

2-Existence and uniquness of the solution

Lemma 1. If 0 < v < 1, the mapping v → j(v) is Frechet-differentiable
and its derivative is equal to ( ) 
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tends towards to infinity when the norm %v%1,Ω tends to infinity. Proposition 6. Let J : K & H1,0 → R be an uniformly convex function, differentiable on a real Hilbert space H1,0 , where K is a non-void closed convex set. Then there exists one and only one solution of the constrained optimization problem (1.6).

Multivalued formulation of the problem

The previous model problem equipped with homogeneous Dirichlet boundary conditions, can also be classically formulated like a multivalued problem; indeed, in convex optimization (see [START_REF] Barbu | Nonlinear Semigroups and Differential Equations in Banach Spaces[END_REF][START_REF] Glowinski | Analyse Numérique des Inéquations Variationnelles[END_REF]), the solution of this problem satisfy ' ()*+,-. / #01, 2345,6576, 8 9 -: ; < = > ? @-A = BC D @-A E F G

where BC D @-A is the subdifferential of the indicator function C D (v) of the convex subset K; recall that the indicator function of K defined by , where n . `, the grid points being constituted by N discretization points, where N = * Z ,in the case of Dirichlet boundary condition the complete discretization leads, at each time step, to the solution of the following large multivalued nonlinear algebraic system
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Note that, using such spatial discretizations, the matrix A is irreducibly diagonally dominant; since the diagonal entries of A are positive and all its off-diagonal entries are nonpositive, thus, A is a nonsingular M-matrix (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]).

Parallel subdomain iterative methods without overlapping

Let η . `, be a positive integer and consider now the following block decomposition of problem (4.1) into η subproblems
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Remark. The algorithm (4.4) describes a computational method where the communications between the processors can be synchronous or asynchronous. For parallel synchronous methods, ρ(p) = p, ip . 
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A being an M-matrix, the diagonal submatrices Aii, ii . {1, . . . , η}, are also M-matrices. Applying a characterization of M-matrices from [START_REF] Spiteri | A new characterization of M-matrices and H-matrices[END_REF],
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thus, the inequalities (4.10) can be written as follows -c ) : c ˆ)-~" bf -t> : t ˆ>-0 it0 @pf\\A Note that the matrix " b with diagonal entries null and off-diagonal entries equal to
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is the Jacobi matrix of a matrix ,› with diagonal entries equal to μii and off-diagonal entries equal to -μij. If › is an irreducible M-matrix then," b is an irreducible and non-negative matrix and all eigenvalues of " b have a modulus less than one. Let us denote by ν the spectral radius of " b,and by Γ .Y | the associated eigenvector. Classically by the Perron-Frobenius theorem, all the components of Γ are strictly positive and the following inequality " bΓ ≤ νΓ is valid, where 0 ≤ ν < 1

(see [START_REF] Kaszkurewicz | Matrix Diagonal Stability in Systems and Computation[END_REF]). If we consider the weighted uniform norm defined by
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then, by a straightforward way, we obtain ˜(@cA : (@c ˆA˜¥ 0• ~¦˜c : c ˆ˜¥0• 0 i,c0 c ˆ. Y § 0 @pf\¨A Then, using the last inequality (4.12), F is a contraction and we obtain a result of existence and uniqueness of both the fixed point of F and of the solution of Problem (4.1). Then, if the previous assumptions are verified, i.e. › is an irreducible M-matrix, whatever be the initial guess V0, the convergence of the parallel asynchronous, synchronous and sequential iterations described by (4.4), results now either from [START_REF] Baudet | Asynchronous iterative methods for multiprocessor[END_REF][START_REF] Miellou | Algorithmes de relaxation chaotiques à retards[END_REF] associated to the property of contraction with respect of a vectorial norm (4.11) of the mapping F or directly of the contraction in the usual sense (4.12) by applying the result of [START_REF] Tarazi | Some convergence results for asynchronous algorithms[END_REF]. Then we can formulate the following result. Proposition 1 @© being a diagonal increasing operator, under the following assumptions :

-the matrix › is an M-matrice.

ª a diagonal increasing operator.

the parallel asynchronous, synchronous and sequential iterative subdomain method without overlapping defined by (4.4) converge to c d .

Remark1

Practically, the algebraic system to solve is split into †9 blocks, †9 ≤ η, contiguous blocks, corresponding to a coarser subdomain decomposition without overlapping proposition 2 Consider the solution of the algebraic system (4.1) by the parallel asynchronous relaxation methods (4.4), under the assumptions of Proposition 1. Then, the sequential and the parallel synchronous and asynchronous subdomain methods without overlapping (4.4) converge to the solution of the problem (4.1) for every coarser subdomain decomposition. Proof Indeed, considering a point decomposition of the model problem, we can state a similar result than the one stated in Proposition 1 for this particular decomposition and applying a result of [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF], the proof follows from a straightforward way for every coarser subdomain decomposition.

5-Numerical experiments
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Conclusion

In the present study we have solved the modified porous medium equation by a numerical way; such solution has been possible when Dirichlet boundary conditions are considered. Due to the constraints on the solution, the more convenient formulation of the problem is obtained by perturbation to the problem by the subdifferential mapping of the indicator function of the convex set describing these constraints. After appropriate assumptions, particularly the facts that the spatial discretization matrix is an M-matrix and also that the affine system is perturbed by increasing diagonal operators, this formulation allows to study in a unified way the behavior of the sequential and parallel relaxation methods used for the solution of the discretized problem by various subdomains methods. Parallel experiments show the efficiency of the studied method.
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  In order to simplify the presentation, we will consider that Ω &Y Z ,Ω =[F0 \] Z , with d = 1, 2 or 3. We consider also that Ω is discretized with an uniform mesh h = # ^_#

  Moreover if s(p) = {1, . . . , η}, i.e. S = {{1, . . . , η}, . . . {1, . . . , η}, . . .} and ρ(p) = p, ip . `, then (4.4) describes the sequential block Jacobi method If s(p) = p.mod(η) + 1, i.e. S = {{1}, {2}, . . . , {η}, {1}, . . . , {η}, . . .} and ρ(p) = p, ip .,`, then (4.4) models the sequential block Gauss-

	Seidel method. Besides,
	If S = {{1}, . . . , {η}, {η}, {η -1}, . . . , {1}, {1}, . . . , {η}, {η}, . . . ,
	{1}, . . .} then (4.4) models the sequential alternating direction method
	(ADI). This model of parallel asynchronous algorithm therefore appears
	like a more general model.
	4.2.1. Convergence of parallel subdomain methods
	For any given vector W . RN let us consider the following implicit fixed point iteration deduced from (4.3)

`.

•

  Concerning the right hand side of the previous relation, the mapping

	% ,c), : , c ? ), % •	~ƒ Ž Vg Ž VV ghV	% ,t> : t ˆ>, % •0	,,,
	we			
	obtain the following upper bound			
	ƒ!,8)>f @t> : tˆ,>A0 OE)"u ghV where μij denotes the subordinate matrix norm of Aij associated with the ~ƒ Ž Vg % ,t> : t ˆ>, % • 0,,,,Ž Vg X FA•,,,@pf'A ghV			
	scalar norm %.%k. Taking into account relations (4.8) and (4.9) we obtain the following inequality			

!., ."i being a bilinear form, ij . {1, . . . , η}, j y i, for all k . [1,∞],

of time steps and number of discretization points on each axis for d = 1, 2, 3.

  

	Time steps	Discr.points	Time steps	Discr.points	Time steps	Discr.points
	20			1000	20	50*50	20	50*50*50
	Table1: Number Newton-relaxation 3D	Newton-relaxation 2D	Newton-Gauss 1D
	Time	Linear	G.S.iterat	Time	Linear	G.S.iterat	Time	Linear
	1458.9	2		60 (1)	9.42	2	16 (1)	5.03	4 or 3
	-	-		59 (2)	-	-	1 (2)	-	-

Table 2 : Elapsed time (seconds), number of linearizations and average number of Gauss- Seidel iterations for each linearization phase for d = 2, 3.
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